Difference between revisions of "Mathematical formula"
From mispar
(→Subtraction of Roots) |
(→Division) |
||
(38 intermediate revisions by the same user not shown) | |||
Line 191: | Line 191: | ||
[[category: #subtraction[0] ]] | [[category: #subtraction[0] ]] | ||
[[comment: 468-382]] | [[comment: 468-382]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle654-321</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #subtraction[0] ]] | ||
+ | [[comment: 654-321]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle956-867</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #subtraction[0] ]] | ||
+ | [[comment: 956-867]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle1000-999</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #subtraction[0] ]] | ||
+ | [[comment: 1000-999]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle2000-1999</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle2000-1999</math><div class="mw-collapsible-content"> | ||
Line 286: | Line 301: | ||
[[category: #subtraction[0] ]] | [[category: #subtraction[0] ]] | ||
[[comment: (31080+46ⁱⁱ+35ⁱⁱⁱ+47ⁱᵛ+53ᵛⁱ)-(206+50ⁱ+37ⁱⁱⁱ)]] | [[comment: (31080+46ⁱⁱ+35ⁱⁱⁱ+47ⁱᵛ+53ᵛⁱ)-(206+50ⁱ+37ⁱⁱⁱ)]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed">WP<div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #subtraction[0] ]] | ||
+ | [[comment: WP]] | ||
}}</div></div><br> | }}</div></div><br> | ||
Line 345: | Line 365: | ||
== Multiplication == | == Multiplication == | ||
+ | |||
=== units by units === | === units by units === | ||
Line 755: | Line 776: | ||
[[category: #multiplication[0] ]] | [[category: #multiplication[0] ]] | ||
[[comment: 246×140]] | [[comment: 246×140]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle321\times654</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #multiplication[0] ]] | ||
+ | [[comment: 321×654]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle348\times235</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle348\times235</math><div class="mw-collapsible-content"> | ||
Line 770: | Line 796: | ||
[[category: #multiplication[0] ]] | [[category: #multiplication[0] ]] | ||
[[comment: 462×323]] | [[comment: 462×323]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle464\times464</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #multiplication[0] ]] | ||
+ | [[comment: 464×464]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle403\times230</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle403\times230</math><div class="mw-collapsible-content"> | ||
Line 800: | Line 831: | ||
[[category: #multiplication[0] ]] | [[category: #multiplication[0] ]] | ||
[[comment: 253×1335]] | [[comment: 253×1335]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle6845\times327</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #multiplication[0] ]] | ||
+ | [[comment: 6845×327]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle1234\times4321</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle1234\times4321</math><div class="mw-collapsible-content"> | ||
Line 847: | Line 883: | ||
}}</div></div><br> | }}</div></div><br> | ||
− | == | + | === Word Problems === |
− | <div class="mw-collapsible mw-collapsed"> | + | <div class="mw-collapsible mw-collapsed">Word Problems<div class="mw-collapsible-content"> |
{{#annotask: | {{#annotask: | ||
− | [[category: # | + | [[category: #multiplication[0] ]] |
− | [[comment: | + | [[comment: WP]] |
}}</div></div><br> | }}</div></div><br> | ||
− | <div class="mw-collapsible mw-collapsed"> | + | |
+ | === Permutations === | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed">2!<div class="mw-collapsible-content"> | ||
{{#annotask: | {{#annotask: | ||
− | [[category: # | + | [[category: #permutation[0] ]] |
− | [[comment: | + | [[comment: 2]] |
}}</div></div><br> | }}</div></div><br> | ||
− | <div class="mw-collapsible mw-collapsed"> | + | <div class="mw-collapsible mw-collapsed">3!<div class="mw-collapsible-content"> |
{{#annotask: | {{#annotask: | ||
− | [[category: # | + | [[category: #permutation[0] ]] |
− | [[comment: | + | [[comment: 3]] |
}}</div></div><br> | }}</div></div><br> | ||
− | <div class="mw-collapsible mw-collapsed"> | + | <div class="mw-collapsible mw-collapsed">4!<div class="mw-collapsible-content"> |
{{#annotask: | {{#annotask: | ||
− | [[category: # | + | [[category: #permutation[0] ]] |
− | [[comment: | + | [[comment: 4]] |
}}</div></div><br> | }}</div></div><br> | ||
− | <div class="mw-collapsible mw-collapsed"> | + | <div class="mw-collapsible mw-collapsed">5!<div class="mw-collapsible-content"> |
{{#annotask: | {{#annotask: | ||
− | [[category: # | + | [[category: #permutation[0] ]] |
− | [[comment: | + | [[comment: 5]] |
}}</div></div><br> | }}</div></div><br> | ||
− | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle11^2</math><div class="mw-collapsible-content"> | + | <div class="mw-collapsible mw-collapsed">6!<div class="mw-collapsible-content"> |
+ | {{#annotask: | ||
+ | [[category: #permutation[0] ]] | ||
+ | [[comment: 6]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed">7!<div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #permutation[0] ]] | ||
+ | [[comment: 7]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed">8!<div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #permutation[0] ]] | ||
+ | [[comment: 8]] | ||
+ | }}</div></div><br> | ||
+ | |||
+ | == Squaring == | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle3^2</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #squared number[0] ]] | ||
+ | [[comment: 3²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle7^2</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #squared number[0] ]] | ||
+ | [[comment: 7²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle8^2</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #squared number[0] ]] | ||
+ | [[comment: 8²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle9^2</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #squared number[0] ]] | ||
+ | [[comment: 9²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle10^2</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #squared number[0] ]] | ||
+ | [[comment: 10²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle11^2</math><div class="mw-collapsible-content"> | ||
{{#annotask: | {{#annotask: | ||
[[category: #squared number[0] ]] | [[category: #squared number[0] ]] | ||
Line 953: | Line 1,035: | ||
[[category: #squared number[0] ]] | [[category: #squared number[0] ]] | ||
[[comment: 60²]] | [[comment: 60²]] | ||
+ | }}</div></div><br> | ||
+ | |||
+ | == Cubing== | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle3^3</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #a³[0] ]] | ||
+ | [[comment: 3³]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle4^3</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #a³[0] ]] | ||
+ | [[comment: 4³]] | ||
}}</div></div><br> | }}</div></div><br> | ||
Line 960: | Line 1,055: | ||
=== Smaller by greater === | === Smaller by greater === | ||
− | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle5\div17</math><div class="mw-collapsible-content"> | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle4\div12</math><div class="mw-collapsible-content"> |
+ | {{#annotask: | ||
+ | [[category: #division[0] ]] | ||
+ | [[comment: 4÷12]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle5\div17</math><div class="mw-collapsible-content"> | ||
{{#annotask: | {{#annotask: | ||
[[category: #division[0] ]] | [[category: #division[0] ]] | ||
[[comment: 5÷17]] | [[comment: 5÷17]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle4\div50</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #division[0] ]] | ||
+ | [[comment: 4÷50]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle6\div50</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #division[0] ]] | ||
+ | [[comment: 6÷50]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle7\div40</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle7\div40</math><div class="mw-collapsible-content"> | ||
Line 1,064: | Line 1,174: | ||
[[category: #division[0] ]] | [[category: #division[0] ]] | ||
[[comment: 125÷11]] | [[comment: 125÷11]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle218\div7</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #division[0] ]] | ||
+ | [[comment: 218÷7]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle200\div50</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle200\div50</math><div class="mw-collapsible-content"> | ||
Line 1,252: | Line 1,367: | ||
[[category: #division[0] ]] | [[category: #division[0] ]] | ||
[[comment: 3123740520÷216]] | [[comment: 3123740520÷216]] | ||
+ | }}</div></div><br> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed">WP<div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #division[0] ]] | ||
+ | [[comment: WP]] | ||
}}</div></div><br> | }}</div></div><br> | ||
Line 1,359: | Line 1,480: | ||
[[category: #division of fractions]] | [[category: #division of fractions]] | ||
[[comment: ⅜÷⅖]] | [[comment: ⅜÷⅖]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{6}{8}\div\frac{2}{4}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #division of fractions]] | ||
+ | [[comment: ⁶/₈÷²/₄]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{3}{5}\div\frac{7}{9}</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{3}{5}\div\frac{7}{9}</math><div class="mw-collapsible-content"> | ||
Line 1,664: | Line 1,790: | ||
[[category: #multiplication of fractions[0] ]] | [[category: #multiplication of fractions[0] ]] | ||
[[comment: (⁵/₇·⅓)×⅞]] | [[comment: (⁵/₇·⅓)×⅞]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{2}{3}\times\left(\frac{3}{4}\sdot\frac{1}{3}\right)</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #multiplication of fractions[0] ]] | ||
+ | [[comment: ⅔×(¾·⅓)]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{2}{3}\times\left(\frac{4}{5}\sdot\frac{1}{9}\right)</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{2}{3}\times\left(\frac{4}{5}\sdot\frac{1}{9}\right)</math><div class="mw-collapsible-content"> | ||
Line 2,107: | Line 2,238: | ||
[[category: #multiplication of fractions[0] ]] | [[category: #multiplication of fractions[0] ]] | ||
[[comment: ⅕×⅕]] | [[comment: ⅕×⅕]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{1}{4}\times\frac{1}{3}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #multiplication of fractions[0] ]] | ||
+ | [[comment: ¼×⅓]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{3}{4}\times\frac{3}{4}</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{3}{4}\times\frac{3}{4}</math><div class="mw-collapsible-content"> | ||
Line 2,261: | Line 2,397: | ||
[[category: #multiplication of fractions[0] ]] | [[category: #multiplication of fractions[0] ]] | ||
[[comment: 2×¾]] | [[comment: 2×¾]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{2}{3}\times4</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #multiplication of fractions[0] ]] | ||
+ | [[comment: ⅔×4]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle4\times\frac{2}{3}</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle4\times\frac{2}{3}</math><div class="mw-collapsible-content"> | ||
Line 2,319: | Line 2,460: | ||
[[category: #multiplication of sexagesimal fractions[0] ]] | [[category: #multiplication of sexagesimal fractions[0] ]] | ||
[[comment: (2+24'+43'')×(3+3'+8'')]] | [[comment: (2+24'+43'')×(3+3'+8'')]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(4+6^\prime+8^{\prime\prime}+12^{\prime\prime\prime}\right)\times\left(5+15^\prime+10^{\prime\prime}+13^{\prime\prime\prime}\right)</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #multiplication of sexagesimal fractions[0] ]] | ||
+ | [[comment: (4+6'+8''+12''')×(5+15'+10''+13''')]] | ||
}}</div></div><br> | }}</div></div><br> | ||
Line 2,373: | Line 2,519: | ||
[[category: #addition of fractions]] | [[category: #addition of fractions]] | ||
[[comment: ⅔+¾]] | [[comment: ⅔+¾]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{2}{3}+\frac{4}{9}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #addition of fractions]] | ||
+ | [[comment: ⅔+⁴/₉]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{3}{4}+\frac{4}{5}</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{3}{4}+\frac{4}{5}</math><div class="mw-collapsible-content"> | ||
Line 2,379: | Line 2,530: | ||
[[comment: ¾+⅘]] | [[comment: ¾+⅘]] | ||
}}</div></div><br> | }}</div></div><br> | ||
− | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{3}{4}+\frac{4}{6}</math><div class="mw-collapsible-content"> | |
+ | {{#annotask: | ||
+ | [[category: #addition of fractions]] | ||
+ | [[comment: ¾+⁴/₆]] | ||
+ | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{3}{4}+\frac{5}{6}</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{3}{4}+\frac{5}{6}</math><div class="mw-collapsible-content"> | ||
{{#annotask: | {{#annotask: | ||
Line 2,549: | Line 2,704: | ||
[[category: #subtraction of fractions]] | [[category: #subtraction of fractions]] | ||
[[comment: ⅖-⅜]] | [[comment: ⅖-⅜]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{5}{8}-\frac{3}{8}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #subtraction of fractions]] | ||
+ | [[comment: ⅝-⅜]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{5}{7}-\frac{4}{9}</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{5}{7}-\frac{4}{9}</math><div class="mw-collapsible-content"> | ||
Line 2,554: | Line 2,714: | ||
[[category: #subtraction of fractions]] | [[category: #subtraction of fractions]] | ||
[[comment: ⁵/₇-⁴/₉]] | [[comment: ⁵/₇-⁴/₉]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{6}{8}-\frac{2}{4}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #subtraction of fractions]] | ||
+ | [[comment: ⁶/₈-²/₄]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{12}{16}-\frac{4}{8}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #subtraction of fractions]] | ||
+ | [[comment: ¹²/₁₆-⁴/₈]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{14}{16}-\frac{8}{12}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #subtraction of fractions]] | ||
+ | [[comment: ¹⁴/₁₆-⁸/₁₂]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(\frac{1}{3}+\frac{1}{4}\right)-\left(\frac{1}{5}+\frac{1}{6}\right)</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(\frac{1}{3}+\frac{1}{4}\right)-\left(\frac{1}{5}+\frac{1}{6}\right)</math><div class="mw-collapsible-content"> | ||
Line 2,559: | Line 2,734: | ||
[[category: #subtraction of fractions]] | [[category: #subtraction of fractions]] | ||
[[comment: (⅓+¼)-(⅕+⅙)]] | [[comment: (⅓+¼)-(⅕+⅙)]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle1-\frac{5}{8}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #subtraction of fractions]] | ||
+ | [[comment: 1-⅝]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(2+\frac{1}{2}\right)-\frac{3}{4}</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(2+\frac{1}{2}\right)-\frac{3}{4}</math><div class="mw-collapsible-content"> | ||
Line 2,587: | Line 2,767: | ||
[[category: #rule of three]] | [[category: #rule of three]] | ||
[[comment: 2÷4=4÷8]] | [[comment: 2÷4=4÷8]] | ||
+ | }}</div></div><br> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle4:6=6:9</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #rule of three]] | ||
+ | [[comment: 4÷6=6÷9]] | ||
+ | }}</div></div><br> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle4:6=8:12</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #rule of three]] | ||
+ | [[comment: 4÷6=8÷12]] | ||
}}</div></div><br> | }}</div></div><br> | ||
Line 2,641: | Line 2,833: | ||
[[category: #rule of three]] | [[category: #rule of three]] | ||
[[comment: ⅓÷¼=⅕÷X]] | [[comment: ⅓÷¼=⅕÷X]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{2}{3}:\frac{3}{5}=\frac{1}{4}:X</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #rule of three]] | ||
+ | [[comment: ⅔÷⅗=¼÷X]] | ||
}}</div></div><br> | }}</div></div><br> | ||
Line 2,653: | Line 2,850: | ||
[[category: #rule of three]] | [[category: #rule of three]] | ||
[[comment: ⅔÷⁴/₉=⁴/₁₃÷X]] | [[comment: ⅔÷⁴/₉=⁴/₁₃÷X]] | ||
+ | }}</div></div><br> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(\frac{2}{5}\sdot\frac{3}{4}\right):\left(\frac{3}{7}\sdot\frac{5}{6}\right)=\left(\frac{4}{5}\sdot\frac{5}{8}\right):X</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #rule of three]] | ||
+ | [[comment: (⅖·¾)÷(³/₇·⅚)=(⅘·⅝)÷X]] | ||
}}</div></div><br> | }}</div></div><br> | ||
Line 2,717: | Line 2,920: | ||
}}</div></div><br> | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\sqrt{144}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #root[0] ]] | ||
+ | [[comment: √144]] | ||
+ | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle\sqrt{225}</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\sqrt{225}</math><div class="mw-collapsible-content"> | ||
{{#annotask: | {{#annotask: | ||
Line 2,756: | Line 2,964: | ||
[[category: #root[0] ]] | [[category: #root[0] ]] | ||
[[comment: √824464]] | [[comment: √824464]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\sqrt{973182}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #root[0] ]] | ||
+ | [[comment: √973182]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle\sqrt{5499025}</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\sqrt{5499025}</math><div class="mw-collapsible-content"> | ||
Line 2,984: | Line 3,197: | ||
}}</div></div> | }}</div></div> | ||
<br> | <br> | ||
− | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\sqrt | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\sqrt{16}+\sqrt{36}</math><div class="mw-collapsible-content"> |
{{#annotask: | {{#annotask: | ||
[[category: #addition of roots]] | [[category: #addition of roots]] | ||
− | [[comment: | + | [[comment: √16+√36]] |
}}</div></div> | }}</div></div> | ||
<br> | <br> | ||
− | <div class="mw-collapsible mw-collapsed"><math>\ | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle2\sdot\sqrt{9}+3\sdot\sqrt{16}</math><div class="mw-collapsible-content"> |
{{#annotask: | {{#annotask: | ||
[[category: #addition of roots]] | [[category: #addition of roots]] | ||
− | [[comment: | + | [[comment: 2√9+3√16]] |
}}</div></div> | }}</div></div> | ||
<br> | <br> | ||
− | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\ | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{2}{3}\sdot\sqrt{9}+\frac{3}{4}\sdot\sqrt{16}</math><div class="mw-collapsible-content"> |
{{#annotask: | {{#annotask: | ||
[[category: #addition of roots]] | [[category: #addition of roots]] | ||
− | [[comment: | + | [[comment: ⅔√9+¾√16]] |
}}</div></div> | }}</div></div> | ||
<br> | <br> | ||
− | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(4+\sqrt{3}\right)+\left(\sqrt{12}-2\right)</math><div class="mw-collapsible-content"> | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\sqrt[3]{96}+\sqrt[3]{324}</math><div class="mw-collapsible-content"> |
+ | {{#annotask: | ||
+ | [[category: #addition of roots]] | ||
+ | [[comment: ³√96+³√324]] | ||
+ | }}</div></div> | ||
+ | <br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(4+\sqrt{12}\right)+\left(5+\sqrt{3}\right)</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #addition of roots]] | ||
+ | [[comment: (4+√12)+(5+√3)]] | ||
+ | }}</div></div> | ||
+ | <br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(4+\sqrt{3}\right)+\left(\sqrt{12}-3\right)</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #addition of roots]] | ||
+ | [[comment: (4+√3)+(√12-3)]] | ||
+ | }}</div></div> | ||
+ | <br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(4+\sqrt{3}\right)+\left(\sqrt{12}-2\right)</math><div class="mw-collapsible-content"> | ||
{{#annotask: | {{#annotask: | ||
[[category: #addition of roots]] | [[category: #addition of roots]] | ||
Line 3,121: | Line 3,352: | ||
[[category: #multiplication of roots]] | [[category: #multiplication of roots]] | ||
[[comment: √5×√12]] | [[comment: √5×√12]] | ||
+ | }}</div></div> | ||
+ | <br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\sqrt{9}\times\sqrt{36}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #multiplication of roots]] | ||
+ | [[comment: √9×√36]] | ||
+ | }}</div></div> | ||
+ | <br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle4\sdot\sqrt{9}\times3\sdot\sqrt{36}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #multiplication of roots]] | ||
+ | [[comment: 4√9×3√36]] | ||
+ | }}</div></div> | ||
+ | <br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{2}{3}\sdot\sqrt{9}\times\frac{1}{2}\sdot\sqrt{36}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #multiplication of roots]] | ||
+ | [[comment: ⅔√9×½√36]] | ||
}}</div></div> | }}</div></div> | ||
<br> | <br> | ||
Line 3,127: | Line 3,376: | ||
[[category: #multiplication of roots]] | [[category: #multiplication of roots]] | ||
[[comment: 2×√16]] | [[comment: 2×√16]] | ||
+ | }}</div></div> | ||
+ | <br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle4\times\sqrt{9}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #multiplication of roots]] | ||
+ | [[comment: 4×√9]] | ||
}}</div></div> | }}</div></div> | ||
<br> | <br> | ||
Line 3,133: | Line 3,388: | ||
[[category: #multiplication of roots]] | [[category: #multiplication of roots]] | ||
[[comment: ½×√9]] | [[comment: ½×√9]] | ||
+ | }}</div></div> | ||
+ | <br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{1}{3}\times\sqrt{9}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #multiplication of roots]] | ||
+ | [[comment: ⅓×√9]] | ||
}}</div></div> | }}</div></div> | ||
<br> | <br> | ||
Line 3,409: | Line 3,670: | ||
}}</div></div> | }}</div></div> | ||
<br> | <br> | ||
− | <div class="mw-collapsible mw-collapsed"><math>\ | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\sqrt{36}\div\sqrt{9}</math><div class="mw-collapsible-content"> |
{{#annotask: | {{#annotask: | ||
[[category: #division of roots]] | [[category: #division of roots]] | ||
− | [[comment: | + | [[comment: √36÷√9]] |
}}</div></div> | }}</div></div> | ||
<br> | <br> | ||
− | <div class="mw-collapsible mw-collapsed"><math>\ | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle5\sdot\sqrt{9}\div2\sdot\sqrt{36}</math><div class="mw-collapsible-content"> |
{{#annotask: | {{#annotask: | ||
[[category: #division of roots]] | [[category: #division of roots]] | ||
− | [[comment: | + | [[comment: 5√9÷2√36]] |
}}</div></div> | }}</div></div> | ||
<br> | <br> | ||
− | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle20\div\sqrt{10}</math><div class="mw-collapsible-content"> | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{2}{3}\sdot\sqrt{36}\div\frac{2}{3}\sdot\sqrt{9}</math><div class="mw-collapsible-content"> |
+ | {{#annotask: | ||
+ | [[category: #division of roots]] | ||
+ | [[comment: ⅔√36÷⅔√9]] | ||
+ | }}</div></div> | ||
+ | <br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle4\div\sqrt{9}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #division of roots]] | ||
+ | [[comment: 4÷√9]] | ||
+ | }}</div></div> | ||
+ | <br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle12\div\sqrt{4}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #division of roots]] | ||
+ | [[comment: 12÷√4]] | ||
+ | }}</div></div> | ||
+ | <br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle20\div\sqrt{10}</math><div class="mw-collapsible-content"> | ||
{{#annotask: | {{#annotask: | ||
[[category: #division of roots]] | [[category: #division of roots]] | ||
Line 3,667: | Line 3,946: | ||
[[category: #S+R equal N]] | [[category: #S+R equal N]] | ||
[[comment: ½x²+5x=28]] | [[comment: ½x²+5x=28]] | ||
+ | }}</div></div> | ||
+ | <br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{1}{3}x^2+3x=30</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #S+R equal N]] | ||
+ | [[comment: ⅓x²+3x=30]] | ||
}}</div></div> | }}</div></div> | ||
<br> | <br> | ||
Line 3,688: | Line 3,973: | ||
[[category: #S+N equal R]] | [[category: #S+N equal R]] | ||
[[comment: x²+25=10x]] | [[comment: x²+25=10x]] | ||
+ | }}</div></div> | ||
+ | <br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle3x^2+21=10x</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #S+N equal R]] | ||
+ | [[comment: 3x²+21=10x]] | ||
+ | }}</div></div> | ||
+ | <br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{1}{3}x^2+21=10x</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #S+N equal R]] | ||
+ | [[comment: ⅓x²+21=10x]] | ||
}}</div></div> | }}</div></div> | ||
<br> | <br> | ||
Line 3,939: | Line 4,236: | ||
[[comment: x²+3x=n²]] | [[comment: x²+3x=n²]] | ||
}}</div></div><br> | }}</div></div><br> | ||
− | |||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle x^2-6x=n^2</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle x^2-6x=n^2</math><div class="mw-collapsible-content"> | ||
{{#annotask: | {{#annotask: | ||
Line 3,945: | Line 4,241: | ||
[[comment: x²-6x=n²]] | [[comment: x²-6x=n²]] | ||
}}</div></div><br> | }}</div></div><br> | ||
− | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle x-x^2=n^2</math><div class="mw-collapsible-content"> | |
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x-x²=n²]] | ||
+ | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle x^2+10x+20=n^2</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle x^2+10x+20=n^2</math><div class="mw-collapsible-content"> | ||
{{#annotask: | {{#annotask: | ||
Line 3,951: | Line 4,251: | ||
[[comment: x²+10x+20=n²]] | [[comment: x²+10x+20=n²]] | ||
}}</div></div><br> | }}</div></div><br> | ||
− | |||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle x^2-8x-30=n^2</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle x^2-8x-30=n^2</math><div class="mw-collapsible-content"> | ||
{{#annotask: | {{#annotask: | ||
Line 3,957: | Line 4,256: | ||
[[comment: x²-8x-30=n²]] | [[comment: x²-8x-30=n²]] | ||
}}</div></div><br> | }}</div></div><br> | ||
− | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle 8x+109-x^2=n^2</math><div class="mw-collapsible-content"> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | <div class="mw-collapsible mw-collapsed"> | ||
{{#annotask: | {{#annotask: | ||
− | [[category: #Elements-Introduction]] | + | [[category: #indeterminate equation]] |
− | [[comment: a=b,a-c=b-c]] | + | [[comment: 8x+109-x²=n²]] |
− | }}</div></div><br> | + | }}</div></div><br> |
− | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle 2x+49-x^2=n^2</math><div class="mw-collapsible-content"> | |
− | === Elements II === | + | {{#annotask: |
− | + | [[category: #indeterminate equation]] | |
− | ==== Elements II-1 ==== | + | [[comment: 2x+49-x²=n²]] |
− | + | }}</div></div><br> | |
− | <div class="mw-collapsible mw-collapsed">proposition<div class="mw-collapsible-content"> | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle 10x-8-x^2=n^2</math><div class="mw-collapsible-content"> |
− | {{#annotask: | + | {{#annotask: |
− | [[category: #Elements II-1]] | + | [[category: #indeterminate equation]] |
− | [[comment: definition]] | + | [[comment: 10x-8-x²=n²]] |
− | }}</div></div><br> | + | }}</div></div><br> |
− | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle a\sdot\left(\sum_{i=1}^n b_i\right)=\sum_{i=1}^n \left(a\sdot b_i\right)</math><div class="mw-collapsible-content"> | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle 260-6x-x^2=n^2</math><div class="mw-collapsible-content"> |
− | {{#annotask: | + | {{#annotask: |
− | [[category: #Elements II-1]] | + | [[category: #indeterminate equation]] |
− | [[comment: a·∑bᵢ=∑(a·bᵢ)]] | + | [[comment: 260-6x-x²=n²]] |
− | }}</div></div><br> | + | }}</div></div><br> |
− | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\begin{cases}\scriptstyle x^2+x=n^2\\\scriptstyle x^2+2x=m^2\end{cases}</math><div class="mw-collapsible-content"> | |
− | Examples | + | {{#annotask: |
− | + | [[category: #indeterminate equation]] | |
− | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(2\sdot4\right)+\left(3\sdot4\right)+\left(5\sdot4\right)=10\sdot4</math><div class="mw-collapsible-content"> | + | [[comment: x²+x=n²,x²+2x=m²]] |
− | {{#annotask: | + | }}</div></div><br> |
− | [[category: #Elements II-1]] | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\begin{cases}\scriptstyle x^2+x=n^2\\\scriptstyle x^2+3x=m^2\end{cases}</math><div class="mw-collapsible-content"> |
− | [[comment: 4,2+3+5]] | + | {{#annotask: |
− | }}</div></div><br> | + | [[category: #indeterminate equation]] |
− | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(2\sdot10\right)+\left(3\sdot10\right)+\left(5\sdot10\right)+\left(2\sdot10\right)=12\sdot10</math><div class="mw-collapsible-content"> | + | [[comment: x²+x=n²,x²+3x=m²]] |
− | {{#annotask: | + | }}</div></div><br> |
− | [[category: #Elements II-1]] | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\begin{cases}\scriptstyle x^2-2x=n^2\\\scriptstyle x^2-3x=m^2\end{cases}</math><div class="mw-collapsible-content"> |
− | [[comment: 10,2+3+5+2]] | + | {{#annotask: |
− | }}</div></div><br> | + | [[category: #indeterminate equation]] |
− | + | [[comment: x²-2x=n²,x²-3x=m²]] | |
− | ==== Elements II-2 ==== | + | }}</div></div><br> |
− | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\begin{cases}\scriptstyle x^2+x=n^2\\\scriptstyle x^2-x=m^2\end{cases}</math><div class="mw-collapsible-content"> | |
− | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\sum_{k=1}^n \left[\left(\sum_{i=1}^n a_i\right)\sdot a_k\right]=\left(\sum_{i=1}^n a_i\right)^2</math><div class="mw-collapsible-content"> | + | {{#annotask: |
− | {{#annotask: | + | [[category: #indeterminate equation]] |
− | [[category: #Elements II-2]] | + | [[comment: x²+x=n²,x²-x=m²]] |
− | [[comment: ∑ₖ((∑ᵢaᵢ)·aₖ)=(∑ᵢaᵢ)²]] | + | }}</div></div><br> |
− | }}</div></div><br> | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\begin{cases}\scriptstyle x^2+2x=n^2\\\scriptstyle x^2-3x=m^2\end{cases}</math><div class="mw-collapsible-content"> |
− | + | {{#annotask: | |
− | Examples | + | [[category: #indeterminate equation]] |
− | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(7\sdot10\right)+\left(3\sdot10\right)=10^2</math><div class="mw-collapsible-content"> | + | [[comment: x²+2x=n²,x²-3x=m²]] |
− | {{#annotask: | + | }}</div></div><br> |
− | [[category: #Elements II-2]] | + | <div class="mw-collapsible mw-collapsed"> |
− | [[comment: 10,7+3]] | + | <math>\scriptstyle\begin{cases}\scriptstyle 3-x^2=n^2\\\scriptstyle 2+x^2=m^2\end{cases}</math><div class="mw-collapsible-content"> |
− | }}</div></div><br> | + | {{#annotask: |
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: 3-x²=n²,2+x²=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle 10-x^2=n^2\\\scriptstyle 20+x^2=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: 10-x²=n²,20-x²=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle 20+x^2=n^2\\\scriptstyle 30+x^2=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: 20+x²=n²,30+x²=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle 10+x^2=n^2\\\scriptstyle 10-x^2=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: 10+x²=n²,10-x²=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\begin{cases}\scriptstyle x+x^2=n^2\\\scriptstyle x-x^2=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x+x²=n²,x-x²=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle 8x+x^2=n^2\\\scriptstyle 2x-x^2=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: 8x+x²=n²,2x-x²=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle x^2+2x=n^2\\\scriptstyle x^2+2x+3\sqrt{x^2+2x}=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²+2x=n²,x²+2x+3√(x²+2x)=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle x^2+3x=n^2\\\scriptstyle x^2+3x+6\sqrt{x^2+3x}=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²+3x=n²,x²+3x+6√(x²+3x)=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle x^2+2x=n^2\\\scriptstyle x^2+2x+\sqrt{x^2+2x}=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²+2x=n²,x²+2x+√(x²+2x)=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle x^2+4x=n^2\\\scriptstyle x^2+4x+2\sqrt{x^2+4x}=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²+4x=n²,x²+4x+2√(x²+4x)=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle x^2-4x=n^2\\\scriptstyle x^2-4x+2\sqrt{x^2-4x}=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²-4x=n²,x²-4x-2√(x²-4x)=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle x^2-5=n^2\\\scriptstyle x^2-5+\sqrt{x^2-5}=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²-5=n²,x²-5+√(x²-5)=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle x^2-2x=n^2\\\scriptstyle x^2-2x+\sqrt{x^2-2x}=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²-2x=n²,x²-2x+√(x²-2x)=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle x^2+x=n^2\\\scriptstyle x^2+1=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²+x=n²,x²+1=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle x^2+x+1=n^2\\\scriptstyle x^2+2x+2=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²+x+1=n²,x²+2x+2=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle x^2+4x=n^2\\\scriptstyle x^2-\left(2x+1\right)=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²+4x=n²,x²-(2x+1)=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle x^2+3x+1=n^2\\\scriptstyle x^2-\left(3x-2\right)=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²+3x+1=n²,x²-(3x-2)=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle x^2-\left(x-1\right)=n^2\\\scriptstyle x^2-\left(1-x\right)=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²-(x-1)=n²,x²-(1-x)=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle x^2+\left(2-x\right)=n^2\\\scriptstyle x^2-\left(3-x\right)=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²+(2-x)=n²,x²-(3-x)=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle x^2+y^2=n^2</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²+y²=n²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\begin{cases}\scriptstyle x^2-y=n^2\\\scriptstyle x^2-1\frac{1}{2}y=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²-y=n²,x²-1½y=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\begin{cases}\scriptstyle 49+x=n^2\\\scriptstyle 49+2x=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: 49+x=n²,49+2x=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle x^2+1=10x-8</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²+1=10x-8]] | ||
+ | }}</div></div><br> | ||
+ | |||
+ | == Euclid == | ||
+ | |||
+ | === Elements - Introduction === | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed">common notions<div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #Elements-Introduction]] | ||
+ | [[comment: a=b,a-c=b-c]] | ||
+ | }}</div></div><br> | ||
+ | |||
+ | === Elements II === | ||
+ | |||
+ | ==== Elements II-1 ==== | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed">proposition<div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #Elements II-1]] | ||
+ | [[comment: definition]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle a\sdot\left(\sum_{i=1}^n b_i\right)=\sum_{i=1}^n \left(a\sdot b_i\right)</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #Elements II-1]] | ||
+ | [[comment: a·∑bᵢ=∑(a·bᵢ)]] | ||
+ | }}</div></div><br> | ||
+ | |||
+ | Examples | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(2\sdot4\right)+\left(3\sdot4\right)+\left(5\sdot4\right)=10\sdot4</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #Elements II-1]] | ||
+ | [[comment: 4,2+3+5]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(2\sdot10\right)+\left(3\sdot10\right)+\left(5\sdot10\right)+\left(2\sdot10\right)=12\sdot10</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #Elements II-1]] | ||
+ | [[comment: 10,2+3+5+2]] | ||
+ | }}</div></div><br> | ||
+ | |||
+ | ==== Elements II-2 ==== | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\sum_{k=1}^n \left[\left(\sum_{i=1}^n a_i\right)\sdot a_k\right]=\left(\sum_{i=1}^n a_i\right)^2</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #Elements II-2]] | ||
+ | [[comment: ∑ₖ((∑ᵢaᵢ)·aₖ)=(∑ᵢaᵢ)²]] | ||
+ | }}</div></div><br> | ||
+ | |||
+ | Examples | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(7\sdot10\right)+\left(3\sdot10\right)=10^2</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #Elements II-2]] | ||
+ | [[comment: 10,7+3]] | ||
+ | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(3\sdot12\right)+\left(4\sdot12\right)+\left(5\sdot12\right)=12^2</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(3\sdot12\right)+\left(4\sdot12\right)+\left(5\sdot12\right)=12^2</math><div class="mw-collapsible-content"> | ||
Line 4,200: | Line 4,676: | ||
[[category: #Elements V-15]] | [[category: #Elements V-15]] | ||
[[comment: (n·a)÷(n·b)=a÷b]] | [[comment: (n·a)÷(n·b)=a÷b]] | ||
+ | }}</div></div><br> | ||
+ | |||
+ | === Elements VII === | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed">Elements VII-11<div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #Elements VII-11]] | ||
+ | [[comment: a÷b=c÷d→(c-a)÷(d-b)]] | ||
}}</div></div><br> | }}</div></div><br> | ||
Latest revision as of 09:18, 13 July 2024
Contents
- 1 Addition
- 2 Subtraction
- 3 Doubling
- 4 Halving
- 5 Multiplication
- 5.1 units by units
- 5.2 units by tens
- 5.3 units by hundreds
- 5.4 tens by tens
- 5.5 tens by hundreds
- 5.6 tens by thousands
- 5.7 hundreds by hundreds
- 5.8 hundreds by thousands
- 5.9 units by tens and hundreds
- 5.10 tens by tens and hundreds
- 5.11 tens and hundreds by tens and hundreds
- 5.12 tens by units and tens
- 5.13 units by units and tens
- 5.14 units and tens by units and tens
- 5.15 tens and hundreds by units and tens
- 5.16 units by units, tens and hundreds
- 5.17 units and tens by units, tens and hundreds
- 5.18 units, tens and hundreds by units, tens and hundreds
- 5.19 Word Problems
- 5.20 Permutations
- 6 Squaring
- 7 Cubing
- 8 Division
- 9 Fractions
- 9.1 fraction of fraction
- 9.2 division of fractions
- 9.2.1 fractions by fractions
- 9.2.2 fractions by integers
- 9.2.3 fractions by integers and fractions
- 9.2.4 fractions of fractions by fractions
- 9.2.5 fractions of fractions by integers
- 9.2.6 fractions of fractions by integers and fractions
- 9.2.7 integers by fractions
- 9.2.8 integers by integers and fractions
- 9.2.9 integers and fractions by fractions
- 9.2.10 integers and fractions by integers
- 9.2.11 integers and fractions by integers and fractions
- 9.2.12 Combined Division
- 9.3 multiplication of fractions
- 9.3.1 multiplication of integer and fraction by integer and fraction
- 9.3.2 multiplication of fraction by fraction
- 9.3.3 multiplication of fraction of fraction by fraction of fraction
- 9.3.4 multiplication of fraction of integer and fraction by fraction of integer and fraction
- 9.3.5 multiplication of fraction by integer or integer by fraction
- 9.3.6 multiplication of fraction of fraction of integer by fraction of fraction of integer
- 9.3.7 multiplication of sexagesimal fractions
- 9.4 addition of fractions
- 9.5 subtraction of fractions
- 10 Rule of Three
- 11 Roots
- 12 Multiplication of Algebraic Species
- 13 Linear Equation
- 14 Quadratic Equation
- 15 Cubic Equation
- 16 Biquadratic Equation
- 17 indeterminate equation
- 18 Euclid
Addition
![\scriptstyle44+55](/mediawiki/images/math/c/4/2/c422751f3eddd56206dfd3e4e456406e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/addition | 44+55 | ספר_אגריס#HyDz | Example: you wish to add 44 to 55.
:![]() |
![\scriptstyle99+11](/mediawiki/images/math/b/8/0/b80284637590b4bd490e0696503a7bb0.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/addition | 99+11 | ספר_אגריס#my7M | Another example:
:![]() |
![\scriptstyle1+999](/mediawiki/images/math/7/d/c/7dc738802cbb90d260cb2f70db8ec797.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/addition | 1+999 | ספר_החשבון_לאל_חצאר#LV4P | Example:![]() |
![\scriptstyle142+968](/mediawiki/images/math/b/6/e/b6ef0ab9e3cb70f9796b4384bcb2ec0f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/addition | 142+968 | ספר_אגריס#EWxV | Another example:
:![]() |
![\scriptstyle335+453](/mediawiki/images/math/7/f/d/7fd3fede4121158a5b6921013b59be67.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/addition | 335+453 | אגרת_המספר#1UCT | Example: three hundred and thirty-five with four hundred and fifty-three.
:![]() |
![\scriptstyle432+354](/mediawiki/images/math/9/e/f/9efc1c45e8d26530fa2f05e94788237d.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/addition | 432+354 | ספר_החשבון_לאל_חצאר#dic6 | Example:![]() |
![\scriptstyle875+798](/mediawiki/images/math/f/8/d/f8d606c9a0894b50c1340ea2f9c49508.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/addition | 875+798 | ספר_החשבון_לאל_חצאר#kEdB | Example:![]() |
![\scriptstyle1098+9067](/mediawiki/images/math/1/d/2/1d2d1c68c5936c7fbc181c75a1e434c5.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/addition | 1098+9067 | קצור_המספר#ixn8 | Example: we wish to sum up one thousand ninety-nine with nine thousand sixty-seven.
:![]() |
![\scriptstyle1215+2322](/mediawiki/images/math/0/c/b/0cb3c0ca696352ae6b84b464de7f7292.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/addition | 1215+2322 | ספר_החשבון_והמדות#dkkp | We wish to sum one thousand two hundred and fifteen with two thousand three hundred and twenty-two.
:![]() |
![\scriptstyle3372+3392](/mediawiki/images/math/9/d/a/9da5e60f685c5016736b530cf06ac18d.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/addition | 3372+3392 | ספר_ציפרא#5lLo | If you wish to sum three thousand three hundred and seventy-two with three thousand three hundred ninety-two.
:![]() |
![\scriptstyle3372+9892](/mediawiki/images/math/a/8/b/a8b225808ed374dbe42b26c19506dfd8.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/addition | 3372+9892 | ספר_ציפרא#ZOaG | Example: we want to sum 3372 with 9892.
:![]() |
![\scriptstyle3465+5643](/mediawiki/images/math/b/3/2/b32f3c8a6b5aa4791058dfe89818d811.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/addition | 3465+5643 | Takmila_fi_al-Hisāb_-_Arabic_in_Hebrew_Characters#CrX7 | Example: we wish to add 5643 to 3465.
:![]() |
![\scriptstyle4373+2389](/mediawiki/images/math/a/6/3/a63355558257bb32e0d7028603f72e81.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/addition | 4373+2389 | Takmila_fi_al-Hisāb_-_Arabic_in_Hebrew_Characters#R29K | Example: we wish to add 23[89 to 4373].
:![]() |
![\scriptstyle5243+8962](/mediawiki/images/math/c/b/f/cbf25106d957d5909a9603831f5e3de8.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/addition | 5243+8962 | מלאכת_המספר#xuJe | As can be seen in this diagram:
:![]() |
![\scriptstyle6503+7020](/mediawiki/images/math/4/4/5/4452573739f30b4995b0d1db2893014e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/addition | 6503+7020 | ספר_החשבון_לאל_חצאר#d7iF | Example:![]() |
![\scriptstyle9208+3801](/mediawiki/images/math/e/d/5/ed51184c418a167176ff108e20b6a105.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/addition | 9208+3801 | עיר_סיחון#Hq9T | We wish to know how much is the sum of nine thousand, two hundred and eight, with three thousand, eight hundred and one.
:![]() |
![\scriptstyle200+240+403](/mediawiki/images/math/4/7/c/47c69bc53d5d5cb5b1e5ca9c73e4df02.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/addition | 200+240+403 | ספר_דיני_ממונות#Kmhn | If you wish to add up numbers: the first of which has zeros in the units and the tens and 2 in the hundreds; the second has a zero in the units, 4 in the tens and 2 in the hundreds; the third has 3 in the units, zero in the tens and 4 in the hundreds.
:![]() |
![\scriptstyle203+402+809](/mediawiki/images/math/5/b/f/5bf75297a800a711464c2b68663d0f24.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/addition | 203+402+809 | ספר_דיני_ממונות#LN0V | As if you say: sum 203 with 402 and with 809.
:![]() |
![\scriptstyle223+342+422](/mediawiki/images/math/f/9/2/f92cbdace1f31692ed0c3d5480325099.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/addition | 223+342+422 | ספר_דיני_ממונות#1c0M | If a person says: sum three numbers, the first is 223, the second 342 and the third 422.
:![]() |
![\scriptstyle432+245+321](/mediawiki/images/math/8/5/1/8515909a2782d272b86a5062414c15b9.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/addition | 432+245+321 | ספר_החשבון_לאל_חצאר#Bugy | Example:![]() |
![\scriptstyle723+865+957](/mediawiki/images/math/0/4/2/0429dc748e9bc8592707ba724f40b329.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/addition | 723+865+957 | ספר_המספר_/_אליהו_מזרחי#AhVn | Example: we wish to sum 723, 865 and 957.
:![]() |
![\scriptstyle699+7156+867](/mediawiki/images/math/2/c/d/2cd075e17da235edc45299de7e9c5e76.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/addition | 699+7156+867 | ספר_החשבון_לאל_חצאר#t50Z | Example:![]() |
![\scriptstyle209+3089+7639](/mediawiki/images/math/c/6/9/c69bb3011044686b9bfabcb92e928d8a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/addition | 209+3089+7639 | ספר_מעשה_חושב#Ai3K | Example: We wish to sum 209 with 3089 and with 7639.
:![]() |
![\scriptstyle205003+390005+625002](/mediawiki/images/math/4/c/6/4c6c321b25a558c59ff6e8ff0aba77d0.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/addition | 205003+390005+625002 | בר_נותן_טעם#XaDs | You wish to sum up two hundred and five thousand and five with three hundred ninety thousand and five and with six hundred twenty five thousand and two.
:![]() |
![\scriptstyle4204+212+12+30](/mediawiki/images/math/c/5/b/c5bc0e6ee550293e285f809a26a58e20.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/addition | 4204+212+12+30 | ספר_דיני_ממונות#06Fy | If you wish to add up four numbers: the first of which has 4 thousands, 2 hundreds and 4; the second has 2 hundreds and 12; the third has 12; and the fourth has 30.
:![]() |
![\scriptstyle1215+2322+9657+8563](/mediawiki/images/math/d/9/b/d9b1e20df508dc3a5d153258954b38cd.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/addition | 1215+2322+9657+8563 | ספר_החשבון_והמדות#GVc4 | We draw another diagram, in which the ranks are summed up to tens, by adding two other lines beneath these two lines: one is nine thousand, six hundred, and fifty-seven; the other is eight thousand, five hundred, and sixty-three.
:![]() |
![\scriptstyle1101+3931+9755+57052+28067](/mediawiki/images/math/f/0/9/f0944af6799791773ce6bd671da94821.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/addition | 1101+3931+9755+57052+28067 | ספר_המספר_/_אליהו_מזרחי#Xque | Example: we wish to sum 1101, 3931, 9755, 57052 and 28067.
:![]() |
![\scriptstyle56''+\left(20'+40''+30'''\right)+\left(46'+27''+55'''\right)](/mediawiki/images/math/a/3/7/a373ca711b54fd347b287b64a29512b0.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/addition | 56ⁱⁱ+(20ⁱ+40ⁱⁱ+30ⁱⁱⁱ)+(46ⁱ+27ⁱⁱ+55ⁱⁱⁱ) | ספר_מעשה_חושב#hd8e | Example: if you want to sum 56 seconds with 20 primes, 40 seconds, and 30 thirds, and with 46 primes, 27 seconds, and 55 thirds.
:![]() |
Subtraction
![\scriptstyle39-20](/mediawiki/images/math/c/6/a/c6aecd78e7e462fe8671036b7bd28d54.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 39-20 | אגרת_המספר#3gFA | Example: subtract 20 from 39.
::![]() |
![\scriptstyle46-24](/mediawiki/images/math/8/7/5/8756c9152eab75c366a41de6509c34d3.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 46-24 | ספר_אגריס#KF3P | Example: to subtract 24 from 46.
:![]() |
![\scriptstyle107-59](/mediawiki/images/math/d/7/b/d7b149ee520c953ca9cd0e73eb0b750b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 107-59 | קצור_המספר#58yM | Example: we wish to subtract fifty-nine from one hundred and seven.
:![]() |
![\scriptstyle234-122](/mediawiki/images/math/b/f/8/bf86659373ce5b9883e3251037c7aefd.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 234-122 | ספר_דיני_ממונות#L1oj | Example: we wish to subtract 122 from 234. דמיון זה נרצה לגרוע מן רל"ד קכ"ב |
![\scriptstyle245-123](/mediawiki/images/math/b/9/c/b9c706d80a9d1bf2366f5b9117ed0d03.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 245-123 | ספר_דיני_ממונות#8i9G | Example: we wish to subtract 123 from 245.
:![]() |
![\scriptstyle246-135](/mediawiki/images/math/1/f/9/1f976c0a75b7b82099c944d961986e5f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 246-135 | ספר_דיני_ממונות#Ih2Z | Example: we wish to subtract 135 from 246.
:![]() |
![\scriptstyle304-253](/mediawiki/images/math/6/b/7/6b7f49dc7e743404abd66e24b908156a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 304-253 | ספר_דיני_ממונות#3Vjd | Another example: we wish to subtract 253 from 304.
:![]() |
![\scriptstyle349-207](/mediawiki/images/math/d/9/4/d94d7bfeb4901daff64e067ebcaab5ed.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 349-207 | ספר_דיני_ממונות#Re2v | Another example: we wish to subtract 207 from 349.
:![]() |
![\scriptstyle468-382](/mediawiki/images/math/3/0/9/309fa5d9b2bbe3cef6c5315daddbdf06.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 468-382 | ספר_דיני_ממונות#7rnd | Example: we wish to subtract 382 from 468.
:![]() |
![\scriptstyle654-321](/mediawiki/images/math/9/e/3/9e377b581980bc95523cff668c762e82.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 654-321 | ספר_ציפרא#j8ha | Another example: if we wish to subtract 321 from 654.
:![]() |
![\scriptstyle956-867](/mediawiki/images/math/f/a/b/fabb43fdd4b21641ecc11bbbc925854e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 956-867 | ספר_ציפרא#GybI | As if you wish to subtract 867 from 956, like this:
::![]() |
![\scriptstyle1000-999](/mediawiki/images/math/8/6/4/864f6cee22cb17b6cd37250ba61d55a3.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 1000-999 | ספר_ציפרא#F3VH | We wish to subtract 9 hundred and ninety-nine from one thousand
:![]() |
![\scriptstyle2000-1999](/mediawiki/images/math/3/a/4/3a4e450eeeb52bd0fc5cb74ec354cb33.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 2000-1999 | ספר_אגריס#IREb | Example:
:![]() |
![\scriptstyle2040-1403](/mediawiki/images/math/b/a/1/ba178e5219c3e902656f392599c863a7.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 2040-1403 | ספר_דיני_ממונות#olKE | Another example: we wish to subtract 1403 from 2040.
:![]() |
![\scriptstyle3333-2445](/mediawiki/images/math/4/b/f/4bf7b04a23ba3801643dd23f5b1f2ad6.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 3333-2445 | אגרת_המספר#tybi | Example: we wish to subtract 2445 from 3333.
::![]() |
![\scriptstyle3735-425](/mediawiki/images/math/0/a/d/0add892bd48d63907c7fe275eacf5ab9.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 3735-425 | Takmila_fi_al-Hisāb_-_Arabic_in_Hebrew_Characters#MP98 | Example: if we wish to subtract 425 from 3735.
:![]() |
![\scriptstyle4282-2432](/mediawiki/images/math/9/f/4/9f41a0113e7276192cd5424e0f4e476e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 4282-2432 | מלאכת_המספר#z4AR | As can be seen in this diagram:
:![]() |
![\scriptstyle4288-3268](/mediawiki/images/math/a/5/c/a5cdd53693d3814fd8754a9979b8496f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 4288-3268 | אגרת_המספר#EQw8 | Subtract 3268 from 4288.
::![]() |
![\scriptstyle4321-3456](/mediawiki/images/math/0/5/3/053c37dc9960eed85752a946fedc6b7e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 4321-3456 | ספר_דיני_ממונות#MMZ6 | Example: we wish to subtract 3456 from 4321.
:![]() |
![\scriptstyle5060-2304](/mediawiki/images/math/b/1/a/b1a12f6fa3aaa9f7af195a47fd241a4c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 5060-2304 | ספר_דיני_ממונות#vy0Q | Example: we wish to subtract 2304 from 5060.
:![]() |
![\scriptstyle5083-92](/mediawiki/images/math/7/4/9/749c09c17cc1b7593c36c3148b44c524.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 5083-92 | עיר_סיחון#ZVaI | Example: we wish to subtract ninety-two from five thousand eighty-three.
:![]() |
![\scriptstyle5114-4225](/mediawiki/images/math/1/d/7/1d74e12986fdd6cde59bc150b475083b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 5114-4225 | ספר_החשבון_והמדות#9uj3 | We wish to subtract four thousand two hundred and twenty-five from five thousands one hundred and fourteen.
:![]() |
![\scriptstyle5432-2379](/mediawiki/images/math/a/7/a/a7a252d907a7c2f54468195b92773a77.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 5432-2379 | ספר_המספר_/_אברהם_אבן_עזרא#lNHB | Example: The top row is 5432 and the bottom row is 2379.
:![]() |
![\scriptstyle5787-3456](/mediawiki/images/math/6/a/0/6a032fbf0998842365f9c73132a22186.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 5787-3456 | אגרת_המספר#OoZU | We wish to subtract three thousand and four hundred and fifty-six from five thousand seven hundred and eighty-seven.
::![]() |
![\scriptstyle6475-2343](/mediawiki/images/math/9/6/d/96dbde316d60f5537cf9b68a45b12015.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 6475-2343 | ספר_החשבון_לאל_חצאר#ONSp | Example: ![]() |
![\scriptstyle9385-5496](/mediawiki/images/math/d/2/f/d2fadd827bb8d8bedcc9dc45dbbe6a1a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 9385-5496 | ספר_החשבון_לאל_חצאר#0FuM | Example: ![]() |
![\scriptstyle21333-221](/mediawiki/images/math/c/0/f/c0fb8a048b4c9836f7f061411aa64906.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 21333-221 | אגרת_המספר#wpfH | As when the upper ranks are 21333 and the bottom [ranks are] 221.
::![]() |
![\scriptstyle100000-1](/mediawiki/images/math/3/4/c/34cb92ea1b5d4bf9bc3b29fa44950c90.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 100000-1 | ספר_החשבון_לאל_חצאר#jhPB | Example: ![]() |
![\scriptstyle76540304-40438](/mediawiki/images/math/c/c/e/cce51f13daf043aa66fade09ef9f6ec7.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 76540304-40438 | בר_נותן_טעם#EpGw | We wish to subtract 40438 the smaller from the greater number that is 76540304.
:![]() |
![\scriptstyle90020235-63295223](/mediawiki/images/math/0/0/8/0083d6afbfa79821db16bbb1a3340e63.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | 90020235-63295223 | Takmila_fi_al-Hisāb_-_Arabic_in_Hebrew_Characters#01eR | Example: we wish to subtract 63295223 dirham from 90020235.
:![]() |
![\scriptstyle\left(31080+46''+35'''+47^{iv}+53^{vi}\right)-\left(206+50'+37'''\right)](/mediawiki/images/math/1/8/7/187641fb1ea981e8ec124fd0254de05e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | (31080+46ⁱⁱ+35ⁱⁱⁱ+47ⁱᵛ+53ᵛⁱ)-(206+50ⁱ+37ⁱⁱⁱ) | ספר_מעשה_חושב#qt9K | Example: if we want to subtract two hundred and six and fifty primes, and 37 thirds from 31 thousands and eighty and 46 seconds, 35 thirds, 47 fourths, and 53 sixths. דמיון נרצה לגרוע מאתים ושש ונ' ראשונים ל"ז שלישים מל"א אלפים ושמנים ומ"ו שניים ל"ה שלישיים מ"ז רביעים כ"ג ששיים |
WP
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/subtraction | WP | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#U9zP | Another example with zeros: the amount of the debt is two hundred thousand weights of wool and he paid 123 thousand and 345.
:![]() |
basic operations/subtraction | WP | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#jQ7J | I say that Reuven owed Shimon 573 dinars and he paid him 352. We want to subtract what he paid from the debt.
:![]() |
basic operations/subtraction | WP | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#RwHV | Another example: Reuven owed Shimon 5047 liter and he paid him 958 liter.
:![]() |
basic operations/subtraction | WP | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#pBrg | [Illegible].
:![]() |
Doubling
![\scriptstyle2\times5372](/mediawiki/images/math/6/2/0/62040c9002da48c7dd080da3ae9840c0.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/doubling | 2·5372 | מלאכת_המספר#yLqy | As can be seen in this diagram:
::![]() |
![\scriptstyle2\times795347](/mediawiki/images/math/b/d/a/bda42e06786788e11e8c67d123a45d5e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/doubling | 2·795347 | Takmila_fi_al-Hisāb_-_Arabic_in_Hebrew_Characters#lrw1 | Example: we wish to double 795347.
:![]() |
![\scriptstyle2\times974537](/mediawiki/images/math/d/d/9/dd91e04f40ff667b77f86ff8215aef39.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/doubling | 2·974537 | Takmila_fi_al-Hisāb_-_Arabic_in_Hebrew_Characters#v5GK | Example: we wish to double 974537.
:![]() |
![\scriptstyle2\times95386349](/mediawiki/images/math/6/7/a/67a3a33d5e4236aa1bf2314c8d53127c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/doubling | 2·95386349 | Takmila_fi_al-Hisāb_-_Arabic_in_Hebrew_Characters#1JUd | Example: if we wish to double 95386349. מת'אלה אן כאן ארדנא תצ'עיף כמסה ותסעין אלף אלף ותלת מאיה וסתה ותמנין אלפא ותלאתמ מאיה ותסעה וארבעין |
Halving
![\scriptstyle54376\div2](/mediawiki/images/math/8/5/a/85a80074219d8e05fa1bdb82cb6e14da.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/halving | 54376÷2 | Takmila_fi_al-Hisāb_-_Arabic_in_Hebrew_Characters#4pF4 | Example: we wish to halve 54376.
:![]() |
![\scriptstyle262144\div2](/mediawiki/images/math/6/1/f/61fc98aedf887529c299bf5cf2e5fc71.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/halving | 262144÷2 | מלאכת_המספר#igUm | As this diagram:
:![]() |
![\scriptstyle698536\div2](/mediawiki/images/math/5/e/4/5e490d9a95d2136363b2982fdd9a1be5.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/halving | 698536÷2 | Takmila_fi_al-Hisāb_-_Arabic_in_Hebrew_Characters#SLMu | Example: we wish to halve 698536.
:![]() |
![\scriptstyle1048876\div2](/mediawiki/images/math/0/2/3/023449719dd5fdce9523227ed42b52b6.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/halving | 1048876÷2 | מלאכת_המספר#gTqP | Another diagram:
:![]() |
![\scriptstyle9835834\div2](/mediawiki/images/math/8/c/1/8c11aa542560c76982a08d1c2acbb20c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/halving | 9835834÷2 | Takmila_fi_al-Hisāb_-_Arabic_in_Hebrew_Characters#vEjn | We wish to halve 9835834.
:![]() |
![\scriptstyle9876374\div2](/mediawiki/images/math/b/c/0/bc018e738579de654c765c44441034b2.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/halving | 9876374÷2 | Takmila_fi_al-Hisāb_-_Arabic_in_Hebrew_Characters#GFQB | Example: we wish to halve 98[7]6374.
:![]() |
Multiplication
units by units
![\scriptstyle4\times3](/mediawiki/images/math/d/7/7/d7741865d49d9d06d3d95673d7356388.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 4×3 | ספר_ציפרא#wODz | Example: if you want to multiply 4 by 3.
::![]() |
![\scriptstyle4\times4](/mediawiki/images/math/7/1/e/71eac1a7427d42efb56b1653fc221a75.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 4×4 | ספר_ציפרא#ynhp | Example: 4 times 4.
::![]() |
basic operations/multiplication | 4×4 | ספר_ציפרא#yXdJ | I will teach you an example: if you want to multiply 4 times 4.
::![]() |
![\scriptstyle5\times6](/mediawiki/images/math/1/8/0/1802c53e9efe2c1e8c39c0101b6153d3.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 5×6 | ספר_ציפרא#XdEP | Another example: if you want to know 5 times 6.
::![]() |
![\scriptstyle6\times6](/mediawiki/images/math/e/5/2/e5258dc1ce6b857862eb3152153e0fdb.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 6×6 | ספר_ציפרא#sgDh | Example: if you wish to know how much is 6 times 6
::![]() |
![\scriptstyle6\times8](/mediawiki/images/math/b/c/0/bc064426388a1a735084f8b973b8b0d3.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 6×8 | ספר_ציפרא#s2II | Another example: you wish to multiply 6 times 8.
::![]() |
![\scriptstyle7\times8](/mediawiki/images/math/3/d/c/3dc20f054e2ae69bc9e5a3c21661ac04.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 7×8 | ספר_ציפרא#B4fP | Example: if you wish to know [how much is] 7 times 8.
::![]() |
![\scriptstyle7\times9](/mediawiki/images/math/3/4/2/34253c1c21130ca906b0a9b0b8e16607.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 7×9 | ספר_ציפרא#lzGK | Example: you wish to multiply 7 times 9.
::![]() |
![\scriptstyle8\times9](/mediawiki/images/math/9/b/9/9b9142a32e8448db3055a78fffc3956e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 8×9 | מלאכת_המספר#kHdF | Example: we wish to know the product of 8 by 9.
::![]() |
![\scriptstyle9\times8](/mediawiki/images/math/e/2/0/e20c19f521c0ffc5521d39dab175c441.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 9×8 | ספר_ציפרא#FWoZ | Also if you want to know how much is 9 times 8
::![]() |
![\scriptstyle9\times9](/mediawiki/images/math/b/8/1/b812d7fe88afc6becc8910cff06c5870.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 9×9 | ספר_ציפרא#OZ9T | If you wish to know how much is 9 times 9
::![]() |
units by tens
![\scriptstyle5\times70](/mediawiki/images/math/3/5/9/359fba71b9c2f7e2b7c29da4bcc87c43.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 5×70 | Anonymous#kmOR | If you multiply five by seventy.
::![]() |
![\scriptstyle20\times5](/mediawiki/images/math/9/2/f/92fe187711c2a9d7735827ad1fbfba0b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 20×5 | מלאכת_המספר#dsqN | Example: 20 times 5. We double the 5; it is 10. We add zero; it is 100.
::![]() |
units by hundreds
![\scriptstyle5\times300](/mediawiki/images/math/4/b/6/4b6a10389a5e8cf9164f8c8885a82b3c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 5×300 | Anonymous#dnZv | Such as five by three hundred.
::![]() |
![\scriptstyle9\times200](/mediawiki/images/math/6/f/3/6f388c484ea3a9f835be337a2efa4d19.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 9×200 | ספר_המספר_/_אליהו_מזרחי#M5z8 | Example of the multiplication of units by tens: multiplication of 9 by two hundred.
:![]() |
tens by tens
![\scriptstyle20\times30](/mediawiki/images/math/a/6/9/a6991af56c2544a3f6c5a18c0416f0f4.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 20×30 | Anonymous#CSsq | Such as 20 by 30.
::![]() |
![\scriptstyle30\times20](/mediawiki/images/math/9/3/2/93289d835aab757de1b535b7f8c1f6c8.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 30×20 | מלאכת_המספר#KE0A | Example: 30 times 20. We triple 20; it is 60. We add zero; it is 600 and this is its shape by the positional system: 600.
::![]() |
tens by hundreds
![\scriptstyle20\times200](/mediawiki/images/math/0/b/7/0b76a1827736691e565607253f3501fd.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 20×200 | ספר_המספר_/_אליהו_מזרחי#4Ol5 | Example of the multiplication of tens by tens: multiplication of twenty by two hundred.
:![]() |
![\scriptstyle30\times200](/mediawiki/images/math/7/6/4/76480ac20a590e839c8f8cc70f8c3cb4.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 30×200 | ספר_המספר_/_אברהם_אבן_עזרא#8PCw | Example: we wish to multiply thirty by two hundred.
::![]() |
![\scriptstyle40\times600](/mediawiki/images/math/d/6/d/d6d3ffcb8841822ff0e3f99005491a78.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 40×600 | Anonymous#X9sf | Such as 40 by six hundred.
::![]() |
![\scriptstyle80\times500](/mediawiki/images/math/0/d/2/0d25e0993f2c803c7b9ba0ab6c7dcf97.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 80×500 | ספר_החשבון_והמדות#x20n | Example: we wish to multiply eighty by five hundred.
:![]() |
tens by thousands
![\scriptstyle50\times7000](/mediawiki/images/math/5/8/a/58a1937ba31c78cb7587632e523e7c64.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 50×7000 | Anonymous#DsCO | Such as 50 by 7 thousand.
::![]() |
hundreds by hundreds
![\scriptstyle200\times700](/mediawiki/images/math/5/8/3/58326657776e9967ad54e8137e8eb12c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 200×700 | ספר_המספר_/_אברהם_אבן_עזרא#gpzH | Another example: we wish to multiply two hundred by seven hundred.
::![]() |
hundreds by thousands
![\scriptstyle600\times4000](/mediawiki/images/math/0/e/d/0ed9e861b2682310d4286b970b22da3e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 600×4000 | ספר_יסודי_התבונה_ומגדל_האמונה#nEsS | As if you wish to multiply six hundred by four thousand.
::![]() |
basic operations/multiplication | 600×4000 | Anonymous#ZjcQ | As if you want to [multiply] six hundred by four thousand.
::![]() |
units by tens and hundreds
![\scriptstyle5\times220](/mediawiki/images/math/e/c/0/ec042c811217d01fff1e2e9de6a49aa8.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 5×220 | ספר_המספר_/_אליהו_מזרחי#CZjH | Example: multiplication 5 by 220.
:![]() |
![\scriptstyle5\times320](/mediawiki/images/math/c/c/b/ccb5324e6df4a148eed5e46be9b58556.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 5×320 | ספר_המספר_/_אליהו_מזרחי#lqtO | The example of the first method is:
:![]() |
tens by tens and hundreds
![\scriptstyle20\times230](/mediawiki/images/math/a/d/e/ade263525146c73b556b0a5d77b8a608.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 20×230 | ספר_המספר_/_אליהו_מזרחי#ws8l | Example for tens by tens: multiplication 20 by 230.
:![]() |
tens and hundreds by tens and hundreds
![\scriptstyle240\times170](/mediawiki/images/math/5/4/d/54db3e44f152af61e33bdfed08972012.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 240×170 | ספר_דיני_ממונות#szcC | Example: we wish to multiply 240 by 170.
:![]() |
![\scriptstyle470\times580](/mediawiki/images/math/c/8/8/c88e8911b29fae68f686479818f1e9ca.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 470×580 | ספר_דיני_ממונות#6FQI | Example: we wish to multiply 470 by 580.
:![]() |
tens by units and tens
![\scriptstyle10\times12](/mediawiki/images/math/8/7/7/8776382eb452422e172cd8bcf1aafff5.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 10×12 | מלאכת_המספר#GKtA | Example: if we want to know how much is 10 times 12, we add 0 to 12; it is 120, and in the positional system they are written as 120.
::![]() |
![\scriptstyle20\times35](/mediawiki/images/math/7/3/d/73dac43eb02ba8bdad47cbeca8ab7c94.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 20×35 | ספר_המספר_/_אליהו_מזרחי#hfWP | Example for tens by tens and units: multiplication 20 by 35.
:![]() |
![\scriptstyle33\times10](/mediawiki/images/math/9/e/b/9eb59b80db364592998259e5a3ea96aa.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 33×10 | ספר_דיני_ממונות#pgpm | Example: we wish to multiply 33 by 10.
:![]() |
![\scriptstyle45\times20](/mediawiki/images/math/3/a/9/3a94e04f7c159a4ad725a0e5d1edb60a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 45×20 | ספר_דיני_ממונות#vUC8 | Example: we wish to multiply 45 by 20.
:![]() |
![\scriptstyle15\times40](/mediawiki/images/math/2/8/5/285b2a1c086ab911c578fd6d510b8110.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 15×40 | ספר_דיני_ממונות#46Gd | Example: we wish to multiply 15 by 40.
:![]() |
units by units and tens
![\scriptstyle5\times27](/mediawiki/images/math/b/0/0/b00b7a3aa8c0e941e338733e0413b747.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 5×27 | ספר_המספר_/_אליהו_מזרחי#Uvhu | Example for units by tens and units together: multiplication 5 by 27.
:![]() |
units and tens by units and tens
![\scriptstyle13\times28](/mediawiki/images/math/7/f/4/7f411823ab362bda2692dc1912a1d1d2.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 13×28 | ספר_המספר_/_אברהם_אבן_עזרא#1CfA | Example: we wish to multiply 13 by 28.
::![]() |
![\scriptstyle13\times14](/mediawiki/images/math/1/3/4/13487d6b5cd17d5f0ea3ffcc2e27dd9f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 13×14 | ספר_החשבון_והמדות#9FsV | As the one who wants to multiply 13 by 14.
:![]() |
![\scriptstyle13\times16](/mediawiki/images/math/d/d/7/dd77f91e99df5af57beca94e2f87a2a8.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 13×16 | ספר_המספר_/_אברהם_אבן_עזרא#2VDH | Example: we wish to multiply 13 by 16.
::![]() |
![\scriptstyle18\times15](/mediawiki/images/math/2/2/e/22e13ea3676e8995c79a21af265d45c5.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 18×15 | אגרת_המספר#mYxE | Example: multiplication of 18 by 15.
:![]() |
![\scriptstyle23\times17](/mediawiki/images/math/b/8/6/b8692a7bc8c9db4340654be518a584b4.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 23×17 | ספר_דיני_ממונות#niLJ | Example: we wish to multiply 23 by 17.
:![]() |
![\scriptstyle23\times23](/mediawiki/images/math/3/c/a/3cae60c76ce417eedbc94c3bc2e719bb.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 23×23 | ספר_אגריס#FKmC | Example: multiply 23 by 23.
:![]() |
![\scriptstyle23\times24](/mediawiki/images/math/0/f/e/0fe838a1f11307bfc27908ab6c664f7d.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 23×24 | ספר_דיני_ממונות#w4Hh | Example: we wish to multiply 23 by 2[4].
:![]() |
![\scriptstyle24\times25](/mediawiki/images/math/4/a/7/4a7b8749fc49526cc6b1054f77261ec6.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 24×25 | ספר_דיני_ממונות#wgpZ | Example: we wish to multiply 24 by 25.
:![]() |
![\scriptstyle24\times26](/mediawiki/images/math/b/a/1/ba100350e60b72a86ec63dbf469bd609.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 24×26 | ספר_המספר_/_אברהם_אבן_עזרא#HqY7 | Example: we wish to multiply 24 by 26.
::![]() |
![\scriptstyle25\times25](/mediawiki/images/math/4/1/0/4103baac3acd49f39c6f3982546fa692.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 25×25 | ספר_דיני_ממונות#daU2 | Example: we wish to multiply 25 by 25.
:![]() |
![\scriptstyle25\times28](/mediawiki/images/math/8/e/b/8eb2a751c840225b1f17b0aff97fb5c0.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 25×28 | Anonymous#BQkO | Such as 25 by 28.
::![]() |
![\scriptstyle25\times35](/mediawiki/images/math/c/6/b/c6b983ff4471e0f0473f3288e151c8c4.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 25×35 | ספר_החשבון_והמדות#n8hI | Example: we wish to multiply twenty-five by thirty-five.
:![]() |
![\scriptstyle25\times43](/mediawiki/images/math/7/e/6/7e641ca0b6dc7549eeae8c9805418b05.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 25×43 | ספר_החשבון_והמדות#vPL0 | Example: we wish to multiply twenty-five by forty-three.
:![]() |
![\scriptstyle27\times32](/mediawiki/images/math/a/a/5/aa53f55dc9c605e27975af6e80ef9bf5.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 27×32 | ספר_דיני_ממונות#gchY | Example: we wish to multiply 27 by 32.
:![]() |
![\scriptstyle29\times31](/mediawiki/images/math/1/e/1/1e170815e7c9a96d43bc7b26dd31721e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 29×31 | ספר_המספר_/_אברהם_אבן_עזרא#jFgw | Example: we wish to multiply 29 by 31.
::![]() |
basic operations/multiplication | 29×31 | ספר_המספר_/_אליהו_מזרחי#2iNx | Example: we wish to multiply 29 by 31.
:![]() |
![\scriptstyle34\times57](/mediawiki/images/math/f/9/b/f9b6aca9dfc65d4518882d542e0a8198.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 34×57 | ספר_מעשה_חושב#Jdhf | Example: we wish to multiply 34 by 57.
:![]() |
![\scriptstyle43\times57](/mediawiki/images/math/1/1/8/11889ca7ac6e993bcbb63684cad93e45.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 43×57 | ספר_מעשה_חושב#T3Oo | Example: you have to multiply 43 by 57.
:![]() |
![\scriptstyle54\times45](/mediawiki/images/math/6/1/c/61ce9bf8b425af64336157d84c856fb0.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 54×45 | אגרת_המספר#gYvC | Example: we wish to multiply 54 by 45.
:![]() |
![\scriptstyle54\times66](/mediawiki/images/math/5/5/5/555083f82a66dbadedc28af04b2560c0.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 54×66 | Anonymous#KaQ7 | If you multiply 54 by 64.
::![]() |
![\scriptstyle66\times54](/mediawiki/images/math/a/7/a/a7a246f5c3e37d679a40fd87bb387dcc.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 66×54 | ספר_המספר_/_אברהם_אבן_עזרא#mnFQ | Another example: we wish to multiply 66 by 54.
::![]() |
tens and hundreds by units and tens
![\scriptstyle250\times350](/mediawiki/images/math/8/3/a/83a90d837202ab7ffb9a6fb0a67181eb.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 250×350 | ספר_המספר_/_אליהו_מזרחי#8ywW | Also if we wish to multiply 250 by 350.
:![]() |
basic operations/multiplication | 250×350 | ספר_המספר_/_אברהם_אבן_עזרא#jWUi | Another example: one number is 250 and the other number 350.
::![]() |
units by units, tens and hundreds
![\scriptstyle869\times6](/mediawiki/images/math/3/f/c/3fce0c8103cf1fd77660f870dfb84428.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 869×6 | קצור_המספר#mrSa | Example: we wish to multiply eight hundred sixty-nine by the six units of another number.
::![]() |
units and tens by units, tens and hundreds
![\scriptstyle869\times46](/mediawiki/images/math/1/3/9/13977d328a657eaa4cff1ca817abf34d.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 869×46 | קצור_המספר#ytmk | As if you say: we multiply these eight hundred sixty-nine by the units and the tens of forty-six.
::![]() |
![\scriptstyle234\times24](/mediawiki/images/math/f/0/c/f0ccbba960e01e9ce1e9cb52508f9651.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 234×24 | ספר_דיני_ממונות#rKP4 | Example: we wish to multiply 234 by 24.
:![]() |
units, tens and hundreds by units, tens and hundreds
![\scriptstyle105\times224](/mediawiki/images/math/0/4/c/04cc18dd882df8833aeaf90598e64bc6.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 105×224 | ספר_החשבון_והמדות#SSgu | We wish to multiply a hundred and five by two hundred and twenty-four.
:![]() |
![\scriptstyle122\times232](/mediawiki/images/math/d/c/6/dc617be6d5e12d224289d18a56fe0738.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 122×232 | ספר_דיני_ממונות#XFc5 | Example: we wish to multiply 122 by 232.
:![]() |
![\scriptstyle123\times456](/mediawiki/images/math/4/6/4/4649289e088d120b5ffc2fcc35532a5f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 123×456 | ספר_דיני_ממונות#4PSP | Example: we wish to multiply 123 by 456.
:![]() |
![\scriptstyle125\times125](/mediawiki/images/math/8/9/4/894c5f01001e96f6799353aa9cdcac92.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 125×125 | Anonymous#GRmk | If you multiply 125 by itself.
::![]() |
![\scriptstyle127\times355](/mediawiki/images/math/9/e/5/9e57fc5771675e15f8c9fdffe8ee63e7.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 127×355 | ספר_המספר_/_אברהם_אבן_עזרא#cmWh | Example: we wish to multiply 127 by 355.
:![]() |
![\scriptstyle212\times132](/mediawiki/images/math/5/c/a/5cab8f5823ea34a7c9876a06bcc6ca65.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 212×132 | ספר_דיני_ממונות#fM0G | Example: we wish to multiply 212 by 132.
:![]() |
![\scriptstyle222\times333](/mediawiki/images/math/d/2/e/d2e4e23d19da37f9bf1c98d8d4022b9f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 222×333 | ספר_דיני_ממונות#79NX | Example: we wish to multiply 222 by 333.
:![]() |
![\scriptstyle230\times324](/mediawiki/images/math/6/3/4/6346a9ab187a5e6b4e8db13713084103.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 230×324 | ספר_דיני_ממונות#HEIx | Example: we wish to multiply 230 by 324.
:![]() |
![\scriptstyle231\times342](/mediawiki/images/math/e/9/5/e95079012371c2efcfc22034a0fadac4.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 231×342 | ספר_דיני_ממונות#5Cep | Another example: we wish to multiply 231 by 342.
:![]() |
![\scriptstyle236\times135](/mediawiki/images/math/6/3/4/634337c974bae3faf6599dedabc9f667.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 236×135 | ספר_המספר_/_אליהו_מזרחי#9PF9 | The example of the second method, which is multiplication of tens, or tens and units together, by tens, or tens and units together, is as follows:
:![]() |
![\scriptstyle240\times368](/mediawiki/images/math/5/d/5/5d5e4ed422f45bdbcef64d229942a710.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 240×368 | ספר_דיני_ממונות#V6r3 | Example: we wish to multiply 240 by 368.
:![]() |
![\scriptstyle242\times144](/mediawiki/images/math/b/7/4/b74c3b8abaec9086eee70fc2ad51808d.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 242×144 | ספר_דיני_ממונות#RZyL | Example: we wish to multiply 242 by 144.
:![]() |
![\scriptstyle246\times140](/mediawiki/images/math/f/e/b/febc321c8d2f78d560ea693bbbae650c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 246×140 | ספר_דיני_ממונות#KISe | Example: we wish to multiply 246 by 140.
:![]() |
![\scriptstyle321\times654](/mediawiki/images/math/c/e/d/cedbb104c32a1c4a7f70bca2736f7b71.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 321×654 | ספר_ציפרא#lJrF | Example: if you wish to know how much is 3 hundred and 21 times 654, written 321 by 654.
::![]() |
![\scriptstyle348\times235](/mediawiki/images/math/e/8/3/e8374bf8b21e7e6b6c50e93b97ad0016.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 348×235 | ספר_החשבון_והמדות#a8Vc | Example: we wish to multiply three hundred forty-eight by two hundred thirty-five.
:![]() |
basic operations/multiplication | 348×235 | ספר_החשבון_והמדות#VJUW | Example: we wish to multiply three hundred and forty-eight by two hundred and thirty-five.
:![]() |
![\scriptstyle352\times343](/mediawiki/images/math/e/6/8/e688518ec43731f6e953e248e33d66d2.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 352×343 | Takmila_fi_al-Hisāb_-_Arabic_in_Hebrew_Characters#d9wr | Example: we wish to multiply 352 by 343.
:![]() |
![\scriptstyle462\times323](/mediawiki/images/math/e/6/e/e6eb31f2371f488eb2578bd280f22c5f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 462×323 | Takmila_fi_al-Hisāb_-_Arabic_in_Hebrew_Characters#bqji | Example: we wish to multiply 462 by 323.
:![]() |
![\scriptstyle464\times464](/mediawiki/images/math/5/3/b/53bb0ed6626309bc46da0f2eabcc0088.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 464×464 | ספר_ציפרא#bkz3 | 464 times 464: the result is 215296.
::![]() |
![\scriptstyle403\times230](/mediawiki/images/math/0/9/e/09e18e2b4547ab2e6c894d676b66a5f0.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 403×230 | ספר_דיני_ממונות#AjXB | Example: we wish to multiply 403 by 230.
:![]() |
![\scriptstyle755\times653](/mediawiki/images/math/7/d/a/7da82b2c3d2e4f138e5156e22dc0f903.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 755×653 | ספר_המספר_/_אליהו_מזרחי#OB4i | Example: if you wish to multiply 755 by 653.
:![]() |
![\scriptstyle902\times246](/mediawiki/images/math/2/6/9/269b5773daf8ee8630bd0797cec2fba3.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 902×246 | עיר_סיחון#JEg5 | We wish to multiply nine hundred and two by two hundred and forty-six.
:![]() |
![\scriptstyle15\times1080](/mediawiki/images/math/3/e/6/3e613dd6dd92bb2be4b1d97fdb07e4fc.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 15×1080 | ספר_ציפרא#5pXt | If you wish to know how much are 15 times 1080.
:![]() |
![\scriptstyle209\times3030](/mediawiki/images/math/a/e/b/aeb958f69cacb9757ae0cdd479e8bb01.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 209×3030 | ספר_ציפרא#Lq1V | Another example: we wish to multiply 209 by 3030.
:![]() |
![\scriptstyle253\times1335](/mediawiki/images/math/0/1/d/01d4f751f98d3b9d02fbc9e4b958bf6b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 253×1335 | אגרת_המספר#tCQB | If you wish to multiply 253 by 1335 for example.
:![]() |
![\scriptstyle6845\times327](/mediawiki/images/math/b/6/e/b6e53a819ff67daab7bc4edfcf1419f8.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 6845×327 | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#UId5 | [...] 6 thousand 845 by 327
:![]() |
![\scriptstyle1234\times4321](/mediawiki/images/math/a/7/7/a77c88e0123e9a0628db82722e889fca.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 1234×4321 | ספר_ציפרא#ZdlX | If you wish to multiply 1234 by 4321.
:![]() |
![\scriptstyle5432\times5323](/mediawiki/images/math/9/5/c/95c1d3816570971329cae8eb7778baf4.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 5432×5323 | Takmila_fi_al-Hisāb_-_Arabic_in_Hebrew_Characters#tvuc | Example: we wish to multiply 5432 by 5323.
:![]() |
![\scriptstyle54321\times54321](/mediawiki/images/math/4/d/c/4dc1507c1c9a6d5db032264729e55942.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 54321×54321 | Kitāb_al-Kāfī_fī_Mukhtaṣar_al-Hind_-_Arabic_in_Hebrew_Characters#Fi30 | This is as when you multiply 54321 by its same.
:![]() |
![\scriptstyle56023\times70235](/mediawiki/images/math/7/8/b/78b91869d2b9ee5bc3680559c0952556.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 56023×70235 | Takmila_fi_al-Hisāb_-_Arabic_in_Hebrew_Characters#AAvF | Example: we wish to multiply 56023 by 70235.
:![]() |
![\scriptstyle7000030\times180640](/mediawiki/images/math/c/4/1/c41628f460758f78d0b783f7e9f3e1e2.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 7000030×180640 | ספר_מעשה_חושב#yltH | Example: we wish, in this diagram, to multiply 7 thousand of thousand and thirty by one hundred and eighty thousand, six hundred and forty.
:![]() |
![\scriptstyle9007500\times5400920](/mediawiki/images/math/6/b/5/6b5b058bbeef1759453fb70d0839ae77.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 9007500×5400920 | בר_נותן_טעם#Anhy | Example: we wish to multiply the number 9007500 by another number 5400920.
:![]() |
![\scriptstyle\left(355\times296\right)+\left(447\times178\right)+\left(396\times539\right)](/mediawiki/images/math/1/1/f/11f1a776882ca7e8d93f11583ba185e8.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | (355×296)+(447×178)+(396×539) | ספר_המספר_/_אליהו_מזרחי#zrCv | Such as, for example: the multiplication of 355 by 296 and the multiplication of 447 by 178 and the multiplication of 396 by 539.
:![]() |
![\scriptstyle\left(4-2\right)\times\left(8-3\right)](/mediawiki/images/math/6/7/8/6785917b1bb7d14dd14bc70406c98e56.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | (4-2)×(8-3) | ספר_דיני_ממונות#MzgG | Example: we wish to multiply 4 minus 2 by 8 minus 3.
:![]() |
![\scriptstyle\left(7-2\right)\times\left(8-4\right)](/mediawiki/images/math/e/e/e/eee14847a4a59c3eff8611d6d7033524.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | (7-2)×(8-4) | ספר_דיני_ממונות#VBTJ | Another example: we wish to multiply 7 minus 2 by 8 minus 4.
:![]() |
Word Problems
Word Problems
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | WP | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#poq3 | It is the same as saying 245 liṭra of pepper at 75; the total price is the mentioned amount. והוא הדין כאומר רמ"ה לטרין פלפל לסך ע"ה שיעלה הסך הנז' מערוך |
basic operations/multiplication | WP | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#Qt03 | Or, as saying: 26 weights of a thing for 26 dinar, or peraḥim, or liter; how much will it cost? או כמו האומר כ"ו משקלי דבר מה לסך כ"ו די' או פרחים או לטרין כמה יעלה |
basic operations/multiplication | WP | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#8edj | Another example: If one asks for 245 kor of wheat at 19 dinar.
:![]() |
basic operations/multiplication | WP | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#u3Eg | As saying: 26 cubits of cloth at 26 dinar for one cubit; how much will it cost? והוא כאומר כ"ו אמות בגד לסך כ"ו די' האמה כמה יעלה |
basic operations/multiplication | WP | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#tv8T | It is also as saying two hundred kikkar of copper at two hundred dinar for one kikkar. והוא גם כן כאומר מאתים ככרי נחושת לסך מאתים די' כל כיכר |
Permutations
2!
Category | Comment | Link | Annotated text |
---|---|---|---|
combinatorics/permutation | 2 | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#GuHR | The example of 2 [terms] that generate 2 [permutations]: והמשל ב' בונות ב' |
combinatorics/permutation | 2 | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#HudC | I say that 2 generate two permutations [lit. houses], which is [the 2] in the second row beneath the 2. ואומר כי ב' בונות שתי {{#annot:term|2241,1951|Dgyh}}בתים{{#annotend:Dgyh}} והוא תחת ב' בטור השנית |
3!
Category | Comment | Link | Annotated text |
---|---|---|---|
combinatorics/permutation | 3 | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#9VTh | [...] 3 terms [...] [...] מג' אותיות [...] |
combinatorics/permutation | 3 | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#04e4 | To know the permutations of 3: ועתה לדעת {{#annot:term|2255,2246|pHd4}}בניין{{#annotend:pHd4}} ג' |
4!
Category | Comment | Link | Annotated text |
---|---|---|---|
combinatorics/permutation | 4 | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#1Yfq | To know the permutations of 4: ולדעת בניין ד' |
combinatorics/permutation | 4 | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#uGjG | The example of 4 terms: והמשל בד' אבנים |
5!
Category | Comment | Link | Annotated text |
---|---|---|---|
combinatorics/permutation | 5 | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#vjkA | To know the permutations of 5: ולדעת בניין ה' |
6!
Category | Comment | Link | Annotated text |
---|---|---|---|
combinatorics/permutation | 6 | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#XAE6 | To know the combinations of 6: ולדעת צרוף ו' |
7!
Category | Comment | Link | Annotated text |
---|---|---|---|
combinatorics/permutation | 7 | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#sFuI | To know the combinations of 7: ולדעת צרוף ז' |
8!
Category | Comment | Link | Annotated text |
---|---|---|---|
combinatorics/permutation | 8 | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#qmo9 | To know the combinations of 8: ולדעת צרוף ח' |
Squaring
![\scriptstyle3^2](/mediawiki/images/math/c/5/3/c53773d11ecb79ace98dfc29455e5ea1.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
exponentiation/squared number | 3² | ספר_המספר_/_אברהם_אבן_עזרא#GMCO | Example: we wish to know how much is the square number of 3.
::![]() |
![\scriptstyle7^2](/mediawiki/images/math/4/1/a/41a6264c45f9479a3c8735c33b642166.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
exponentiation/squared number | 7² | ספר_המספר_/_אברהם_אבן_עזרא#FUPY | Example: we wish to know the square of 7.
::![]() |
exponentiation/squared number | 7² | קצת_מענייני_חכמת_המספר#kNhC | Such as: you wish to know the square of 7. כגון רצית לידע מרובע ז' |
![\scriptstyle8^2](/mediawiki/images/math/2/e/a/2eabb1ba40faa5110fe000577b254fdf.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
exponentiation/squared number | 8² | קצת_מענייני_חכמת_המספר#IvM9 | Example: if you wish to know the square of 8. המשל אם תרצה לידע מרובע הח' |
![\scriptstyle9^2](/mediawiki/images/math/a/3/0/a30d364306ec1a77cedcb841c2c95d74.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
exponentiation/squared number | 9² | ספר_החשבון_והמדות#b4f5 | Example: we wish to know the square of 9.
:![]() |
exponentiation/squared number | 9² | קצת_מענייני_חכמת_המספר#2n2J | Example: if you wish to know how much is the square of 9. המשל אם תרצה לידע כמה הוא מרובע הט' |
![\scriptstyle10^2](/mediawiki/images/math/8/e/9/8e9632f2f9bf4c119aaccea9d91840e4.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
exponentiation/squared number | 10² | ספר_החשבון_והמדות#BrJN | Example: we wish to know the square of ten.
:![]() |
![\scriptstyle11^2](/mediawiki/images/math/1/d/e/1de48d4cb002ce438f4c6c138dcc2b2e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
exponentiation/squared number | 11² | ספר_החשבון_והמדות#YlLr | Example: we wish to know the square of 11.
:![]() |
exponentiation/squared number | 11² | ספר_החשבון_והמדות#CGBe | Example: we wish to multiply 11 by 11.
:![]() |
![\scriptstyle12^2](/mediawiki/images/math/8/c/b/8cb2d07ce90f4085393ba92e5d3590a0.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
exponentiation/squared number | 12² | קצור_המספר#aLsp | For example: we wish to multiply twelve by twelve: they are 144: ומשל לזה רצינו לכפול שנים עשר על שנים עשר והוא קמ"ד |
exponentiation/squared number | 12² | ספר_החשבון_והמדות#MxZM | We wish to multiply 12 by 12.
:![]() |
![\scriptstyle13^2](/mediawiki/images/math/3/d/8/3d8bd59747a4fbc614a124713a9e2c3c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
exponentiation/squared number | 13² | ספר_החשבון_והמדות#PUDk | We wish to multiply 13 by 13.
:![]() |
![\scriptstyle14^2](/mediawiki/images/math/e/b/0/eb0ac3d599ea65f462e31741ee5e76d0.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
exponentiation/squared number | 14² | ספר_החשבון_והמדות#mw4t | We wish to multiply 14 by 14.
:![]() |
![\scriptstyle15^2](/mediawiki/images/math/f/f/9/ff9c22f037b9ffdb441c21edf060a49b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
exponentiation/squared number | 15² | ספר_המספר_/_אברהם_אבן_עזרא#FZlV | Another example: we wish to know the square of 15.
::![]() |
![\scriptstyle22^2](/mediawiki/images/math/3/9/b/39bf3e8f29342d3296cfc2745472f8b7.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
exponentiation/squared number | 22² | ספר_המספר_/_אברהם_אבן_עזרא#tUlx | Another example: we wish to know how much is the square of 22.
::![]() |
![\scriptstyle23^2](/mediawiki/images/math/b/1/8/b18a0c9a4967cb4504d5a904637376ea.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
exponentiation/squared number | 23² | ספר_המספר_/_אליהו_מזרחי#4gKU | Example of a number [that is less than the number that has a third]: 23.
::![]() |
exponentiation/squared number | 23² | ספר_המספר_/_אברהם_אבן_עזרא#eFIa | Example: we wish to know how much is the square of 23.
::![]() |
exponentiation/squared number | 23² | ספר_המספר_/_אליהו_מזרחי#EzUv | Example [when the required number] is smaller [than the number that has a fifth] by 2: 23.
::![]() |
![\scriptstyle24^2](/mediawiki/images/math/c/c/c/ccca2583e6c3a733cf335f1c541176e0.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
exponentiation/squared number | 24² | ספר_המספר_/_אליהו_מזרחי#Divz | Example: we wish to multiply 24 by itself.
::![]() |
exponentiation/squared number | 24² | ספר_המספר_/_אליהו_מזרחי#kgbD | Example [when the required number] is smaller [than the number that has a fifth] by one: 24.
::![]() |
exponentiation/squared number | 24² | ספר_המספר_/_אברהם_אבן_עזרא#Ny3j | Another example: we wish to know how much is the square of 24.
::![]() |
![\scriptstyle25^2](/mediawiki/images/math/7/6/3/763fd0070447ad687266a34593187136.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
exponentiation/squared number | 25² | ספר_המספר_/_אליהו_מזרחי#yJQV | Example: 25.
::![]() |
exponentiation/squared number | 25² | ספר_המספר_/_אליהו_מזרחי#kQVs | Example of a number [that exceeds the number that has a third]: 25.
::![]() |
![\scriptstyle26^2](/mediawiki/images/math/d/c/b/dcbfcfe23e68150c821ed698a4413e38.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
exponentiation/squared number | 26² | ספר_המספר_/_אליהו_מזרחי#tGyp | Example when the required number exceeds the number that has a fifth by one: 26.
::![]() |
![\scriptstyle27^2](/mediawiki/images/math/8/1/3/8134f1ffbb217e81ed8f0f31a317f56c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
exponentiation/squared number | 27² | ספר_המספר_/_אליהו_מזרחי#bbq3 | Example [when the required number] exceeds [the number that has a fifth] by 2: 27.
::![]() |
![\scriptstyle30^2](/mediawiki/images/math/a/3/1/a319195879d591307de972288c158fbf.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
exponentiation/squared number | 30² | ספר_מעשה_חושב#kLiX | Example: we wish to know how much is the square of thirty.
:![]() |
![\scriptstyle33^2](/mediawiki/images/math/6/a/1/6a13406aa26ca7137a2404385507cd69.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
exponentiation/squared number | 33² | ספר_מעשה_חושב#hibu | Example: you wish to know the square of thirty-three.
:![]() |
exponentiation/squared number | 33² | ספר_מעשה_חושב#dhRJ | Example: you wish to know the square of 33.
:![]() |
![\scriptstyle47^2](/mediawiki/images/math/7/1/c/71c90dae9fde31944665e10671beb670.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
exponentiation/squared number | 47² | ספר_מעשה_חושב#y1NY | Example: if you wish to know the square of 47.
:![]() |
![\scriptstyle50^2](/mediawiki/images/math/b/0/d/b0db29e7f0c44f4709c45b1ef51ad77f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
exponentiation/squared number | 50² | ספר_החשבון_והמדות#l9hv | Example: we wish to multiply fifty by fifty.
:![]() |
![\scriptstyle60^2](/mediawiki/images/math/9/3/3/933fbbf24ee187e880573f6718d62258.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
exponentiation/squared number | 60² | ספר_החשבון_והמדות#KA59 | Example: we wish to multiply sixty by sixty.
:![]() |
Cubing
![\scriptstyle3^3](/mediawiki/images/math/f/6/3/f636315d7c9ad5632bf8b501ab1f5f21.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
exponentiation/cubed number | 3³ | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#syCx | Example: we wish [to know] the cube of 3.
:![]() |
![\scriptstyle4^3](/mediawiki/images/math/a/0/d/a0d84d2d1d966594113957f0026bbd4d.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
exponentiation/cubed number | 4³ | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#inPD | Another example: we wish [to know] the cube of 4.
:![]() |
Division
Smaller by greater
![\scriptstyle4\div12](/mediawiki/images/math/7/d/1/7d161276e874417f88e2086a79a9c4eb.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 4÷12 | קצור_המספר#Kc3e | Example: we wish to divide 4 by 12.
:![]() |
![\scriptstyle5\div17](/mediawiki/images/math/8/1/5/81557d69e07faf83680a24f24e6c84a4.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 5÷17 | ספר_דיני_ממונות#TGzh | Example: we wish to divide 5 into 17 parts.
:![]() |
![\scriptstyle4\div50](/mediawiki/images/math/0/d/4/0d4cf67379d0de2c7de1a6ece8a174dc.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 4÷50 | קצור_המספר#pJiZ | The first example: we wish to divide 4 by fifty.
:![]() |
![\scriptstyle6\div50](/mediawiki/images/math/f/5/c/f5cc5e1808acc18c27a9eecf8b855532.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 6÷50 | קצור_המספר#XvMs | The second example: we wish to divide six by fifty.
:![]() |
![\scriptstyle7\div40](/mediawiki/images/math/9/1/7/917a9f5ddb97921da1169b169a8285ce.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 7÷40 | Anonymous#zZxW | Such as 7 by 40.
::![]() |
![\scriptstyle11\div18](/mediawiki/images/math/6/5/a/65a474e136302bd843aa997cd45474ae.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 11÷18 | ספר_דיני_ממונות#XYtI | Example: we wish to divide 11 by 18.
:![]() |
![\scriptstyle11\div19](/mediawiki/images/math/a/b/0/ab04b9bc700f15c38ea7c8d272996bd7.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 11÷19 | ספר_דיני_ממונות#B3RV | Example: we wish to divide 11 by 19.
:![]() |
![\scriptstyle23\div36](/mediawiki/images/math/1/9/e/19e78051af20d5b386cfef71613e746a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 23÷36 | ספר_דיני_ממונות#AkSQ | Another example: we wish to divide 23 by 36.
:![]() |
![\scriptstyle36\div48](/mediawiki/images/math/4/0/0/400579140d1c9173dbf83ca1325773eb.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 36÷48 | ספר_דיני_ממונות#ZGyk | Example: we wish to divide 36 by 48.
:![]() |
![\scriptstyle37\div48](/mediawiki/images/math/6/a/5/6a52a0858917c3ce172549429529579e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 37÷48 | ספר_דיני_ממונות#aycb | Example: we wish to divide 37 by 48.
:![]() |
![\scriptstyle15\div100](/mediawiki/images/math/3/5/7/3573d5b06528fea8eff5bc41b0e32b98.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 15÷100 | Anonymous#S5mt | Such as 15 by 100.
::![]() |
![\scriptstyle70\div100](/mediawiki/images/math/e/8/c/e8c51e26de604a28a5da78ae8b5ee709.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 70÷100 | בר_נותן_טעם#rm2i | If we wish to divide 70 by 100.
:![]() |
![\scriptstyle38\div101](/mediawiki/images/math/3/8/b/38ba01ec73380b892c8cc46d773004bf.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 38÷101 | בר_נותן_טעם#h3tR | Example: to divide 38 by 101, because this number, i.e. 101 [is prime].
:![]() |
![\scriptstyle73\div240](/mediawiki/images/math/2/e/1/2e1a27be26109ca4c1182eeaf03d060a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 73÷240 | בר_נותן_טעם#Fs1g | Example: we wish to divide 73 by 240.
:![]() |
![\scriptstyle2447235\div50335084800](/mediawiki/images/math/9/1/9/9197675d1f0afcffb3c7f9246bdd05fd.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 2447235÷50335084800 | בר_נותן_טעם#khi4 | Example: we wish to divide 2447235 by 50335084800.
:![]() |
Greater by smaller
![\scriptstyle40\div7](/mediawiki/images/math/8/1/b/81ba2271bcd603f6b3e97323e0e0ebe6.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 40÷7 | Anonymous#LN7a | Such as when you wish to divide 40 by 7.
::![]() |
![\scriptstyle100\div9](/mediawiki/images/math/2/f/d/2fddf74911fd3bc68cdb9fdcb1f3761d.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 100÷9 | עיר_סיחון#u08O | We wish to divide one hundred by nine.
:![]() |
![\scriptstyle144\div8](/mediawiki/images/math/4/7/6/47690ffb529187faf25d60228fe1819a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 144÷8 | מלאכת_המספר#a1bh | Example: we wish to divide 144 by 8.
:![]() |
![\scriptstyle321\div9](/mediawiki/images/math/6/c/0/6c0afe3ed69c6f2797754ef4bdc1d302.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 321÷9 | עיר_סיחון#ERZO | We wish to divide three hundred and twenty-one by nine.
:![]() |
![\scriptstyle100\div12](/mediawiki/images/math/6/2/b/62b847cf414acad99a70238d82d0d41d.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 100÷12 | עיר_סיחון#E8oD | We wish to divide one hundred by twelve.
:![]() |
![\scriptstyle100\div15](/mediawiki/images/math/7/a/5/7a53f57b50946b18195add91fa6e61c5.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 100÷15 | Anonymous#SXQ5 | Such as when you wish to divide one-hundred by 15.
::![]() |
![\scriptstyle125\div11](/mediawiki/images/math/6/b/e/6beec3d7f8428f3c806372d1af7072ce.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 125÷11 | עיר_סיחון#PuIG | We wish to divide one hundred and twenty-five by eleven.
:![]() |
![\scriptstyle218\div7](/mediawiki/images/math/7/6/3/7639ad379068b08c87d73fde4a5b22ae.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 218÷7 | ספר_ציפרא#vVRf | If one asks: how many times 7 is in two hundred and 18?
:![]() |
![\scriptstyle200\div50](/mediawiki/images/math/2/0/3/2034c3d4b31b36dc4a0b08bb6475b377.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 200÷50 | ספר_דיני_ממונות#kQox | Example: we wish to divide two hundred by 50.
:![]() |
![\scriptstyle245\div34](/mediawiki/images/math/9/d/2/9d2a4307b8a19bbf5ea9f7b6263b9d43.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 245÷34 | ספר_דיני_ממונות#iYfX | Example: we wish to divide 245 by 34.
:![]() |
![\scriptstyle654\div70](/mediawiki/images/math/f/a/5/fa5e480e8cc3714a9287a0cbd60167ea.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 654÷70 | ספר_אגריס#074J | Here is an example: we want to know how many times 70 there are in 654?
:![]() |
![\scriptstyle891\div40](/mediawiki/images/math/4/6/0/4603d28ef07bfb58f3621928e7745a54.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 891÷40 | עיר_סיחון#chBm | We wish to divide eight hundred and ninety-one by forty.
:![]() |
![\scriptstyle901\div32](/mediawiki/images/math/2/e/5/2e546d50bb70c56bd148a342c590957f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 901÷32 | עיר_סיחון#qhod | We wish to divide nine hundred and one by thirty-two.
:![]() |
![\scriptstyle140\div100](/mediawiki/images/math/3/4/1/341b3407087e751888930c7c9a88852f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 140÷100 | בר_נותן_טעם#ftSN | We wish to divide 140 by 100.
:![]() |
![\scriptstyle823\div278](/mediawiki/images/math/c/a/3/ca30d9d87a57bb0eb4036ad44fb22477.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 823÷278 | קצור_המספר#x8uJ | Example: we wish to divide eight hundred and twenty-two by two hundred and seventy-eight.
::![]() |
![\scriptstyle1000\div72](/mediawiki/images/math/d/d/1/dd1cdf02bfba1d73f5475e2a31c3ad5d.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 1000÷72 | Anonymous#WAFS | If you divide one-thousand by seventy-two.
::![]() |
![\scriptstyle4032\div30](/mediawiki/images/math/c/9/8/c986454b943c7f7e20facc4c63fd7076.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 4032÷30 | ספר_המספר_/_אברהם_אבן_עזרא#wcHu | Example: we wish to divide 4 thousands and 32 by 30.
:![]() |
![\scriptstyle4215\div14](/mediawiki/images/math/1/e/3/1e3cf33256e64901f2e3f2290ea8a016.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 4215÷14 | ספר_החשבון_והמדות#dIVO | Example: we wish to divide 4 thousand, two hundred and 15 by 14.
:![]() |
basic operations/division | 4215÷14 | ספר_החשבון_והמדות#kF9U | Example: we wish to divide four thousand, two hundred and fifteen by fourteen.
:![]() |
![\scriptstyle4321\div23](/mediawiki/images/math/d/f/7/df771d6873e724e6d3a2ef28cacd1d7a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 4321÷23 | ספר_דיני_ממונות#VgnQ | Example: we wish to divide 4321 by 23.
:![]() |
![\scriptstyle5086\div19](/mediawiki/images/math/c/b/c/cbcf02249c8190dd32bb1b8a312f4f58.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 5086÷19 | ספר_אגריס#o1gb | Another example: we want to know: how many times 19 there are in 5086?
:![]() |
![\scriptstyle9000\div70](/mediawiki/images/math/a/c/6/ac661b63f8a5dadb1455c5f8d0547d6f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 9000÷70 | ספר_המספר_/_אברהם_אבן_עזרא#ZS2i | Example: we wish to divide 9 thousands by 70.
:![]() |
![\scriptstyle9876\div12](/mediawiki/images/math/2/5/2/25247ed598c270b0296d893d047aa8d9.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 9876÷12 | מלאכת_המספר#stc2 | Suppose we wish to divide 9876 into 12 parts. ונניח שנרצה לחלק ט' אלפי' ותתע"ו בי"ב חלקים |
![\scriptstyle5214\div108](/mediawiki/images/math/f/e/5/fe56b45a98240838f8a1b88f294e1ae3.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 5214÷108 | ספר_החשבון_והמדות#BDX8 | Another example: we wish to divide five thousand, two hundred, and fourteen by one hundred and eight.
:![]() |
![\scriptstyle8213\div353](/mediawiki/images/math/2/b/1/2b1a6745da398ce2d37f70ed3c7490d8.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 8213÷353 | ספר_המספר_/_אברהם_אבן_עזרא#ZaHA | Example: we wish to divide 8213 by 353.
:![]() |
![\scriptstyle9381\div296](/mediawiki/images/math/d/7/d/d7dfb89afbc50b0887536b1b8ab0e405.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 9381÷296 | ספר_המספר_/_אברהם_אבן_עזרא#05kI | Another example.
:![]() |
![\scriptstyle20000\div90](/mediawiki/images/math/3/3/9/3391eb127f55bdcdfc4313143d938052.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 20000÷90 | ספר_המספר_/_אברהם_אבן_עזרא#dbse | Example: we wish to divide 20 thousands by 90.
:![]() |
![\scriptstyle11350\div110](/mediawiki/images/math/5/d/9/5d977ca4330d88cf9af92d72ac5e8b6f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 11350÷110 | ספר_המספר_/_אברהם_אבן_עזרא#SdNR | Another example: we wish to divide 11350 by 110.
:![]() |
![\scriptstyle12345\div234](/mediawiki/images/math/6/c/e/6ce6bc8c47d8038869fc27a166edb1b2.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 12345÷234 | ספר_דיני_ממונות#omXn | Example: we wish to divide 12345 by 234.
:![]() |
![\scriptstyle20503\div304](/mediawiki/images/math/5/1/d/51d60d98f48ef48c7a5251571ff41a95.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 20503÷304 | ספר_דיני_ממונות#G2dY | Example: we wish to divide 20503 by 304.
:![]() |
![\scriptstyle70213\div136](/mediawiki/images/math/4/4/1/4413b9836cd6c7b79d39d20560fe7c08.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 70213÷136 | ספר_דיני_ממונות#K0QH | Another example: we wish to divide 70213 by 136.
:![]() |
![\scriptstyle83521\div903](/mediawiki/images/math/a/3/4/a34547fb7619f5e73ff8ff2edd53a902.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 83521÷903 | ספר_המספר_/_אברהם_אבן_עזרא#PTa2 | Example: we wish to divide 83521 by 903.
:![]() |
![\scriptstyle54093\div2945](/mediawiki/images/math/8/a/0/8a06ea635087cc49c720e1cc25944e27.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 54093÷2945 | ספר_המספר_/_אברהם_אבן_עזרא#UHr3 | Another example.
:![]() |
![\scriptstyle68921\div7053](/mediawiki/images/math/4/1/5/4150e15ad5e8ba737f1f51ab35a97100.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 68921÷7053 | ספר_המספר_/_אברהם_אבן_עזרא#eXVh | Another example: we wish to divide 68 thousands, 9 hundred and 21 by 7 thousands and 53.
:![]() |
![\scriptstyle104034\div114](/mediawiki/images/math/e/e/7/ee72046c6d66721fe2ae3458f3223273.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 104034÷114 | ספר_החשבון_והמדות#XR8w | Another example: we wish to divide one hundred thousand, four thousand, a zero and thirty-four by 114.
:![]() |
basic operations/division | 104034÷114 | ספר_החשבון_והמדות#WKuz | Another example: we wish to divide 104034 by 114.
:![]() |
![\scriptstyle204612\div289](/mediawiki/images/math/a/2/2/a22965072c174ddf0d9a50ac850bd0c5.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 204612÷289 | קצור_המספר#7SX6 | Let the dividend be two hundred and four thousand six hundred and twelve, and the divisor be two hundred and eighty-nine.
::![]() |
![\scriptstyle583696\div764](/mediawiki/images/math/1/d/5/1d5f3c11c1696a0a2f18c9e9d4a9dc3f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 583696÷764 | עיר_סיחון#2mgj | We wish to divide five hundred and eighty-three thousand, six hundred and ninety-six by seven hundred and sixty-four.
:![]() |
![\scriptstyle583696\div1080](/mediawiki/images/math/b/1/e/b1e61bc8f158256033d9e66ea408d2ff.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 583696÷1080 | עיר_סיחון#BBPT | We wish to divide five hundred and eighty-three thousand, six hundred and ninety-six by one thousand and eighty.
:![]() |
![\scriptstyle680402\div2009](/mediawiki/images/math/e/a/7/ea7d274a9880ba68faaca443f4fef792.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 680402÷2009 | ספר_המספר_/_אברהם_אבן_עזרא#q1Q1 | Another example: we wish to divide 680402 by 2009.
:![]() |
![\scriptstyle777777777\div9999](/mediawiki/images/math/2/b/d/2bda5823a93b67f98fec76f1bc918ad2.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 777777777÷9999 | ספר_המספר_/_אברהם_אבן_עזרא#qk7v | Example: we wish to divide 9 sevens by 4 nines.
:![]() |
![\scriptstyle987654321\div9437](/mediawiki/images/math/c/d/0/cd0f5c55a028846f5313fd9c000f68b2.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 987654321÷9437 | ספר_מעשה_חושב#vmqK | Example: we wish to divide line 987654321 by line 9437
:![]() |
![\scriptstyle4380408998\div46079](/mediawiki/images/math/1/a/0/1a0e938bea5aa151b8b5459b8ed679cd.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 4380408998÷46079 | בר_נותן_טעם#5u2A | We wish to divide 4380408998 by a smaller number, which is 46079.
:![]() |
![\scriptstyle3123740520\div216](/mediawiki/images/math/f/5/0/f506f58cccaaf372b823b29f851eb192.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | 3123740520÷216 | בר_נותן_טעם#Z5A9 | We wish to divide 3123740520 by 216.
:![]() |
WP
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/division | WP | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#g5Nb | The third example: we wish to divide 497 liters of money by 34.
:![]() |
basic operations/division | WP | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#hspE | The fifth example: we wish to divide 5 thousand 852 peraḥim by 56.
:![]() |
basic operations/division | WP | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#9mgM | The seventh example: we wish to divide two hundred and 85 thousands and 976 kikkar of wool by 372.
:![]() |
basic operations/division | WP | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#S8zi | The second example: we wish to divide 246 pešiṭim by 12.
:![]() |
basic operations/division | WP | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#rzDk | The first example: we wish to divide [...]
:![]() |
basic operations/division | WP | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#3h3o | The sixth example: we wish to divide 156 liters of pepper by 14.
:![]() |
basic operations/division | WP | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#3wFN | The fourth example: we wish to divide 2 thousand 987 liters by 39.
:![]() |
Fractions
fraction of fraction
![\scriptstyle\frac{1}{3}\sdot\frac{1}{4}\sdot\frac{1}{5}](/mediawiki/images/math/9/c/5/9c5e08f016b08b2bc463fde5b571d3a6.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
fraction/fraction of fraction | ⅓·¼·⅕ | ספר_חשבון#SN3Z | Who has the third of the quarter of the fifth
:![]() |
![\scriptstyle\frac{1}{3}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{6}](/mediawiki/images/math/a/4/a/a4a078fbe985e3cec82db9fd47ec51b3.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
fraction/fraction of fraction | ⅓·¼·⅕·⅙ | ספר_חשבון#B38F | Who has the third of the quarter of the fifth of the sixth
:![]() |
![\scriptstyle\frac{1}{3}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{6}\sdot\frac{1}{7}](/mediawiki/images/math/9/5/a/95a760eef9ee3c4bc70ef48515890de9.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
fraction/fraction of fraction | ⅓·¼·⅕·⅙·⅐ | ספר_חשבון#ysjE | Who has the third of the quarter of the fifth of the sixth of the seventh
:![]() |
![\scriptstyle\frac{1}{3}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{6}\sdot\frac{1}{7}\sdot\frac{1}{8}](/mediawiki/images/math/9/8/5/985d556781d98603ef952b0f7cd12884.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
fraction/fraction of fraction | ⅓·¼·⅕·⅙·⅐·⅛ | ספר_חשבון#Xp93 | Who has the third of the quarter of the fifth of the sixth of the seventh of the eighth
:![]() |
![\scriptstyle\frac{1}{3}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{6}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}](/mediawiki/images/math/6/3/6/636d66209ddc895c4e482ee5a9352bb7.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
fraction/fraction of fraction | ⅓·¼·⅕·⅙·⅐·⅛·⅑ | ספר_חשבון#XLXN | Who has the third of the quarter of the fifth of the sixth of the seventh of the eighth of the ninth
:![]() |
![\scriptstyle\frac{1}{3}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{6}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}](/mediawiki/images/math/e/5/b/e5b899ad205063a37fad1fcd7698345f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
fraction/fraction of fraction | ⅓·¼·⅕·⅙·⅐·⅛·⅑·⅒ | ספר_חשבון#8EWq | Who has the third of the quarter of the fifth of the sixth of the seventh of the eighth of the ninth of the tenth
:![]() |
![\scriptstyle\frac{1}{3}\sdot\frac{1}{4}](/mediawiki/images/math/3/3/0/330065c566d090c72e1cf05bcfbbfa02.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
fraction/fraction of fraction | ⅓·¼ | ספר_חשבון#KdCj | If it is said: whoever has a third of a quarter of the thing, how much does he have of [that thing]?
:![]() |
![\scriptstyle\frac{1}{3}\sdot\frac{1}{5}](/mediawiki/images/math/6/f/f/6ff1b8f0fc3de9e541506ebbe9595972.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
fraction/fraction of fraction | ⅓·⅕ | ספר_חשבון#dqBo | If it is said: whoever has a third of a fifth [of the thing], how much does he have of [that thing]?
:![]() |
![\scriptstyle\frac{1}{5}\sdot\frac{1}{9}](/mediawiki/images/math/9/0/f/90ff6f848a5bb0175167d0a15c5d9e39.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
fraction/fraction of fraction | ⅕·⅑ | ספר_חשבון#3ST2 | Whoever has a fifth of a ninth.
:![]() |
![\scriptstyle\frac{3}{8}\sdot\frac{2}{5}](/mediawiki/images/math/f/0/f/f0fc34d951ca33cbe47955884c9ee80b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
fraction/fraction of fraction | ⅜·⅖ | ספר_חשבון#8Loc | If one says: how much are 3-eighths of 2-fifths?
:![]() |
fraction/fraction of fraction | ⅜·⅖ | ספר_יסודי_התבונה_ומגדל_האמונה#Vq4n | As the one who says: how much are 3 eighths of 2 fifths
:![]() |
division of fractions
fractions by fractions
![\scriptstyle\frac{1}{3}\div\frac{3}{4}](/mediawiki/images/math/1/3/a/13a10ec68f11b11d783e1788fb54ed58.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | ⅓÷¾ | ספר_החשבון_לאל_חצאר#SWXt | ![]() |
![\scriptstyle\frac{2}{3}\div\frac{3}{4}](/mediawiki/images/math/c/7/d/c7df7bed5b25939c872d432daa809d11.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | ⅔÷¾ | ספר_החשבון_לאל_חצאר#QsiS | ![]() |
![\scriptstyle\frac{2}{3}\div\frac{2}{7}](/mediawiki/images/math/d/b/d/dbd6ec1318e231d75c71cf90fb99e67f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | ⅔÷²/₇ | עיר_סיחון#VpDd | Example for dividing fractions by fractions: we wish to divide two thirds by two sevenths.
:![]() רצינו לחלק שני שלישיות על שני שביעיות |
![\scriptstyle\frac{3}{4}\div\frac{2}{3}](/mediawiki/images/math/6/6/7/66747a4d4dac5073bfc8549cc0a2c49a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | ¾÷⅔ | מלאכת_המספר#F0gV | As the one who wants to divide 3-quarters by 2-thirds.
:![]() |
![\scriptstyle\frac{3}{4}\div\frac{2}{5}](/mediawiki/images/math/7/b/3/7b363da29a037c29d541a1afc1bf4472.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | ¾÷⅖ | ספר_המספר_/_אליהו_מזרחי#n2Fz | Example: if you wish to divide 3-quarters by 2-fifths. המשל אם רצית לחלק ג' רביעיות על ב' חמשיות |
simple fraction/division of fractions | ¾÷⅖ | קצת_מענייני_חכמת_המספר#GaRS | When you wish to divide 3-quarters by two-fifths.
::![]() |
simple fraction/division of fractions | ¾÷⅖ | ספר_המספר_/_אליהו_מזרחי#B4Qv | Example: if you wish to divide 3-quarters by 2-fifths. המשל בזה אם רצית לחלק הג' רביעיות על הב' חמישיות |
![\scriptstyle\frac{3}{5}\div\frac{2}{3}](/mediawiki/images/math/5/2/2/522fba44099e33ee407a04118081d4e4.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | ⅗÷⅔ | מלאכת_המספר#Gm9m | Example: we wish to divide:
:![]() |
![\scriptstyle\frac{6}{7}\div\frac{2}{5}](/mediawiki/images/math/f/8/7/f874c61d42d3e7f97a4b95405804a44a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | ⁶/₇÷⅖ | בר_נותן_טעם#KqBF | Example: if you are told in our first example: we wish to divide 6-sevenths by 2-fifths.
:![]() |
simple fraction/division of fractions | ⁶/₇÷⅖ | בר_נותן_טעם#WIah | Example: we wish to divide 6-sevenths by 2-fifths.
:![]() |
![\scriptstyle\frac{5}{8}\div\frac{1}{4}](/mediawiki/images/math/9/4/0/9402ada8768b2cbc952cbd074b782c04.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | ⅝÷¼ | ספר_דיני_ממונות#urwn | ![]() |
![\scriptstyle\frac{3}{8}\div\frac{2}{5}](/mediawiki/images/math/d/6/a/d6ad0d3ac9178318ca878fd7f7e36e67.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | ⅜÷⅖ | ספר_יסודי_התבונה_ומגדל_האמונה#rzHD | As the one who says to you: divide 3 eighths by 2 fifths
:![]() |
simple fraction/division of fractions | ⅜÷⅖ | ספר_חשבון#gX0D | If one says: divide 3-eighths by 2-fifths
:![]() |
![\scriptstyle\frac{6}{8}\div\frac{2}{4}](/mediawiki/images/math/d/c/a/dca6a9358eab4e9aedf2e593f708c889.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | ⁶/₈÷²/₄ | קצור_המספר#7oEL | We wish to divide six-eighths by two-quarters.
:![]() |
![\scriptstyle\frac{3}{5}\div\frac{7}{9}](/mediawiki/images/math/6/4/2/642d0a6d95af179a5a7c0f7bd2db2802.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | ⅗÷⁷/₉ | ספר_החשבון_לאל_חצאר#oavz | ![]() |
![\scriptstyle\frac{7}{9}\div\frac{2}{7}](/mediawiki/images/math/1/4/3/143f27973f32daa2b980d0104862d708.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | ⁷/₉÷²/₇ | ספר_המספר_/_אברהם_אבן_עזרא#wf6O | Example of fractions alone: divide 7 ninths by 2 sevenths.
:![]() |
![\scriptstyle\frac{2}{13}\div\frac{9}{10}](/mediawiki/images/math/2/f/b/2fbd6cd2b461e3a9b8f8a28f409a3983.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | ²/₁₃÷⁹/₁₀ | ספר_החשבון_לאל_חצאר#d7JZ | ![]() |
![\scriptstyle\frac{5}{11}\div\frac{9}{17}](/mediawiki/images/math/0/f/f/0ffbc5f4707a5fed81f2127dc6fc918a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | ⁵/₁₁÷⁹/₁₇ | ספר_החשבון_לאל_חצאר#KnrU | ![]() |
![\scriptstyle\frac{2}{3}\div\left[\frac{9}{10}+\left(\frac{5}{8}\sdot\frac{1}{10}\right)\right]](/mediawiki/images/math/d/d/2/dd244e384f4422a279cba9537b8b864b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | ⅔÷(⁹/₁₀+⅝·⅒) | ספר_החשבון_לאל_חצאר#Z46I | ![]() |
![\scriptstyle\frac{7}{9}\div\left(\frac{3}{4}+\frac{7}{8}\right)](/mediawiki/images/math/7/1/7/7171670de5e7f443eb1261de76ecae40.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | ⁷/₉÷(¾+⁷/₈) | ספר_החשבון_לאל_חצאר#Cq7e | ![]() |
![\scriptstyle\left(\frac{1}{3}+\frac{1}{7}\right)\div\frac{10}{11}](/mediawiki/images/math/9/4/9/949cc72c174c609a568b78a89ae342ff.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | (⅓+⅐)÷¹⁰/₁₁ | ספר_החשבון_לאל_חצאר#wObx | ![]() |
![\scriptstyle\left[\frac{2}{8}+\left(\frac{1}{2}\sdot\frac{1}{8}\right)\right]\div\frac{9}{10}](/mediawiki/images/math/3/b/0/3b05212d5998323229d3e3d7d2023235.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | (²/₈+½·⅛)÷⁹/₁₀ | ספר_החשבון_לאל_חצאר#QbO0 | ![]() |
![\scriptstyle\left[\frac{4}{9}+\left(\frac{1}{2}\sdot\frac{1}{9}\right)\right]\div\left[\frac{7}{8}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)\right]](/mediawiki/images/math/8/a/1/8a111107fc608a5ae9f5d99f4f2ec182.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | (⁴/₉+½·⅑)÷(⁷/₈+⅓·⅛) | ספר_החשבון_לאל_חצאר#CV2f | ![]() |
![\scriptstyle\left[\frac{3}{4}+\left(\frac{2}{3}\sdot\frac{1}{4}\right)\right]\div\left[\left[\frac{4}{9}+\left(\frac{5}{6}\sdot\frac{1}{9}\right)\right]\sdot\frac{2}{3}\right]](/mediawiki/images/math/a/0/b/a0bf54c86fb59c4b365c62aeb651544d.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | (¾+⅔·¼)÷(⁴/₉+⅚·⅑)·⅔ | בר_נותן_טעם#t3ba | We wish to divide three-quarters and 2-thirds of a quarter by 4-ninths and 5-sixths of a ninth of 2-thirds.
:![]() |
fractions by integers
![\scriptstyle\frac{1}{3}\div4](/mediawiki/images/math/2/2/0/220adab605f66d4a7add06e413676c09.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | ⅓÷4 | ספר_החשבון_לאל_חצאר#y9to | Example: divide a third dirham between four people.
:![]() |
![\scriptstyle\frac{1}{4}\div2](/mediawiki/images/math/b/4/e/b4ec84e3905c1823aa9b610aa6607c43.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | ¼÷2 | מלאכת_המספר#6C9g | As the one who wants to halve one-quarter, whose form is this:
:![]() |
![\scriptstyle\frac{3}{8}\div2](/mediawiki/images/math/0/0/6/0061f535189111718bf85bacee181ddd.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | ⅜÷2 | מלאכת_המספר#dQmz | Suppose we wish to divide 3-eighths by 2 integers.
:![]() |
![\scriptstyle\frac{5}{6}\div8](/mediawiki/images/math/d/0/a/d0acd9ac7a2702ad26a1fecb74cf784e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | ⅚÷8 | ספר_החשבון_לאל_חצאר#tDid | ![]() |
![\scriptstyle\frac{5}{11}\div7](/mediawiki/images/math/7/c/2/7c260c9cae934b00ed9770a5d738367a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | ⁵/₁₁÷7 | ספר_החשבון_לאל_חצאר#YwG4 | ![]() |
![\scriptstyle\frac{7}{9}\div17](/mediawiki/images/math/1/8/d/18d31aeb5a971a8281f233563b34a663.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | ⁷/₉÷17 | ספר_החשבון_לאל_חצאר#5uEQ | ![]() |
![\scriptstyle\left[\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\div5](/mediawiki/images/math/f/3/5/f35247a33fdf18d5e069da1dd98835fe.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | (⅚+½·⅙)÷5 | ספר_החשבון_לאל_חצאר#oUQe | ![]() |
![\scriptstyle\left[\frac{10}{11}+\left(\frac{3}{5}\sdot\frac{1}{11}\right)\right]\div63](/mediawiki/images/math/9/b/0/9b0959a66fde808099c9dfefd633a000.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | (¹⁰/₁₁+⅗·¹/₁₁)÷63 | ספר_החשבון_לאל_חצאר#xGql | ![]() |
![\scriptstyle\left(\frac{3}{5}+\frac{7}{8}\right)\div6](/mediawiki/images/math/9/0/e/90e4790e415d28f1a5f5680c4c5ff58c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | (⅗+⁷/₈)÷6 | ספר_החשבון_לאל_חצאר#E5mo | ![]() |
fractions by integers and fractions
![\scriptstyle\frac{2}{3}\div\left(4+\frac{1}{2}\right)](/mediawiki/images/math/b/9/c/b9c5348aef53753b400d06ecbb52ff60.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | ⅔÷4½ | מלאכת_המספר#6eRM | As the one who wants to divide 2-thirds by 4 integers and a half.
:![]() |
![\scriptstyle\frac{6}{7}\div\left(5+\frac{1}{2}\right)](/mediawiki/images/math/f/7/b/f7b8c328f9906cc418c0c90e8dbb601a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | ⁶/₇÷(5+½) | ספר_החשבון_לאל_חצאר#Uvo0 | ![]() |
![\scriptstyle\frac{10}{11}\div\left(6+\frac{2}{3}\right)](/mediawiki/images/math/2/3/6/236ae0c80251d66a3fa770d6699a541c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | ¹⁰/₁₁÷(6+⅔) | ספר_החשבון_לאל_חצאר#FN6q | ![]() |
![\scriptstyle\frac{4}{5}\div\left[3+\frac{6}{7}+\left(\frac{1}{2}\sdot\frac{1}{7}\right)\right]](/mediawiki/images/math/5/7/b/57b7577cb03e6f202ca23aa4cd5ee3c2.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | ⅘÷(3+⁶/₇+½·⅐) | ספר_החשבון_לאל_חצאר#px9K | ![]() |
![\scriptstyle\frac{6}{13}\div\left(4+\frac{1}{3}+\frac{6}{11}\right)](/mediawiki/images/math/5/1/0/51071f105b3f231de1c7b354479b0c1b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | ⁶/₁₃÷(4+⅓+⁶/₁₁) | ספר_החשבון_לאל_חצאר#dj09 | ![]() |
![\scriptstyle\left[\frac{7}{8}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)\right]\div\left(3+\frac{1}{2}\right)](/mediawiki/images/math/a/3/1/a31d77578b5729c94a448c48170007e1.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | (⁷/₈+⅓·⅛)÷(3+½) | ספר_החשבון_לאל_חצאר#lSPB | ![]() |
fractions of fractions by fractions
![\scriptstyle\left(\frac{5}{9}\sdot\frac{1}{10}\right)\div\frac{3}{5}](/mediawiki/images/math/8/a/4/8a4ee77f47d157a5eb055d346bdc7f09.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | (⁵/₉·⅒)÷⅗ | ספר_החשבון_לאל_חצאר#xSYZ | ![]() |
![\scriptstyle\left(\frac{3}{4}\sdot\frac{1}{5}\right)\div\left[\frac{3}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]](/mediawiki/images/math/e/2/6/e2635a129664cacdecfb3781e889b1cc.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | (¾·⅕)÷(³/₆+½·⅙) | ספר_החשבון_לאל_חצאר#2EzV | ![]() |
![\scriptstyle\left(\frac{1}{2}\sdot\frac{1}{7}\right)\div\left(\frac{3}{4}+\frac{3}{5}\right)](/mediawiki/images/math/8/a/2/8a2bedc9add96e611cba5b1a5e319c7c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | (½·⅐)÷(¾+⅗) | ספר_החשבון_לאל_חצאר#y2Bj | ![]() |
fractions of fractions by integers
![\scriptstyle\left(\frac{2}{3}\sdot\frac{1}{5}\right)\div7](/mediawiki/images/math/9/8/f/98fc7f2c3bf6434c2c954594a831d5d6.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | (⅔·⅕)÷7 | ספר_החשבון_לאל_חצאר#3Kr3 | ![]() |
fractions of fractions by integers and fractions
![\scriptstyle\left(\frac{7}{8}\sdot\frac{1}{9}\right)\div\left(3+\frac{1}{2}\right)](/mediawiki/images/math/f/e/a/fead2e43191c7cc71cbce24354f3ea3d.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | (⁷/₈·⅑)÷(3+½) | ספר_החשבון_לאל_חצאר#1AHL | ![]() |
![\scriptstyle\left(\frac{9}{10}\sdot\frac{1}{13}\right)\div\left[6+\frac{3}{8}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)\right]](/mediawiki/images/math/4/5/1/451bee3fb541e81d2eb989739ad43640.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | (⁹/₁₀·¹/₁₃)÷(6+⅜+⅓·⅛) | ספר_החשבון_לאל_חצאר#XwlM | ![]() |
![\scriptstyle\left(\frac{3}{5}\sdot\frac{1}{7}\right)\div\left(1+\frac{5}{6}+\frac{2}{3}\right)](/mediawiki/images/math/d/9/2/d926c9a1de8e49a496fa2df0d8fb58a4.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | (⅗·⅐)÷(1+⅚+⅔) | ספר_החשבון_לאל_חצאר#dbH6 | ![]() |
integers by fractions
![\scriptstyle4\div\frac{3}{4}](/mediawiki/images/math/0/c/c/0cc6154ff519672c247e6f6dba60961f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | 4÷¾ | ספר_דיני_ממונות#p5E8 | ![]() |
![\scriptstyle12\div\frac{4}{9}](/mediawiki/images/math/0/0/8/008b14a3af165fc46aa8ba5bcd5277ca.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | 12÷⁴/₉ | מלאכת_המספר#274g | As the one who wants to divide 12 by 4-ninths, like this:
:![]() |
integers by integers and fractions
![\scriptstyle1\div\left(3+\frac{1}{3}\right)](/mediawiki/images/math/9/d/4/9d40cbd2201a29ff078bf6221a5f730b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | 1÷(3+⅓) | ספר_החשבון_לאל_חצאר#RYfW | ![]() |
![\scriptstyle1\div\left(6+\frac{1}{4}\right)](/mediawiki/images/math/d/9/8/d9806e6013ea16e6e004c5c682fc211f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | 1÷(6+¼) | ספר_החשבון_לאל_חצאר#Tklv | ![]() |
![\scriptstyle2\div\left(5+\frac{1}{2}\right)](/mediawiki/images/math/5/0/2/502cdafb8b60fb0c40615f2eb8c4640d.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | 2÷(5+½) | ספר_החשבון_לאל_חצאר#5qLA | ![]() |
![\scriptstyle50\div\left(2+\frac{1}{2}\right)](/mediawiki/images/math/6/3/1/6312b877411ca2da42ded4e4b64090f0.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | 50÷2½ | מלאכת_המספר#qEdH | Example: we wish to divide 50 by two and a half, like this:
:![]() |
integers and fractions by fractions
![\scriptstyle\left(4+\frac{1}{3}\right)\div\frac{5}{6}](/mediawiki/images/math/9/a/f/9af950660ea9bbb2b9de075b84fb6a30.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | 4⅓÷⅚ | מלאכת_המספר#dTkL | Example: we wish to divide 4 and one-third by 5-sixths, like this:
:![]() |
integers and fractions by integers
![\scriptstyle\left(3+\frac{1}{3}\right)\div4](/mediawiki/images/math/7/2/d/72daf06daa9c579a70d7835beda25f4a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | 3⅓÷4 | מלאכת_המספר#8ozH | We wish to divide 3 and one-third by 4, like this:
:![]() |
integers and fractions by integers and fractions
![\scriptstyle\left(4+\frac{1}{2}\right)\div\left(2+\frac{1}{4}\right)](/mediawiki/images/math/5/a/d/5ad1f946ffd097302685c4084083397d.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | (4+½)÷(2+¼) | ספר_דיני_ממונות#3ekG | ![]() |
![\scriptstyle\left(4+\frac{2}{3}\right)\div\left(2+\frac{2}{5}\right)](/mediawiki/images/math/5/c/e/5cef64d3f6272a793365dbaf8e3056e6.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | (4+⅔)÷(2+⅖) | עיר_סיחון#eAW6 | Example for dividing integers and fractions by integers and fractions: we wish to divide four integers and two thirds by two integers and two fifths.
:![]() רצינו לחלק ארבעה שלמים ושתי שלישיות על [שני]Vatican om. שלימים ושתי חמשיות |
![\scriptstyle\left(6+\frac{1}{4}\right)\div\left(8+\frac{1}{3}\right)](/mediawiki/images/math/2/6/b/26b631142d7442eb51819b09bd42d571.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | (6+¼)÷(8+⅓) | ספר_החשבון_לאל_חצאר#TrmN | ![]() |
![\scriptstyle\left(9+\frac{1}{2}\right)\div\left(3+\frac{4}{5}\right)](/mediawiki/images/math/9/f/3/9f38efc8e29adbccc13818fb7b3743f2.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | 9½÷3⅘ | מלאכת_המספר#JaOc | As the one who wants to divide 9 and a half by 3 and 4-fifths. Like this:
:![]() |
Combined Division
![\scriptstyle\left(\frac{2}{3}+\frac{3}{5}\right)\div\left(\frac{9}{10}+\frac{10}{11}\right)](/mediawiki/images/math/d/2/2/d2262c96a03c5a401749ba79eaf057fa.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | (⅔+⅗)÷(⁹/₁₀+¹⁰/₁₁) | ספר_החשבון_לאל_חצאר#jJLl | ![]() |
![\scriptstyle\left(\frac{2}{3}+\frac{3}{4}\right)\div\left(\frac{2}{7}+\frac{1}{6}\right)](/mediawiki/images/math/c/8/4/c84d69c9902dba2d8cfb87f1b77b1dd1.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | (⅔+¾)÷(²/₇+⅙) | קצת_מענייני_חכמת_המספר#8XVT | If you wish to divide the sum of 2-thirds and 3-quarters by the sum of two-sevenths and one-sixth, without having to sum up first, then to divide.
::![]() |
simple fraction/division of fractions | (⅔+¾)÷(²/₇+⅙) | ספר_המספר_/_אליהו_מזרחי#Yb86 | If you wish to divide, for instance, [the sum of] 2-thirds and 3-quarters by [the sum of] 2-sevenths and one-sixth, without having to sum up first, then to divide, but you get the right result all at once.
::![]() |
![\scriptstyle\left(\frac{3}{4}\div\frac{2}{3}\right)+\left(\frac{2}{7}\div\frac{1}{6}\right)](/mediawiki/images/math/5/8/7/58745448fb2ff95d1a390441618c28ef.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | (¾÷⅔)+(²/₇÷⅙) | קצת_מענייני_חכמת_המספר#Vj8S | If you wish to sum up the result of division of 3-quarters by 2-thirds with the result of division of 2-sevenths by [one-sixth], without having to divide first, then sum up.
::![]() |
simple fraction/division of fractions | (¾÷⅔)+(²/₇÷⅙) | ספר_המספר_/_אליהו_מזרחי#69mH | If you wish to sum up the result of division of 3-quarters by 2-thirds with the result of division of 2-sevenths by one-sixth, without having to divide first, then sum up, but you get the right result all at once.
::![]() |
![\scriptstyle\left(\frac{2}{3}\times\frac{3}{4}\right)\div\left(\frac{2}{7}\times\frac{1}{6}\right)](/mediawiki/images/math/f/f/0/ff0e78cc263eb276ab46d7858be3d7b8.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | (⅔×¾)÷(²/₇×⅙) | קצת_מענייני_חכמת_המספר#TQ16 | If you wish to divide the product of 2-thirds by 3-quarters by the product of 2-sevenths by one-sixth, without having to multiply first, then divide.
::![]() |
simple fraction/division of fractions | (⅔×¾)÷(²/₇×⅙) | ספר_המספר_/_אליהו_מזרחי#SxBq | If you wish to divide the product of 2-thirds by 3-quarters by the product of 2-sevenths by one-sixth, without having to multiply first, then divide, but you get the right result all at once.
::![]() |
![\scriptstyle\left(\frac{3}{4}\div\frac{2}{3}\right)\times\left(\frac{2}{7}\div\frac{1}{6}\right)](/mediawiki/images/math/c/d/f/cdfc42a5a4bf76f6d0ceadd08fb96c16.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | (¾÷⅔)×(²/₇÷⅙) | קצת_מענייני_חכמת_המספר#Rr95 | If you wish to multiply the result of division of 3-quarters by 2-thirds by the result of division of 2-sevenths by [one-sixth], without having to divide first, then multiply.
::![]() |
simple fraction/division of fractions | (¾÷⅔)×(²/₇÷⅙) | ספר_המספר_/_אליהו_מזרחי#S6kH | If you wish to multiply the result of division of 3-quarters by 2-thirds by the result of division of 2-sevenths by one-sixth, without having to divide first, then multiply, but you get the right result all at once.
*![]() |
![\scriptstyle\left(\frac{3}{4}-\frac{2}{3}\right)\div\left(\frac{2}{7}-\frac{1}{6}\right)](/mediawiki/images/math/0/4/9/0493cdc66bdd44c4f6bee5dc8cd885f9.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | (¾-⅔)÷(²/₇-⅙) | ספר_המספר_/_אליהו_מזרחי#rxLg | If you wish to divide the remainder from subtraction of 2-thirds from 3-quarters by the remainder from subtraction of one-sixth from 2-sevenths, without having to subtract first then divide, but you get the right result all at once.
*![]() |
simple fraction/division of fractions | (¾-⅔)÷(²/₇-⅙) | קצת_מענייני_חכמת_המספר#C9my | If you wish to divide the remainder from subtraction of 2-thirds from 3-quarters by the remainder from subtraction of one-sixth from 2-sevenths, without having to subtract first then divide.
::![]() |
![\scriptstyle\left(\frac{2}{7}\div\frac{1}{6}\right)-\left(\frac{3}{4}\div\frac{2}{3}\right)](/mediawiki/images/math/6/4/b/64b4b232a1484c69bd4430532110144f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/division of fractions | (²/₇÷⅙)-(¾÷⅔) | ספר_המספר_/_אליהו_מזרחי#xuFi | If you wish to subtract the result of division of 3-quarters by 2-thirds from the result of division of 2-sevenths by one-sixth, without having to divide first, then subtract, but you get the right result all at once.
::![]() |
simple fraction/division of fractions | (²/₇÷⅙)-(¾÷⅔) | קצת_מענייני_חכמת_המספר#8JsO | If you wish to subtract the result of division of 3-quarters by 2-thirds from the result of division of 2-sevenths by [one-sixth], without having to divide first, then subtract.
::![]() |
multiplication of fractions
![\scriptstyle\frac{2}{3}\times\frac{5}{6}\times\frac{4}{7}](/mediawiki/images/math/4/2/3/4232904e1ad21d520f388062b070b1e8.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⅔×⅚×⁴/₇ | ספר_המספר_/_אברהם_אבן_עזרא#ix44 | Such as 2 thirds and 5 sixths and 4 sevenths.
:![]() |
![\scriptstyle\frac{2}{5}\times\frac{1}{10}\times\frac{2}{3}](/mediawiki/images/math/6/b/7/6b798997fb83ad1b78ddc4cd7791b7cd.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⅖×⅒×⅔ | ספר_חשבון#q3mD | If one says: how much are 2 parts of 5 by one-tenth by 2-thirds?
:![]() |
simple fraction/multiplication of fractions | ⅖×⅒×⅔ | Anonymous#j0VS | If you multiply 2 parts of five by a tenth by 2 thirds.
:![]() |
simple fraction/multiplication of fractions | ⅖×⅒×⅔ | ספר_יסודי_התבונה_ומגדל_האמונה#yQcZ | If you are told: multiply two parts of 5 by one tenth by two thirds?
:![]() |
![\scriptstyle\left(\frac{5}{7}\sdot\frac{1}{3}\right)\times\frac{7}{8}](/mediawiki/images/math/6/b/8/6b8ef73ca2ed45a4343fc52f9dc89653.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⁵/₇·⅓)×⅞ | ספר_מעשה_חושב#t63W | Example: if we wish to multiply 5 sevenths of thirds by 7 eighths.
::![]() |
![\scriptstyle\frac{2}{3}\times\left(\frac{3}{4}\sdot\frac{1}{3}\right)](/mediawiki/images/math/2/b/4/2b461e2aad8526f1afa09e5444974f1c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⅔×(¾·⅓) | קצור_המספר#ZHnp | We wish to multiply 2-thirds by 3-quarters of one-third.
:![]() |
![\scriptstyle\frac{2}{3}\times\left(\frac{4}{5}\sdot\frac{1}{9}\right)](/mediawiki/images/math/0/b/3/0b3ad55c7e6e25e70ebe371c4333524a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⅔×(⅘·⅑) | ספר_החשבון_לאל_חצאר#3T6D | When you are told: multiply two-thirds by four-fifths of a ninth.
:![]() |
![\scriptstyle\left(\frac{2}{3}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)\times\left(\frac{6}{7}\sdot\frac{1}{8}\right)](/mediawiki/images/math/2/f/3/2f30a1af920d40260eb648b2c8444fd6.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⅔·¼·⅕)×(⁶/₇·⅛) | עיר_סיחון#6SFy | We wish to multiply two thirds of one quarter of a fifth by six sevenths of an eighth.
:![]() |
![\scriptstyle\left(\frac{3}{5}\sdot\frac{3}{7}\sdot\frac{2}{9}\sdot{\color{red}{\frac{1}{10}}}\right)\times\left(\frac{2}{3}\sdot\frac{6}{7}\sdot\frac{4}{5}\sdot\frac{7}{9}\right)](/mediawiki/images/math/2/b/8/2b83836fbacba0425e50f3c4913239ed.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⅗·³/₇·²/₉·⅒)×(⅔·⁶/₇·⅘·⁷/₉) | ספר_החשבון_לאל_חצאר#kkRY | ודמיון זה כשיאמר לך הכה שלשה חומשי שלש שביעיות שתי תשיעיות עשרה בשני שלישי שש שביעיות ארבעה חומשי שבע תשיעיות |
![\scriptstyle\left(\frac{2}{3}\sdot\frac{3}{4}\sdot\frac{4}{5}\sdot\frac{5}{6}\sdot\frac{6}{7}\sdot\frac{7}{8}\sdot\frac{8}{9}\sdot\frac{9}{10}\sdot\frac{10}{11}\right)\times\left(\frac{2}{3}\sdot\frac{3}{4}\sdot\frac{4}{5}\sdot\frac{5}{6}\sdot\frac{6}{7}\sdot\frac{7}{8}\sdot\frac{8}{9}\sdot\frac{9}{10}\sdot\frac{10}{11}\right)](/mediawiki/images/math/6/5/3/653f67f6bebc18deb065fd58aea3a3ba.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⅔·¾·⅘·⅚·⁶/₇·⅞·⁸/₉·⁹/₁₀·¹⁰/₁₁)×(⅔·¾·⅘·⅚·⁶/₇·⅞·⁸/₉·⁹/₁₀·¹⁰/₁₁) | ספר_החשבון_לאל_חצאר#UDjw | והמשל בו כשיאמר לך הכה שני שלישי שלשה רביעי ארבעה חומשי חמשה שתותי שש שביעיות שבעה שמיניות שמונה תשיעיות תשע עשיריות עשרה חלקים מאחד עשר בדומה לו |
![\scriptstyle\left[\frac{1}{5}+\left(\frac{1}{2}\sdot\frac{1}{5}\right)\right]\times12](/mediawiki/images/math/3/8/d/38d26a85ea2cfc361c9a8a6775ab9e5b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⅕+½·⅕)×12 | ספר_החשבון_לאל_חצאר#NiJT | When you are told: multiply a fifth and half a fifth by twelve.
:![]() |
![\scriptstyle\left(\frac{1}{3}\sdot\frac{1}{7}\right)\times25](/mediawiki/images/math/d/f/5/df54899c39342737d941d74277561224.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⅓·⅐)×25 | ספר_החשבון_לאל_חצאר#STpd | When you are told: multiply a third of a seventh by twenty-five.
:![]() |
![\scriptstyle\left(\frac{3}{4}+\frac{4}{5}\right)\times15](/mediawiki/images/math/9/5/b/95ba215b74d7c26fb269225a6f77ab83.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (¾+⅘)×15 | ספר_החשבון_לאל_חצאר#5CHI | When you are told: multiply three-quarters and four-fifths by fifteen.
:![]() |
![\scriptstyle2\times\left(3+\frac{1}{4}\right)](/mediawiki/images/math/f/f/3/ff3645b306d02124155849d0804d29f7.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | 2×(3+¼) | Anonymous#rNFH | Such as two by three and a quarter.
:![]() |
![\scriptstyle\left(4+\frac{1}{2}\right)\times\frac{2}{3}](/mediawiki/images/math/e/6/c/e6c3a9887eadac750fdcd2c54c88d04d.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | 4½×⅔ | מלאכת_המספר#V2wD | As the one who wants to multiply 4 and a half by two-thirds.
:![]() |
simple fraction/multiplication of fractions | 4½×⅔ | ספר_דיני_ממונות#zVQ8 | ![]() |
![\scriptstyle\left(4+\frac{1}{3}\right)\times6](/mediawiki/images/math/2/2/3/223ee2bf8a2e071ce488f5f27b1c1072.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | 4⅓×6 | מלאכת_המספר#r9pQ | As the one who wants to multiply 4 and a third by 6.
:![]() |
![\scriptstyle\left(3+\frac{4}{5}\right)\times\frac{3}{5}](/mediawiki/images/math/b/e/f/bef57d8309aa9724993086a09a44b88d.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (3+⅘)×⅗ | עיר_סיחון#TGUm | Example of multiplying integers and fractions by fractions of one type alone: we wish to multiply three integers and four-fifths by three-fifths.
:![]() רצינו לכפול שלשה שלמים וארבע חמישיות על שלש חמישיות |
![\scriptstyle\left(4+\frac{2}{5}\right)\times\frac{3}{4}](/mediawiki/images/math/3/a/d/3ad4819c26a7d99d1d00716927fe4076.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (4+⅖)×¾ | עיר_סיחון#IoIr | Example of multiplying integers and fractions by fractions that are not of one type: we wish to multiply four integers and two fifths by three quarters.
:![]() רצינו לכפול ארבעה שלמים ושתי חמשיות על שלש רביעיות |
![\scriptstyle\frac{3}{5}\times\left(9+\frac{1}{3}\right)](/mediawiki/images/math/5/a/5/5a57b3f7274459bc834668f44004e2ad.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⅗×(9+⅓) | ספר_החשבון_לאל_חצאר#BOiT | When you are told: multiply three-fifths by nine and a third.
:![]() |
![\scriptstyle\left[\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\times\left(6+\frac{3}{5}\right)](/mediawiki/images/math/7/3/9/739d727bdcdfb4c09f59bba584125807.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⅚+½·⅙)×(6+⅗) | ספר_החשבון_לאל_חצאר#Af60 | When you are told: multiply five-sixths and half a sixth by six and three-fifths.
:![]() |
![\scriptstyle\left(\frac{1}{2}\sdot\frac{1}{7}\right)\times\left(10+\frac{3}{5}\right)](/mediawiki/images/math/9/f/0/9f04d129d8de5755edf27761ba048137.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (½·⅐)×(10+⅗) | ספר_החשבון_לאל_חצאר#2tjq | When you are told: multiply half a seventh by ten and three-fifths.
:![]() |
![\scriptstyle\left(\frac{3}{4}+\frac{4}{5}\right)\times\left(5+\frac{5}{6}\right)](/mediawiki/images/math/7/b/2/7b211292f95729a2e35494fe18b7edfe.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (¾+⅘)×(5+⅚) | ספר_החשבון_לאל_חצאר#LV1r | When you are told: multiply three-quarters and four-fifths by five and five-sixths.
:![]() |
![\scriptstyle\frac{3}{4}\times\left[5+\frac{7}{8}+\left(\frac{1}{6}\sdot\frac{1}{8}\right)\right]](/mediawiki/images/math/f/f/e/ffe897c7d6abf4185f4ffb7c669d3ce1.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ¾×(5+⅞+⅙·⅛) | ספר_החשבון_לאל_חצאר#8Jha | When you are told: multiply three-quarters by five, seven-eighths, and a sixth of an eighth.
:![]() |
![\scriptstyle\frac{5}{6}\times\left[8+\left(\frac{5}{7}\sdot\frac{1}{9}\right)\right]](/mediawiki/images/math/e/5/f/e5f35b79321220d2b908e6078c54c785.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⅚×(8+⁵/₇·⅑) | ספר_החשבון_לאל_חצאר#wQkm | When you are told: multiply five-sixths by eight and five-sevenths of a ninth.
:![]() |
![\scriptstyle\frac{2}{3}\times\left[9+\left(\frac{3}{7}\sdot\frac{4}{5}\right)\right]](/mediawiki/images/math/2/d/c/2dc322874e98819947f2acb35aeaa716.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⅔×(9+³/₇·⅘) | ספר_החשבון_לאל_חצאר#Hxq9 | When you are told: multiply two-thirds by nine, three-sevenths and four-fifths.
:![]() |
![\scriptstyle\left[\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\times\left[8+\frac{5}{7}+\left(\frac{1}{5}\sdot\frac{1}{7}\right)\right]](/mediawiki/images/math/b/7/f/b7f33a721f2cc7aa748520999089bce0.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⅚+½·⅙)×(8+⁵/₇+⅕·⅐) | ספר_החשבון_לאל_חצאר#AAEA | Example: when you are told: multiply five-sixths and half a sixth by eight, five-sevenths and one-fifth of a seventh.
:![]() |
![\scriptstyle\left[\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\times\left[9+\left(\frac{1}{6}\sdot\frac{1}{7}\right)\right]](/mediawiki/images/math/9/6/a/96a8fdd4fab69e58c8a676b813acc28d.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⅚+½·⅙)×(9+⅙·⅐) | ספר_החשבון_לאל_חצאר#LWbK | ![]() |
![\scriptstyle\left[\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\times\left[8+\left(\frac{9}{10}\sdot\frac{10}{11}\right)\right]](/mediawiki/images/math/5/4/3/5438e11adee878a909d719e2c39d2c62.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⅚+½·⅙)×(8+⁹/₁₀·¹⁰/₁₁) | ספר_החשבון_לאל_חצאר#Hazk | ![]() |
![\scriptstyle\left(\frac{2}{3}\sdot\frac{1}{7}\right)\times\left[6+\frac{9}{10}+\left(\frac{4}{5}\sdot\frac{1}{10}\right)\right]](/mediawiki/images/math/4/c/0/4c07b959f75b107b9a85f4431149a854.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⅔·⅐)×(6+⁹/₁₀+⅘·⅒) | ספר_החשבון_לאל_חצאר#YN6C | ![]() |
![\scriptstyle\left(\frac{3}{4}\sdot\frac{1}{9}\right)\times\left[8+\left(\frac{5}{6}\sdot\frac{1}{7}\right)\right]](/mediawiki/images/math/d/f/e/dfe926298d98140474daec8e3ef52953.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (¾·⅑)×(8+⅚·⅐) | ספר_החשבון_לאל_חצאר#57dS | ![]() |
![\scriptstyle\left(\frac{5}{6}\sdot\frac{1}{8}\right)\times\left(6+\frac{3}{4}+\frac{4}{5}\right)](/mediawiki/images/math/4/0/5/4054ae1facb0506616b827645c14e0d8.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⅚·⅛)×(6+¾+⅘) | ספר_החשבון_לאל_חצאר#Qxpv | ![]() |
![\scriptstyle\left(\frac{3}{4}+\frac{4}{5}\right)\times\left[6+\frac{7}{8}+\left(\frac{1}{6}\sdot\frac{1}{8}\right)\right]](/mediawiki/images/math/1/d/e/1de58acd88921baf39cf31c2001274d7.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (¾+⅘)×(6+⅞+⅙·⅛) | ספר_החשבון_לאל_חצאר#D3h3 | ![]() |
![\scriptstyle\left(\frac{3}{4}+\frac{4}{5}\right)\times\left[6+\left(\frac{1}{7}\sdot\frac{1}{8}\right)\right]](/mediawiki/images/math/a/0/8/a08d4959f373c7157cdca395fae419df.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (¾+⅘)×(6+⅐·⅛) | ספר_החשבון_לאל_חצאר#lctD | When you are told: multiply three-quarters and four-fifths by six and a seventh of an eighth.
:![]() |
![\scriptstyle\left(\frac{1}{2}+\frac{2}{3}\right)\times\left(5+\frac{6}{7}+\frac{8}{9}\right)](/mediawiki/images/math/4/6/b/46b658805c16b0d019811f51c8bc07e7.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (½+⅔)×(5+⁶/₇+⁸/₉) | ספר_החשבון_לאל_חצאר#KjF8 | Example: multiply half and two-thirds by five, six-sevenths and eight-ninths.
:![]() |
![\scriptstyle\left[2+\frac{3}{5}+\left(\frac{1}{2}\sdot\frac{1}{5}\right)\right]\times\left[4+\frac{7}{9}+\left(\frac{6}{8}\sdot\frac{1}{9}\right)\right]](/mediawiki/images/math/1/9/4/194f683354067debfa65dc8b696fb706.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (2+⅗+½·⅕)×(4+⁷/₉+⁶/₈·⅑) | ספר_החשבון_לאל_חצאר#0JUU | The example: when you are told: multiply two plus three-fifths and half a fifth by four plus seven-ninths and six-eighths of a ninth.
:![]() |
![\scriptstyle\left(6+\frac{2}{3}+\frac{3}{5}\right)\times\left(9+\frac{5}{6}+\frac{7}{8}\right)](/mediawiki/images/math/1/2/f/12fcb4a85460aa63a8adf5acf3d4e106.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (6+⅔+⅗)×(9+⅚+⅞) | ספר_החשבון_לאל_חצאר#iJeR | When you are told: multiply six, two-thirds and three-fifths by nine, five-sixths and seven-eighths.
:![]() |
![\scriptstyle\left[2+\frac{3}{4}+\frac{4}{5}+\left(\frac{1}{2}\sdot\frac{1}{5}\right)\right]\times\left[6+\frac{6}{7}+\frac{9}{10}+\left(\frac{3}{8}\sdot\frac{1}{10}\right)\right]](/mediawiki/images/math/c/a/5/ca56729c1329c7234d2a3479bc3a4064.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (2+¾+⅘+½·⅕)×(6+⁶/₇+⁹/₁₀+⅜·⅒) | ספר_החשבון_לאל_חצאר#5qBm | For example: multiply two, three-quarters, four-fifths and half a fifth by six, six-sevenths, nine-tenths and three-eighths of a tenth.
:![]() |
![\scriptstyle\left[2+\frac{1}{3}+\frac{1}{5}+\left(\frac{1}{7}\sdot\frac{1}{8}\right)\right]\times\left[3+\frac{1}{9}+\frac{1}{10}+\left(\frac{1}{6}\sdot\frac{1}{11}\right)\right]](/mediawiki/images/math/2/6/7/2674bbca8a320135a18e2259c80cbc80.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (2+⅓+⅕+⅐·⅛)×(3+⅑+⅒+⅙·¹/₁₁) | ספר_החשבון_לאל_חצאר#XcJg | Example: multiply two, a third, a fifth and a seventh of an eighth by three, a ninth, a tenth and a sixth of one part of eleven.
:![]() |
![\scriptstyle\left(2+\frac{1}{3}+\frac{1}{5}+\frac{1}{6}\right)\times\left(4+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\right)](/mediawiki/images/math/f/6/4/f6454663ef22f43bdf6d591dee146a52.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (2+⅓+⅕+⅙)×(4+⅐+⅛+⅑) | ספר_החשבון_לאל_חצאר#yOZQ | Example: multiply two, a third, a fifth, and a sixth by four, a seventh, an eighth and a ninth.
:![]() |
![\scriptstyle\left[\frac{6}{7}+\left(\frac{1}{3}\sdot\frac{1}{7}\right)\right]\times\frac{8}{9}](/mediawiki/images/math/f/9/7/f97a19d668836f661a08889fa51e299c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⁶/₇+⅓·⅐)×⁸/₉ | ספר_החשבון_לאל_חצאר#eHK7 | When you are told: multiply six-sevenths and a third of a seventh by eight-ninths.
:![]() |
![\scriptstyle\left[\frac{1}{11}+\left(\frac{1}{2}\sdot\frac{1}{11}\right)\right]\times\frac{12}{13}](/mediawiki/images/math/b/3/1/b3108e0fc4b9e093af19900912f9dbb5.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (¹/₁₁+½·¹/₁₁)×¹²/₁₃ | ספר_החשבון_לאל_חצאר#kLzs | If you are told: multiply one part of eleven and half a part of eleven by twelve parts of thirteen.
:![]() |
![\scriptstyle\left(\frac{2}{3}+\frac{4}{7}\right)\times\frac{10}{11}](/mediawiki/images/math/8/7/3/8737d91db268b20ea5b4f13970282480.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⅔+⁴/₇)×¹⁰/₁₁ | ספר_החשבון_לאל_חצאר#pU7o | When you are told: multiply two-thirds and four-sevenths by ten parts of eleven.
:![]() |
![\scriptstyle\left[\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\times\left[\frac{9}{10}+\left(\frac{7}{8}\sdot\frac{1}{10}\right)\right]](/mediawiki/images/math/5/7/8/5781c5536b7840a71d28f8ec3a3dcbdc.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⅚+½·⅙)×(⁹/₁₀+⅞·⅒) | ספר_החשבון_לאל_חצאר#q1f8 | When you are told: multiply five-sixths and half a sixth by nine-tenths and seven-eighths of a tenth.
:![]() |
![\scriptstyle\left(\frac{3}{4}+\frac{4}{5}\right)\times\left[\frac{10}{11}+\left(\frac{8}{9}\sdot\frac{1}{11}\right)\right]](/mediawiki/images/math/d/d/e/dde0eb7bd402c0e93bfdac59da3033c0.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (¾+⅘)×(¹⁰/₁₁+⁸/₉·¹/₁₁) | ספר_החשבון_לאל_חצאר#oNjy | When you are told: multiply three-quarters and four-fifths by ten parts of eleven and eight-ninths of one parts of eleven.
:![]() |
![\scriptstyle\left(\frac{1}{3}+\frac{3}{5}\right)\times\left(\frac{1}{7}+\frac{2}{9}\right)](/mediawiki/images/math/2/4/f/24f6410c2716d009aa3d88e0a76d69d8.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⅓+⅗)×(⅐+²/₉) | ספר_החשבון_לאל_חצאר#icTs | When you are told: multiply [a third] and three-fifths by a seventh and two-ninths.
:![]() |
![\scriptstyle\left[\frac{2}{3}+\frac{5}{7}+\left(\frac{1}{6}\sdot\frac{1}{7}\right)\right]\times\left[\frac{4}{5}+\frac{9}{10}+\left(\frac{8}{9}\sdot\frac{1}{10}\right)\right]](/mediawiki/images/math/8/9/c/89c984e9a2e8e2ca9db67ecc3cae4f93.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⅔+⁵/₇+⅙·⅐)×(⅘+⁹/₁₀+⁸/₉·⅒) | ספר_החשבון_לאל_חצאר#fJdW | Example: multiply two-thirds, five-sevenths and a sixth of a seventh by four-fifths, nine-tenths and [eight-ninths] of a tenth.
:![]() |
![\scriptstyle\left[\frac{3}{4}+\frac{4}{5}+\left(\frac{1}{2}\sdot\frac{1}{7}\right)\right]\times\left[\frac{7}{8}+\frac{8}{9}+\left(\frac{1}{3}\sdot\frac{1}{10}\right)\right]](/mediawiki/images/math/b/a/6/ba6de07c368359996ed40f8c820d9fd7.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (¾+⅘+½·⅐)×(⅞+⁸/₉+⅓·⅒) | ספר_החשבון_לאל_חצאר#xekW | Example: when you are told: multiply three-quarters, four-fifths and half a seventh by seven-eighths, eight-ninths and [a third of a tenth].
:![]() |
![\scriptstyle\left(\frac{2}{3}+\frac{3}{5}+\frac{4}{6}\right)\times\left(\frac{5}{7}+\frac{7}{8}+\frac{9}{11}\right)](/mediawiki/images/math/1/d/e/1de6deac352964b66418d302ab467181.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⅔+⅗+⁴/₆)×(⁵/₇+⅞+⁹/₁₁) | ספר_החשבון_לאל_חצאר#5uwE | When you are told: multiply two-thirds, three-fifths and four-sixths by five-sevenths, seven-eighths and nine parts of eleven.
:![]() |
![\scriptstyle\left(\frac{3}{4}\sdot5\right)\times\left(\frac{5}{6}\sdot7\right)](/mediawiki/images/math/4/8/b/48b2be14a5ee7ea1975cf9e74e5a9109.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (¾·5)×(⅚·7) | ספר_החשבון_לאל_חצאר#651M | When you are told: multiply three-quarters of a five by five-sixths of a seven.
:![]() |
![\scriptstyle\left[\left[\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\sdot8\right]\times\left[\left[\frac{8}{9}+\left(\frac{1}{5}\sdot\frac{1}{9}\right)\right]\sdot12\right]](/mediawiki/images/math/1/6/0/1600fa727c35dec4f3c4ad5a9afdabb3.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⅚+½·⅙)·8×(⁸/₉+⅕·⅑)·12 | ספר_החשבון_לאל_חצאר#eyub | ![]() |
![\scriptstyle\left[\left(\frac{2}{3}+\frac{3}{5}\right)\sdot8\right]\times\left[\left(\frac{6}{7}+\frac{5}{9}\right)\sdot4\right]](/mediawiki/images/math/5/1/a/51a5f2c5f34e3fd50333a6ab3d89872a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⅔+⅗)·8×(⁶/₇+⁵/₉)·4 | ספר_החשבון_לאל_חצאר#U7GU | ![]() |
![\scriptstyle\left[\frac{3}{4}\sdot\left[5+\frac{6}{7}+\left(\frac{1}{6}\sdot\frac{1}{7}\right)\right]\right]\times\left[\frac{7}{8}\sdot\left[3+\frac{3}{10}+\left(\frac{1}{9}\sdot\frac{1}{10}\right)\right]\right]](/mediawiki/images/math/e/d/2/ed219e497be7d0951c74faa4e0f2f7d7.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ¾·(5+⁶/₇+⅙·⅐)×⅞·(3+³/₁₀+⅑·⅒) | ספר_החשבון_לאל_חצאר#kJTB | ![]() |
![\scriptstyle\left[\frac{1}{2}\sdot\left(2+\frac{1}{5}+\frac{1}{6}\right)\right]\times\left[\frac{1}{7}\sdot\left(3+\frac{1}{8}+\frac{1}{9}\right)\right]](/mediawiki/images/math/0/0/4/004e700b6414538394bc342a34fa598e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ½·(2+⅕+⅙)×⅐·(3+⅛+⅑) | ספר_החשבון_לאל_חצאר#Fxsj | ![]() |
![\scriptstyle\left[\frac{6}{7}\sdot\left[5+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\right]\times\left[\frac{7}{8}\sdot\left[3+\left(\frac{3}{5}\sdot\frac{1}{9}\right)\right]\right]](/mediawiki/images/math/5/f/5/5f53be0be7aff5af1d6d8efd389472f7.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⁶/₇·(5+½·⅙)×⅞·(3+⅗·⅑) | ספר_החשבון_לאל_חצאר#KGXW | ![]() |
![\scriptstyle\left[\left(\frac{2}{3}\sdot\frac{1}{5}\right)\sdot\left(8+\frac{1}{6}\right)\right]\times\left[\left(\frac{5}{7}\sdot\frac{1}{8}\right)\sdot\left(6+\frac{1}{9}\right)\right]](/mediawiki/images/math/9/a/0/9a08cbb7c870dbf982d1d194761990fe.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⅔·⅕)·(8+⅙)×(⁵/₇·⅛)·(6+⅑) | ספר_החשבון_לאל_חצאר#LYqM | ![]() |
![\scriptstyle\left[\left(\frac{3}{4}\sdot\frac{1}{5}\right)\sdot\left[6+\frac{3}{11}+\left(\frac{5}{6}\sdot\frac{1}{11}\right)\right]\right]\times\left[\left(\frac{5}{7}\sdot\frac{1}{9}\right)\sdot\left[12+\frac{6}{13}+\left(\frac{3}{8}\sdot\frac{1}{13}\right)\right]\right]](/mediawiki/images/math/c/2/2/c22d68f0da0fd67a0798ae11bd0dcc60.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (¾·⅕)·(6+³/₁₁+⅚·¹/₁₁)×(⁵/₇·⅑)·(12+⁶/₁₃+⅜·¹/₁₃) | ספר_החשבון_לאל_חצאר#6CY2 | כשיאמר לך הכה שלשה רביעי חומש בששה ושלשה חלקים מאחד עשר וחמש שתותי החלק מאחד עשר בחמש שביעיות תשיעית שנים עשר וששה חלקים משלשה עשר ושלש שמיניות החלק משלשה עשר |
![\scriptstyle\left[\left(\frac{2}{3}\sdot\frac{1}{5}\right)\sdot\left(8+\frac{3}{6}+\frac{4}{7}\right)\right]\times\left[\left(\frac{4}{9}\sdot\frac{1}{10}\right)\sdot\left(18+\frac{6}{11}+\frac{5}{8}\right)\right]](/mediawiki/images/math/9/7/d/97d9dfda0018e2b0241f56adec4bb691.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⅔·⅕)·(8+³/₆+⁴/₇)×(⁴/₉·⅒)·(18+⁶/₁₁+⅝) | ספר_החשבון_לאל_חצאר#4NIN | ![]() |
![\scriptstyle\left[\left(\frac{2}{3}+\frac{3}{5}\right)\sdot\left(9+\frac{5}{6}\right)\right]\times\left[\left(\frac{3}{7}+\frac{7}{8}\right)\sdot\left(12+\frac{7}{9}\right)\right]](/mediawiki/images/math/b/b/8/bb89089481d6771d64a646f1b2604e99.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⅔+⅗)·(9+⅚)×(³/₇+⁷/₈)·(12+⁷/₉) | ספר_החשבון_לאל_חצאר#6akx | ![]() |
![\scriptstyle\left[\left(\frac{2}{3}+\frac{3}{5}\right)\sdot\left(7+\frac{3}{4}+\frac{3}{5}\right)\right]\times\left[\left(\frac{5}{6}+\frac{5}{8}\right)\sdot\left(4+\frac{5}{6}+\frac{9}{10}\right)\right]](/mediawiki/images/math/b/4/9/b497ed9da24bcbdf311fe9fdd582187b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⅔+⅗)·(7+¾+⅗)×(⅚+⅝)·(4+⅚+⁹/₁₀) | ספר_החשבון_לאל_חצאר#aFMz | ![]() |
![\scriptstyle\left[\left[\frac{3}{5}+\left(\frac{1}{2}\sdot\frac{1}{5}\right)\right]\sdot\left[4+\frac{1}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\right]\times\left[\left[\frac{6}{7}+\left(\frac{2}{5}\sdot\frac{1}{7}\right)\right]\sdot\left[3+\frac{5}{11}+\left(\frac{5}{8}\sdot\frac{1}{11}\right)\right]\right]](/mediawiki/images/math/7/4/6/746250ab2b55cc29768a628fb82506bc.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⅗+½·⅕)·(4+⅙+½·⅙)×(⁶/₇+⅖·⅐)·(3+⁵/₁₁+⅝·¹/₁₁) | ספר_החשבון_לאל_חצאר#UfbP | כאשר יאמר לך הכה שלשה חומשים וחצי חומש ארבעה ושתות וחצי שתות בששה שביעיות ושני חומשי שביעית שלשה וחמשה חלקים מאחד עשר וחמש שמיניות החלק מאחד עשר |
![\scriptstyle\left[\left(\frac{2}{3}\sdot\frac{1}{5}\right)\sdot\left[8+\left(\frac{1}{4}\sdot\frac{1}{6}\right)\right]\right]\times\left[\left(\frac{3}{7}\sdot\frac{1}{8}\right)\sdot\left[12+\left(\frac{1}{2}\sdot\frac{1}{13}\right)\right]\right]](/mediawiki/images/math/b/d/3/bd39d71c41ffa67e9904a9b88747ee73.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⅔·⅕)·(8+¼·⅙)×(³/₇·⅛)·(12+½·¹/₁₃) | ספר_החשבון_לאל_חצאר#Cjr7 | ![]() |
![\scriptstyle\left[\left(\frac{3}{5}\sdot5\right)+\left(\frac{5}{6}\sdot7\right)\right]\times\left[\left(\frac{2}{3}\sdot4\right)+\left(\frac{1}{2}\sdot5\right)\right]](/mediawiki/images/math/9/e/f/9efa063bb7945eb7d7c881b90eeae9c3.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⅗·5+⅚·7)×(⅔·4+½·5) | ספר_החשבון_לאל_חצאר#Ln6q | ![]() |
![\scriptstyle\left[\left(\frac{3}{5}\sdot3\right)+\left[\frac{3}{4}\sdot\left(2+\frac{2}{3}\right)\right]\right]\times\left[\left(\frac{4}{5}\sdot2\right)+\left[\frac{5}{7}\sdot\left(3+\frac{1}{2}\right)\right]\right]](/mediawiki/images/math/a/c/9/ac90cb543446e9ef209b88692cd48240.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⅗·3+¾·2⅔)×(⅘·2+⁵/₇·3½) | ספר_החשבון_לאל_חצאר#lKub | ![]() |
![\scriptstyle\left[\left(3+\frac{1}{2}\right)+\left(5+\frac{1}{3}\right)\right]\times\left[\left(4+\frac{3}{4}\right)+\left(6+\frac{4}{5}\right)\right]](/mediawiki/images/math/d/c/e/dce671800feba457094cdfcc90b5a6f2.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (3½+5⅓)×(4¾+6⅘) | ספר_החשבון_לאל_חצאר#5zBH | ![]() |
![\scriptstyle\left[2+\left[\left(\frac{2}{3}+\frac{3}{4}\right)\sdot3\right]+\left[\left(\frac{4}{5}+\frac{5}{6}\right)\sdot4\right]\right]\times\left[1+\left[\left(\frac{3}{5}+\frac{1}{2}\right)\sdot2\right]+\left[\left(\frac{3}{11}+\frac{{\color{red}{9}}}{10}\right)\sdot3\right]\right]](/mediawiki/images/math/3/2/2/3221fe7e28f1eae00361068722aba0b0.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (2+(⅔+¾)·3+(⅘+⅚)·4)×(1+(⅗+½)·2+(³/₁₁+⁹/₁₀)·3) | ספר_החשבון_לאל_חצאר#mbJg | When you are told: multiply two, two-thirds plus three-quarters of three, and four-fifths plus five-sixths of four by one, [three-fifths plus a half of two], and three parts of eleven plus [nine]-tenths of three. כשיאמר לך הכה שנים ושני שלישים ושלשה רביעי שלשה וארבעה חומשים וחמשה שתותי ארבעה באחד ושלשה חלקים מאחד עשר ושבע עשיריות שלשה |
![\scriptstyle\left[2+\left[\left(\frac{1}{2}\sdot\frac{1}{5}\right)\sdot3\right]+\left[\left(\frac{2}{3}\sdot\frac{1}{6}\right)\sdot5\right]\right]\times\left[3+\left[\left(\frac{1}{4}\sdot\frac{1}{7}\right)\sdot4\right]+\left[\left(\frac{5}{6}\sdot\frac{1}{8}\right)\sdot2\right]\right]](/mediawiki/images/math/c/0/b/c0bc2ad5bc456adaef584d86297ba6fa.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (2+(½·⅕)·3+(⅔·⅙)·5)×(3+(¼·⅐)·4+(⅚·⅛)·2) | ספר_החשבון_לאל_חצאר#gG0q | When you are told: multiply two , half a fifth of three, and two-thirds of a sixth of five by three, a quarter of a seventh of four, and five-sixths of an eighth of two. כשיאמר לך הכה שנים וחצי חמישית שלשה ושני שלישי שתות חמשה בשלשה רביעי שביעית ארבעה וחמשה שתותים משמינית שנים |
![\scriptstyle\left[\left[\frac{3}{4}\sdot\left(5+\frac{1}{2}\right)\right]+\left[\frac{5}{6}\sdot\left(3+\frac{2}{5}\right)\right]\right]\times\left[\left[\frac{2}{3}\sdot\left(4+\frac{1}{7}\right)\right]+\left[\frac{3}{8}\sdot\left(2+\frac{3}{11}\right)\right]\right]](/mediawiki/images/math/f/4/c/f4cf264503d356d541b3d10d3eb20358.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ((¾·5½)+(⅚·3⅖))×((⅔·4⅐)+(⅜·2³/₁₁)) | ספר_החשבון_לאל_חצאר#z3zR | כאשר יאמר לך הכה שלשה רביעי חמשה וחצי וחמשה שתותי שלשה ושני חומשים בשני שלישי ארבעה ושביעית ושלש שמיניות שנים ושלשה חלקים מאחד עשר |
![\scriptstyle\left[\left(\frac{3}{4}\sdot\frac{4}{5}\right)+\left(\frac{5}{6}\sdot\frac{6}{7}\right)+\left(\frac{7}{8}\sdot\frac{8}{9}\right)\right]\times\left[\left(\frac{2}{3}\sdot\frac{3}{4}\right)+\left(\frac{4}{5}\sdot\frac{5}{6}\right)+\left(\frac{6}{7}\sdot\frac{7}{8}\right)\right]](/mediawiki/images/math/9/d/7/9d786b3054d18765a05eec5c1fbeed6c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ((¾·⅘)+(⅚·⁶/₇)+(⅞·⁸/₉))×((⅔·¾)+((⅘·⅚)+(⁶/₇·⅞)) | ספר_החשבון_לאל_חצאר#LTY9 | כשיאמר לך הכה שלשה רביעי ארבעה חומשים וחמשה שתותי שש שביעיות ושבע שמיניות שמונה תשיעיות בשני שלישי שלשה רביעי ארבעה חומשי חמשה שתותים ושש שביעיות שבע שמיניות |
![\scriptstyle\left[\left[\left(\frac{2}{5}\sdot\frac{5}{6}\right)+\frac{1}{2}\right]\sdot3\right]\times\left[\left[\left(\frac{2}{3}\sdot\frac{6}{7}\right)+\frac{3}{5}\right]\sdot10\right]](/mediawiki/images/math/f/5/6/f563fe0da1c5a32c4b4bb95452e54bc5.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ((⅖·⅚)+½)·3×((⅔·⁶/₇)+⅗)·10 | ספר_החשבון_לאל_חצאר#2suQ | ![]() |
![\scriptstyle\left[\left(\frac{2}{3}\sdot\frac{6}{9}\right)\sdot\left(6+\frac{3}{4}\right)\right]\times\left[\left(\frac{3}{4}\sdot\frac{8}{9}\right)\sdot\left(2+\frac{2}{5}\right)\right]](/mediawiki/images/math/f/a/4/fa4daab5fb3c530e96d4f4be1abe9aec.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ((⅔·⁶/₉)·(6+¾))×((¾·⁸/₉)(2+⅖)) | ספר_החשבון_לאל_חצאר#gWo2 | ![]() |
![\scriptstyle\left[\left(\frac{3}{5}\sdot\frac{4}{7}\right)\sdot\left[3+\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\right]\times\left[\left(\frac{2}{3}\sdot\frac{5}{6}\right)\sdot\left[6+\frac{7}{8}+\left(\frac{2}{3}\sdot\frac{1}{8}\right)\right]\right]](/mediawiki/images/math/2/5/5/2550673eb8dc78a12727d2d5dc0b5427.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ((⅗·⁴/₇)·(3+⅚+½·⅙))×((⅔·⅚)·(6+⅞+⅔·⅛)) | ספר_החשבון_לאל_חצאר#sIo1 | ![]() |
![\scriptstyle\left[3+\left(\frac{3}{5}\sdot\frac{5}{6}\right)\right]\times\left[4+\left(\frac{2}{7}\sdot\frac{3}{8}\right)\right]](/mediawiki/images/math/c/c/6/cc62007c7e8709f4fde684e0c6ff424c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (3+⅗·⅚)×(4+²/₇·⅜) | ספר_החשבון_לאל_חצאר#9253 | ![]() |
![\scriptstyle\left[2+\left(\frac{3}{7}\sdot\frac{3}{5}\right)+\frac{2}{3}\right]\times\left[3+\left(\frac{3}{4}\sdot\frac{5}{6}\right)+\frac{1}{2}\right]](/mediawiki/images/math/b/a/0/ba08b2bb8f498724f17c160ad860406d.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (2+³/₇·⅗+⅔)×(3+¾·⅚+½) | ספר_החשבון_לאל_חצאר#q8JN | When you are told: multiply two, plus three-sevenths of three-fifths, and two-thirds by three plus three-quarters of five-sixths and a half.
:![]() |
![\scriptstyle\left[\left(\frac{3}{4}\sdot\frac{3}{5}\right)\sdot\left[2+\left(\frac{3}{{\color{red}{7}}}\sdot\frac{5}{6}\right)\right]\right]\times\left[\left(\frac{1}{2}\sdot\frac{3}{4}\right)\sdot\left[3+\left(\frac{2}{5}\sdot\frac{4}{9}\right)\right]\right]](/mediawiki/images/math/1/5/2/152a8c6ac1567adaf8da7c7a05dcaa70.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ((¾·⅗)·(2+³/₇·⅚))×((½·¾)·(3+⅖·⁴/₉)) | ספר_החשבון_לאל_חצאר#kCKV | ![]() |
![\scriptstyle\left(1+\frac{1}{2}\right)\times\left(1+\frac{1}{3}\right)\times\left(1+\frac{1}{4}\right)\times\left(1+\frac{1}{5}\right)\times\left(1+\frac{1}{6}\right)\times\left(1+\frac{1}{7}\right)\times\left(1+\frac{1}{8}\right)\times\left(1+\frac{1}{9}\right)\times\left(1+\frac{1}{10}\right)](/mediawiki/images/math/f/d/8/fd8d07cc288ef6fb5eb0a844c9429bb1.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | 1½×1⅓×1¼×1⅕×1⅙×1⅐×1⅛×1⅑×1⅒ | ספר_החשבון_לאל_חצאר#kOwq | Example: multiply one and a half by one and a third by one and a quarter by one and a fifth by one and a sixth by one and a seventh by one and one-eighth by one and a ninth by one and a tenth. המשל בו הכה אחד וחצי באחד ושליש באחד ורביע באחד וחומש באחד ושתות באחד ושביעית באחד ושמינית באחד ותשיעית באחד ועשירית |
![\scriptstyle\left(3+\frac{1}{4}\right)\times\left[5+\left(\frac{1}{6}\sdot\frac{1}{7}\right)\right]](/mediawiki/images/math/a/e/2/ae2eb1d97e60b3daefe628a8a4333262.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (3+¼)×(5+⅙·⅐) | Anonymous#ubkD | Such as three and a quarter by five and one-sixth of one-seventh.
:![]() |
![\scriptstyle\left[\frac{3}{4}\sdot\left(3+\frac{1}{3}\right)\right]\times\left(\frac{6}{7}\sdot5\right)](/mediawiki/images/math/1/a/c/1ac4f88a6d78fe1ca6efd685e4d7383f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (¾·(3+⅓))×(⁶/₇·5) | Anonymous#Na7V | If you multiply three-quarters of three and one-third by six-sevenths of five.
:![]() |
![\scriptstyle\left[\left[\frac{4}{7}\sdot\left(\frac{5}{9}\sdot\frac{1}{8}\right)\right]\right]\times\left[\left(\frac{3}{5}\sdot\frac{1}{9}\right)\sdot\left(\frac{2}{3}\sdot5\right)\right]](/mediawiki/images/math/8/e/1/8e1455aa8265c18c2b288e543c19aede.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⁴/₇·(⁵/₉·⅛)×(⅗·⅑)·(⅔·5) | בר_נותן_טעם#WIlB | Example: we wish to multiply 4-sevenths of 5-ninths of an eighth by 3-fifths of a ninth of 2-thirds of 5 integers.
:![]() |
multiplication of integer and fraction by integer and fraction
![\scriptstyle\left(2+\frac{1}{2}\right)\times\left(3+\frac{1}{3}\right)](/mediawiki/images/math/e/2/a/e2acf9f4c5245366540f21459dd6bad6.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (2+½)×(3+⅓) | ספר_דיני_ממונות#v1HK | ![]() |
![\scriptstyle\left(2+\frac{1}{2}\right)\times\left(4+\frac{3}{4}\right)](/mediawiki/images/math/a/2/f/a2f5a9dd6cc115c2bc09f1ad5b7bca71.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | 2½×4¾ | מלאכת_המספר#I0sb | As the one who wants to multiply this number:
:![]() |
![\scriptstyle\left(3+\frac{1}{3}\right)\times\left(4+\frac{1}{4}\right)](/mediawiki/images/math/3/8/5/3856f7580f1f4481045a900fecd28af9.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (3+⅓)×(4+¼) | ספר_חשבון#PNQv | How much are 3 and a third times 4 and a quarter?
:![]() |
![\scriptstyle\left(4+\frac{2}{5}\right)\times\left(5+\frac{3}{5}\right)](/mediawiki/images/math/0/5/5/05598b39aa527a3424e9d71fa3eb7416.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (4+⅖)×(5+⅗) | ספר_המספר_/_אברהם_אבן_עזרא#izuY | Example: we wish to multiply 4 integers and 2 fifths by 5 integers and 3 fifths.
:![]() |
![\scriptstyle\left(3+\frac{1}{7}\right)\times\left(5+\frac{1}{8}\right)](/mediawiki/images/math/e/e/1/ee1247fd3314d2aded4a138a4adf862b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (3+⅐)×(5+⅛) | Anonymous#t8Al | Such as three and a seventh by five and an eighth.
:![]() |
![\scriptstyle\left(3+\frac{4}{5}\right)\times\left(2+\frac{3}{5}\right)](/mediawiki/images/math/7/f/9/7f99595c74f6e7affdcfd983cf632675.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (3+⅘)×(2+⅗) | ספר_המספר_/_אברהם_אבן_עזרא#UZBp | Another example: we wish to multiply 3 integers and 4 fifths by 2 integers and 3 fifths.
:![]() |
![\scriptstyle\left(3+\frac{2}{5}\right)\times\left(2+\frac{4}{7}\right)](/mediawiki/images/math/1/3/0/13034c37723166defbc3c733c582239f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 3⅖×2⁴/₇ | ספר_הכללים_במספר#9pSN | If a man asks you: How much are three integers and two fifths by two integers and four sevenths?
:![]() |
![\scriptstyle\left(2+\frac{3}{4}\right)\times\left(3+\frac{2}{4}\right)](/mediawiki/images/math/4/5/5/455d9d3f4967d969991649093261b3c3.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (2+¾)×(3+²/₄) | עיר_סיחון#lTDC | Example of multiplying integers and fractions by integers and fractions of the same type: we wish to multiply two integers and three quarters by three integers and two quarters.
:![]() רצינו לכפול שני שלמים ושלש רביעיות על שלשה שלמים ושתי רביעיות |
![\scriptstyle\left(5+\frac{2}{3}\right)\times\left(2+\frac{3}{6}\right)](/mediawiki/images/math/c/4/a/c4a7adf60a27dc4c320783fb149c901a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (5+⅔)×(2+³/₆) | עיר_סיחון#NcZF | Example of multiplying integers and fractions by integers and fractions that are not of the same type: we wish to multiply five integers and two thirds by two integers and three sixths.
:![]() רצינו לכפול חמשה שלמים ושתי שלישיות 90vעל שני שלמיות ושלש ששיות |
![\scriptstyle\left(3+\frac{1}{5}\right)\times\left(7+\frac{3}{8}\right)](/mediawiki/images/math/0/5/e/05ef849126d852e4a5682c8dc7ee6a55.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (3+⅕)×(7+⅜) | ספר_החשבון_לאל_חצאר#QD1A | When you are told: multiply three and a fifth by seven and three-eighths.
:![]() |
![\scriptstyle\left(1+\frac{1}{4}\right)\times\left(1+\frac{1}{5}\right)](/mediawiki/images/math/7/4/a/74aeea7f1f9fb766b260682979b2ff8a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 1¼×1⅕ | ספר_הכללים_במספר#uW3p | 81) If a man asks you: How much are one integer and a quarter by one integer and a fifth?
:![]() |
![\scriptstyle\left(1+\frac{5}{7}\right)\times\left(1+\frac{4}{5}\right)](/mediawiki/images/math/0/f/e/0fe30d52389261ab01ad58e3668d616f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | 1⁵/₇×1⅘ | ספר_הכללים_במספר#Iwhd | 75) If a man asks you: How much are one integer and five sevenths by one integer and four fifths?
:![]() |
multiplication of fraction by fraction
![\scriptstyle\frac{1}{3}\times\frac{1}{3}](/mediawiki/images/math/3/9/2/3921cfc822c710725a9317339fc8698b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⅓×⅓ | ספר_חשבון#p54W | When we multiply a third by a third, it is a third of a third.
:![]() |
![\scriptstyle\frac{1}{4}\times\frac{1}{4}](/mediawiki/images/math/5/c/1/5c17e5a76c8196e9a68bb747ae02a01f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ¼×¼ | ספר_חשבון#q5Pm | The quarter by a quarter is a quarter of a quarter.
:![]() |
simple fraction/multiplication of fractions | ¼×¼ | קצור_המספר#dX0i | As if you say: we multiply once a quarter of 1 by a quarter.
:![]() |
![\scriptstyle\frac{1}{5}\times\frac{1}{5}](/mediawiki/images/math/3/5/2/352f5190e68aee740877dd4c77fa540f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⅕×⅕ | ספר_הכללים_במספר#ubzN | Say: if he had asked for one fifth by one fifth.
:![]() |
simple fraction/multiplication of fractions | ⅕×⅕ | ספר_חשבון#GtWm | The fifth by a fifth is a fifth of a fifth.
:![]() |
![\scriptstyle\frac{1}{4}\times\frac{1}{3}](/mediawiki/images/math/1/3/5/135a46d0a87060a827b2552fd27a9392.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ¼×⅓ | קצור_המספר#5veT | You say the same about the product of a quarter by a third, which is quarter of a third.
:![]() |
![\scriptstyle\frac{3}{4}\times\frac{3}{4}](/mediawiki/images/math/e/d/c/edc0487c70837de637a45fc3a49cce71.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ¾×¾ | ספר_המספר_/_אברהם_אבן_עזרא#UP2Z | Example: we wish to multiply 3 quarters by 3 quarters.
:![]() |
![\scriptstyle\frac{2}{4}\times\frac{3}{4}](/mediawiki/images/math/2/0/6/206e133dbc736daf81c1c46a26af9291.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ²/₄×¾ | עיר_סיחון#vUPh | We wish to multiply two quarters by three quarters
:![]() |
![\scriptstyle\frac{4}{5}\times\frac{4}{5}](/mediawiki/images/math/7/6/3/7631706c86548ea125808334e1bbd6e6.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⅘×⅘ | ספר_הכללים_במספר#kvFj | 73) If a man asks you: How much are four fifths by four fifths?
:![]() |
simple fraction/multiplication of fractions | ⅘×⅘ | עיר_סיחון#yepM | We wish to multiply four fifths by four fifths
:![]() |
![\scriptstyle\frac{3}{4}\times\frac{4}{5}](/mediawiki/images/math/8/8/b/88b36bacb0e9f56b0d7a20f4b340859a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ¾×⅘ | עיר_סיחון#EMJE | We wish to multiply three quarters by four fifths.
:![]() |
![\scriptstyle\frac{2}{3}\times\frac{2}{3}](/mediawiki/images/math/2/8/6/28633b424e24799871f8aa1495887dab.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⅔×⅔ | ספר_יסודי_התבונה_ומגדל_האמונה#2Gb7 | If you are told: multiply two thirds by two thirds, how much are they?
:![]() |
simple fraction/multiplication of fractions | ⅔×⅔ | ספר_חשבון#Nlzy | If we multiply 2-thirds by 2-thirds.
:![]() |
![\scriptstyle\frac{3}{5}\times\frac{4}{5}](/mediawiki/images/math/6/7/d/67db4bf07964f64f9ff02b7e7973731f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⅗×⅘ | ספר_המספר_/_אברהם_אבן_עזרא#Audh | Example: we want to multiply 3 fifths by 4 fifths.
:![]() |
![\scriptstyle\frac{2}{3}\times\frac{2}{5}](/mediawiki/images/math/f/9/9/f99a3f3e67b50c44a6c06ff536ea8624.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⅔×⅖ | ספר_חשבון#BRVP | If one says: multiply 2-thirds by 2-fifths.
:![]() |
simple fraction/multiplication of fractions | ⅔×⅖ | ספר_יסודי_התבונה_ומגדל_האמונה#SOeb | The multiplication of two thirds by two fifths
:![]() |
simple fraction/multiplication of fractions | ⅔×⅖ | Anonymous#Tlt0 | Such as two thirds by two fifths.
:![]() |
simple fraction/multiplication of fractions | ⅔×⅖ | Kaufmann_A_519_-_Collection_of_Word_Problems#AcY7 | How much is the multiplication of ![]() ![]() ![]() ![]() |
![\scriptstyle\frac{2}{3}\times\frac{4}{5}](/mediawiki/images/math/0/9/f/09f16d1cb9bf684b1efbcbb5c620c46a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⅔×⅘ | מלאכת_המספר#5jnJ | As the one who wants to multiply 2-thirds by 4-fifths.
:![]() |
simple fraction/multiplication of fractions | ⅔×⅘ | קצור_המספר#cuXj | If you wish to multiply two-thirds by 4-fifths.
:![]() |
![\scriptstyle\frac{2}{3}\times\frac{3}{4}](/mediawiki/images/math/3/a/9/3a92d2703a53396c33e7866b941fc673.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⅔×¾ | ספר_דיני_ממונות#ilbx | ![]() |
simple fraction/multiplication of fractions | ⅔×¾ | ספר_המספר_/_אברהם_אבן_עזרא#0gKn | One says: multiply 2 thirds by 3 quarters.
:![]() |
simple fraction/multiplication of fractions | ⅔×¾ | Kaufmann_A_519_-_Collection_of_Word_Problems#DhIn | How much is the multiplication of ![]() ![]() ![]() ![]() |
![\scriptstyle\frac{5}{7}\times\frac{7}{8}](/mediawiki/images/math/8/8/2/8823eed3130a6e0e1cd95453e121849f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⁵/₇×⁷/₈ | עיר_סיחון#NoxQ | We wish to multiply five sevenths by seven eighths.
:![]() |
![\scriptstyle\frac{1}{9}\times\frac{1}{7}](/mediawiki/images/math/9/d/9/9d980751235f09a4145abcb01116e35b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⅑×⅐ | ספר_הכללים_במספר#P04R | If he had asked for one ninth by one seventh.
:![]() |
![\scriptstyle\frac{4}{7}\times\frac{5}{6}](/mediawiki/images/math/d/2/9/d298997626e9977a33421c7de7d6668d.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⁴/₇×⅚ | בר_נותן_טעם#sNi1 | Example: we wish to multiply 4-sevenths from 5-sixths.
:![]() |
![\scriptstyle\frac{4}{7}\times\frac{5}{9}](/mediawiki/images/math/e/d/a/eda648f4293a4ccf13258cd549d51cca.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⁴/₇×⁵/₉ | ספר_מעשה_חושב#jfRX | Example: we wish to multiply 4 sevenths by 5 ninths.
:![]() |
![\scriptstyle\frac{4}{7}\times\frac{7}{9}](/mediawiki/images/math/3/1/5/315003d2b710516aabaae43cf8a4d52c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⁴/₇×⁷/₉ | ספר_המספר_/_אברהם_אבן_עזרא#m7n3 | Question: how much are 4 sevenths multiplied by 7 ninths?
:![]() |
![\scriptstyle\frac{7}{9}\times\frac{4}{7}](/mediawiki/images/math/e/2/c/e2ca6c8751bfdb179c89a5ed488451fc.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⁷/₉×⁴/₇ | ספר_הכללים_במספר#S123 | 74) If a man asks you: How much are seven ninths by four sevenths?
:![]() |
![\scriptstyle\frac{7}{8}\times\frac{9}{10}](/mediawiki/images/math/d/2/4/d241ede79f67d808bfc84d8c9cd93923.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⅞×⁹/₁₀ | ספר_החשבון_לאל_חצאר#gRBn | When you are told: multiply seven-eighths by nine-tenths.
:![]() |
![\scriptstyle\frac{2}{11}\times\frac{2}{13}](/mediawiki/images/math/2/1/6/216bda8b2a0cb7c8117e9b88664da4a7.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ²/₁₁ײ/₁₃ | ספר_חשבון#md7k | If one says: multiply 2 parts of 11 by 2 parts of 13.
:![]() |
simple fraction/multiplication of fractions | ²/₁₁ײ/₁₃ | ספר_יסודי_התבונה_ומגדל_האמונה#BW7X | If you are told: multiply two parts of 11 by two parts of 13?
:![]() |
![\scriptstyle\frac{10}{11}\times\frac{12}{13}](/mediawiki/images/math/1/8/7/1879945132a91fbd8e9eb97a761c222e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ¹⁰/₁₁×¹²/₁₃ | ספר_החשבון_לאל_חצאר#qdg2 | If you are told: multiply ten parts of eleven by twelve parts of thirteen.
:![]() |
![\scriptstyle\frac{4}{5}\times\frac{3}{13}](/mediawiki/images/math/2/d/b/2dbecf7027b20b6c510d2af9647be2cf.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⅘׳/₁₃ | עיר_סיחון#Wi3Z | We wish to multiply four fifths by three parts of thirteen.
:![]() |
![\scriptstyle\frac{9}{15}\times\frac{11}{17}](/mediawiki/images/math/1/2/f/12fbe744e4df0879681e78ee953f108b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⁹/₁₅×¹¹/₁₇ | עיר_סיחון#YOwx | We wish to multiply nine parts of fifteen by eleven parts of seventeen.
:![]() |
![\scriptstyle\frac{9}{13}\times\frac{17}{19}](/mediawiki/images/math/7/6/7/767d623cf5d9872fc8abd174c3380c10.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⁹/₁₃×¹⁷/₁₉ | ספר_החשבון_והמדות#v4BY | 1) How much are 9 parts of 13 multiplied by 17 parts of 19?
:![]() |
![\scriptstyle\frac{20}{3}\times\frac{19}{3}](/mediawiki/images/math/5/0/5/505d09ab99d454700aeeba431ab74361.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ²⁰/₃×¹⁹/₃ | מלאכת_המספר#8ihF | Example: we wish to multiply:
:![]() |
multiplication of fraction of fraction by fraction of fraction
![\scriptstyle\left(\frac{2}{5}\sdot\frac{1}{10}\right)\times\left(\frac{2}{8}\sdot\frac{1}{3}\right)](/mediawiki/images/math/1/4/b/14bbf9594036c4417d7ad00a633ec8f7.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⅖·⅒)×(²/₈·⅓) | Anonymous#bfok | If you multiply two parts of a five by one-tenth by two parts of an eight by one-third.
:![]() |
![\scriptstyle\left(\frac{3}{4}\sdot\frac{3}{5}\right)\times\left(\frac{5}{6}\sdot\frac{3}{7}\right)](/mediawiki/images/math/4/6/2/462566fd3d9aea1a230217ccc1e55718.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (¾·⅗)×(⅚·³/₇) | Anonymous#ySC3 | If you multiply 3 quarters of 3 fifths by 5 sixths of 3 sevenths.
:![]() |
multiplication of fraction of integer and fraction by fraction of integer and fraction
![\scriptstyle\left[\frac{7}{8}\sdot\left(5+\frac{1}{3}\right)\right]\times\left[\frac{3}{5}\sdot\left(6+\frac{1}{4}\right)\right]](/mediawiki/images/math/3/c/4/3c44a996a735d16f077b6f5636f1fd0a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (⅞·(5+⅓))×(⅗·(6+¼)) | Anonymous#tInL | If you multiply seven eighths of 5 and a third by 3 fifths of 6 and a quarter.
:![]() |
![\scriptstyle\left[\frac{2}{3}\sdot\left(5+\frac{5}{6}\right)\right]\times\left[\frac{5}{7}\sdot\left(8+\frac{4}{9}\right)\right]](/mediawiki/images/math/0/b/f/0bf7045fc49295b61cbc8cb9708697cd.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⅔·(5+⅚)×⁵/₇·(8+⁴/₉) | ספר_החשבון_לאל_חצאר#aMXd | ![]() |
multiplication of fraction by integer or integer by fraction
![\scriptstyle\frac{1}{3}\times1](/mediawiki/images/math/5/5/1/551e9e22e0847a85c229475063438d2e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⅓×1 | ספר_חשבון#dp1H | When we multiply the third by one, it is a third.
:![]() |
![\scriptstyle\frac{1}{3}\times2](/mediawiki/images/math/2/3/1/2311b310fc866027eac19188c7abd6c4.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⅓×2 | ספר_חשבון#CmHn | When we multiply the third by two it is 2-thirds.
:![]() |
![\scriptstyle2\times\frac{3}{4}](/mediawiki/images/math/7/5/a/75af5e21557d6e76fbfc873a00acd60c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | 2×¾ | מלאכת_המספר#uzlZ | As the one who wants to double this number, which is 3-quarters.
:![]() |
![\scriptstyle\frac{2}{3}\times4](/mediawiki/images/math/5/4/4/5442d0f16a49d56ef6a0a2f8d9f9715e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⅔×4 | קצור_המספר#tfPH | We wish to multiply 2-thirds by 4 integers.
:![]() |
![\scriptstyle4\times\frac{2}{3}](/mediawiki/images/math/9/a/9/9a9cc5d3c6404bb64fea6f315ab126af.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | 4×⅔ | מלאכת_המספר#qjqo | Example: we wish to multiply 4 integers by 2-thirds.
:![]() |
simple fraction/multiplication of fractions | 4×⅔ | ספר_דיני_ממונות#at7F | ![]() |
![\scriptstyle4\times\frac{3}{5}](/mediawiki/images/math/a/9/f/a9f110ae73f3e40a86085d8636760832.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | 4×⅗ | ספר_המספר_/_אברהם_אבן_עזרא#uLMJ | Example: we wish to multiply 4 integers by 3 fifths.
:![]() דמיון רצינו לכפול ד' שלמים על ג' חמישיות אחד |
![\scriptstyle5\times\frac{4}{6}](/mediawiki/images/math/d/a/c/dacf752b50ccd0d81793a911cde17ba6.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | 5×⁴/₆ | עיר_סיחון#chfZ | Example of multiplying integers by fractions: we wish to multiply five integers by four sixths.
:![]() רצינו לכפול חמשה שלמים בארבע שישיות |
![\scriptstyle\frac{3}{4}\times9](/mediawiki/images/math/d/1/1/d11c8261c03c2ab894a8d2fef21dd633.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ¾×9 | Anonymous#lhz8 | Such as three quarters by nine.
:![]() |
![\scriptstyle\frac{5}{6}\times10](/mediawiki/images/math/b/c/a/bcaf9dfe0388ec00476cb2a5be8107e9.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ⅚×10 | ספר_החשבון_לאל_חצאר#yH5g | When you are told: multiply five-sixths by ten.
:![]() |
![\scriptstyle\frac{5}{7}\times40](/mediawiki/images/math/5/2/5/525d6a3eba65ee6db1052fd4b7da3ac8.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
basic operations/multiplication | ⁵/₇×40 | ספר_מעשה_חושב#2aj0 | Example: we wish to multiply 5 sevenths by 40 integers.
:![]() |
multiplication of fraction of fraction of integer by fraction of fraction of integer
![\scriptstyle\left[\left(\frac{3}{4}\sdot\frac{1}{5}\right)\sdot8\right]\times\left[\left(\frac{5}{6}\sdot\frac{1}{7}\right)\sdot15\right]](/mediawiki/images/math/0/5/f/05f9355bfe0fc140027cb8b0dd02c1ec.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (¾·⅕)·8×(⅚·⅐)·15 | ספר_החשבון_לאל_חצאר#8z4Z | ![]() |
![\scriptstyle\left[\left(\frac{2}{3}\sdot\frac{3}{4}\right)\sdot6\right]\times\left[\left(\frac{3}{4}\sdot\frac{4}{7}\right)\sdot8\right]](/mediawiki/images/math/b/b/5/bb5eed5e9b25166de1f36bb9904c0f62.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | ((⅔·¾)·6)×((¾·⁴/₇)·8) | ספר_החשבון_לאל_חצאר#BTOS | ![]() |
![\scriptstyle\left(\frac{2}{4}\times\frac{2}{6}\right)+\left(\frac{4}{5}\times\frac{5}{6}\right)](/mediawiki/images/math/d/c/1/dc19ca740c0ec21c08a47ad08a1519de.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/multiplication of fractions | (²/₄ײ/₆)+(⅘×⅚) | קצת_מענייני_חכמת_המספר#shmO | For instance: you wish to know the sum of the product of two quarters by 2-sixths with the product of 4-fifths by 5-sixths, without having to multiply first then to sum, and still the total result is exact.
:![]() |
multiplication of sexagesimal fractions
![\scriptstyle\left(2+24^\prime+43^{\prime\prime}\right)\times\left(3+3^\prime+8^{\prime\prime}\right)](/mediawiki/images/math/3/a/2/3a2955565b1364db2f528b25cfa7571c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
sexagesimal fraction/multiplication of sexagesimal fractions | (2+24'+43)×(3+3'+8) | מלאכת_המספר#vIL0 | Here you have an example of some of them: suppose we want to multiply 2 degrees, 24 minutes, and 43 seconds by 3 degrees, 3 minutes, and 8 seconds. והנה לך צורה אחת בקצת זה נניח שרצינו להכות ב' מעלות וכ"ד ראשוניים ומ"ג שניים על ג' מעלות וג' ראשוניים וח' שניים |
![\scriptstyle\left(4+6^\prime+8^{\prime\prime}+12^{\prime\prime\prime}\right)\times\left(5+15^\prime+10^{\prime\prime}+13^{\prime\prime\prime}\right)](/mediawiki/images/math/3/2/1/321af690675e5fa8502ca7131f69018f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
sexagesimal fraction/multiplication of sexagesimal fractions | (4+6'+8+12)×(5+15'+10+13) | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#qQv2 | Example: we wish to multiply 4 degrees, 6 minutes, 8 seconds, and 12 thirds by 5 degrees, 15 minutes, ten seconds, and 13 thirds.
:![]() |
addition of fractions
![\scriptstyle\frac{1}{2}+\frac{1}{3}](/mediawiki/images/math/2/8/0/2806a1f0388a2d872b4e0a2a4e0bb2e4.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | ½+⅓ | ספר_חשבון#Prkw | If it is said: whoever has a half and a third of one thing, how much does he have of that thing?
:![]() |
![\scriptstyle\frac{1}{3}+\frac{1}{2}](/mediawiki/images/math/a/4/0/a40d8ddc396e915f1c0b214fe926d55e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | ⅓+½ | ספר_דיני_ממונות#HbM4 | ![]() |
![\scriptstyle\frac{1}{3}+\frac{1}{4}](/mediawiki/images/math/f/0/0/f00bc0841df99a65c6513f9236415475.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | ⅓+¼ | ספר_דיני_ממונות#8So2 | ![]() |
simple fraction/addition of fractions | ⅓+¼ | ספר_חשבון#595p | Whoever has a third and a quarter of the thing, how much does he have of that thing?
:![]() |
![\scriptstyle\frac{1}{3}+\frac{1}{5}](/mediawiki/images/math/a/7/7/a7723b6facbd8f4383e1bda1b41c3ecd.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | ⅓+⅕ | ספר_חשבון#Asm1 | Whoever has a third and a fifth of the thing.
:![]() |
![\scriptstyle\frac{1}{4}+\frac{1}{5}](/mediawiki/images/math/9/2/d/92d2bdec9efd61ca19e437205c4eb08d.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | ¼+⅕ | ספר_חשבון#nQTO | Whoever has a quarter and a fifth of the thing.
:![]() |
![\scriptstyle\frac{1}{3}+\frac{1}{7}](/mediawiki/images/math/b/b/4/bb4c0f8a28181bdd21db4ef122dee0df.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | ⅓+⅐ | ספר_חשבון#c6OW | Whoever has a third and a seventh of the thing.
:![]() |
![\scriptstyle\frac{1}{2}+\frac{1}{3}+\frac{1}{4}](/mediawiki/images/math/5/e/7/5e7cb0684521e8513744853eb73f336c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | ½+⅓+¼ | ספר_דיני_ממונות#StZc | ![]() |
simple fraction/addition of fractions | ½+⅓+¼ | מלאכת_המספר#M63c | As the one who wants to add or to know the sum of a half, a third, and a quarter.
:![]() |
![\scriptstyle\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}](/mediawiki/images/math/6/6/0/6604571999314bc7f411551c3310a8e7.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | ⅓+¼+⅕+⅙ | ספר_חשבון#pvs7 | Whoever has a third, a quarter, a fifth, and a sixth of the thing.
:![]() |
![\scriptstyle\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}](/mediawiki/images/math/3/c/2/3c2c4081f4cff52705c53a25b3a63ae2.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | ⅓+¼+⅕+⅙+⅐ | ספר_הכללים_במספר#753y | 2) How much are a third, a quarter, a fifth, a sixth, and a seventh of one pašuṭ?
:![]() |
![\scriptstyle\frac{2}{3}+\frac{3}{4}](/mediawiki/images/math/2/7/b/27b3d99d77dfac2c39f81a2e993e4060.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | ⅔+¾ | קצור_המספר#dzyZ | We give an example: we wish to sum two thirds with 3 quarters.
:![]() |
![\scriptstyle\frac{2}{3}+\frac{4}{9}](/mediawiki/images/math/a/9/e/a9e1425bfb2d368bad3a737eb992c58c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | ⅔+⁴/₉ | קצור_המספר#hh0G | As if you say: we wish to sum up two-thirds with 4-ninths.
:![]() |
![\scriptstyle\frac{3}{4}+\frac{4}{5}](/mediawiki/images/math/a/8/7/a8709998175ef2971057b4f5d11537a1.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | ¾+⅘ | ספר_החשבון_לאל_חצאר#uU8q | When you are told: add three-quarters to four-fifths.
:![]() |
simple fraction/addition of fractions | ¾+⅘ | Al-HAṢṢĀR_-_Arabic_in_Hebrew_Characters#6MOy | When you are told: add three-quarters to four-fifths.
:![]() |
![\scriptstyle\frac{3}{4}+\frac{4}{6}](/mediawiki/images/math/8/0/f/80fab3dea86f59ffc4e9f583f00be820.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | ¾+⁴/₆ | קצור_המספר#km8a | As if you say: we wish to sum up 3-quarters with 4-sixths.
:![]() |
![\scriptstyle\frac{3}{4}+\frac{5}{6}](/mediawiki/images/math/4/b/0/4b01151491315b2190bf8693366d4f64.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | ¾+⅚ | עיר_סיחון#Sh9x | As we say for example: we sum three quarters with five sixths. How much is the result?
:![]() כמה העולה |
![\scriptstyle\frac{3}{5}+\frac{4}{7}](/mediawiki/images/math/4/0/c/40cbc95b8619a355ebd3f776bab73ff0.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | ⅗+⁴/₇ | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#l8qf | Example: we wish to sum 3-fifths with 4-sevenths
:![]() |
![\scriptstyle\frac{3}{7}+\frac{2}{3}](/mediawiki/images/math/1/2/2/122785830ccb14aafe918a1d9333bbec.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | ³/₇+⅔ | בר_נותן_טעם#Gi6C | Example: if it is said: add 3-sevenths to 2-thirds.
:![]() |
![\scriptstyle\frac{3}{8}+\frac{7}{10}](/mediawiki/images/math/0/6/1/061da677fcdbe40863590dc618482d4b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | ⅜+⁷/₁₀ | ספר_חשבון#tIym | If one says: add 3-eighths to 7-tenths, how much are they?
:![]() |
simple fraction/addition of fractions | ⅜+⁷/₁₀ | ספר_יסודי_התבונה_ומגדל_האמונה#IYtH | As the one who says: add 3 eighths to 7 tenths
:![]() |
![\scriptstyle\frac{2}{3}+\frac{3}{4}+\frac{4}{5}](/mediawiki/images/math/8/6/5/865794d954190de9d6abed6915be6b43.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | ⅔+¾+⅘ | קצור_המספר#tZFO | As if you say: 2-thirds, 3-quarters and 4-fifths.
:![]() |
![\scriptstyle\frac{3}{4}+\frac{4}{5}+\frac{5}{6}](/mediawiki/images/math/f/4/2/f424e939f860866c738c1198a43bbb41.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | ¾+⅘+⅚ | ספר_דיני_ממונות#InZ8 | ![]() |
![\scriptstyle\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\frac{5}{6}](/mediawiki/images/math/f/4/2/f42e9447d87ec05eab0423e74a6c02d2.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | ⅔+¾+⅘+⅚ | מלאכת_המספר#oskZ | Suppose we wish to sum up 2-thirds, 3-quarters, 4-fifths, and 5-sixths.
:![]() |
![\scriptstyle\left(\frac{3}{4}+\frac{4}{5}\right)+\left(\frac{5}{6}+\frac{6}{7}\right)](/mediawiki/images/math/5/3/e/53e9ed27b8ee4a201a7398406a1252bb.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | (¾+⅘)+(⅚+⁶/₇) | Al-HAṢṢĀR_-_Arabic_in_Hebrew_Characters#FBQz | When you are told: add three-quarters and four-fifths to five-sixths and six-sevenths.
![]() |
simple fraction/addition of fractions | (¾+⅘)+(⅚+⁶/₇) | ספר_החשבון_לאל_חצאר#ig9f | When you are told: add three-quarters and four-fifths to five-sixths and six-sevenths.
:![]() |
![\scriptstyle\frac{2}{3}+\frac{4}{5}+\frac{5}{6}+\left(\frac{3}{4}\sdot\frac{1}{6}\right)](/mediawiki/images/math/8/6/c/86c6bb81edfe3b9bc55d43bde3c52a5c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | ⅔+⅘+⅚+(¾·⅙) | ספר_מעשה_חושב#PAjd | Example: if we wish to sum 2 thirds with 4 fifths and with 5 sixths and with 3 quarters of a sixth.
::![]() |
![\scriptstyle\left[\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]+\left(\frac{7}{8}+\frac{8}{9}\right)](/mediawiki/images/math/4/c/4/4c4b65fa69c305cfcc4cb5e5a2e49e9e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | (⅚+½·⅙)+(⁷/₈+⁸/₉) | Al-HAṢṢĀR_-_Arabic_in_Hebrew_Characters#kF6m | When you are told: add five-sixths and half a sixth to seven-eighths and eight-ninths.
:![]() |
simple fraction/addition of fractions | (⅚+½·⅙)+(⁷/₈+⁸/₉) | ספר_החשבון_לאל_חצאר#cKDq | When you are told: add five-sixths and half a sixth to seven-eighths and eight-ninths.
:![]() |
![\scriptstyle\left[\frac{5}{11}+\left(\frac{3}{4}\sdot\frac{1}{11}\right)\right]+\left[\frac{10}{13}+\left(\frac{8}{9}\sdot\frac{1}{13}\right)\right]](/mediawiki/images/math/1/1/1/111cfe95df77cdc573d3d8c3a15e0491.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | (⁵/₁₁+¾·¹/₁₁)+(¹⁰/₁₃+⁸/₉·¹/₁₃) | Al-HAṢṢĀR_-_Arabic_in_Hebrew_Characters#YivK | When you are told: add five parts of eleven and three-quarters of one parts of eleven to ten parts of thirteen and eight-ninths of one parts of thirteen.
:![]() |
simple fraction/addition of fractions | (⁵/₁₁+¾·¹/₁₁)+(¹⁰/₁₃+⁸/₉·¹/₁₃) | ספר_החשבון_לאל_חצאר#GENu | When you are told: add five parts of eleven and three-quarters of one parts of eleven to ten parts of thirteen and eight-ninths of one parts of thirteen.
:![]() |
![\scriptstyle\left(3+\frac{1}{2}\right)+\frac{2}{5}](/mediawiki/images/math/2/c/1/2c1d5850015a6150fc7ebfc92eb71e79.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | (3+½)+⅖ | ספר_דיני_ממונות#nfiA | ![]() |
![\scriptstyle\left(2+\frac{1}{2}\right)+\left(3+\frac{1}{4}\right)](/mediawiki/images/math/6/8/e/68e068eeb5a698ca4895c1a43ea5bf5b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | (2+½)+(3+¼) | ספר_דיני_ממונות#maWV | ![]() |
![\scriptstyle\left(2+\frac{1}{2}\right)+\left(3+\frac{2}{5}\right)](/mediawiki/images/math/5/0/2/50204396948da4f50697cd9580bd5b98.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | (2+½)+(3+⅖) | Al-HAṢṢĀR_-_Arabic_in_Hebrew_Characters#tX9U | When you are told: add two and a half to three and two-fifths.
:![]() |
simple fraction/addition of fractions | (2+½)+(3+⅖) | ספר_החשבון_לאל_חצאר#wr3v | When you are told: add two and a half to three and two-fifths.
:![]() |
![\scriptstyle\left[8+\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]+\left(6+\frac{5}{7}+\frac{10}{11}\right)](/mediawiki/images/math/5/5/2/5526b3773d4250a1b558ca73bb605f6c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | (8+⅚+½·⅙)+(6+⁵/₇+¹⁰/₁₁) | ספר_החשבון_לאל_חצאר#4RTQ | When you are told: add eight, five-sixths and half a sixth to six, five-sevenths and ten parts of eleven.
:![]() |
simple fraction/addition of fractions | (8+⅚+½·⅙)+(6+⁵/₇+¹⁰/₁₁) | Al-HAṢṢĀR_-_Arabic_in_Hebrew_Characters#N6Q0 | When you are told: add eight, five-sixths and half a sixth to six, five-sevenths and ten parts of eleven.
:![]() |
![\scriptstyle\frac{5}{9}+\left(\frac{4}{5}\sdot\frac{1}{7}\right)](/mediawiki/images/math/2/1/8/218607e579e2a87b137f0643c117dec5.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | ⁵/₉+(⅘·⅐) | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#M4kF | Example: we wish to sum 5-ninths with 4-fifths of a seventh
:![]() |
![\scriptstyle\left(\frac{3}{4}\sdot5\right)+6](/mediawiki/images/math/4/6/d/46d53239fa7257ea0431e32e4ef76c95.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | (¾·5)+6 | Al-HAṢṢĀR_-_Arabic_in_Hebrew_Characters#Sozl | When you are told: add three-quarters of five to six.
:![]() |
simple fraction/addition of fractions | (¾·5)+6 | ספר_החשבון_לאל_חצאר#61Wa | When you are told: add three-quarters of five [to six].
:![]() |
![\scriptstyle\left(\frac{2}{3}\sdot7\right)+\left(\frac{7}{8}\sdot9\right)](/mediawiki/images/math/3/3/e/33e808a17ecf4ae8d0e9fcedcdb7cdb2.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | (⅔·7)+(⁷/₈·9) | ספר_החשבון_לאל_חצאר#mtkR | When you are told: add two-thirds of seven to seven-eighths of nine.
:![]() |
simple fraction/addition of fractions | (⅔·7)+(⁷/₈·9) | Al-HAṢṢĀR_-_Arabic_in_Hebrew_Characters#T4oj | When you are told: add two-thirds of seven to seven-eighths of nine.
:![]() |
![\scriptstyle\left[\frac{3}{4}\sdot\left(5+\frac{1}{2}\right)\right]+\left[\frac{5}{6}\sdot\left(6+\frac{1}{3}\right)\right]](/mediawiki/images/math/3/8/c/38c6011f1c3aa05525cc220db0b08a58.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | (¾·5½)+(⅚·6⅓) | ספר_החשבון_לאל_חצאר#S0T2 | When you are told: add three-quarters of five and a half to five-sixths of six and a third.
:![]() |
simple fraction/addition of fractions | (¾·5½)+(⅚·6⅓) | Al-HAṢṢĀR_-_Arabic_in_Hebrew_Characters#LMik | When you are told: add three-quarters of five and a half to five-sixths of six and a third.
:![]() |
![\scriptstyle\left[2+\frac{3}{8}+\left(\frac{2}{4}\sdot\frac{1}{8}\right)\right]+\frac{4}{5}+\left[\frac{6}{7}+\left(\frac{3}{8}\sdot\frac{1}{7}\right)\right]](/mediawiki/images/math/1/0/f/10fe63879aceb251d84882daff3b8503.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | (2+⅜+²/₄·⅛)+⅘+(⁶/₇+⅜·⅐) | בר_נותן_טעם#O6E2 | For instance, if in the example for the expansion to a common denominator that we have presented at the beginning of the third chapter, you are asked to sum up them and say how much they are:
:![]() |
![\scriptstyle\left(\frac{2}{5}\sdot\frac{2}{9}\sdot2\right)+\left[\left[\frac{1}{8}+\left(\frac{2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left[\frac{1}{4}+\left(\frac{2}{6}\sdot\frac{1}{4}\right)\right]\right]](/mediawiki/images/math/e/2/5/e2537ec7557a116d21369f6f61831a30.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/addition of fractions | (⅖·²/₉·2)+(⅛+²/₉·⅐·⅛)·(¼+²/₆·¼) | בר_נותן_טעם#GkGP | Example: two-fifths of 2-ninths of 2 integers, and one-eighth, and two-ninths of one-seventh of one-eighth of one-quarter and two-sixths of one-quarter.
:![]() |
subtraction of fractions
![\scriptstyle\frac{1}{3}-\frac{1}{4}](/mediawiki/images/math/0/6/7/067c1c70855f37567ddbfd4303395ab7.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/subtraction of fractions | ⅓-¼ | ספר_הכללים_במספר#Sdu0 | 1) If a man asks you: how large is the third from the quarter?
:![]() |
simple fraction/subtraction of fractions | ⅓-¼ | ספר_חשבון#Gem8 | If a man says: by how much is the third greater than the quarter?
:![]() |
![\scriptstyle\frac{1}{4}-\frac{1}{5}](/mediawiki/images/math/f/4/d/f4d5551268578e87fe8efb189dda9988.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/subtraction of fractions | ¼-⅕ | ספר_חשבון#wkXD | If a man says: by how much is the quarter greater than the fifth?
:![]() |
simple fraction/subtraction of fractions | ¼-⅕ | ספר_הכללים_במספר#hEgl | If you are asked: how large is the quarter from the fifth?
:![]() |
![\scriptstyle\frac{2}{4}-\frac{1}{5}](/mediawiki/images/math/2/f/1/2f1d0885737bc828ef31b15fb8752676.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/subtraction of fractions | ²/₄-⅕ | עיר_סיחון#tqJF | As we say for example: we subtract one fifth from two quarters. How much is the remainder?
:![]() |
![\scriptstyle\frac{3}{4}-\frac{1}{2}](/mediawiki/images/math/e/6/8/e687f88d9b273842c2b3489acdebfbee.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/subtraction of fractions | ¾-½ | ספר_דיני_ממונות#aoCt | ![]() |
![\scriptstyle\frac{3}{4}-\frac{2}{3}](/mediawiki/images/math/c/2/3/c23d28e67d617c3e6b797a3cd6ff8d4f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/subtraction of fractions | ¾-⅔ | מלאכת_המספר#PCmR | As seen in this diagram: suppose we want to subtract from three-quarters of the whole two-thirds of the whole and we wish to know how much remains.
:![]() |
![\scriptstyle\frac{1}{3}-\frac{1}{5}](/mediawiki/images/math/c/6/d/c6d5fde5c7e2c16541d78149a606d7bd.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/subtraction of fractions | ⅓-⅕ | ספר_הכללים_במספר#t2Xm | If you are asked: how large is the third from the fifth?
:![]() |
![\scriptstyle\frac{1}{3}-\frac{1}{7}](/mediawiki/images/math/9/d/6/9d6002f7861cbdf3c2721f41ef596212.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/subtraction of fractions | ⅓-⅐ | ספר_חשבון#ebvM | If it is said: by how much is the third greater than the seventh?
:![]() |
![\scriptstyle\frac{2}{3}-\frac{3}{7}](/mediawiki/images/math/e/9/0/e90660a56bf46d84a31920cbd85d45fd.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/subtraction of fractions | ⅔-³/₇ | ספר_חשבון#mJ1K | If one says: subtract 3-sevenths from 2-thirds.
:![]() |
simple fraction/subtraction of fractions | ⅔-³/₇ | ספר_יסודי_התבונה_ומגדל_האמונה#jZco | As the one who says: subtract 3 sevenths from 2 thirds.
:![]() |
![\scriptstyle\frac{3}{4}-\frac{2}{8}](/mediawiki/images/math/1/e/b/1ebfeca2a5386ab3000ddb148587ea7d.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/subtraction of fractions | ¾-²/₈ | בר_נותן_טעם#ZncT | Example: we wish to subtract 2-eighths from 2-quarters.
:![]() |
![\scriptstyle\frac{2}{5}-\frac{3}{8}](/mediawiki/images/math/2/a/a/2aa3203038b3be81d85587fd2e2c5190.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/subtraction of fractions | ⅖-⅜ | ספר_חשבון#fRT6 | If one says: how much greater are 3-eighths than 2-fifths?
:![]() |
![\scriptstyle\frac{5}{8}-\frac{3}{8}](/mediawiki/images/math/c/3/8/c38fb2d9c9eac5181a38422f7437e367.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/subtraction of fractions | ⅝-⅜ | קצור_המספר#Lbi7 | For, if we wish to subtract 3-eighths from 5-eighths:
:![]() |
![\scriptstyle\frac{5}{7}-\frac{4}{9}](/mediawiki/images/math/a/1/c/a1c078e9fe07e3a37f24186545a92c46.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/subtraction of fractions | ⁵/₇-⁴/₉ | ספר_המספר_/_אברהם_אבן_עזרא#YZWt | Example: we wish to subtract 4 ninths from 5 sevenths.
:![]() |
![\scriptstyle\frac{6}{8}-\frac{2}{4}](/mediawiki/images/math/2/4/0/240ba8ce7d053a66991f2995b8f21b66.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/subtraction of fractions | ⁶/₈-²/₄ | קצור_המספר#9I3R | We wish to subtract two-quarters from 6-eighths.
:![]() |
![\scriptstyle\frac{12}{16}-\frac{4}{8}](/mediawiki/images/math/c/f/7/cf77489b0395122e033e0b02ba82cbdb.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/subtraction of fractions | ¹²/₁₆-⁴/₈ | קצור_המספר#l5nz | As if you say: we wish [to subtract] 4-eighths from 12-sixteenths.
:![]() |
![\scriptstyle\frac{14}{16}-\frac{8}{12}](/mediawiki/images/math/3/c/3/3c309aecd1798bb03edf486253de8879.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/subtraction of fractions | ¹⁴/₁₆-⁸/₁₂ | קצור_המספר#pRUj | As if you say: we wish to subtract 4-twelfths from 14-sixteenths.
:![]() |
![\scriptstyle\left(\frac{1}{3}+\frac{1}{4}\right)-\left(\frac{1}{5}+\frac{1}{6}\right)](/mediawiki/images/math/5/2/9/5291f522cdac5a4c625a6fbffe4d3b39.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/subtraction of fractions | (⅓+¼)-(⅕+⅙) | ספר_חשבון#e3Ts | If it is said: by how much are the third and the quarter greater than the fifth and the eighth?
:![]() |
![\scriptstyle1-\frac{5}{8}](/mediawiki/images/math/a/c/b/acb3a61a884aebb369c1f34d1ab6e184.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/subtraction of fractions | 1-⅝ | קצור_המספר#kerj | The first example: we subtract five-eighths from one integer.
:![]() |
![\scriptstyle\left(2+\frac{1}{2}\right)-\frac{3}{4}](/mediawiki/images/math/a/8/6/a8681d42c320ceca8cde1e7253d5324f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/subtraction of fractions | (2+½)-¾ | ספר_דיני_ממונות#aBIR | ![]() |
![\scriptstyle\left(3+\frac{3}{4}\right)-\left(2+\frac{1}{2}\right)](/mediawiki/images/math/5/c/d/5cd8d761d102f57ee3e8e6355ff84f97.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/subtraction of fractions | (3+¾)-(2+½) | ספר_דיני_ממונות#a71P | ![]() |
![\scriptstyle\left[\left[\frac{8}{9}+\left(\frac{3}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\right)\right]\sdot\left(\frac{5}{6}\sdot3\right)\right]-\left[\left[\frac{3}{4}+\left(\frac{2}{5}\sdot\frac{1}{4}\right)\right]\sdot\frac{2}{9}\right]](/mediawiki/images/math/d/6/d/d6d3383d94cc0c6f1b9eabdd1be5711c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/subtraction of fractions | (⁸/₉+³/₇·⅕·⅑)·(⅚·3)-(¾+⅖·¼)·²/₉ | בר_נותן_טעם#0SK8 | Example: if you are told: three-quarters and two-fifths of a quarter of two-ninths, subtract them from eight-ninths and three-sevenths of a fifth of a ninth of five-sixths of 3 integers
:![]() |
![\scriptstyle\left[3+\frac{5}{9}+\left(\frac{3}{7}\sdot\frac{1}{9}\right)+\left(\frac{2}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]-\left[\frac{7}{9}+\left(\frac{5}{7}\sdot\frac{1}{9}\right)+\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]](/mediawiki/images/math/c/9/c/c9c6d9287898412880ce3955aec5dcbf.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple fraction/subtraction of fractions | (3+⁵/₉+³/₇·⅑+²/₄·⅐·⅑)-(⁷/₉+⁵/₇·⅑+¾·⅐·⅑) | בר_נותן_טעם#eMzX | Example: we wish to subtract 7-ninths, 5-sevenths of a ninth, and 3-quarters of a seventh of a ninths, from 3 integers, 5-ninths, and three-sevenths of a ninth.
:![]() |
Rule of Three
![\scriptstyle2:4=4:8](/mediawiki/images/math/2/f/a/2fabfbf03f67cb8177f4c638356fca6f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
proportion/rule of three | 2÷4=4÷8 | בר_נותן_טעם#wusI | As we say: the ratio of 2 to 4 is as the ratio of 4 to 8
:![]() |
![\scriptstyle4:6=6:9](/mediawiki/images/math/8/1/c/81c12b3934c43cf2f9f4385c776c28b3.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
proportion/rule of three | 4÷6=6÷9 | קצור_המספר#Zvs9 | As if you say that the ratio of 4 to 6 is as the ratio of 6 to 9.
::![]() |
![\scriptstyle4:6=8:12](/mediawiki/images/math/8/f/9/8f972d429a5475570edb882b20869c13.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
proportion/rule of three | 4÷6=8÷12 | קצור_המספר#N6PS | As if you say that the ratio of 4 to 6 is as the ratio of 8 to 12.
::![]() |
![\scriptstyle2:3=5:X](/mediawiki/images/math/b/3/2/b3243dbfc22ec33cc9653259cace62e8.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
proportion/rule of three | 2÷3=5÷X | מלאכת_המספר#qiNw | Example: if 2 is equal to 3, how much is 5 equal?
:![]() |
![\scriptstyle5:7=10:X](/mediawiki/images/math/e/7/0/e70c507db080362d02445e383e5a5d68.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
proportion/rule of three | 5÷7=10÷X | בר_נותן_טעם#rfV6 | Example: For the ratio that 5 is to 7, 10 has the same ratio to which number?
::![]() |
![\scriptstyle3:7=5:X](/mediawiki/images/math/e/5/b/e5bd77ea67c2bb1349e8f27450fa42c5.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
proportion/rule of three | 3÷7=5÷X | בר_נותן_טעם#Mvdt | Example: if we say: the ratio that 3 is to 7 - to whom does 5 have this ratio?
::![]() |
![\scriptstyle3:7=X:\left(11+\frac{2}{3}\right)](/mediawiki/images/math/9/c/8/9c8df5b477eafb6050827e4a4d7edd58.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
proportion/rule of three | 3÷7=X÷11⅔ | בר_נותן_טעם#SYHL | If it is said: the ratio that 3 is to 7 - to 11 and 2-thirds who has this ratio?
::![]() |
![\scriptstyle5:\left(7+\frac{1}{2}\right)=2:X](/mediawiki/images/math/1/0/0/1006214f390980c32d157a4c7c71395a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
proportion/rule of three | 5÷7½=2÷X | מלאכת_המספר#oHFK | Example: if 5 is equal to 7 and a half, how much is 2 equal?
:![]() |
![\scriptstyle\left(5+\frac{2}{7}\right):4=20:X](/mediawiki/images/math/7/c/3/7c39084beaae6d309378aff8efc5c4e0.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
proportion/rule of three | 5²/₇÷4=20÷X | מלאכת_המספר#r5xI | Example: if 5 and 2-sevenths are equal to 4, how much are twenty equal to?
:![]() |
![\scriptstyle9:\frac{2}{3}=8:X](/mediawiki/images/math/6/4/8/64855b66cd48a59652cc38737a311700.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
proportion/rule of three | 9÷⅔=8÷X | מלאכת_המספר#H80d | Example: if 9 are equal 2-thirds, to how much are 8 equal?
::![]() |
proportion/rule of three | 9÷⅔=8÷X | מלאכת_המספר#9OVO | Another example for further explanation: if 9 are equal 2-thirds, how much are 8 equal to?
:![]() |
![\scriptstyle\frac{2}{3}:8=9:X](/mediawiki/images/math/3/6/0/360eda215e1cf46543fceebbb8039a14.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
proportion/rule of three | ⅔÷8=9÷X | מלאכת_המספר#bXQ4 | Example: if 2-thirds are equal 8, to how much are nine equal?
::![]() |
proportion/rule of three | ⅔÷8=9÷X | מלאכת_המספר#mSGd | Example: if 2-thirds are equal to 8, how much is 9 equal to?
:![]() |
![\scriptstyle\frac{1}{3}:\frac{1}{4}=\frac{1}{5}:X](/mediawiki/images/math/1/4/7/1478ba9b9465019b3018fdb57465db47.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
proportion/rule of three | ⅓÷¼=⅕÷X | ספר_חשבון#D0xp | When a man says: if a third is worth a quarter, how much is a fifth worth according to this calculation?
:![]() |
proportion/rule of three | ⅓÷¼=⅕÷X | ספר_הכללים_במספר#UdQe | 49) If one third equals a quarter, how much is one fifth equal?
:![]() |
![\scriptstyle\frac{2}{3}:\frac{3}{5}=\frac{1}{4}:X](/mediawiki/images/math/2/c/f/2cfed170afdc7724a699e0a5635c4610.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
proportion/rule of three | ⅔÷⅗=¼÷X | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#dPRr | Question: if 2-thirds equals 3-fifths, I ask: how much is a quarter equal to?
:![]() |
![\scriptstyle\frac{3}{7}:\frac{8}{9}=\frac{4}{5}:X](/mediawiki/images/math/d/6/d/d6dbc22fbbaeb70dbe929ce49a4c3064.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
proportion/rule of three | ³/₇÷⁸/₉=⅘÷X | בר_נותן_טעם#VvVa | Example: we wish to know, if 3-sevenths are equal to 8-ninths, how much are 4-fifths equal to?
:![]() |
proportion/rule of three | ³/₇÷⁸/₉=⅘÷X | בר_נותן_טעם#FSi7 | I.e. in our example, when we say: if 3-sevenths equal 8-ninths, how much are 4-fifths equal?
:![]() |
![\scriptstyle\frac{2}{3}:\frac{4}{9}=\frac{4}{13}:X](/mediawiki/images/math/d/b/2/db2f661173710609684f2f250af6f2e8.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
proportion/rule of three | ⅔÷⁴/₉=⁴/₁₃÷X | מלאכת_המספר#fShM | Example: if 2-thirds are equal 4-ninths, to how much are 4 parts of 13 equal?
:![]() |
![\scriptstyle\left(\frac{2}{5}\sdot\frac{3}{4}\right):\left(\frac{3}{7}\sdot\frac{5}{6}\right)=\left(\frac{4}{5}\sdot\frac{5}{8}\right):X](/mediawiki/images/math/2/1/8/2181f3baded60a30ad241b223c512487.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
proportion/rule of three | (⅖·¾)÷(³/₇·⅚)=(⅘·⅝)÷X | Arithmetic_Textbook_by_R._Aharon_ben_Isaac#PLEV | Question: if 2-fifths of 3-quarters equals 3-sevenths of 5-sixths, I ask: how much is a 4-fifths of 5-eighths equal to?
:![]() |
![\scriptstyle\frac{2}{3}:\left(4+\frac{1}{2}\right)=6:X](/mediawiki/images/math/d/d/e/dde2ba06e970ec792630fb2d3ecf8fcc.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
proportion/rule of three | ⅔÷4½=6÷X | מלאכת_המספר#jTaL | If 2-thirds are equal 4 and a half, how much are six equal to?
:![]() |
proportion/rule of three | ⅔÷4½=6÷X | מלאכת_המספר#gfiJ | Example: if 2-thirds are equal 4 and a half, to how much are six equal?
::![]() |
proportion/rule of three | ⅔÷4½=6÷X | מלאכת_המספר#tHLR | Another example of this category: if two-thirds are equal to 4 and a half, how much is 6 equal to?
:![]() |
![\scriptstyle6:\left(40+\frac{1}{2}\right)=\frac{2}{3}:X](/mediawiki/images/math/e/4/b/e4b73cab77012a15f4880990bad736b2.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
proportion/rule of three | 6÷40½=⅔÷X | מלאכת_המספר#quct | We say: if 6 are equal 40 and a half, how much are 2-thirds equal to?
:![]() |
![\scriptstyle20:\left(15+\frac{5}{37}\right)=\left(5+\frac{2}{7}\right):X](/mediawiki/images/math/e/5/4/e544aac19558fb19e2719c5a94fb3c02.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
proportion/rule of three | 20÷15⁵/₃₇=5²/₇÷X | מלאכת_המספר#GdAo | Example: if 20 is equal to 15 and 5 parts of 37, how much are 5 and 2-sevenths equal to?
:![]() |
proportion/rule of three | 20÷15⁵/₃₇=5²/₇÷X | מלאכת_המספר#iLX1 | Example: if 20 are equal to 15 and 5 parts of 37, how much are 5 and 2-sevenths equal to?
:![]() |
![\scriptstyle\frac{2}{3}:\left(7+\frac{4}{9}\right)=\frac{4}{13}:X](/mediawiki/images/math/2/e/0/2e0ee2950bb1692fbff11a27e0da1ec7.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
proportion/rule of three | ⅔÷7⁴/₉=⁴/₁₃÷X | מלאכת_המספר#YdUe | Example: if we wish to know if 2-thirds are equal to 7 integers and 4-ninths, how much are 4 and 4-thirteenths equal to?
:![]() |
![\scriptstyle\left(3+\frac{1}{3}\right):\left(4+\frac{1}{4}\right)=\left(5+\frac{1}{5}\right):X](/mediawiki/images/math/e/c/8/ec874006040b7d324bba087882b16684.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
proportion/rule of three | 3⅓÷4¼=5⅕÷X | ספר_חשבון#JsBk | If one says: if 3 and a third equals 4 and a quarter, how much is 5 and a fifth equal to?
:![]() |
proportion/rule of three | 3⅓÷4¼=5⅕÷X | ספר_הכללים_במספר#Epgk | If three and one third equal four and a quarter, how much are five and one fifth equal?
:![]() |
![\scriptstyle\left(5+\frac{2}{3}\right):\left(6+\frac{3}{4}\right)=\left(8+\frac{5}{12}\right):X](/mediawiki/images/math/6/3/1/6319a4d6e28ce6b33261f730daa766f5.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
proportion/rule of three | 5⅔÷6¾=8⁵/₁₂÷X | מלאכת_המספר#rzvu | Example: if 5 and 2-thirds are equal 6 and 3-quarters, to how much are 8 and 5 parts of 12 equal?
::![]() |
proportion/rule of three | 5⅔÷6¾=8⁵/₁₂÷X | מלאכת_המספר#dWcW | Example: if 5 and 2-thirds are equal to 6 and 3-quarters, how much are 8 and 5-twelfths equal to?
:![]() |
![\scriptstyle\left[\frac{3}{4}\sdot\left(3-\frac{1}{4}\right)\right]:\left[\frac{4}{5}\sdot\left(5-\frac{1}{5}\right)\right]=\left[\frac{5}{6}\sdot\left(6-\frac{1}{6}\right)\right]:X](/mediawiki/images/math/0/6/b/06b938d3936d7baec8744616f4c89a6b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
proportion/rule of three | ¾·(3-¼)÷⅘·(5-⅕)=⅚·(6-⅙)÷X | בר_נותן_טעם#ELCt | Example: if 3-quarters of 3 integers minus one-quarter are equal to 4-fifths of 5 integers minus one-fifth, how much five-sixths of 6 integers minus one-sixth are equal?
:![]() |
Roots
Extraction of Roots
![\scriptstyle\sqrt{\frac{2}{8}}](/mediawiki/images/math/b/0/8/b08a4506a3817d120fc34566643214d1.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √²/₈ | בר_נותן_טעם#5dVA | Example: we wish to know the root of 2-eighths.
:![]() |
![\scriptstyle\sqrt{100}](/mediawiki/images/math/4/8/7/48785cd90731171d53dc77f9d4b4cc03.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √100 | עיר_סיחון#qY9w | We also want the root of a hundred.
:![]() |
![\scriptstyle\sqrt{400}](/mediawiki/images/math/4/2/8/42868b7a508f44d4747661596b502950.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √400 | עיר_סיחון#2Rcj | We wish to know the root of four hundred.
:![]() |
![\scriptstyle\sqrt{144}](/mediawiki/images/math/e/0/0/e00bbb9e5cf53d1bd9419b0b3b1fead4.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √144 | קצור_המספר#SblR | The way to extract the root of 144:
:![]() |
![\scriptstyle\sqrt{225}](/mediawiki/images/math/8/6/b/86beb3f0ad64f45015698ae46e929eec.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √225 | עיר_סיחון#Y95w | We wish to know the root of two hundred and twenty-five.
:![]() |
![\scriptstyle\sqrt{5625}](/mediawiki/images/math/c/7/3/c73d16e74f0bc0433ff828a672a50a51.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √5625 | מלאכת_המספר#NwlA | Example: suppose we want to look for the root of a number, which is 5625.
המשל שנניח מספר אחד שנרצה לבקש שורשו והוא |
![\scriptstyle\sqrt{7056}](/mediawiki/images/math/e/e/f/eef89a047136e2b5b7a05fe002e64413.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √7056 | עיר_סיחון#WCca | We wish to know the root of seven thousand and fifty-six.
:![]() |
![\scriptstyle\sqrt{10375}](/mediawiki/images/math/1/f/3/1f35acf4d99e26f37fb3e259f78abb40.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √10375 | בר_נותן_טעם#WnAI | Another example: we wish to know the root of the number 10375.
:![]() |
![\scriptstyle\sqrt{164960}](/mediawiki/images/math/c/4/2/c42431a0c377992939b1b5a0fbb30f55.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √164960 | ספר_דיני_ממונות#l3L6 | Example: we wish to know the root of 164960.
::![]() |
![\scriptstyle\sqrt{456789}](/mediawiki/images/math/6/b/d/6bd5625c6e0ba6bff84b8becda91b361.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √456789 | ספר_דיני_ממונות#Wuta | Example: we wish to know the root of 456789
::![]() |
![\scriptstyle\sqrt{583696}](/mediawiki/images/math/b/5/b/b5bfd7206be541cbbb1f2b58e54e9d34.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √583696 | עיר_סיחון#gS7X | We wish to know the root of five hundred and eighty-three thousand, six hundred and ninety-six.
:![]() |
![\scriptstyle\sqrt{824464}](/mediawiki/images/math/f/e/3/fe3e2f517a3c6dc1338ac6789877bdd4.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √824464 | עיר_סיחון#nzC6 | We wish to know the root of this number, which is eight hundred and twenty-four thousand, four hundred and sixty-four.
:![]() |
![\scriptstyle\sqrt{973182}](/mediawiki/images/math/6/5/6/6565927bc4413a770d74534784f7b12e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √973182 | קצור_המספר#dYxZ | One example for this: we wish to know the root of nine hundred and seventy-three thousand, one hundred and eighty-two.
::![]() |
![\scriptstyle\sqrt{5499025}](/mediawiki/images/math/7/b/d/7bde172ff184ceef9c0dcbe9854b6539.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √5499025 | ספר_המספר_/_אליהו_מזרחי#Qmnu | Example: if you wish to know the root of 5499025.
:![]() |
![\scriptstyle\sqrt{6169002849}](/mediawiki/images/math/4/2/0/42004db049b944c389d636fca30d01be.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √6169002849 | ספר_המספר_/_אליהו_מזרחי#XNue | Example of a number that has a root, whose root is required
:![]() |
![\scriptstyle\sqrt{344680129066}](/mediawiki/images/math/a/a/e/aaee170cebac6fb5de94d38579862010.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √344680129066 | בר_נותן_טעם#lfu5 | We wish to seek the root of 344680129066.
:![]() |
Extraction of Cube Roots
![\scriptstyle\sqrt[3]{\frac{8}{27}}](/mediawiki/images/math/4/b/8/4b82e09026615fc0ec7aa9b037739f7c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | ³√(⁸/₂₇) | ספר_דיני_ממונות#41Kp | Example: we wish to know the [cube] root of 8 parts of 27.
::![]() |
![\scriptstyle\sqrt[3]{\frac{1}{5}}](/mediawiki/images/math/f/b/2/fb26d52f658e67321b9383ce42dd7084.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | ³√(⅕) | ספר_דיני_ממונות#eKzs | Another example: we wish to know the cube [root] of a fifth.
::![]() |
![\scriptstyle\sqrt[3]{\frac{1}{2}}](/mediawiki/images/math/3/7/d/37d8077abb00a82f2b7844e523ea4470.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | ³√(½) | ספר_דיני_ממונות#RFa1 | Example: we wish to know the cube root of a half.
::![]() |
extraction of root/root | ³√(½) | ספר_דיני_ממונות#IldO | Example: we wish to know the cube root of a half.
::![]() |
![\scriptstyle\sqrt[3]{1+\frac{1}{2}}](/mediawiki/images/math/a/a/4/aa43fab9d4b2b4090452203972ea8cf1.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | ³√(1+½) | ספר_דיני_ממונות#6gdU | Example: we wish to know [the cube] root of 1 and a half.
::![]() |
extraction of root/root | ³√(1+½) | ספר_דיני_ממונות#Mbz5 | Example: we wish to know the root of 1 and a half.
::![]() |
![\scriptstyle\sqrt[3]{2+\frac{1}{2}}](/mediawiki/images/math/2/1/b/21bb73f8e7e91638887f37289a16fa16.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | ³√(2+½) | ספר_דיני_ממונות#OMsl | Example: we wish to know the [cube] root of 2 and a half.
::![]() |
![\scriptstyle\sqrt[3]{2+\frac{10}{27}}](/mediawiki/images/math/2/5/0/2502ba1789941bb08207b874b20e4ff6.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | ³√(2+¹⁰/₂₇) | ספר_דיני_ממונות#X3JD | Another example of fractions with integers: we wish to know the [cube] root of 2 and 10 parts of 27.
::![]() |
![\scriptstyle\sqrt[3]{3+\frac{3}{27}}](/mediawiki/images/math/c/b/e/cbe8600fe75f050c69dd902d601dd58c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | ³√(3+³/₂₇) | ספר_דיני_ממונות#DY5m | Example: extract for me the [cube] root of 3 and 3 parts of 27.
::![]() |
![\scriptstyle\sqrt[3]{3+\frac{1}{4}}](/mediawiki/images/math/3/5/9/359c46cf0f610e5d6b77ea058a73a35f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | ³√(3+¼) | ספר_דיני_ממונות#n2ZL | As the one who says: extract for me the [cube] root of 3 and a quarter.
::![]() |
![\scriptstyle\sqrt[3]{10}](/mediawiki/images/math/9/d/f/9df29fc2932ecfc10526c2086beee64c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | ³√10 | ספר_דיני_ממונות#Clg9 | Example: to know the root of ten.
::![]() |
extraction of root/root | ³√10 | ספר_דיני_ממונות#WS2D | 107) Question: if you want to extract the cubic root of ten.
:![]() |
![\scriptstyle\sqrt[3]{15}](/mediawiki/images/math/0/c/8/0c82b7d8e6efa71d3ec9075bc747ff5f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | ³√15 | ספר_דיני_ממונות#ZCaV | Example: we wish to know the cube root of 15.
::![]() |
extraction of root/root | ³√15 | ספר_דיני_ממונות#9HTO | Example: we wish to know the cube [root] of 15.
::![]() |
![\scriptstyle\sqrt[3]{10000}](/mediawiki/images/math/6/c/4/6c42e6b302b8432f7020b406fee3ccf7.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | ³√10000 | ספר_דיני_ממונות#JRw7 | We wish to know the root of ten thousand.
::![]() |
![\scriptstyle\sqrt[3]{12167}](/mediawiki/images/math/a/b/c/abc38f531fb13e4a1ec9492e6194fa3a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | ³√12167 | מלאכת_המספר#DZbA | Example: we wish to know the cube root of 12162.
:![]() |
![\scriptstyle\sqrt[3]{571787}](/mediawiki/images/math/3/e/8/3e8cc95dfa131c676806e901de31e5fc.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | ³√571787 | מלאכת_המספר#UntD | Another example that occurs in a different way: assuming that we wish to know the cube root of 571787.
:![]() |
![\scriptstyle\sqrt[3]{1072000}](/mediawiki/images/math/2/b/0/2b069db83734f1b9f13fe1d933e0f309.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | ³√1072000 | ספר_דיני_ממונות#fVf2 | ![]() |
![\scriptstyle\sqrt[3]{12812904}](/mediawiki/images/math/0/7/a/07aafd0c5fd061d54bb34d4011050183.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | ³√12812904 | מלאכת_המספר#kjtd | In order to expand the explanation, we give another example and here is its diagram:
:![]() |
Approximation
![\scriptstyle\sqrt{2}](/mediawiki/images/math/b/f/c/bfc552de0f2e3353d96542d0e6382405.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √2 | מלאכת_המספר#DS3Y | Example: we wish to know the approximate root of two
:![]() |
![\scriptstyle\sqrt{20}](/mediawiki/images/math/e/4/b/e4b531b08e7cfb38b7cd4492e79b1551.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √20 | ספר_המספר_/_אברהם_אבן_עזרא#Q6nf | Example: the number twenty.
:![]() |
extraction of root/root | √20 | ספר_החשבון_לאל_חצאר#UEVk | If one says: how much is the root of twenty?
:![]() |
![\scriptstyle\sqrt{200}](/mediawiki/images/math/1/4/3/14389bd0435f62e044ed041c64190996.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √200 | ספר_המספר_/_אברהם_אבן_עזרא#Eak5 | We wish to know the root of two hundred.
:![]() |
![\scriptstyle\sqrt{2000}](/mediawiki/images/math/3/6/6/36628d21c859960d3d22440ea0a7dbe1.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √2000 | ספר_המספר_/_אליהו_מזרחי#XKsB | Example: if you wish to know the root of 2000.
:![]() |
![\scriptstyle\sqrt{20000}](/mediawiki/images/math/0/e/b/0eba105b4e97c6756955755b3e8fee3f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √20000 | ספר_המספר_/_אברהם_אבן_עזרא#RyVX | If you wish to know the root of twenty thousand.
:![]() |
![\scriptstyle\sqrt{4000}](/mediawiki/images/math/b/6/8/b6809545777e3424d8136dd074a83a84.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √4000 | עיר_סיחון#ZH6A | If we wish to know the approximate root of four thousand.
:![]() |
![\scriptstyle\sqrt{5}](/mediawiki/images/math/c/3/2/c3232301b99a544e9f53235a48bbac36.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √5 | עיר_סיחון#CVSH | Example of a number, whose excess over the preceding square is less than the root of the square: We wish to know the measure of each side of the square that is five.
::![]() רצינו לדעת מדת כל {{#annot:term|439,1464|45q9}}צלע{{#annotend:45q9}} וצלע ממרובע שהוא חמשה |
extraction of root/root | √5 | ספר_החשבון_לאל_חצאר#BKbE | When you are told: how much is the root of five?
:![]() |
![\scriptstyle\sqrt{10}](/mediawiki/images/math/9/7/3/9736889dce9e710e1db07ca517808696.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √10 | ספר_המספר_/_אברהם_אבן_עזרא#7Wyo | We want to extract the root of 10.
:![]() |
extraction of root/root | √10 | ספר_החשבון_לאל_חצאר#NpFP | How much is the root of ten?
:![]() |
![\scriptstyle\sqrt{15}](/mediawiki/images/math/9/c/6/9c69c84da05cdd102c382e2f15d5a2db.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √15 | ספר_החשבון_לאל_חצאר#nd9x | If one says: how much is the root of fifteen?
:![]() |
![\scriptstyle\sqrt{6}](/mediawiki/images/math/7/6/1/76143d66ff6622880ebf78d41a9c80eb.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √6 | בר_נותן_טעם#cUME | Example: we wish to know the root of 6.
::![]() |
extraction of root/root | √6 | עיר_סיחון#nS0s | Example of a number, whose excess over the preceding square is the same as the root of the preceding square: We wish to know the measure of the square that is six.
::![]() רצינו לדעת מדת צלעות מרובע שהוא ששה |
![\scriptstyle\sqrt{7}](/mediawiki/images/math/4/0/d/40dd9a6a2ae2a19f41a1c5315368f34e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √7 | בר_נותן_טעם#TblT | Example: we seek the root of 7.
::![]() |
extraction of root/root | √7 | עיר_סיחון#313V | Example of a number, whose excess over the preceding square is greater than its root: We wish to know the measure of the sides of the square that is seven.
::![]() רצינו לדעת מדת הצלעות ממרובע שהוא שבעה |
extraction of root/root | √7 | בר_נותן_טעם#ROfW | When we seek the root of 7.
::![]() |
![\scriptstyle\sqrt{18}](/mediawiki/images/math/8/8/7/887d3286620641297b0541a4be7cf008.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √18 | ספר_המספר_/_אברהם_אבן_עזרא#aS7F | Example: we wish to know how much is the root of 18.
:![]() |
![\scriptstyle\sqrt{29}](/mediawiki/images/math/2/7/a/27a40acf182aef2faf3151f85afdc793.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √29 | בר_נותן_טעם#rK5S | Example: if we wish the root of 29.
:![]() |
![\scriptstyle\sqrt{925}](/mediawiki/images/math/d/2/f/d2fb767decadff5a5819c1efe3aed8b2.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √925 | עיר_סיחון#k6sa | We wish to know the approximate root of nine hundred and twenty-five.
:![]() |
![\scriptstyle\sqrt{76543}](/mediawiki/images/math/3/b/a/3ba98ecc14028a52035a9c1ca64ddc3d.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √76543 | עיר_סיחון#p0o5 | We wish to know the the approximate root of seventy-six thousand, five hundred and forty-three.
:![]() |
![\scriptstyle\sqrt{6169004404}](/mediawiki/images/math/8/5/2/8520f7733f7e30929abc8cd9b9a9bfcd.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √6169004404 | ספר_המספר_/_אליהו_מזרחי#QPxe | Example of a number that does not have a root, whose approximate root is required.
:![]() |
![\scriptstyle\sqrt{\frac{4}{6}\sdot\left(4+\frac{5}{9}\right)}](/mediawiki/images/math/d/6/d/d6d562d86ab4ab3917d41b4bff1e2756.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/root | √(⁴/₆·(4+⁵/₉)) | בר_נותן_טעם#FQUg | Example: we wish to know the root of 4-sixths of 4 integers and 5-ninths.
:![]() |
Addition of Roots
![\scriptstyle\sqrt{9}+\sqrt{4}](/mediawiki/images/math/0/3/9/03978dca87c0f0a1e4685eaa0ecdf68a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/addition of roots | √9+√4 | חשבון_השטחים#qIr6 | ![]() |
extraction of root/addition of roots | √9+√4 | תחבולות_המספר#1OzL | As if you say: nine and four - we wish to sum their roots so that they become a root of a single number.
:![]() |
extraction of root/addition of roots | √9+√4 | ספר_דיני_ממונות#CvCx | 145) Question: if you want to add a root of 9 to [a root] of 4.
:![]() |
![\scriptstyle\sqrt{10}+\sqrt{2}](/mediawiki/images/math/1/6/2/162d9065417be7e4ba92ed659b5f00f9.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/addition of roots | √10+√2 | תחבולות_המספר#MvKX | He said: if we wish to sum up the root of ten with the root of two.
:![]() |
extraction of root/addition of roots | √10+√2 | חשבון_השטחים#zdrv | ![]() |
![\scriptstyle\sqrt{3}+\sqrt{12}](/mediawiki/images/math/0/4/3/0433a8044e53651491e22132f51840f7.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/addition of roots | √3+√12 | ספר_ג'יבלי_אלמוקבאלא#c9le | ![]() |
![\scriptstyle\sqrt{6}+\sqrt{7}](/mediawiki/images/math/5/3/9/53956713ff23f1020240daa21fddf35b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/addition of roots | √6+√7 | ספר_ג'יבלי_אלמוקבאלא#A3AW | ![]() |
![\scriptstyle\sqrt{12}+\sqrt{48}](/mediawiki/images/math/f/f/7/ff709dac79017bd948b206b71cec07f3.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/addition of roots | √12+√48 | ספר_האלזיברא#PyOq | 12) If you wish to add a root of 12 to a root of 48, for example.
:![]() |
![\scriptstyle\sqrt{18}+\sqrt{8}](/mediawiki/images/math/5/e/a/5eafae6f6b49c67a4b49f28e4393091a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/addition of roots | √18+√8 | תחבולות_המספר#H0sg | He said: if we wish to sum up the root of eighteen with the root of eight, so they become a root of a single number.
:![]() |
extraction of root/addition of roots | √18+√8 | חשבון_השטחים#Pk5I | ![]() |
![\scriptstyle\sqrt{8}+\sqrt{19}](/mediawiki/images/math/7/a/d/7ad78b8112fce7ea74c384dee9476811.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/addition of roots | √8+√19 | ספר_האלזיברא#mDwl | 13) If you wish to add a root of 8 to a root of 19.
:![]() |
![\scriptstyle\sqrt{16}+\sqrt{36}](/mediawiki/images/math/1/3/1/131526a74237e9d39c960da89c92af23.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/addition of roots | √16+√36 | ספר_המספר_/_אליהו_מזרחי#BeUd | The example: if you want to know the root of which square is the result of addition of the root of 16 to the root of 36. המשל בזה אם רצית לדעת העולה מקבוץ שרש הי"ו עם שרש הל"ו לאיזו מרובע הוא שרש |
![\scriptstyle2\sdot\sqrt{9}+3\sdot\sqrt{16}](/mediawiki/images/math/f/6/d/f6d13eb4a93a2a621bc89d2e16eecfbb.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/addition of roots | 2√9+3√16 | ספר_המספר_/_אליהו_מזרחי#Qk3E | The example: if you want to know the root of which square is the sum of two times the root of 9 with 3 times the root of 16? המשל בזה אם רצית לדעת העולה משני כפלי שרש הט' עם ג' כפלי שרש הי"ו לאיזו מרובע הוא שרש |
![\scriptstyle\frac{2}{3}\sdot\sqrt{9}+\frac{3}{4}\sdot\sqrt{16}](/mediawiki/images/math/b/3/5/b357ab82bc316af1ef3c97595ad99216.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/addition of roots | ⅔√9+¾√16 | ספר_המספר_/_אליהו_מזרחי#0OPo | The example: if you want to know the root of which square is the sum of two-thirds the root of 9 with 3-quarters the root of 16? המשל בזה אם רצית לדעת העולה מקבוץ שני שלישי שרש הט' עם ג' רביעיות שרש הי"ו לאיזו מרובע הם שרש |
![\scriptstyle\sqrt[3]{96}+\sqrt[3]{324}](/mediawiki/images/math/8/f/5/8f58716ec5d5049f48b1b6af09db62e2.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/addition of roots | ³√96+³√324 | ספר_האלזיברא#nF3r | 14) If you wish to add a cube root of 96 to a cube root of 324.
:![]() |
![\scriptstyle\left(4+\sqrt{12}\right)+\left(5+\sqrt{3}\right)](/mediawiki/images/math/3/0/7/30742193a34f81cebb438efcc0157c2f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/addition of roots | (4+√12)+(5+√3) | ספר_ג'יבלי_אלמוקבאלא#Jwfs | ![]() |
![\scriptstyle\left(4+\sqrt{3}\right)+\left(\sqrt{12}-3\right)](/mediawiki/images/math/8/c/f/8cfbd9024cd6be15cf66e481a3393634.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/addition of roots | (4+√3)+(√12-3) | ספר_ג'יבלי_אלמוקבאלא#MsOS | ![]() |
extraction of root/addition of roots | (4+√3)+(√12-3) | ספר_ג'יבלי_אלמוקבאלא#YJQX | ![]() |
![\scriptstyle\left(4+\sqrt{3}\right)+\left(\sqrt{12}-2\right)](/mediawiki/images/math/0/d/c/0dccbdf2926d903d49b49e3ae3a21744.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/addition of roots | (4+√3)+(√12-2) | ספר_ג'יבלי_אלמוקבאלא#mDrF | ![]() |
![\scriptstyle\left(4-\sqrt{3}\right)+\left(\sqrt{12}-2\right)](/mediawiki/images/math/6/4/a/64ac0bd00614c27ea5e254fa86ed97c7.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/addition of roots | (4-√3)+(√12-2) | ספר_ג'יבלי_אלמוקבאלא#N7Qh | ![]() |
![\scriptstyle\sqrt{3}+\sqrt{6}+\sqrt{12}+\sqrt{24}](/mediawiki/images/math/e/2/5/e2586b0f8d96d4f003ad9b3d7a0c1d15.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/addition of roots | √3+√6+√12+√24 | ספר_ג'יבלי_אלמוקבאלא#Nydh | ![]() |
Subtraction of Roots
![\scriptstyle\sqrt{9}-\sqrt{4}](/mediawiki/images/math/1/3/9/13993818f0b3f5c0f4a8e30a0e83b167.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/subtraction of roots | √9-√4 | חשבון_השטחים#e8VS | ![]() |
extraction of root/subtraction of roots | √9-√4 | תחבולות_המספר#YpmS | He said: when you wish to subtract a root of four from a root of nine, so that what remains is a root of a single number.
:![]() |
![\scriptstyle\sqrt{16}-\sqrt{9}](/mediawiki/images/math/a/c/8/ac889e33c4f9aebb7cc40cd70f5a6d17.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/subtraction of roots | √16-√9 | ספר_דיני_ממונות#Otry | 147) Question: if you want to subtract a root of 9 from a root of 16.
:![]() |
![\scriptstyle\sqrt{12}-\sqrt{3}](/mediawiki/images/math/4/7/e/47e053d441bbf7ac699426731472fd90.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/subtraction of roots | √12-√3 | ספר_ג'יבלי_אלמוקבאלא#1zTf | Suppose you wish to subtract a root of 3 from a root of 12.
:![]() |
![\scriptstyle\sqrt{18}-\sqrt{8}](/mediawiki/images/math/5/9/5/595ca2a073938d8ecbd9bb0657275f30.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/subtraction of roots | √18-√8 | תחבולות_המספר#uKgY | If we want to subtract the root of eight from the root of eighteen.
:![]() |
extraction of root/subtraction of roots | √18-√8 | חשבון_השטחים#HW4Q | ![]() |
extraction of root/subtraction of roots | √18-√8 | ספר_האלזיברא#MH27 | 24) If you wish to subtract the root of 8 from the root of 18, for instance.
:![]() |
![\scriptstyle\sqrt{7}-\sqrt{6}](/mediawiki/images/math/d/e/d/dedf56b09ca77fc8a4588c08c5ebf418.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/subtraction of roots | √7-√6 | ספר_ג'יבלי_אלמוקבאלא#VGtp | ![]() |
![\scriptstyle\sqrt{36}-\sqrt{16}](/mediawiki/images/math/4/8/1/481ff406439ef75b803338439b34f78c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/subtraction of roots | √36-√16 | ספר_המספר_/_אליהו_מזרחי#xDJz | The example: if you want to know the root of which square is the remainder from subtraction of the root of 16 from the root of 36? המשל בזה אם רצית לדעת הנשאר מחסור שרש הי"ו משרש הל"ו לאיזה מרובע הוא שרש |
![\scriptstyle3\sdot\sqrt{36}-2\sdot\sqrt{16}](/mediawiki/images/math/e/e/e/eeea5dc08c827725ad2214f89db2ea3f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/subtraction of roots | 3√36-2√16 | ספר_המספר_/_אליהו_מזרחי#zlnd | The example: if you want to know the root of which square is the remainder from subtraction of two times the root of 16 from three times the root of 36? המשל בזה אם רצית לדעת הנשאר מחסור שני כפלי שרש הי"ו משלשה כפלי שרש הל"ו לאיזו מרובע הוא שרש |
![\scriptstyle\frac{2}{3}\sdot\sqrt{36}-\frac{1}{2}\sdot\sqrt{16}](/mediawiki/images/math/2/f/a/2fa3510ce58f21133e7aebdd3e8662fd.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/subtraction of roots | ⅔√36-½√16 | ספר_המספר_/_אליהו_מזרחי#pNmf | The example: if you want to know the root of which square is the remainder from subtraction of half the root of 16 from two-thirds of the root of 36? המשל בזה אם רצית לדעת הנשאר מחסור חצי שרש הי"ו משתי שלישיות שרש הל"ו לאיזו מרובע הוא שרש |
![\scriptstyle19-\left(10-\sqrt{12}\right)](/mediawiki/images/math/c/5/6/c569fa97953a6c0b55ac1151d89ae8b1.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/subtraction of roots | 19-(10-√12) | ספר_ג'יבלי_אלמוקבאלא#UiBt | ![]() |
![\scriptstyle10-\left(24-\sqrt{250}\right)](/mediawiki/images/math/7/a/3/7a3d5053edf473a26d2374e2c0be9c61.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/subtraction of roots | 10-(24-√250) | ספר_ג'יבלי_אלמוקבאלא#K9xs | ![]() |
![\scriptstyle16-\left(8+\sqrt{50}\right)](/mediawiki/images/math/4/8/3/483f34f8c715fa13d86891406880ff6a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/subtraction of roots | 16-(8+√50) | ספר_ג'יבלי_אלמוקבאלא#ouRF | ![]() |
![\scriptstyle\left(13-\sqrt{20}\right)-\left(6-\sqrt{5}\right)](/mediawiki/images/math/1/8/3/1836af0a2a6de3a4188a931a3d9bdcc1.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/subtraction of roots | (13-√20)-(6-√5) | ספר_ג'יבלי_אלמוקבאלא#0TcW | ![]() |
Multiplication of Roots
![\scriptstyle\sqrt{9}\times\sqrt{4}](/mediawiki/images/math/9/6/6/966a71c12c0205a60b943c01e6e69484.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | √9×√4 | חשבון_השטחים#WruF | ![]() |
extraction of root/multiplication of roots | √9×√4 | תחבולות_המספר#nTrH | He said: if you wish to know how much is the product of a root of nine by a root of four.
:![]() |
![\scriptstyle\sqrt{4}\times\sqrt{9}](/mediawiki/images/math/3/7/7/377e25e135b0d6594e11520e581210ca.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | √4×√9 | ספר_ג'יבלי_אלמוקבאלא#NYp7 | Suppose you wish to multiply a root of four by a root of nine.
:![]() |
![\scriptstyle\sqrt{7}\times\sqrt{8}](/mediawiki/images/math/4/0/0/4009a150bc496c322ce57043048a3dc3.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | √7×√8 | ספר_דיני_ממונות#LgsC | 153) Question: multiplication of roots - if you want to [multiply] the root of 7 by the root of 8.
:![]() |
![\scriptstyle\sqrt{5}\times\sqrt{12}](/mediawiki/images/math/d/b/2/db2ed53146ee4ce14c68600584c505c6.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | √5×√12 | ספר_האלזיברא#pCiL | When you wish to multiply the root of 5 by the root of 12.
:![]() |
![\scriptstyle\sqrt{9}\times\sqrt{36}](/mediawiki/images/math/f/d/5/fd5631f084bbc08417535ceb6852d019.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | √9×√36 | ספר_המספר_/_אליהו_מזרחי#gnkn | The example: if you want to know the root of which square is the result of multiplication of the root of 9 by the root of 36, without knowing their roots? המשל בזה אם רצית לדעת העולה מהכאת שרש הט' עם שרש הל"ו מבלתי שנדע שרשם לאיזה מרובע הוא שרש |
![\scriptstyle4\sdot\sqrt{9}\times3\sdot\sqrt{36}](/mediawiki/images/math/6/f/b/6fb9dd9ff465044782e239d814758f34.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | 4√9×3√36 | ספר_המספר_/_אליהו_מזרחי#eUGp | The example: if you want to know the root of which square is the result of multiplication of 4 times the root of 9 by 3 times the root of 36? המשל בזה אם רצית לדעת העולה מהכאת ד' כפלי שרש הט' עם ג' כפלי שרש הל"ו לאיזה מרובע הוא שרש |
![\scriptstyle\frac{2}{3}\sdot\sqrt{9}\times\frac{1}{2}\sdot\sqrt{36}](/mediawiki/images/math/7/3/d/73d72433313147030fb1e5153afbf529.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | ⅔√9×½√36 | ספר_המספר_/_אליהו_מזרחי#wUFC | The example: if you want to know the root of which square is the result of multiplication of two-thirds of the root of 9 by half the root of thirty-six. המשל בזה אם רצית לדעת העולה מהכאת שתי שלישיות שרש הט' עם חצי שרש הששה ושלשים לאיזה מרובע הוא שרש |
![\scriptstyle2\times\sqrt{16}](/mediawiki/images/math/b/c/2/bc27bc6ca67d8b195751489e4614336d.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | 2×√16 | חשבון_השטחים#USTm | ![]() |
extraction of root/multiplication of roots | 2×√16 | תחבולות_המספר#tRoE | He said: we give an example for this: when we wish to know the double root of sixteen.
:![]() |
![\scriptstyle4\times\sqrt{9}](/mediawiki/images/math/3/5/2/352c279e73f7839190a2d12bbdcc8952.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | 4×√9 | ספר_המספר_/_אליהו_מזרחי#cO5T | The example: if one asks: the root of which square results from four times the root of nine, without knowing the root of 9? המשל בזה אם שאל שואל לאיזה מרובע יהיה שרש העולה מארבעה כפלי שרש התשעה מבלתי שנדע שרש הט' |
extraction of root/multiplication of roots | 4×√9 | ספר_המספר_/_אליהו_מזרחי#r2q9 | The example: if one asks: how much is the result of 4 times the square root of 9? המשל בזה אם שאל שואל כמה הוא העולה מד' כפלי שרש מרובע הט' |
![\scriptstyle\frac{1}{2}\times\sqrt{9}](/mediawiki/images/math/8/f/4/8f488b9856c6955e639c95785cbbd49b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | ½×√9 | חשבון_השטחים#FlzO | ![]() |
extraction of root/multiplication of roots | ½×√9 | תחבולות_המספר#UOpW | He said: when we wish to take half a root of nine.
:![]() |
![\scriptstyle\frac{1}{3}\times\sqrt{9}](/mediawiki/images/math/b/8/8/b889380f526dfbc839190652ac95916e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | ⅓×√9 | ספר_המספר_/_אליהו_מזרחי#DBO5 | The example: if one asks: how much is a third of the root of nine? המשל בזה אם שאל שואל כמה הוא שלישית שרש התשעה |
![\scriptstyle\frac{2}{3}\times\sqrt{9}](/mediawiki/images/math/5/f/4/5f4e4fdf0d5cfacb24d24a9547b98897.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | ⅔×√9 | חשבון_השטחים#4FLj | ![]() |
extraction of root/multiplication of roots | ⅔×√9 | ספר_המספר_/_אליהו_מזרחי#8wZL | Question: if one asks: what is the square, whose root is 2-thirds of the root of 9, without knowing the root of 9 nor its two-thirds? שאלה אם שאל שואל איזהו המרובע אשר העולה מב' שלישיות שרש הט' הוא שרשו מבלתי שנדע שרש הט' ולא שתי שלישיותיו |
extraction of root/multiplication of roots | ⅔×√9 | תחבולות_המספר#MSsU | If we wish to take two-thirds of a root of nine.
:![]() |
![\scriptstyle\sqrt{6}\times3](/mediawiki/images/math/e/2/9/e299f177a5afb62c8bfee87135137916.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | √6×3 | ספר_ג'יבלי_אלמוקבאלא#aKDT | Suppose you wish to multiply a root of six by three.
:![]() |
![\scriptstyle\sqrt{7}\times3](/mediawiki/images/math/0/2/a/02a5222284f6ebff4e314743c1320c8f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | √7×3 | ספר_האלזיברא#raEn | Example: you wish to multiply the root of 7 by 3.
:![]() |
![\scriptstyle\sqrt{7}\times8](/mediawiki/images/math/0/0/0/000cb168682a419ca910d8b6083a68d6.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | √7×8 | ספר_דיני_ממונות#m2AG | 154) Question: if you want to multiply the root of 7 by 8.
:![]() |
![\scriptstyle\sqrt{5}\times\left(\sqrt{7}+4\right)](/mediawiki/images/math/a/1/b/a1ba61abcaf7b7c184c7a7acf2d0cdab.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | √5×(√7+4) | ספר_ג'יבלי_אלמוקבאלא#ek9n | Suppose you wish to multiply a root of 5 by a root of 7 plus 4.
:![]() |
![\scriptstyle\sqrt{3}\times\left(6-\sqrt{8}\right)](/mediawiki/images/math/b/6/6/b6687ff6fd2bbc93e3b7df7b6d1819d6.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | √3×(6-√8) | ספר_ג'יבלי_אלמוקבאלא#tW5A | Suppose you wish to multiply a root of 3 by six minus a root of 8.
:![]() |
![\scriptstyle\left(3+\sqrt{5}\right)\times\left(3+\sqrt{5}\right)](/mediawiki/images/math/8/b/e/8be05fe3cd3afe311bd067d5d5dc6a97.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | (3+√5)×(3+√5) | ספר_ג'יבלי_אלמוקבאלא#gk0X | Suppose you wish to multiply 3 plus a root of 5 by 3 plus a root of 5.
:![]() |
![\scriptstyle\left(5+\sqrt{6}\right)\times\left(5+\sqrt{6}\right)](/mediawiki/images/math/1/6/c/16cbf9514d41ba601158c0280cd3e3a2.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | (5+√6)×(5+√6) | ספר_האלזיברא#JXeS | 9) If you wish to multiply 5 plus the root of 6 by itself.
:![]() |
![\scriptstyle\left(3+\sqrt{5}\right)\times\left(4+\sqrt{7}\right)](/mediawiki/images/math/f/3/8/f3860f90e1c72650708409fac9ca192f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | (3+√5)×(4+√7) | ספר_ג'יבלי_אלמוקבאלא#SjVv | Suppose you wish to multiply 3 plus a root of 5 by 4 plus a root of 7.
:![]() |
![\scriptstyle\left(3+\sqrt{4}\right)\times\left(4+\sqrt{9}\right)](/mediawiki/images/math/8/f/5/8f5679098d5129a46ac1a90583b73372.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | (3+√4)×(4+√9) | ספר_ג'יבלי_אלמוקבאלא#QhWc | Suppose you wish to multiply 3 plus a root of 4 by 5 plus a root of 9.
:![]() |
![\scriptstyle\left(3-\sqrt{5}\right)\times\left(4-\sqrt{7}\right)](/mediawiki/images/math/4/a/5/4a52c23f920c0f381d712eeed75b66f9.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | (3-√5)×(4-√7) | ספר_ג'יבלי_אלמוקבאלא#X7yi | Suppose you wish to multiply 3 minus a root of 5 by 4 minus a root of 7.
:![]() |
extraction of root/multiplication of roots | (3-√5)×(4-√7) | ספר_ג'יבלי_אלמוקבאלא#0gkX | Example: if you wish to multiply 3 minus a root of 5 by 4 minus a root of 7.
:![]() |
![\scriptstyle\left(3-\sqrt{5}\right)\times\left(3-\sqrt{5}\right)](/mediawiki/images/math/0/1/4/014ed0387686d5326a704c132438ac01.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | (3-√5)×(3-√5) | ספר_ג'יבלי_אלמוקבאלא#H3RC | Suppose you wish to multiply 3 minus a root of 5 by 3 minus a root of 5.
:![]() |
![\scriptstyle\left(5+\sqrt{3}\right)\times\left(5-\sqrt{3}\right)](/mediawiki/images/math/6/f/0/6f07a651709e8a456834d99ceedf4e71.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | (5+√3)×(5-√3) | ספר_ג'יבלי_אלמוקבאלא#YkgW | Suppose you wish to multiply 5 plus a root of 3 by 5 minus a root of 3.
:![]() |
![\scriptstyle\left(3+\sqrt{4}\right)\times\left(5-\sqrt{9}\right)](/mediawiki/images/math/1/c/e/1ce316c791843e08fd91d47b7c24ef3f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | (3+√4)×(5-√9) | ספר_ג'יבלי_אלמוקבאלא#zo1g | Suppose you wish to multiply 3 plus a root of 4 by 5 minus a root of 9.
:![]() |
![\scriptstyle\sqrt{8}\times\left(\sqrt{8}-2\right)](/mediawiki/images/math/6/b/b/6bb4ec1c6becdfc24cf5f38d2845d263.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | √8×(√8-2) | ספר_ג'יבלי_אלמוקבאלא#p4H3 | Suppose you wish to multiply a root of 8 by a root of 8 minus 2.
:![]() |
![\scriptstyle\left(\sqrt{8}-2\right)\times\left(\sqrt{10}-3\right)](/mediawiki/images/math/5/9/9/599e15e79e6ca74e4b01c1ed54b6c727.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | (√8-2)×(√10-3) | ספר_ג'יבלי_אלמוקבאלא#hEei | Suppose you wish to multiply a root of 8 minus 2 by a root of ten minus 3.
:![]() |
![\scriptstyle\left(\sqrt{12}-2\right)\times\left(\sqrt{12}-2\right)](/mediawiki/images/math/6/5/3/6530b73aec17c6cc4c22ee7661be73f9.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | (√12-2)×(√12-2) | ספר_ג'יבלי_אלמוקבאלא#zWp7 | Suppose you wish to multiply a root of 12 minus 2 by a root of 12 minus 2.
:![]() |
![\scriptstyle\left(\sqrt{32}-3\right)\times\left(\sqrt{32}-3\right)](/mediawiki/images/math/0/4/d/04d2d39eae1642a2fe9b4ec453268bcc.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | (√32-3)×(√32-3) | ספר_האלזיברא#vr1a | 10) If you wish to multiply a root of 32 minus 3 by itself.
:![]() |
![\scriptstyle\left(\sqrt{15}-3\right)\times\left(\sqrt{12}+2\right)](/mediawiki/images/math/c/4/5/c45fa0c61aedc3176ebb4576885a94c6.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | (√15-3)×(√12+2) | ספר_ג'יבלי_אלמוקבאלא#ITr2 | Suppose you wish to multiply a root of 15 minus 3 by a root of 12 plus 2.
:![]() |
![\scriptstyle\left(\sqrt{8}+2\right)\times\left(\sqrt{8}-2\right)](/mediawiki/images/math/a/8/2/a820fe943cd9cc09b61f9eaa33cc3571.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | (√8+2)×(√8-2) | ספר_ג'יבלי_אלמוקבאלא#E8mu | Suppose you wish to multiply a root of 8 plus 2 by a root of 8 minus 2.
:![]() |
![\scriptstyle\left(2\times\sqrt{10}\right)\times\left(\frac{1}{2}\times\sqrt{5}\right)](/mediawiki/images/math/d/9/c/d9c87c4bd7283a3b85867b6c495a2671.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | (2×√10)×(½×√5) | תחבולות_המספר#FwAB | He said: if you are told: how much is the product of two roots of ten by half a root of five?
:![]() |
extraction of root/multiplication of roots | (2×√10)×(½×√5) | חשבון_השטחים#fTi5 | ![]() |
![\scriptstyle\sqrt{5}\times\left(\sqrt{7}+\sqrt{10}\right)](/mediawiki/images/math/7/c/c/7ccdba2a8f4fbd6b6d26016af9b07db9.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | √5×(√7+√10) | ספר_ג'יבלי_אלמוקבאלא#DUGD | Suppose you wish to multiply a root of 5 by a root of 7 plus a root of ten.
:![]() |
![\scriptstyle\sqrt{5}\times\left(\sqrt{12}-\sqrt{8}\right)](/mediawiki/images/math/7/c/7/7c7787ebbea8232db1831a2f1efcf098.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | √5×(√12-√8) | ספר_ג'יבלי_אלמוקבאלא#PUFC | Suppose you wish to multiply a root of 5 by a root of 12 minus a root of 8.
:![]() |
![\scriptstyle\left(\sqrt{5}+\sqrt{7}\right)\times\left(\sqrt{10}+\sqrt{15}\right)](/mediawiki/images/math/0/b/d/0bd36c690aa897a595296586afdb7413.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | (√5+√7)×(√10+√15) | ספר_ג'יבלי_אלמוקבאלא#r71h | Suppose you wish to multiply a root of 5 plus a root of 7 by a root of ten plus a root of 15.
:![]() |
![\scriptstyle\left(\sqrt{5}+\sqrt{7}\right)\times\left(\sqrt{5}+\sqrt{7}\right)](/mediawiki/images/math/a/8/2/a82fa990a3a4119d9105b44b97a2945e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | (√5+√7)×(√5+√7) | ספר_ג'יבלי_אלמוקבאלא#QSUQ | Suppose you wish to multiply a root of 5 plus a root of 7 by a root of 5 plus a root of 7.
:![]() |
![\scriptstyle\left(\sqrt{5}+\sqrt{7}\right)\times\left(\sqrt{10}-\sqrt{6}\right)](/mediawiki/images/math/c/e/5/ce5ba2fd17b0ff59897c33649da86199.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | (√5+√7)×(√10-√6) | ספר_ג'יבלי_אלמוקבאלא#fJYv | Suppose you wish to multiply a root of 5 plus a root of 7 by a root of ten minus a root of 6.
:![]() |
![\scriptstyle\left(\sqrt{10}+\sqrt{7}\right)\times\left(\sqrt{10}-\sqrt{7}\right)](/mediawiki/images/math/0/b/b/0bba7721e6c4c76690434e9ea93cde64.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | (√10+√7)×(√10-√7) | ספר_ג'יבלי_אלמוקבאלא#cbco | Suppose you wish to multiply a root of ten plus a root of 7 by a root of ten minus a root of 7.
:![]() |
![\scriptstyle\left(\sqrt{8}+\sqrt{4}\right)\times\left(\sqrt{8}-\sqrt{4}\right)](/mediawiki/images/math/a/1/0/a1064448324263913026418fba511f77.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | (√8+√4)×(√8-√4) | ספר_האלזיברא#Gjqg | 17) If you wish to multiply a root of 8 minus a root of 4 by a root of 8 plus a root of 4, for example.
:![]() |
![\scriptstyle\left(\sqrt{48}+\sqrt{10}\right)\times\left(\sqrt{48}-\sqrt{10}\right)](/mediawiki/images/math/2/d/9/2d911769502148690ff92fe0807d450e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | (√48+√10)×(√48-√10) | ספר_האלזיברא#V3f6 | 11) If you wish to multiply a root of 48 plus a root of 10 by a root of 48 minus a root of 10.
:![]() |
![\scriptstyle\left(\sqrt{12}-\sqrt{7}\right)\times\left(\sqrt{15}-\sqrt{10}\right)](/mediawiki/images/math/f/6/2/f6265823b804712ba1395ae703ae4729.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | (√12-√7)×(√15-√10) | ספר_ג'יבלי_אלמוקבאלא#IWqT | Suppose you wish to multiply a root of 12 minus a root of 7 by a root of 15 minus a root of ten.
:![]() |
![\scriptstyle\left(\sqrt{12}-\sqrt{7}\right)\times\left(\sqrt{12}-\sqrt{7}\right)](/mediawiki/images/math/8/5/4/854ca0010dc3b8a357b72a46dbecef6a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | (√12-√7)×(√12-√7) | ספר_ג'יבלי_אלמוקבאלא#ISCj | Suppose you wish to multiply a root of 12 minus a root of 7 by a root of 12 minus a root of 7.
:![]() |
![\scriptstyle3\times\sqrt{4}](/mediawiki/images/math/2/d/e/2dee8b4d6b65e78de689bd03e84eaaa9.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | 3×√4 | ספר_ג'יבלי_אלמוקבאלא#eTRG | Suppose you want to multiply 3 by a square root of 4.
:![]() |
![\scriptstyle3\times\sqrt[3]{8}](/mediawiki/images/math/1/3/2/1328cc433a8d6f068d82010e6cd86a87.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | 3׳√8 | ספר_ג'יבלי_אלמוקבאלא#O0bJ | If you multiply 3 by a cube root of 8.
:![]() |
![\scriptstyle3\times\sqrt[3]{5}](/mediawiki/images/math/a/f/6/af6f3ea8e946c33bc42d18277529285f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | 3׳√5 | ספר_האלזיברא#fsBI | Example: you wish to multiply the cube root of 5 by 3.
:![]() |
![\scriptstyle\sqrt{4}\times\sqrt[3]{8}](/mediawiki/images/math/6/4/6/646c5ba2e5f167061f7a7ccea09fdf58.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | √4׳√8 | ספר_ג'יבלי_אלמוקבאלא#J15w | Suppose you wish to multiply a square root of 4 by a cube root of 8.
:![]() |
![\scriptstyle\sqrt{9}\times\sqrt[3]{8}](/mediawiki/images/math/4/c/f/4cf0598b07f1500dd82fd96f8e0f7c4b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | √9׳√8 | ספר_האלזיברא#z96Z | In order to teach you, I will give you an example of numbers that have roots and say: you wish to multiply the square root of 9, which is 3, by the cube root of 8, which is 2.
:![]() |
![\scriptstyle\sqrt[3]{5}\times\sqrt[3]{6}](/mediawiki/images/math/1/8/a/18aa18babb93ca4eb54e701713e95aa6.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | ³√5׳√6 | ספר_האלזיברא#VoGt | Example: you wish to multiply the cube root of 5 by the cube root of 6.
:![]() |
![\scriptstyle2\times\sqrt[4]{5}](/mediawiki/images/math/d/1/f/d1f0006d85c9885ba609dc92ea7557d6.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | 2×⁴√5 | ספר_האלזיברא#BT9a | Example: you wish to multiply the square root of the root of 5 by 2.
:![]() |
![\scriptstyle\sqrt[3]{8}\times\sqrt[4]{16}](/mediawiki/images/math/b/e/2/be2421d68cb602563f762c6471b4910a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | ³√8×⁴√16 | ספר_ג'יבלי_אלמוקבאלא#ek3B | If you are told: multiply a cube root of 8 by a root of a root of 16.
:![]() |
![\scriptstyle\sqrt[3]{3}\times\sqrt[4]{4}](/mediawiki/images/math/d/f/a/dfabf0bb07e1856908bb9477f615a484.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | ³√3×⁴√4 | ספר_האלזיברא#NYWq | Example: you wish to multiply the cube root of 3 by the square root of the square root of 4.
:![]() |
![\scriptstyle\sqrt[4]{4}\times\sqrt[4]{7}](/mediawiki/images/math/2/c/4/2c4052b07cfd24ba0cf8c9519e3dcd0e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/multiplication of roots | ⁴√4×⁴√7 | ספר_האלזיברא#XzLn | Example: you wish to multiply the square root of the root of 4 by the square root of the root of 7.
:![]() |
Division of Roots
![\scriptstyle\sqrt{9}\div\sqrt{4}](/mediawiki/images/math/4/6/6/46610fcd538563affb9a65720e9f67fa.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/division of roots | √9÷√4 | תחבולות_המספר#1Gu9 | He said: if you are told: divide the root of nine by the root of four.
:![]() |
extraction of root/division of roots | √9÷√4 | חשבון_השטחים#AVTk | ![]() |
![\scriptstyle\sqrt{4}\div\sqrt{9}](/mediawiki/images/math/5/3/0/530e2098bc5b023dcbf74542c6a0694d.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/division of roots | √4÷√9 | ספר_ג'יבלי_אלמוקבאלא#i3Y0 | Suppose you wish to divide a root of 4 by a root of 9.
:![]() |
![\scriptstyle\sqrt{10}\div\sqrt{2}](/mediawiki/images/math/2/2/0/220a53fca476c9412b84340a45bb8513.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/division of roots | √10÷√2 | חשבון_השטחים#qjLW | ![]() |
extraction of root/division of roots | √10÷√2 | תחבולות_המספר#pYYI | If it is said: divide ten by a root of two.
:![]() |
![\scriptstyle\sqrt{30}\div\sqrt{6}](/mediawiki/images/math/9/a/9/9a95ca0fd07c3a96cef12a6a6697fd49.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/division of roots | √30÷√6 | ספר_האלזיברא#4Ayu | 15) If you wish to divide a root of 30 by a root of 6.
:![]() |
![\scriptstyle\sqrt{36}\div\sqrt{9}](/mediawiki/images/math/7/f/e/7fecfd74fb91d6f3ffc425b627336f5c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/division of roots | √36÷√9 | ספר_המספר_/_אליהו_מזרחי#D7ep | The example: if you want to know the result of division of a root of 36 by a root of 9, without knowing their roots. המשל בזה אם רצית לדעת היוצא מחלוק שרש הל"ו על שרש הט' מבלתי שנדע שרשם |
![\scriptstyle5\sdot\sqrt{9}\div2\sdot\sqrt{36}](/mediawiki/images/math/d/6/2/d62971d27b83457ad7f4063f42b22b0a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/division of roots | 5√9÷2√36 | ספר_המספר_/_אליהו_מזרחי#DGAY | The example: if you want to know the result of division of 5 times the root of 9 by 2 times the root of 36. המשל בזה אם רצית לדעת היוצא מחלוק העולה מה' כפלי שרש הט' על העולה מב' כפלי שרש הל"ו |
![\scriptstyle\frac{2}{3}\sdot\sqrt{36}\div\frac{2}{3}\sdot\sqrt{9}](/mediawiki/images/math/6/6/b/66b2434888eaa833ab8eb8153e561fa6.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/division of roots | ⅔√36÷⅔√9 | ספר_המספר_/_אליהו_מזרחי#sMby | The example: if you want to know the result of division of 2-thirds of the root of 36 by 2-thirds of the root of 9, without knowing their root. המשל בזה אם רצית לדעת היוצא מחלוק ב' שלישיות שרש הל"ו על ב' שלישיות שרש הט' מבלתי שנדע שרשם |
![\scriptstyle4\div\sqrt{9}](/mediawiki/images/math/7/1/8/718e5bb48915d38c646e1c78cb9216d7.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/division of roots | 4÷√9 | ספר_ג'יבלי_אלמוקבאלא#o4Lu | Suppose you wish to divide 4 by a root of 9.
:![]() |
![\scriptstyle12\div\sqrt{4}](/mediawiki/images/math/5/c/c/5cc2f94abb303b06b08f176b8ab66dd7.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/division of roots | 12÷√4 | ספר_דיני_ממונות#RTqg | I.e. if you divide 12 by a root of 4.
::![]() |
![\scriptstyle20\div\sqrt{10}](/mediawiki/images/math/2/b/5/2b57509a7176df40e50e6dcaf5e75a92.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/division of roots | 20÷√10 | ספר_האלזיברא#QIDd | 16) If you wish to divide 20 by a root of 10.
:![]() |
![\scriptstyle8\div\left(3+\sqrt{4}\right)](/mediawiki/images/math/d/e/c/decffc8da4cd84e6fa9d8e11082f3a4a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/division of roots | 8÷(3+√4) | ספר_ג'יבלי_אלמוקבאלא#qqDu | Suppose you wish to divide 8 by 3 plus a root of 4.
:![]() |
![\scriptstyle19\div\left(2+\sqrt{16}\right)](/mediawiki/images/math/1/e/a/1ead9029008db4eaccb5520a9b555226.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/division of roots | 19÷(2+√16) | ספר_ג'יבלי_אלמוקבאלא#6lxt | Example: suppose you wish to divide 19 by 2 plus a root of 16.
:![]() |
![\scriptstyle\sqrt{64}\div\left(\sqrt{8}-\sqrt{4}\right)](/mediawiki/images/math/c/e/5/ce58317b69b33ed8f5c5ccce9754efdc.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/division of roots | √64÷(√8-√4) | ספר_האלזיברא#pY8l | 19) If you wish to divide a root of 64 by a root of 8 minus a root of 4.
:![]() |
![\scriptstyle\sqrt{64}\div\left(\sqrt{8}+\sqrt{4}\right)](/mediawiki/images/math/0/9/0/09014ee4c8fe99d10e76b4534e3a22f5.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/division of roots | √64÷(√8+√4) | ספר_האלזיברא#fOaX | 20) If you wish to divide the root of 64 by the root of 8 plus the root of 4.
:![]() |
![\scriptstyle\left(5+\sqrt{16}\right)\div3](/mediawiki/images/math/2/6/8/268fac30665e3df9e3c4eb376a94fd26.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/division of roots | (5+√16)÷3 | ספר_ג'יבלי_אלמוקבאלא#snlR | Suppose you wish to divide 5 plus a root of 16 by 3.
:![]() |
![\scriptstyle20\div\left(4-\sqrt{9}\right)](/mediawiki/images/math/c/2/e/c2edddb2309c942946a848050aa11709.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/division of roots | 20÷(4-√9) | ספר_ג'יבלי_אלמוקבאלא#dg3U | Suppose you wish to divide 20 by 4 minus a root of 9.
:![]() |
![\scriptstyle\left(19+\sqrt{25}\right)\div\left(5+\sqrt{9}\right)](/mediawiki/images/math/1/a/8/1a874c2087a6dab574d1a0dcc98732f6.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/division of roots | (19+√25)÷(5+√9) | ספר_ג'יבלי_אלמוקבאלא#B0XU | Suppose you wish to divide 19 and a root of 25 by 5 and a root of 9.
:![]() |
![\scriptstyle\left(2\times\sqrt{20}\right)\div\left(3\times\sqrt{6}\right)](/mediawiki/images/math/3/5/6/356c4d695f653672e0f8427ee368c851.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/division of roots | (2×√20)÷(3×√6) | תחבולות_המספר#sCCw | If you are told: divide two roots of twenty by three roots of six.
:![]() |
extraction of root/division of roots | (2×√20)÷(3×√6) | חשבון_השטחים#cvXn | ![]() |
![\scriptstyle36\div\left(\sqrt{4}+\sqrt{9}+\sqrt{16}\right)](/mediawiki/images/math/2/b/9/2b9a3a65866cd5abe4db95936be8b02c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/division of roots | 36÷(√4+√9+√16) | ספר_ג'יבלי_אלמוקבאלא#UR1i | Suppose you wish to divide 36 by a root of 4, a root of 9, and a root of 16.
:![]() |
![\scriptstyle70\div\left(\sqrt{4}+\sqrt{9}+\sqrt{16}+\sqrt{25}\right)](/mediawiki/images/math/e/0/4/e0453e4d59c04e0f42f748e64ef68a85.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/division of roots | 70÷(√4+√9+√16+√25) | ספר_ג'יבלי_אלמוקבאלא#cUYO | Suppose you wish to divide 70 by the sum of a root of 4, a root of 9, a root of 16, and a root of 25, as if these roots were inexpressible.
:![]() |
extraction of root/division of roots | 70÷(√4+√9+√16+√25) | ספר_ג'יבלי_אלמוקבאלא#W9ga | Suppose you wish to divide 70 by the sum of a root of 4, a root of 9, a root of 16, and a root of 25, as if the roots were inexpressible.
:![]() |
![\scriptstyle\sqrt{6}\div\sqrt[3]{10}](/mediawiki/images/math/9/a/0/9a0da3d2826409356d860ea699ebe6c3.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/division of roots | √6÷³√10 | ספר_האלזיברא#x86i | 22) If you wish to divide the square root of 6 by the cube root of 10.
:![]() |
![\scriptstyle\sqrt[3]{18}\div\sqrt[4]{10}](/mediawiki/images/math/b/2/c/b2cca0a5467cbf3de7b5c9bf4df59020.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/division of roots | ³√18÷⁴√10 | ספר_האלזיברא#gW75 | 23) If you wish to divide the cube root of 5 by the square root of 8.
:![]() |
Multiplication of Algebraic Species
![\scriptstyle3x\times6](/mediawiki/images/math/b/3/6/b36280ba277b31e568f5d95421a52586.png)
no such category found: #multiplication of algebraic species
![\scriptstyle2x\times2x](/mediawiki/images/math/b/0/0/b00c3f5952befdf997b0bded1af9d6ad.png)
no such category found: #multiplication of algebraic species
![\scriptstyle\left(10+x\right)\times x](/mediawiki/images/math/0/b/d/0bd565818fa28aac3f9db0bae6c63795.png)
no such category found: #multiplication of algebraic species
![\scriptstyle\left(10-x\right)\times x](/mediawiki/images/math/4/7/f/47f57bed06f0dadbb18fa9ef15159ea9.png)
no such category found: #multiplication of algebraic species
![\scriptstyle\left(10+x\right)\times\left(10+x\right)](/mediawiki/images/math/7/e/7/7e74acfa0745234ff9dc879c75518560.png)
no such category found: #multiplication of algebraic species
![\scriptstyle\left(10-x\right)\times\left(10-x\right)](/mediawiki/images/math/c/9/9/c9948e75c0e69703069837d10287ee6e.png)
no such category found: #multiplication of algebraic species
![\scriptstyle\left(10+x\right)\times\left(10-x\right)](/mediawiki/images/math/8/a/5/8a5a7c3f01064f8bb2ee766d9bfb3590.png)
no such category found: #multiplication of algebraic species
![\scriptstyle\left(10+x\right)\times\left(x-10\right)](/mediawiki/images/math/e/1/d/e1deea415882b2f49f8979c717a8d80a.png)
no such category found: #multiplication of algebraic species
![\scriptstyle\left(10+\frac{2}{3}x\right)\times\left(3-6x\right)](/mediawiki/images/math/f/7/3/f73f0f16a052b55152858603ad4e59e4.png)
no such category found: #multiplication of algebraic species
Linear Equation
![\scriptstyle bx=\sqrt[3]{c}](/mediawiki/images/math/4/e/c/4eced3ba1c8f51bf47cf911659b6e201.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/linear equation | bx=³√c | ספר_ג'יבלי_אלמוקבאלא#NHZd | When things are equal to a cube root of the numbers:
:![]() |
![\scriptstyle c=\sqrt[3]{bx}](/mediawiki/images/math/5/b/4/5b40a2184fb3c6324ff5fe2eedb9da0b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/linear equation | c=³√bx | ספר_ג'יבלי_אלמוקבאלא#jGFm | When numbers are equal to a cube root of a thing:
:![]() |
Quadratic Equation
ax²=bx
squares equal roots
![\scriptstyle ax^2=bx](/mediawiki/images/math/5/9/c/59c9d8fea0be09630f4352daa8f24e23.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple canonical equation/squares equal roots | ax²=bx | חשבון_השטחים#bTgP | אלגוש ישוו שרשים |
simple canonical equation/squares equal roots | ax²=bx | תחבולות_המספר#Udbo | שרשים שיהיו שוי' למרובעים |
simple canonical equation/squares equal roots | ax²=bx | ספר_האלזיברא#XXXO | המרבעים שוים לדברים |
![\scriptstyle x^2=5x](/mediawiki/images/math/0/6/a/06a7fbb09f30b900f64b943fc381c1eb.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple canonical equation/squares equal roots | x²=5x | תחבולות_המספר#EqMy | For example: if you are told; five roots are equal to one square. How much is the square?
:![]() |
simple canonical equation/squares equal roots | x²=5x | חשבון_השטחים#cbxX | The squares that are equal to roots is as if you say: a square equals five roots.
:![]() |
![\scriptstyle\frac{1}{2}x^2=10x](/mediawiki/images/math/e/5/7/e571ea3717adf07dfd569b4fdaaa4e87.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple canonical equation/squares equal roots | ½x²=10x | תחבולות_המספר#fayj | Also, if he says: half a square is equal to ten roots.
:![]() |
simple canonical equation/squares equal roots | ½x²=10x | חשבון_השטחים#N1ie | Likewise, if it is said: half a square equals ten roots.
:![]() |
![\scriptstyle5x^2=20x](/mediawiki/images/math/b/7/6/b76fa0d8763d9f73a4d6b9cbdbbc5c6f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple canonical equation/squares equal roots | 5x²=20x | תחבולות_המספר#WDhU | Example: if one asks: five squares are equal to twenty roots.
:![]() |
simple canonical equation/squares equal roots | 5x²=20x | חשבון_השטחים#sJUh | As if you say: five squares equal twenty roots.
:![]() |
ax²=c
squares equal numbers
![\scriptstyle ax^2=c](/mediawiki/images/math/6/6/8/668448dd070a1b235866efcab6fedae0.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple canonical equation/squares equal numbers | ax²=c | ספר_האלזיברא#jx5h | המרבעים צינסי שוים לאחדים |
simple canonical equation/squares equal numbers | ax²=c | חשבון_השטחים#kCXF | ואלאגוש ישוו מספרים |
simple canonical equation/squares equal numbers | ax²=c | תחבולות_המספר#4O9C | ומרובעי' שישוו למספרים |
![\scriptstyle x^2=16](/mediawiki/images/math/f/d/1/fd19e7e1235020d3736f07c36884b01a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple canonical equation/squares equal numbers | x²=16 | חשבון_השטחים#lI7w | The squares that are equal to numbers is as a square that equals sixteen.
:![]() |
simple canonical equation/squares equal numbers | x²=16 | תחבולות_המספר#fCC4 | As if you are told: the square is equal to sixteen.
:![]() |
![\scriptstyle5x^2=45](/mediawiki/images/math/1/c/2/1c2e0a9f53257ce0977149b9d3717f01.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple canonical equation/squares equal numbers | 5x²=45 | תחבולות_המספר#C4DX | If one says: five squares are equal to forty-five.
:![]() |
simple canonical equation/squares equal numbers | 5x²=45 | חשבון_השטחים#yMV8 | Likewise, when five squares are equal to forty-five.
:![]() |
![\scriptstyle\frac{1}{3}x^2=27](/mediawiki/images/math/d/7/b/d7b2eca474c323bfde6f5124d1ede585.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple canonical equation/squares equal numbers | ⅓x²=27 | חשבון_השטחים#sOLH | Also if you say: a third of the square is equal to twenty-seven.
:![]() |
simple canonical equation/squares equal numbers | ⅓x²=27 | תחבולות_המספר#Usmi | If one says: a third of the square is equal to twenty-seven.
:![]() |
bx=c
roots equal numbers
![\scriptstyle bx=c](/mediawiki/images/math/6/e/2/6e26c147d2d9568d21852eabde279aac.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
simple canonical equation/roots equal numbers | bx=c | חשבון_השטחים#1nZH | ושרשים ישוו מספרים |
simple canonical equation/roots equal numbers | bx=c | תחבולות_המספר#qsBh | ושרשים שישוו למספרים |
simple canonical equation/roots equal numbers | bx=c | ספר_האלזיברא#uues | הדברים שוים לאחדים |
ax²+bx=c
![\scriptstyle ax^2+bx=c](/mediawiki/images/math/9/f/6/9f6ca196fe55e7af61cc66920933f9b4.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
compound canonical equation/squares and roots equal numbers | ax²+bx=c | תחבולות_המספר#3sJZ | ושרשים ומרובעי' שישוו למספרים |
compound canonical equation/squares and roots equal numbers | ax²+bx=c | חשבון_השטחים#XqGp | מרובעי' ושרשי' ישוו למספרים |
compound canonical equation/squares and roots equal numbers | ax²+bx=c | ספר_האלזיברא#vJ0S | המרבעים והדברי' שוים לאחדים |
![\scriptstyle x^2+10x=39](/mediawiki/images/math/2/d/f/2df27a3fbd820587664e70b38bf21e19.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
compound canonical equation/squares and roots equal numbers | x²+10x=39 | תחבולות_המספר#oMPa | He said: when squares and roots are equal to numbers, it is as if you say: the sum of one square and ten of its roots together is equal to thirty-nine dirham.
:![]() |
compound canonical equation/squares and roots equal numbers | x²+10x=39 | ספר_המספר_/_אליהו_מזרחי#efjm | Question: if one asks: what is the square whose sum with ten times its root, for instance, yields thirty-nine.
:![]() |
compound canonical equation/squares and roots equal numbers | x²+10x=39 | חשבון_השטחים#BnUp | Squares and roots are equal to numbers, it is as if you say: a square and ten roots are equal to thirty-nine dirham.
:![]() |
compound canonical equation/squares and roots equal numbers | x²+10x=39 | ספר_ג'יבלי_אלמוקבאלא#jJWT | ![]() |
compound canonical equation/squares and roots equal numbers | x²+10x=39 | ספר_המספר_/_אליהו_מזרחי#5Cr3 | The example in the mentioned question: one square plus ten times its root are thirty-nine.
:![]() |
![\scriptstyle2x^2+10x=48](/mediawiki/images/math/f/c/3/fc39e7e9884415ca304a032b8f3edaeb.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
compound canonical equation/squares and roots equal numbers | 2x²+10x=48 | חשבון_השטחים#cSpR | ![]() |
![\scriptstyle3x^2+15x=72](/mediawiki/images/math/e/8/a/e8acb890068a65dcf223bc1a8851a630.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
compound canonical equation/squares and roots equal numbers | 3x²+15x=72 | תחבולות_המספר#HV5b | Example: if one asks: three squares and 15 roots are equal to 72 dirham.
:![]() |
![\scriptstyle\frac{1}{2}x^2+5x=28](/mediawiki/images/math/9/c/2/9c273b7b3b0dc16a68a700c8d15ea809.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
compound canonical equation/squares and roots equal numbers | ½x²+5x=28 | חשבון_השטחים#XyaI | ![]() נאמר כי כאשר {{#annot: term | #to add, #חבר | qgPe}}חברנו{{#annotend:qgPe}} על חצי האלגוש חמשה שרשי האלגוש יהיו כ"ח אדרהמיש |
compound canonical equation/squares and roots equal numbers | ½x²+5x=28 | תחבולות_המספר#FJRf | Likewise, if one asks: half a square plus its five roots are equal to 28 dirham.
:![]() |
![\scriptstyle\frac{1}{3}x^2+3x=30](/mediawiki/images/math/7/5/5/7553fbd91becd07cbd47ddd6ccaff5da.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
compound canonical equation/squares and roots equal numbers | ⅓x²+3x=30 | ספר_המספר_/_אליהו_מזרחי#109r | As, for example, if one asks: what is the square whose third plus 12 times its root are thirty.
:![]() |
ax²+c=bx
![\scriptstyle ax^2+c=bx](/mediawiki/images/math/9/b/a/9ba676eb99081499ae94f2b47ecafdec.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
compound canonical equation/squares and numbers equal roots | ax²+c=bx | חשבון_השטחים#iECf | ומרובעים ומספרי' ישוו לשרשים |
compound canonical equation/squares and numbers equal roots | ax²+c=bx | ספר_האלזיברא#oeK8 | המרובעים והאחדים שוים לדברים |
compound canonical equation/squares and numbers equal roots | ax²+c=bx | תחבולות_המספר#om8w | ומרובעי' ומספרי' שישוו לשרשים |
![\scriptstyle x^2+21=10x](/mediawiki/images/math/4/b/a/4baee4918b6cd920204953ea39708ae1.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
compound canonical equation/squares and numbers equal roots | x²+21=10x | ספר_ג'יבלי_אלמוקבאלא#RpEs | You get one square and 21 numbers equal 10 things.
::![]() |
compound canonical equation/squares and numbers equal roots | x²+21=10x | תחבולות_המספר#u4EA | He said: squares and numbers that are equal to roots is as if you say: when you sum twenty-one dirham with a certain square, they are equal to ten roots of the square.
:![]() |
compound canonical equation/squares and numbers equal roots | x²+21=10x | ספר_המספר_/_אליהו_מזרחי#hfpC | Question: if one asks: what is the square whose sum with twenty-one, for instance, yields the same as ten times its root.
:![]() |
compound canonical equation/squares and numbers equal roots | x²+21=10x | חשבון_השטחים#yRRf | ![]() |
![\scriptstyle x^2+25=10x](/mediawiki/images/math/c/7/7/c77339c461b4c21a56760ce88f131bb4.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
compound canonical equation/squares and numbers equal roots | x²+25=10x | תחבולות_המספר#QWm3 | Example: one says: a square plus twenty-five [dirham] are equal to ten roots of the square.
:![]() |
compound canonical equation/squares and numbers equal roots | x²+25=10x | חשבון_השטחים#5rN4 | ![]() |
![\scriptstyle3x^2+21=10x](/mediawiki/images/math/d/8/9/d89bb093e87da9a3fd3fac5b3125e5e1.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
compound canonical equation/squares and numbers equal roots | 3x²+21=10x | ספר_המספר_/_אליהו_מזרחי#3RbO | As, if you say: what is the square whose product by 3 plus 21 equals 10 times its root.
:![]() |
![\scriptstyle\frac{1}{3}x^2+21=10x](/mediawiki/images/math/4/6/9/4693122d38501552146e36a5e459a65b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
compound canonical equation/squares and numbers equal roots | ⅓x²+21=10x | ספר_המספר_/_אליהו_מזרחי#DMJh | As, if you say: what is the square whose third plus 21 equals 10 times its root.
:![]() |
bx+c=ax²
![\scriptstyle bx+c=ax^2](/mediawiki/images/math/4/8/2/482e84b0ce3d3d93eb520ec906bf0f7b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
compound canonical equation/roots and numbers equal squares | bx+c=ax² | תחבולות_המספר#So10 | ושרשי' ומספרים שישוו למרובעים |
compound canonical equation/roots and numbers equal squares | bx+c=ax² | ספר_האלזיברא#zm1d | הדברים והאחדים שוים למרובעים |
compound canonical equation/roots and numbers equal squares | bx+c=ax² | חשבון_השטחים#VBed | ושרשים ומספרי' ישוו למרובעים |
![\scriptstyle3x+4=x^2](/mediawiki/images/math/e/d/3/ed3767a2f1e49fa907bf0f486069f33b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
compound canonical equation/roots and numbers equal squares | 3x+4=x² | חשבון_השטחים#qrpb | ![]() |
compound canonical equation/roots and numbers equal squares | 3x+4=x² | תחבולות_המספר#VKnl | He said: roots and numbers that are equal to a square is as saying three roots and four dirham are equal to a square.
:![]() |
compound canonical equation/roots and numbers equal squares | 3x+4=x² | ספר_ג'יבלי_אלמוקבאלא#GUT6 | For example, suppose that 3 things and 4 numbers are equal to 1 square.
::![]() |
compound canonical equation/roots and numbers equal squares | 3x+4=x² | ספר_המספר_/_אליהו_מזרחי#7D6K | Question: if one asks: what is the square such that 3 times its root plus 4 equals 10.
:![]() |
Compound Quadratic Equations
![\scriptstyle ax^2=\sqrt[3]{c}](/mediawiki/images/math/f/c/0/fc0033e1c190540235d4afbc47b31b11.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | ax²=³√c | ספר_ג'יבלי_אלמוקבאלא#rGD5 | When squares are equal to a cube root of the numbers:
:![]() |
![\scriptstyle c=\sqrt[3]{ax^2}](/mediawiki/images/math/f/7/6/f7617468fb35452327a7d2d5678e45f0.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | c=³√ax² | ספר_ג'יבלי_אלמוקבאלא#zK2y | When numbers are equal to a cube root of squares:
:![]() |
![\scriptstyle\left[x^2-\left(\frac{1}{3}x^2+2\right)\right]^2=x^2+24](/mediawiki/images/math/a/9/5/a957ce494441269eddb2735f8c5cdf54.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | [x²-(⅓x²+2)]²=x²+24 | חשבון_השטחים#lT08 | [12] If you are told: a square, you subtract its third and two dirham from it, then multiply what remains by itself and the result is the square plus 24 dirham.
:![]() |
![\scriptstyle3\sqrt{x^2}+4\sqrt{x^2-3\sqrt{x^2}}=20](/mediawiki/images/math/7/8/3/7837cd3ba7d462f01b93b96e17e42e6a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | 3√x²+4√(x²-3√x²)=20 | חשבון_השטחים#tZ8i | [13] If you are told: three roots of the square plus four roots of what remains from the square are twenty dirham.
:![]() |
![\scriptstyle\left(x^2-\frac{1}{3}x^2\right)\sdot3\sqrt{x^2}=x^2](/mediawiki/images/math/0/1/1/011c848a445bc0cfec8dd024d0800788.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | (x²-⅓x²)·3√x²=x² | חשבון_השטחים#ak8r | [14] If you are told: we subtract from a square its third, then multiply what remains by three roots of the original square and the result is the original square.
:![]() |
![\scriptstyle\left(x^2-\frac{1}{3}x^2\right)\sdot3\sqrt{x^2-\frac{1}{3}x^2}=x^2](/mediawiki/images/math/1/6/5/165eadfa85a52499809e770522ca3a1a.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | (x²-⅓x²)·3√(x²-⅓x²)=x² | חשבון_השטחים#lFM5 | [15] If you are told: a square, we subtract its third from it, then multiply what remains by three roots of what remains from the square and the result is the square.
:![]() |
![\scriptstyle3\sqrt{x^2}+2\sqrt{x^2-3\sqrt{x^2}}=x^2](/mediawiki/images/math/9/9/7/997496cc9e6300effe81b5fe16ab4c38.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | 3√x²+2√(x²-3√x²)=x² | חשבון_השטחים#rq9x | [16] If you are told: a square, its three roots and two roots of what remains are equal to the square.
:![]() |
![\scriptstyle3\sqrt{x^2}+4\sqrt{x^2-3\sqrt{x^2}}=x^2+4](/mediawiki/images/math/3/7/c/37c6a2fa60eca280d6a7ec811951ada6.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | 3√x²+4√(x²-3√x²)=x²+4 | חשבון_השטחים#SNBo | [17] If you are told: a square, its three roots and four roots of what remains from the square are the same as the square plus four dirham.
:![]() |
![\scriptstyle x^2\sdot\left(x^2+\sqrt{10}\right)=9x^2](/mediawiki/images/math/b/9/e/b9e87214cffb2874661c75ec8e3d4bd7.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | x²·(x²+√10)=9x² | חשבון_השטחים#XpMD | [32] If you are told: a square, multiply it by itself plus a root of ten dirham and it becomes nine times the square.
:![]() |
![\scriptstyle\left(\sqrt{8x^2}\sdot\sqrt{3x^2}\right)+20=\left(x^2\right)^2](/mediawiki/images/math/6/8/f/68f2f6e2a82f5770a7870fa65d7f9c83.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | [√(8x²)·√(3x²)]+20=(x²)² | חשבון_השטחים#HcHI | [33] If you are told: a square, multiply a root of eight times the square by a root of three times the square, then add twenty dirham to the result and it is the same as [the product of] the square by itself.
:![]() |
![\scriptstyle\left(\sqrt{6x^2}\sdot\sqrt{5x^2}\right)+10x^2+20=\left(x^2\right)^2](/mediawiki/images/math/9/2/2/922aa34dcdc069470b155e4fa34092e6.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | [√(6x²)·√(5x²)]+10x²+20=(x²)² | חשבון_השטחים#stdc | [34] If you are told: a square, multiply a root of its six times by a root of its five times, then add ten times the square plus twenty dirham to the product and it is the same as [the product of] the square by itself.
:![]() |
![\scriptstyle\left(x^2+10\right)\sdot\sqrt{5}=\left(x^2\right)^2](/mediawiki/images/math/a/7/f/a7f358be2cf8b26c5f8aaa1271d5f257.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | (x²+10)·√5=(x²)² | חשבון_השטחים#hePu | [38] If you are told: a square, you add to it ten dirham, then multiply the sum by a root of five and the result is the same as the product of the square by itself.
:![]() |
![\scriptstyle\left(\sqrt{x^2\sdot2x^2}+2\right)\sdot x^2=30](/mediawiki/images/math/e/e/6/ee69e599320e678022c9ef2ab521e9d7.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | [√(x²·2x²)+2]·x²=30 | חשבון_השטחים#uwLQ | [40] If you are told: a square, you multiply it by its two times, extract the root of the product, add two dirham to it, then multiply the total by that square and the result is thirty dirham.
:![]() |
![\scriptstyle\left[x^2-\left(2\sqrt{x^2}+10\right)\right]^2=8x^2](/mediawiki/images/math/1/4/5/145c5c99f9bc23a17e6ee34a2c9df452.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | [x²-(2√x²+10)]²=8x² | חשבון_השטחים#aPQX | If you are told: a square, subtract its two roots and ten dirham from it, then multiply what remains by itself; it becomes eight times the square.
:![]() |
![\scriptstyle2\sqrt{x^2}+\sqrt{\frac{1}{2}x^2}+\sqrt{\frac{1}{3}x^2}=x^2](/mediawiki/images/math/7/b/f/7bf6a4e4bbae19516d8da86eb51cd3ed.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | 2√(x²)+√(½x²)+√(⅓x²)=x² | חשבון_השטחים#nPTX | If you are told: a square whose two roots plus a root of half the square and a root of its third are equal to the square - how much is the square?
:![]() |
![\scriptstyle2\sqrt{x^2}+\sqrt{\frac{1}{2}x^2}+\sqrt{\frac{1}{3}x^2}=20](/mediawiki/images/math/e/f/b/efbde158ba64b22801b20ab7bb9fe5d7.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | 2√(x²)+√(½x²)+√(⅓x²)=20 | חשבון_השטחים#wOZV | If one says: a square whose two roots plus a root of its half and a root of its third are twenty dirham - how much is the square?
:![]() |
![\scriptstyle x^2+4\sqrt{x^2}+\sqrt{\frac{1}{2}x^2}+\sqrt{\frac{1}{3}x^2}=10](/mediawiki/images/math/b/d/e/bdef27fe3c69dc4705ae2c301721a0c3.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | x²+4√(x²)+√(½x²)+√(⅓x²)=10 | חשבון_השטחים#b04G | If you are told: a square, add to it its four roots plus a root of its half and a root of its third; it is ten dirham - how much is the square?
:![]() |
![\scriptstyle\left(x^2+\sqrt{x^2}+\sqrt{\frac{1}{2}x^2}\right)^2=5x^2](/mediawiki/images/math/e/8/f/e8f1caca433962b848eb214b78bf690d.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | [x²+√(x²)+√(½x²)]²=5x² | חשבון_השטחים#omoo | If you are told: a square, add to it its root and a root of its half, then multiply the result by itself; it is five times the square.
:![]() |
![\scriptstyle\left(x^2+\sqrt{x^2}+\sqrt{\frac{1}{2}x^2}\right)^2=20](/mediawiki/images/math/2/2/4/22422b2462e7d8ad5c0387b4f3ca83b0.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | [x²+√(x²)+√(½x²)]²=20 | חשבון_השטחים#OX0E | ![]() |
![\scriptstyle\left(x^2+\sqrt{\frac{1}{2}x^2}\right)^2=4x^2](/mediawiki/images/math/b/2/3/b23dcd99f1d1b48fa8a60b91c1049b98.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | [x²+√(½x²)]²=4x² | חשבון_השטחים#Fvgh | If you are told: a square, you add to it a root of its half, then multiply the result by itself; it becomes four times the square.
:![]() |
![\scriptstyle\left(x^2+7\right)\sdot\sqrt{3x^2}=10x^2](/mediawiki/images/math/5/9/2/59297172448524d35b8cddd161ba92fd.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | (x²+7)·√(3x²)=10x² | חשבון_השטחים#dAZJ | If you are told: a square, add to it seven dirham, then multiply the sum by a root of three times the square; it becomes ten times the square.
:![]() |
![\scriptstyle\left(x^2+\sqrt{3x^2}\right)\sdot\sqrt{{\color{red}{2}}x^2}=4x^2](/mediawiki/images/math/6/8/0/6809a6193fd660068c3468a6c837c63e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | [x²+√(3x²)]·√(2x²)=4x² | חשבון_השטחים#lk6C | If you are told: a square, add to it a root of three times of it, then multiply the sum by a root of [twice] the square; it becomes four times the square.
:![]() |
![\scriptstyle\left(\sqrt{\frac{1}{2}x^2}+3\right)\sdot\left(\sqrt{\frac{1}{3}x^2}+2\right)=20](/mediawiki/images/math/9/c/4/9c4783d9686f24aa3212726ff77dc26d.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | [√(½x²)+3]·[√(⅓x²)+2]=20 | חשבון_השטחים#Y7kO | If you are told: a square, add three dirham to a root of its half, and two dirham to a root of its third, then multiply one [sum] by the other; it is twenty dirham.
:![]() |
![\scriptstyle\frac{\sqrt{10}x^2}{2+\sqrt{3}}=x^2-10](/mediawiki/images/math/e/6/b/e6b9508fe7f3525dd288d84855252b68.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | (√10·x²)/(2√3)=x²-10 | חשבון_השטחים#8OnP | If you are told: a square, multiply it by the root of ten, then divide the product by two plus the root of three; the quotient is the same as the square minus ten.
:![]() |
![\scriptstyle\sqrt{x^2}+\sqrt{\sqrt{x^2}}+\sqrt{2\sqrt{x^2}}+\sqrt{5x^2}=10](/mediawiki/images/math/2/2/2/2223ad7a626be6309f3897bc3d238e2d.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | √x²+√(√x²)+√(2√x²)+5√x²=10 | חשבון_השטחים#rWIe | If you are told: a square whose root and the root of its root, plus the root of its two roots, plus the root of five times the square are ten dirham.
:![]() |
quadratic equation in two variables
![\scriptstyle\begin{cases}\scriptstyle b^2=3a^2\\\scriptstyle\left(a^2+\sqrt{a^2}\right)\sdot\left(b^2+\sqrt{b^2}\right)=10b^2\end{cases}](/mediawiki/images/math/c/0/9/c09371a51769e2f3951d6f2533666c39.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | b²=3a², (a²+√a²)·(b²+√b²)=10b² | חשבון_השטחים#nHFm | If you are told: two squares - one is three times the other; you add to each of them its root, then multiply the one by the other; it is ten times the greater square.
:![]() |
quadratic equation in three variables
![\scriptstyle\begin{cases}\scriptstyle a^2+b^2=c^2\\\scriptstyle a\sdot c=b^2\\\scriptstyle a\sdot b=10\end{cases}](/mediawiki/images/math/8/6/8/868788f61293d0fafd86da25dae0d0eb.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | a²+b²=c², ac=b², ab=10 | חשבון_השטחים#gGKe | If you are told: three unequal squares, if you multiply the smaller by itself and the mean by itself; they are as the greater by itself. If you multiply the smaller by the greater it is as the mean by itself. If you multiply the smaller by the mean it is ten dirham.
:![]() אם תכה הקטן בעצמו והאמצעי בעצמו יהיו כמו הגדול בעצמו ואם תכה הקטון בגדול יהיה כמו האמצעי בעצמו ואם תכה הקטן באמצעי יהיה עשרה דרהמי |
Cubic Equation
![\scriptstyle ax^3=\sqrt[3]{c}](/mediawiki/images/math/a/6/4/a64e6eaeaf2d5f64610f741998d43d86.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/cubic equation | ax³=³√c | ספר_ג'יבלי_אלמוקבאלא#eOI5 | It is when cubes are equal to a cube root of the numbers:
:![]() |
Biquadratic Equation
![\scriptstyle4\sdot\left(x^2+8\right)=x^4](/mediawiki/images/math/3/1/0/3103a64edab2a35756b8a33b3ff2d2ec.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
quartic equation/biquadratic equation | 4(x²+8)=x⁴ | אגרת_המספר#q2Fw | 6) ![]() |
quartic equation/biquadratic equation | 4(x²+8)=x⁴ | תחבולות_המספר#G1Mq | [6] He said: the six problem is as if you are told: we add to a certain square [eight] dirham, then multiply the sum by four dirham and the result is the same as the product of the square [by itself].
:![]() |
quartic equation/biquadratic equation | 4(x²+8)=x⁴ | חשבון_השטחים#ZxMx | ![]() |
![\scriptstyle c=ax^4+\sqrt{bx^4}](/mediawiki/images/math/7/8/3/783414e4250aac6803a886c8dfc5e6c7.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
quartic equation/biquadratic equation | c=ax⁴+√(bx⁴) | ספר_ג'יבלי_אלמוקבאלא#h9il | When numbers are equal to squares of squares and a root of squares of squares:
:![]() |
![\scriptstyle ax^4+bx^2=c](/mediawiki/images/math/d/a/3/da34084eb3ba91ad633a9db2059f7e80.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
quartic equation/biquadratic equation | ax⁴+bx²=c | ספר_ג'יבלי_אלמוקבאלא#Tu7N | When squares of squares plus squares are equal to a number:
:![]() |
![\scriptstyle bx^2=ax^4+c](/mediawiki/images/math/6/b/4/6b44d1f56f7e2d7df713e151cd90c4e4.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
quartic equation/biquadratic equation | bx²=ax⁴+c | ספר_ג'יבלי_אלמוקבאלא#tkSO | When squares are equal to squares of squares and a root of a number:
:![]() |
![\scriptstyle ax^4=bx^2+c](/mediawiki/images/math/c/1/6/c16174ab53ac07991ed4ace4116b9e6f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
quartic equation/biquadratic equation | ax⁴=bx²+c | ספר_ג'יבלי_אלמוקבאלא#CLbn | When squares of squares are equal to a number and squares:
:![]() |
indeterminate equation
![\scriptstyle x^2+5=n^2](/mediawiki/images/math/6/1/a/61ab15dfbe92bfa29764a361428b17ce.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | x²+5=n² | השאלות_החרשות/האלמות#rm8m | 1) When you are told: a square that has a root, if you add five to it, it has a root. How much is the square?
:![]() |
![\scriptstyle x^2-10=n^2](/mediawiki/images/math/a/b/3/ab3f31b44147b6504de2bb777d2789ad.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | x²-10=n² | השאלות_החרשות/האלמות#mV1w | 2) When you are told: a square that has a root, if you subtract ten dirham from it, what remains has a root.
:![]() |
![\scriptstyle x^2+3x=n^2](/mediawiki/images/math/4/1/a/41ac7a9c9700787bca45f7593571843b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | x²+3x=n² | השאלות_החרשות/האלמות#L1j9 | 3) If you are told: a square that has a root, if you add three times its root to it, it has a root. How much is the square?
:![]() |
![\scriptstyle x^2-6x=n^2](/mediawiki/images/math/c/a/9/ca9806baa725dd9f530fb66a46bb8444.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | x²-6x=n² | השאלות_החרשות/האלמות#LfMV | 4) If you are told: a square that has a root, when we subtract six times its root from it, it has a root.
:![]() |
![\scriptstyle x-x^2=n^2](/mediawiki/images/math/b/7/4/b7491d25cd99448230b4c7685ae36c6d.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | x-x²=n² | השאלות_החרשות/האלמות#hdU1 | 10) If you are told: a square that has a root, if you subtract it from its root, the remainder has a root.
:![]() |
![\scriptstyle x^2+10x+20=n^2](/mediawiki/images/math/b/4/c/b4c1c7344f337079f967aaf3bff17f4b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | x²+10x+20=n² | השאלות_החרשות/האלמות#x5bu | 5) If you are told: a square that has a root, if you add to it ten times its root plus ten dirham, it has a root.
:![]() |
![\scriptstyle x^2-8x-30=n^2](/mediawiki/images/math/b/2/3/b2336f588ffe6156d42526d1e9bb3b74.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | x²-8x-30=n² | השאלות_החרשות/האלמות#67aP | 6) If you are told: a square that has a root, if you subtract from it eight times its root and thirty dirham, the remainder has a root.
:![]() |
![\scriptstyle 8x+109-x^2=n^2](/mediawiki/images/math/5/c/1/5c1a0e0504416464c207e0011d77afb4.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | 8x+109-x²=n² | השאלות_החרשות/האלמות#tMRx | 19) If you are told: a square, if you subtract it from its eight roots plus 109 dirham, it has a root.
:![]() |
![\scriptstyle 2x+49-x^2=n^2](/mediawiki/images/math/9/7/e/97e5db3209225fe9f64ff62d2b465722.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | 2x+49-x²=n² | השאלות_החרשות/האלמות#bkYa | 21) If you are told: a square, if you subtract it from its two roots plus 49 dirham, the remainder has a root.
:![]() |
![\scriptstyle 10x-8-x^2=n^2](/mediawiki/images/math/4/8/9/48972bb7c232df8632c9da13ecab99ec.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | 10x-8-x²=n² | השאלות_החרשות/האלמות#JrVS | 24) If you are told: a square that has a root, if you subtract it from its ten roots minus eight dirham, the remainder has a root.
:![]() |
![\scriptstyle 260-6x-x^2=n^2](/mediawiki/images/math/a/3/1/a31b6289931834c73928cde477d6a675.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | 260-6x-x²=n² | השאלות_החרשות/האלמות#63F7 | 26) If you are told: a square that has a root, if you subtract it from 260 minus six roots, the remainder has a root.
:![]() |
![\scriptstyle\begin{cases}\scriptstyle x^2+x=n^2\\\scriptstyle x^2+2x=m^2\end{cases}](/mediawiki/images/math/e/a/1/ea198c6ad6cb763a57a23d593dd6cac5.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | x²+x=n²,x²+2x=m² | השאלות_החרשות/האלמות#9AQM | 7) If you are told: a square that has a root, if you add its root to it, it has a root; and if you add its two roots to it, it has a root.
:![]() |
![\scriptstyle\begin{cases}\scriptstyle x^2+x=n^2\\\scriptstyle x^2+3x=m^2\end{cases}](/mediawiki/images/math/c/5/e/c5efe9c5f501e5e0ef0f5d68a744657b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | x²+x=n²,x²+3x=m² | השאלות_החרשות/האלמות#5iEI | 8) If you are told: a square, if you add its root to it, it has a root; and if you add its three roots to it, it has a root.
:![]() |
![\scriptstyle\begin{cases}\scriptstyle x^2-2x=n^2\\\scriptstyle x^2-3x=m^2\end{cases}](/mediawiki/images/math/9/7/e/97e907cbf66e38ce2c4c7c0c63f2eaed.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | x²-2x=n²,x²-3x=m² | השאלות_החרשות/האלמות#65Jm | 9) If you are told: a square that has a root, if you subtract its two roots from it, the remainder has a root; and if you subtract its three roots from the square, the remainder has a root.
:![]() |
![\scriptstyle\begin{cases}\scriptstyle x^2+x=n^2\\\scriptstyle x^2-x=m^2\end{cases}](/mediawiki/images/math/8/8/9/8892e85cf4a8c4c25528e14a6f94f3d5.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | x²+x=n²,x²-x=m² | השאלות_החרשות/האלמות#MUv8 | 22) If you are told: a square, if you add its root to it, the sum has a root; and if you subtract its root from it, the remainder has a root.
:![]() |
![\scriptstyle\begin{cases}\scriptstyle x^2+2x=n^2\\\scriptstyle x^2-3x=m^2\end{cases}](/mediawiki/images/math/1/f/0/1f0c33d7937c123fd50af4bc0dcccf8f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | x²+2x=n²,x²-3x=m² | השאלות_החרשות/האלמות#ltjx | 23) If you are told: a square, if you add its two roots to it, it has a root; and if you subtract its three roots from it, it has a root.
:![]() |
![\scriptstyle\begin{cases}\scriptstyle 3-x^2=n^2\\\scriptstyle 2+x^2=m^2\end{cases}](/mediawiki/images/math/f/9/1/f91614acf567b4b7e50f0b9e853f6ecc.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | 3-x²=n²,2+x²=m² | השאלות_החרשות/האלמות#6Zd3 | 15) If you are told: a square, if you subtract it from three dirham, the remainder has a root; and if you add it to two dirham, the sum has a root.
:![]() |
![\scriptstyle\begin{cases}\scriptstyle 10-x^2=n^2\\\scriptstyle 20+x^2=m^2\end{cases}](/mediawiki/images/math/9/9/3/993e262522befb2ce938c15b1a653c6e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | 10-x²=n²,20-x²=m² | השאלות_החרשות/האלמות#EaVV | 16) If you are told: a square, if you subtract it from ten dirham, the remainder has a root; and if you subtract it from twenty, the remainder has a root.
:![]() |
![\scriptstyle\begin{cases}\scriptstyle 20+x^2=n^2\\\scriptstyle 30+x^2=m^2\end{cases}](/mediawiki/images/math/c/9/4/c942ab9db0f8164d78b5739c82dd9305.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | 20+x²=n²,30+x²=m² | השאלות_החרשות/האלמות#czE5 | 17) If you are told: a square, if you add it to twenty, it has a root; and if you add it to thirty, it has a root.
:![]() |
![\scriptstyle\begin{cases}\scriptstyle 10+x^2=n^2\\\scriptstyle 10-x^2=m^2\end{cases}](/mediawiki/images/math/c/9/6/c96bbe14dfdffa4a040899deafd00837.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | 10+x²=n²,10-x²=m² | השאלות_החרשות/האלמות#rWQ1 | 18) If you are told: a square, if you add it to ten, it has a root; and if you subtract it from ten, it has a root.
:![]() |
![\scriptstyle\begin{cases}\scriptstyle x+x^2=n^2\\\scriptstyle x-x^2=m^2\end{cases}](/mediawiki/images/math/7/6/f/76f11c3f3d01a3be9723da1330e5c7f2.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | x+x²=n²,x-x²=m² | השאלות_החרשות/האלמות#Fofb | 11) If you are told: a square that has a root, if you add its root to it, it has a root; and if you subtract the square from its root, the remainder has a root.
:![]() |
![\scriptstyle\begin{cases}\scriptstyle 8x+x^2=n^2\\\scriptstyle 2x-x^2=m^2\end{cases}](/mediawiki/images/math/d/7/9/d79f07195fb0d1831ccbddd065557c1c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | 8x+x²=n²,2x-x²=m² | השאלות_החרשות/האלמות#62Ll | 20) If you are told: a square, if you add its eight roots to it, it has a root; and if you subtract it from its two roots, the remainder has a root.
:![]() |
![\scriptstyle\begin{cases}\scriptstyle x^2+2x=n^2\\\scriptstyle x^2+2x+3\sqrt{x^2+2x}=m^2\end{cases}](/mediawiki/images/math/8/5/f/85fbbd99f3f396eb5fcbeae8167a3161.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | x²+2x=n²,x²+2x+3√(x²+2x)=m² | השאלות_החרשות/האלמות#Xpj1 | 27) If you are told: a square that has a root, if you add its two roots to it, it has a root; and if you add to the sum its three roots, it has a root.
:![]() ואם תוסיף על המקובץ שלשת שרשיו יחזיק שרש |
![\scriptstyle\begin{cases}\scriptstyle x^2+3x=n^2\\\scriptstyle x^2+3x+6\sqrt{x^2+3x}=m^2\end{cases}](/mediawiki/images/math/9/7/0/970cc1f225ec88cfe4a90d2e2fa2198f.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | x²+3x=n²,x²+3x+6√(x²+3x)=m² | השאלות_החרשות/האלמות#RKqA | 28) If you are told: a square that has a root, if you add its three roots to it, it has a root; and if you add to the sum its six roots, it has a root.
:![]() ואם תקבץ עם העולה ששת שרשיו יחזיק שרש |
![\scriptstyle\begin{cases}\scriptstyle x^2+2x=n^2\\\scriptstyle x^2+2x+\sqrt{x^2+2x}=m^2\end{cases}](/mediawiki/images/math/7/a/9/7a94031aa89bc2679dc0b9f62031a4a1.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | x²+2x=n²,x²+2x+√(x²+2x)=m² | השאלות_החרשות/האלמות#Csxg | 29) If you are told: a square that has a root, if you add two roots to it, it has a root; and if you add to the sum its root, it has a root.
:![]() ואם תוסיף על המקובץ שרשו יחזיק שרש |
![\scriptstyle\begin{cases}\scriptstyle x^2+4x=n^2\\\scriptstyle x^2+4x+2\sqrt{x^2+4x}=m^2\end{cases}](/mediawiki/images/math/2/d/8/2d8d9dd1edce900534be93182b6ef2a1.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | x²+4x=n²,x²+4x+2√(x²+4x)=m² | השאלות_החרשות/האלמות#2scj | 30) If you are told: a square that has a root, if you add its four roots to it, it has a root; and if you add to the sum its two roots, it has a root.
:![]() אם תוסיף עליו ארבעת שרשיו יחזיק שרש ואם תוסיף על המתקבץ שני שרשיו יחזיק שרש |
![\scriptstyle\begin{cases}\scriptstyle x^2-4x=n^2\\\scriptstyle x^2-4x+2\sqrt{x^2-4x}=m^2\end{cases}](/mediawiki/images/math/e/6/7/e67ca1cff56685b6d95eb201b340079c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | x²-4x=n²,x²-4x-2√(x²-4x)=m² | השאלות_החרשות/האלמות#vAyv | 31) If you are told: a square, if you subtract its four roots from it, it has a root; and if you subtract from the remainder its two roots, it has a root.
:![]() ואם תגרע ואם תגרע מהנשאר שני שרשיו יחזיק שרש |
![\scriptstyle\begin{cases}\scriptstyle x^2-5=n^2\\\scriptstyle x^2-5+\sqrt{x^2-5}=m^2\end{cases}](/mediawiki/images/math/f/d/e/fde349402226db5072c984a662327937.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | x²-5=n²,x²-5+√(x²-5)=m² | השאלות_החרשות/האלמות#6x8t | 33) If you are told: a square that has a root, if you subtract five dirham from it, the remainder has a root; and if you add to the remainder its root, the sum has a root.
:![]() ואם תוסיף על הנשאר שרשו יחזיק המקובץ שרש |
![\scriptstyle\begin{cases}\scriptstyle x^2-2x=n^2\\\scriptstyle x^2-2x+\sqrt{x^2-2x}=m^2\end{cases}](/mediawiki/images/math/b/7/5/b758f0e77f0b8b037cbf819ac20fdc62.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | x²-2x=n²,x²-2x+√(x²-2x)=m² | השאלות_החרשות/האלמות#65Ct | 35) If you are told: a square that has a root, if you subtract its two roots from it, it has a root; and if you add to the remainder its root, it has a root.
:![]() ואם תוסיף על הנשאר שרשו יחזיק שרש |
![\scriptstyle\begin{cases}\scriptstyle x^2+x=n^2\\\scriptstyle x^2+1=m^2\end{cases}](/mediawiki/images/math/f/d/c/fdc0ae072c89b85531c0a45595f4867e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | x²+x=n²,x²+1=m² | השאלות_החרשות/האלמות#eNRx | 32) If you are told: a square that has a root, if you add its root to it, it has a root; and if you add to one dirham to it, it has a root.
:![]() ואם תוסיף עליו דרהם אחד יחזיק שרש |
![\scriptstyle\begin{cases}\scriptstyle x^2+x+1=n^2\\\scriptstyle x^2+2x+2=m^2\end{cases}](/mediawiki/images/math/d/9/1/d91fe1f2ec2744f34f03dd7343428bc2.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | x²+x+1=n²,x²+2x+2=m² | השאלות_החרשות/האלמות#YEF9 | 39) If you are told: a square that has a root, if you add its root plus one dirham to it, it has a root; and if you add to the square its two roots plus two dirham, it has a root.
:![]() ואם תוסיף על האלגו שני שרשיו ושני דרהמי יחזיק שרש |
![\scriptstyle\begin{cases}\scriptstyle x^2+4x=n^2\\\scriptstyle x^2-\left(2x+1\right)=m^2\end{cases}](/mediawiki/images/math/c/3/5/c353a899f87e4726833f2efe2fe88a22.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | x²+4x=n²,x²-(2x+1)=m² | השאלות_החרשות/האלמות#1vZf | 34) If you are told: a square that has a root, if you add its four roots to it, it has a root; and if you subtract its two roots plus one dirham from it, the remainder has a root.
:![]() ואם תגרע ממנו שני שרשיו ודרהם אחד יחזיק הנשאר שרש |
![\scriptstyle\begin{cases}\scriptstyle x^2+3x+1=n^2\\\scriptstyle x^2-\left(3x-2\right)=m^2\end{cases}](/mediawiki/images/math/9/5/8/95874f5d96dc3a971f613364965a30f2.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | x²+3x+1=n²,x²-(3x-2)=m² | השאלות_החרשות/האלמות#43ha | 36) If you are told: a square that has a root, if you add to it its three roots and one dirham, it has a root; and if you subtract its three roots minus two dirham from it, the remainder has a root.
:![]() ואם תגרע ממנו שלשת שרשיו פחות שני דרהמי יחזיק מה שישאר שרש |
![\scriptstyle\begin{cases}\scriptstyle x^2-\left(x-1\right)=n^2\\\scriptstyle x^2-\left(1-x\right)=m^2\end{cases}](/mediawiki/images/math/9/0/e/90e938c956594a06c2265c607eda881c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | x²-(x-1)=n²,x²-(1-x)=m² | השאלות_החרשות/האלמות#Wdk5 | 37) If you are told: a square that has a root, if you subtract one dirham minus the root of the square from it, it has a root; [and if you subtract its root minus one dirham from it, it has a root].
:![]() |
![\scriptstyle\begin{cases}\scriptstyle x^2+\left(2-x\right)=n^2\\\scriptstyle x^2-\left(3-x\right)=m^2\end{cases}](/mediawiki/images/math/2/f/3/2f364f474861464d860ee2f39749a856.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | x²+(2-x)=n²,x²-(3-x)=m² | השאלות_החרשות/האלמות#xP6r | 38) If you are told: a square that has a root, if you add two dirham minus the root of the square to it, it has a root; and if you subtract three minus the root of the square from it, it has a root.
:![]() ואם תגרע ממנו שלשה פחות שרש האלגו יחזיק שרש |
![\scriptstyle x^2+y^2=n^2](/mediawiki/images/math/b/0/0/b00c18038f477d933a0a07a95815d64c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | x²+y²=n² | השאלות_החרשות/האלמות#Onda | 12) If you are told: divide five dirham into two parts, so that each part has a root.
:![]() |
![\scriptstyle\begin{cases}\scriptstyle x^2-y=n^2\\\scriptstyle x^2-1\frac{1}{2}y=m^2\end{cases}](/mediawiki/images/math/6/e/0/6e0a345e196388e09c8123ae27e0749e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | x²-y=n²,x²-1½y=m² | השאלות_החרשות/האלמות#CUHD | When you wish to find a number that has a root, such that when you subtract from it another number, the remainder has a root; and if you subtract from it again the other number and its half, the remainder has a root.
:![]() |
![\scriptstyle\begin{cases}\scriptstyle 49+x=n^2\\\scriptstyle 49+2x=m^2\end{cases}](/mediawiki/images/math/a/9/8/a98d5e5c381b5e586d816e57f6fefc06.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | 49+x=n²,49+2x=m² | השאלות_החרשות/האלמות#Y9EL | If you wish to know the number that when you add it to 49, it has a root; and if you add it to it twice, it has a root.
:![]() |
![\scriptstyle x^2+1=10x-8](/mediawiki/images/math/a/6/8/a68c7c43d69931f544a82415d447ceac.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/indeterminate equation | x²+1=10x-8 | השאלות_החרשות/האלמות#g7c7 | 25) If you are told: a square and one dirham equal ten roots minus eight dirham.
:![]() |
Euclid
Elements - Introduction
common notions
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements-Introduction | a=b,a-c=b-c | ספר_המספר_/_אליהו_מזרחי#gaDw | This is because it was already clarified in the introduction of Euclid's book that when equal is subtracted from equals, then the remainders are equal
:![]() |
Elements/Elements-Introduction | a=b,a-c=b-c | ספר_המספר_/_אליהו_מזרחי#tNTC | For, when equal is subtracted from equals, then the remainders are necessarily equal, according to what is clarified in the introduction of the first section of Euclid's [book].
:![]() |
Elements II
Elements II-1
proposition
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-1 | definition | ספר_המספר_/_אליהו_מזרחי#8mWV | It was already clarified in Euclid's Book of Elements, in the [second] section, in the first proposition that for any two straight lines, one of which is cut into segments as many as they may be, the sum of the surfaces generated from the whole straight line and each of the segments of the other straight line equals the surface generated from the whole straight line and the whole divided line.
:![]() |
![\scriptstyle a\sdot\left(\sum_{i=1}^n b_i\right)=\sum_{i=1}^n \left(a\sdot b_i\right)](/mediawiki/images/math/a/0/9/a09e3e85baa90c57650ab559e7eed943.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-1 | a·∑bᵢ=∑(a·bᵢ) | ספר_המספר_/_אליהו_מזרחי#me96 | For every number divided into many parts randomly, the number that is generated from the product of a number by the whole given divided number is equal to the number generated from the sum of the products of that number by each part of the divided number.
:![]() |
Elements/Elements II-1 | a·∑bᵢ=∑(a·bᵢ) | לקוטים_מספר_פראלוקא#t9Uk | If you have two numbers and you divide one of the two numbers, then you multiply each part by the second number, the total sum is the same as the product of the first number by the second.
:![]() |
Elements/Elements II-1 | a·∑bᵢ=∑(a·bᵢ) | ספר_המלכים#Sjh3 | For every two numbers, such that one of them is divided into as many parts as there are, [the product of] the number that is not divided by the divided number is equal to the sum of its products by each part of the divided number.
:![]() |
Elements/Elements II-1 | a·∑bᵢ=∑(a·bᵢ) | ספר_מעשה_חושב#4J1r | When there are two given numbers and one of them is divided into parts, as many as they may be, the product of the first number by the second is equal to the [sum of] the products of each of the parts of the first number by the second.
:![]() |
Examples
![\scriptstyle\left(2\sdot4\right)+\left(3\sdot4\right)+\left(5\sdot4\right)=10\sdot4](/mediawiki/images/math/1/b/d/1bd600ed0a4677ea201886ae4553bb92.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-1 | 4,2+3+5 | ספר_המספר_/_אליהו_מזרחי#1rE2 | Example: if we divide the 10 into three parts randomly, one part of them is 2, the second is 3 and the third is 5. משל זה אם נחלק הי' לג' חלקים איך מה שקרה והיה החלק האחד מהם מספר ב' והשני מספר ג' והשלישי מספר ה' |
![\scriptstyle\left(2\sdot10\right)+\left(3\sdot10\right)+\left(5\sdot10\right)+\left(2\sdot10\right)=12\sdot10](/mediawiki/images/math/5/8/3/583f93e9724c7c9bd53eff586b093097.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-1 | 10,2+3+5+2 | לקוטים_מספר_פראלוקא#1Q9z | Example: the two numbers are 10 and 12 and we divide 12 to 2, 3, 5, 2, so their sum is 12. המשל הנה ב' מספרים והם י' וי"ב ונחלק י"ב על ב' ועל ג' ועל ה' ועל ב' והנה כלם י"ב |
Elements II-2
![\scriptstyle\sum_{k=1}^n \left[\left(\sum_{i=1}^n a_i\right)\sdot a_k\right]=\left(\sum_{i=1}^n a_i\right)^2](/mediawiki/images/math/2/a/1/2a190390030d9c138d548197fab10837.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-2 | ∑ₖ((∑ᵢaᵢ)·aₖ)=(∑ᵢaᵢ)² | ספר_החשבון_והמדות#DxvK | For every number that you divide randomly into two parts, the sum of the products of each of the two parts by the whole number is equal to the square of the whole number.
:![]() |
Elements/Elements II-2 | ∑ₖ((∑ᵢaᵢ)·aₖ)=(∑ᵢaᵢ)² | לקוטים_מספר_פראלוקא#nMHc | If you have a number and you divide iy into parts as you wish, if you multiply each part by the divided number, then sum all the [products] they are equal to the divided number multiplied by itself.
:![]() |
Elements/Elements II-2 | ∑ₖ((∑ᵢaᵢ)·aₖ)=(∑ᵢaᵢ)² | ספר_המספר_/_אליהו_מזרחי#mQeQ | Any number that you divide into parts as you wish, [the sum of] the products of each of the parts by the whole number is equal to the square of the whole number.
:![]() |
Elements/Elements II-2 | ∑ₖ((∑ᵢaᵢ)·aₖ)=(∑ᵢaᵢ)² | קצת_מענייני_חכמת_המספר#4EHv | If you divide any number into parts as you wish, [the sum of] the products of each of the parts by the whole number is equal to the square of the whole number.
:![]() |
Examples
![\scriptstyle\left(7\sdot10\right)+\left(3\sdot10\right)=10^2](/mediawiki/images/math/5/c/9/5c926395a62b9aaf904a23f80d972eb5.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-2 | 10,7+3 | ספר_החשבון_והמדות#KF6o | Example: the number ten; we divide it into 7 and 3. דמיון המספר עשרה וחלקנוהו על ז' וג' |
![\scriptstyle\left(3\sdot12\right)+\left(4\sdot12\right)+\left(5\sdot12\right)=12^2](/mediawiki/images/math/6/2/b/62b13b761bea5bdc87f980ed5c669fc9.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-2 | 12,3+4+5 | ספר_החשבון_והמדות#pdf0 | Example: the number 12; we divide it into three, four and five. דמיון המספר י"ב וחלקנוהו על שלשה וארבעה וחמשה |
Elements/Elements II-2 | 12,3+4+5 | ספר_המספר_/_אליהו_מזרחי#Nxlm | Example: the number 12, we divide it to three, four and five. דמיון זה המספר י"ב וחלקנוהו על שלשה וארבעה וחמשה |
Elements/Elements II-2 | 12,3+4+5 | לקוטים_מספר_פראלוקא#Gj4L | Example: we wish to divide 12 into three parts 5, 3, 4. המשל נרצה לעשות מי"ב ג' חלקים ה' ג' ד' |
Elements II-3
![\scriptstyle\left(a+b\right)\sdot b=\left(a\sdot b\right)+b^2](/mediawiki/images/math/a/1/6/a166e66d3e2dc1bf6ef693472704753b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-3 | (a+b)·b=(a·b)+b² | ספר_המספר_/_אליהו_מזרחי#oIDS | For any number that you divide into two parts randomly, the product of the whole number by any of its two parts is equal to the product of the one part by the other plus the square of the part by which you have multiplied the whole number.
:![]() |
Elements/Elements II-3 | (a+b)·b=(a·b)+b² | ספר_מעשה_חושב#BvNU | When a number is divided into two parts, the product of the whole number by one of its parts is equal to the product of the one part by the other plus the square of the mentioned part.
:![]() |
Elements/Elements II-3 | (a+b)·b=(a·b)+b² | ספר_החשבון_והמדות#Eu5r | For any number divided into two parts as you wish, the product of the whole number by any of its two parts is equal to the product of the one part by the other plus the square of the part by which you multiplied the whole number.
:![]() |
Elements/Elements II-3 | (a+b)·b=(a·b)+b² | קצת_מענייני_חכמת_המספר#PVyt | For any number divided into two parts as you wish, the product of the whole number by any of its two parts is equal to the product of the one part by the other plus the square of the part by which you multiplied the whole number.
:![]() |
Elements/Elements II-3 | (a+b)·b=(a·b)+b² | לקוטים_מספר_פראלוקא#fYtF | If you divide any number into two parts, then multiply any of the two parts by the divided number and keep the product, so will be the result if you multiply the same part by itself, then add to it the product of the one part by the other.
:![]() |
Examples
![\scriptstyle10\sdot3=\left(3\sdot7\right)+3^2](/mediawiki/images/math/b/5/0/b506294780132c597b999a9907098be8.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-3 | 10,3+7 | קצת_מענייני_חכמת_המספר#MLKI | Example: the number 10 is divided into two parts - 7 and 3. כמשל מספר הי' נחלק לב' חלקים לז' ולג' |
Elements/Elements II-3 | 10,3+7 | ספר_החשבון_והמדות#zmnp | Example: the number ten, we divide it into two parts - three and seven. דמיון המספר עשרה חלקנוהו לשני חלקים על שלשה ושבעה |
Elements/Elements II-3 | 10,3+7 | ספר_המספר_/_אליהו_מזרחי#CANO | Example: the number ten, we divide into two parts - three and seven. דמיון המספר עשרה חלקנוהו לשני חלקים על שלשה ושבעה |
![\scriptstyle12\sdot8=\left(4\sdot8\right)+8^2](/mediawiki/images/math/4/3/2/4323bea1684475f0107f0d9e3b5d5b7c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-3 | 12,4+8 | לקוטים_מספר_פראלוקא#XIpE | Example: we have 12 and you divide it to 8 and 4. המשל אם יש לנו י"ב ותחלק אותו ח' ד' |
Elements II-4
![\scriptstyle\left(a+b\right)^2=a^2+b^2+2\sdot\left(a\sdot b\right)](/mediawiki/images/math/6/0/5/605bda5d4cd18ddc86260aa28335df74.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-4 | (a+b)²=a²+b²+2(a·b) | ספר_המספר_/_אליהו_מזרחי#oC2j | For any number that you divide into two parts randomly, the square of the whole number is equal to [the sum of] the squares of the two parts and twice the product of the one part by the other.
:![]() |
Elements/Elements II-4 | (a+b)²=a²+b²+2(a·b) | לקוטים_מספר_פראלוקא#lb40 | If you divide any number into two and multiply each part by itself, you multiply also one [part] by the other and multiply [the product] by 2, then you sum all, the result is equal to the divided number multiplied by itself.
:![]() |
Elements/Elements II-4 | (a+b)²=a²+b²+2(a·b) | ספר_מעשה_חושב#lUMx | When a number is added to a number, the square of the two numbers that are summed together is equal to [the sum of] the squares of these numbers and twice the product of the one by the other.
:![]() |
Elements/Elements II-4 | (a+b)²=a²+b²+2(a·b) | ספר_החשבון_והמדות#q5ib | For any number divided into two parts as you wish, the square of the whole number is equal to [the sum of] the squares of the two parts and twice the product of the one part by the other.
:![]() |
Elements/Elements II-4 | (a+b)²=a²+b²+2(a·b) | קצת_מענייני_חכמת_המספר#v7Dx | For any number divided into two parts as you wish, the square of the whole number is equal to [the sum of] the squares of the two parts and twice the product of the one part by the other.
:![]() |
Elements/Elements II-4 | (a+b)²=a²+b²+2(a·b) | לקוטים_מספר_פראלוקא#lAxq | If you have a number and you divide it into two unequal parts, I say that if you sum the [parts] that are multiplied by themselves, then you multiply the smaller [part] by the greater, multiply the product by 2 and sum it with the reserved, the result is equal to the [original] number multiplied by itself.
:![]() |
Elements/Elements II-4 | (a+b)²=a²+b²+2(a·b) | ספר_המספר_/_אליהו_מזרחי#TApz | For any number divided into two parts randomly, the square of the whole number is equal to [the sum of] the squares of the two parts and twice the product of the one part by the other.
:![]() |
Elements/Elements II-4 | (a+b)²=a²+b²+2(a·b) | ספר_המלכים#wUeW | For any number divided into [two] parts, whichever they may be, the product of the whole number by itself is equal to the sum of the products of each of the two parts by itself and double the product of one of the two parts by the other.
:![]() |
Examples
![\scriptstyle10^2=3^2+7^2+2\sdot\left(3\sdot7\right)](/mediawiki/images/math/3/9/f/39f344f5d27bd61a5be9208b4f888ef0.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-4 | 10,3+7 | קצת_מענייני_חכמת_המספר#OusC | Example: the number 10 is divided into 7 and 3. כמשל הי' נחלק לז' ולג' |
Elements/Elements II-4 | 10,3+7 | ספר_המספר_/_אליהו_מזרחי#6oZu | Example: if we divide the 10 into two parts randomly, one part of them is 3 and the other 7. משל זה אם נחלק הי' לשנים חלקים איך מה שקרה והיה החלק האחד מהם ג' והאחר ז' |
Elements/Elements II-4 | 10,3+7 | ספר_המספר_/_אליהו_מזרחי#Ca24 | Example: the number ten, we divide it to three and seven. דמיון המספר עשרה חלקנוהו על שלשה ושבעה |
Elements/Elements II-4 | 10,3+7 | ספר_החשבון_והמדות#hh0J | Example: the number ten; we divide it into three and seven. דמיון המספר עשרה חלקנוה על שלשה ושבעה |
![\scriptstyle12^2=4^2+8^2+2\sdot\left(4\sdot8\right)](/mediawiki/images/math/d/d/4/dd4feda5fba0cb0000c2ff7cb4529f7c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-4 | 12,4+8 | לקוטים_מספר_פראלוקא#HYCk | Example: we divide 12 to 4 and 8. המשל הנה נחלק 147vמספר י"ב על ד' ועל ח' |
Elements II-5
![\scriptstyle\left[\frac{1}{2}\sdot\left(a+b\right)\right]^2=\left(b\sdot b\right)+\left[b-\left[\frac{1}{2}\sdot\left(a\sdot b\right)\right]\right]^2=\left(b\sdot b\right)+\left[\left[\frac{1}{2}\sdot\left(a\sdot b\right)\right]-a\right]^2](/mediawiki/images/math/c/6/e/c6e8ed78ec0a62f208b68c21c9ca9a2e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-5 | (½(a+b))²=(a·b)+(b-½(a+b))²=(a·b)+(½(a+b)-a)² | ספר_המספר_/_אליהו_מזרחי#yKYx | For any number, when you divide it into two equal parts and into two unequal parts, [the sum of] the product of one of the unequal parts by the other and the square of the difference between the two parts, i.e. between the equal part [= the half of the whole number] and the unequal [part] is equal to the square of half the [whole] number.
:![]() |
Elements/Elements II-5 | (½(a+b))²=(a·b)+(b-½(a+b))²=(a·b)+(½(a+b)-a)² | ספר_החשבון_והמדות#43lj | For any number divided into two equal parts and into two unequal parts, [the sum of] the product of one of the unequal parts by the other and the square of the difference between the two parts, i.e. between the equal part [= the half of the whole number] and the unequal [part] is equal to the square of half the [whole] number.
:![]() |
Elements/Elements II-5 | (½(a+b))²=(a·b)+(b-½(a+b))²=(a·b)+(½(a+b)-a)² | קצת_מענייני_חכמת_המספר#9QNa | For any number divided into two equal parts and into two unequal parts, [the sum of] the product of one of the unequal parts by the other and the square of the difference between the two parts, i.e. between the equal part [= the half of the whole number] and the unequal [part] is equal to the square of half the [whole] number.
:![]() |
Elements/Elements II-5 | (½(a+b))²=(a·b)+(b-½(a+b))²=(a·b)+(½(a+b)-a)² | לקוטים_מספר_פראלוקא#24rA | If you divide any number into two equal parts and into two unequal parts, the product of the equal parts one by the other is as the product of the unequal parts one by the other, when you add to it the [square] of the difference between the [equal] part and the [unequal part]. 160 אם תחלק מספר אחד לב' חלקים שוים ולב' חלקים בלתי שוים הנה כל כך יעלה כפל החלקים השוים זה על זה כמו כפל החלקים הבלתי שוים זה על זה ותוסיף בם כפל היתרון שיש מהחלק האחד על האחר |
Elements/Elements II-5 | (½(a+b))²=(a·b)+(b-½(a+b))²=(a·b)+(½(a+b)-a)² | ספר_מעשה_חושב#AHZr | The product of half the given number by itself is equal to [the sum of] the product of a part of that number by the other part and the square of the difference between one of the [unequal] parts and half of the [whole] given number. ח השטח ההוה מחצי המספר המונח בעצמו שוה לשטח ההוה מחלק מה מהמספר ההוא בחלק השני ולמרובע יתרון אחד מן החלקים על חצי המספר המונח |
Elements/Elements II-5 | (½(a+b))²=(a·b)+(b-½(a+b))²=(a·b)+(½(a+b)-a)² | ספר_המלכים#4PpZ | For any even number divided into halves and into [two] unequal parts, the product of half the [whole] number by itself is equal to [the sum of] the product of the greater part by the smaller [part] and the product of the excess of the half of the [whole] number over the smaller part by itself.
:![]() |
Examples
![\scriptstyle5^2=\left(3\sdot7\right)+\left(7-5\right)^2](/mediawiki/images/math/e/3/6/e3632cf27db8f9529e168daed8f093bc.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-5 | 10,3+7 | ספר_המספר_/_אליהו_מזרחי#zYJb | Example: the number ten, we divide it to five and five, which are equal parts, then we divide it also to seven and three, which are unequal parts. דמיון המספר עשרה חלקנוהו לחמשה וחמשה שהם חלקים שוים גם חלקנוהו לשבעה ושלשה שהם חלקים בלתי שוים |
Elements/Elements II-5 | 10,3+7 | קצת_מענייני_חכמת_המספר#41Hj | Example: the number 10 that is divided into 7 and 3. במש' הי' שנחלק לז' ולג' |
Elements/Elements II-5 | 10,3+7 | ספר_החשבון_והמדות#zKhJ | Example: the number ten, we divide it to five and five, which are equal parts, then we divide it also to 7 and 3, which are unequal parts. דמיון המספר עשרה חלקנו לחמשה וחמשה שהם חלקים שוים גם חלקנוהו לז' וג' שהם חלקים בלתי שוים |
![\scriptstyle6^2=\left(4\sdot8\right)+\left(8-6\right)^2](/mediawiki/images/math/8/4/3/8431ffba8ad027845a00705c7fa8ccd5.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-5 | 12,4+8 | לקוטים_מספר_פראלוקא#pZPT | Example: we divide 12 into two equal parts 6 and 6, and into two unequal parts 4 and 8. המשל נחלק מספר י"ב לב' חלקים שוים ו'ו' ולב' חלקים בלתי שוים ד' וח' |
Elements II-6
![\scriptstyle\left[\left(a+b\right)\sdot b\right]+\left(\frac{1}{2}\sdot a\right)^2=\left[\left(\frac{1}{2}\sdot a\right)+b\right]^2](/mediawiki/images/math/a/0/b/a0b403dd8b7c15a5cb1dc47a5f8ca5bb.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-6 | (a+b)·b+(½a)²=(½a+b)² | ספר_החשבון_והמדות#A9xw | If you divide any number into half and add to it another number, [the sum of] the product of the whole number plus the additional [number] by the additional [number] and the square of half the number is equal to the square of half the number and the additional [number] together.
:![]() |
Elements/Elements II-6 | (a+b)·b+(½a)²=(½a+b)² | ספר_המספר_/_אליהו_מזרחי#tcs6 | For any number, when you divide it into half and add to it another number, [the sum of] the product of the whole number plus the additional [number] by the additional [number] and the square of half the number is equal to the square of half the number and the additional [number] together.
:![]() |
Elements/Elements II-6 | (a+b)·b+(½a)²=(½a+b)² | קצת_מענייני_חכמת_המספר#nmaV | If we divide any number into half and add to it another number, [the sum of] the product of the whole number plus the additional [number] by the additional [number] and the square of half the number is equal to the square of half the number and the additional [number] together.
:![]() |
Elements/Elements II-6 | (a+b)·b+(½a)²=(½a+b)² | ספר_המלכים#c7yY | For any number divided into two halves and another number is added to it, the product of half the number and the additional [number] together by itself is equal to [the sum of] the product of the [whole] number plus the additional [number] by the additional [number] and the product of half the original number by itself.
:![]() |
Elements/Elements II-6 | (a+b)·b+(½a)²=(½a+b)² | ספר_מעשה_חושב#vsiV | When a number is divided into two halves and a number is added to it, [the sum of] the product of the additional [number] by the whole number plus the additional [number] and the square of half the number is equal to the square of half the number and the additional [number] summed together.
:![]() |
Elements/Elements II-6 | (a+b)·b+(½a)²=(½a+b)² | לקוטים_מספר_פראלוקא#77le | If you divide any number into two equal parts, then add an additional [number] to the divided number, multiply [the sum] by the additional [number] and add [the product] to the square of one of the parts, I say that it is equal to the square of half [the number] with the additional [number].
:![]() |
Examples
![\scriptstyle\left[\left(10+2\right)\sdot2\right]+\left(\frac{1}{2}\sdot10\right)^2=\left[\left(\frac{1}{2}\sdot10\right)+2\right]^2](/mediawiki/images/math/8/b/0/8b0bc2a2292912f618303ccedaba99f1.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-6 | 10,2 | ספר_המספר_/_אליהו_מזרחי#bDvj | Example: the number ten, we divide it into two halves, which are five each, then we add two to the ten, they are 12. דמיון המספר עשרה וחלקנוהו לשני חצאים שהם כל חצי חמשה הוספנו על העשרה שנים והיו י"ב |
Elements/Elements II-6 | 10,2 | ספר_החשבון_והמדות#yd9c | Example: the number ten, we divide it into two halves, which are five each, then we add two to the ten, they are 12. דמיון המספר עשרה וחלקנוהו לשני חצאים שהם כל חצי חמשה {{#annot:term|178,1206|GTDu}}הוספנו{{#annotend:GTDu}} על העשרה שנים והיו י"ב |
![\scriptstyle\left[\left(12+4\right)\sdot4\right]+\left(\frac{1}{2}\sdot12\right)^2=\left[\left(\frac{1}{2}\sdot12\right)+4\right]^2](/mediawiki/images/math/e/0/3/e03cba659195933f9202d65d7ae8972e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-6 | 12,4 | לקוטים_מספר_פראלוקא#qQuN | Example: we have 12, you divide it to 6 and 6, then add to 6 whichever number you wish. Suppose that we wish to add 4 to 6. המשל יש לנו מספר י"ב ותחלק אותו על ו"ו ותוסיף על ו' מספר איזה שתרצה ונניח כי נרצה להוסיף על ו' ד' |
Elements II-7
![\scriptstyle\left(a+b\right)^2+a^2=\left[2\sdot\left(a+b\right)\sdot a\right]+b^2](/mediawiki/images/math/5/1/3/513fc9b907ee1cdc2dbe9bb9216406d8.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-7 | (a+b)²+a²=(2·(a+b)·a)+b² | לקוטים_מספר_פראלוקא#lBZs | If you have a number and you divide it into two unequal parts, you multiply the greater part by itself and multiply also the divided number by itself, then sum both products, the result is equal to the product of the greater number by the divided number multiplied by two, then you add to it the square of smaller part.
:![]() |
Elements/Elements II-7 | (a+b)²+a²=(2·(a+b)·a)+b² | ספר_המלכים#isjp | For any number divided into two parts, [the sum of] the product of the [whole] number by itself and [the product of] one of the two parts by itself is equal to twice the product of the [whole] number by the part that is multiplied by itself plus the [product of the] other part by itself.
:![]() |
Elements/Elements II-7 | (a+b)²+a²=(2·(a+b)·a)+b² | קצת_מענייני_חכמת_המספר#DEFA | For any number divided into two parts, the sum of the square of the whole number and the square of one of the parts is equal to twice the product of this part by the whole number plus the product of the other part by itself : ![]() |
Elements/Elements II-7 | (a+b)²+a²=(2·(a+b)·a)+b² | ספר_החשבון_והמדות#hdYZ | For any number divided into two parts, the sum of the square of the whole number and the square of one of the parts is equal to twice the product of this part by the whole number plus the product of the other part by itself.
:![]() |
Elements/Elements II-7 | (a+b)²+a²=(2·(a+b)·a)+b² | ספר_המספר_/_אליהו_מזרחי#WZG6 | For any number, when you divide it into two parts randomly, [the sum of] the square of the whole number and the square of one of the two parts is equal to twice the product of the whole number by the mentioned part plus the square of the second part.
:![]() |
Examples
![\scriptstyle10^2+7^2=\left(2\sdot10\sdot7\right)+3^2](/mediawiki/images/math/0/3/3/0335cf8d75eac6c57c4523a58bda710e.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-7 | 10,3+7 | ספר_המספר_/_אליהו_מזרחי#VZVn | Example: the number ten, we divide it randomly to 7 and 3. דמיון המספר עשרה וחלקנוהו איך שקרה על ז' ועל ג' |
Elements/Elements II-7 | 10,3+7 | קצת_מענייני_חכמת_המספר#nE0O | Example: the number 10 is divided into 7 and 3. במשל הרי הי' נחלק לז' ולג' |
Elements/Elements II-7 | 10,3+7 | ספר_החשבון_והמדות#L1Xh | Example: the number ten, we divide it randomly to seven and three. דמיון המספר עשרה וחלקנוהו איך שקרה על שבעה ועל שלשה |
![\scriptstyle12^2+8^2=\left(2\sdot12\sdot8\right)+4^2](/mediawiki/images/math/9/b/b/9bbd9d441f9ae7bd16b52968f33dbcde.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-7 | 12,4+8 | לקוטים_מספר_פראלוקא#R7rS | Example: we wish to divide 12 to 4 and 8. המשל נרצה לחלק י"ב על ח' וד' |
Elements II-8
![\scriptstyle4\sdot\left[\left(a+b\right)\sdot a\right]+b^2=\left[\left(a+b\right)+a\right]^2](/mediawiki/images/math/f/6/2/f62f5f20431f619df80a01a1d97e57cf.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-8 | (4·(a+b)·a)+b²=((a+b)+a)² | ספר_המספר_/_אליהו_מזרחי#LHo4 | For any number, when you divide it into two parts randomly and you multiply the whole number by one of the two parts four times, then sum [the product] with the square of the other part [it] is equal to the [square] of the whole number plus the mentioned part when you sum them together.
:![]() |
Elements/Elements II-8 | (4·(a+b)·a)+b²=((a+b)+a)² | ספר_החשבון_והמדות#EAD6 | For any number divided into two parts as you wish, if you multiply the whole number by one of the parts four times, the sum of the product with the square of the other part is equal to the [square] of the whole number plus the one part.
:![]() |
Elements/Elements II-8 | (4·(a+b)·a)+b²=((a+b)+a)² | לקוטים_מספר_פראלוקא#TRuX | If you have a number and you divide it into unequal two parts, if you add one of the parts to the whole number, i.e. the divided number, [its square] is equal to the same part that you added multiplied by the whole number, then multiplied by four, when you add to it the square of the second part.
:![]() |
Elements/Elements II-8 | (4·(a+b)·a)+b²=((a+b)+a)² | ספר_המלכים#Ocvs | For any number divided into two parts and one of the two parts is added to it, the product of the [whole] number plus the additional [part] by itself is equal to [the sum of] the product of the [whole] number by the additional [part] four times and the product of the other part by itself.
:![]() |
Elements/Elements II-8 | (4·(a+b)·a)+b²=((a+b)+a)² | קצת_מענייני_חכמת_המספר#R68t | For any number divided into two parts as you wish, if you multiply the whole number by one of the parts four times, the sum of the product with the square of the other part is equal to the [square] of the whole number plus the one part
:![]() |
Examples
![\scriptstyle4\sdot\left(10\sdot7\right)+3^2=\left(10+7\right)^2](/mediawiki/images/math/b/0/b/b0b546c0faa4d997ffabfb7ed9162207.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-8 | 10,3+7 | ספר_החשבון_והמדות#AJOP | Example: we have the number ten, we divide it randomly to 3 and 7. דמיון יש לנו מספר מנינו העשרה וחלקנוהו איך שהזדמן על ג' ועל ז' |
Elements/Elements II-8 | 10,3+7 | קצת_מענייני_חכמת_המספר#9UoH | Example: the number 10 is divided into 7 and 3. במשל הי' נחלק לז' ולג' |
Elements/Elements II-8 | 10,3+7 | ספר_המספר_/_אליהו_מזרחי#pqrO | Example: we have the number ten, we divide it randomly to 3 and 7. דמיון יש לנו מספר עשרה וחלקנוהו איך שהזדמן על ג' ועל ז' |
![\scriptstyle4\sdot\left(12\sdot4\right)+8^2=\left(12+4\right)^2](/mediawiki/images/math/c/4/c/c4c038bca331c097e4f4ebd84e2ccd4b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-8 | 12,4+8 | לקוטים_מספר_פראלוקא#NtVp | Example: we wish to divide 12 to 4 and 8. המשל נרצה לחלק י"ב על ד' וח' |
Elements II-9
![\scriptstyle a^2+b^2=2\sdot\left[\left[\frac{1}{2}\sdot\left(a+b\right)\right]^2+\left[a-\left[\frac{1}{2}\sdot\left(a+b\right)\right]\right]^2\right]](/mediawiki/images/math/5/e/8/5e87deb6f6b5cec598e43b4b3374a25c.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-9 | a²+b²=2·((½·(a+b))²+(a-(½·(a+b)))²) | ספר_המספר_/_אליהו_מזרחי#ClRv | For any number that you divide into two equal parts and into two unequal parts, [the sum of] the two squares of the unequal parts is equal to twice [the sum of] the square of half the [whole] number and [the square] of the excess of the large part over the half [of the whole number].
:![]() |
Elements/Elements II-9 | a²+b²=2·((½·(a+b))²+(a-(½·(a+b)))²) | ספר_המלכים#g6A2 | For any even number divided into two halves and into two unequal parts, [the sum of the products of] each of the two unequal parts by themselves is equal to [the sum of] twice the product of half the [whole] number by itself and twice the product of the excess of half the [whole] number over the smaller part by itself.
:![]() |
Elements/Elements II-9 | a²+b²=2·((½·(a+b))²+(a-(½·(a+b)))²) | לקוטים_מספר_פראלוקא#E95L | If you divide any line into two equal parts and into two unequal parts, then you multiply each of the unequal parts [by itself] and sum them, they are twice [the sum of] the product of the equal parts plus the [square of] excess of the greater [part] over [half the number].
:![]() |
Elements/Elements II-9 | a²+b²=2·((½·(a+b))²+(a-(½·(a+b)))²) | ספר_החשבון_והמדות#CM8j | For any number divided into two equal parts and into two unequal parts, [the sum of] the squares of the unequal parts is equal to twice [the sum of] the square of half the [whole] number and the square of the difference between the large part and the half [of the whole number].
:![]() |
Examples
![\scriptstyle 7^2+3^2=2\sdot\left[\left(\frac{1}{2}\sdot10\right)^2+\left[7-\left(\frac{1}{2}\sdot10\right)\right]^2\right]](/mediawiki/images/math/b/7/a/b7ae10619bde151aed9b2ede0a51c890.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-9 | 10,3+7 | ספר_המספר_/_אליהו_מזרחי#LnLo | Example: the number 10, we divide it into two equal parts, which are 5, and into two unequal parts, which are 7 and 3. דמיון המספר י' וחלקנוהו לשני חלקים שוים והם ה' ולשני חלקים בלתי שוים והם ז' ג' |
Elements/Elements II-9 | 10,3+7 | ספר_החשבון_והמדות#O8o8 | Example: we have the number ten, we divide it into two equal parts, which are 5, and into two unequal parts, which are 3 and 7. דמיון יש לנו מספר מנינו עשרה וחלקנוהו לשני חלקים שוים על ה' ושני חלקים בלתי שוים על ג' וז' |
![\scriptstyle 8^2+4^2=2\sdot\left[\left(\frac{1}{2}\sdot12\right)^2+\left[8-\left(\frac{1}{2}\sdot12\right)\right]^2\right]](/mediawiki/images/math/e/2/0/e207495b53dfdc5eee7d0560e9e524d8.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-9 | 12,4+8 | לקוטים_מספר_פראלוקא#QBwh | Example: we wish to divide 12 into two equal parts 6 and 6 and into two unequal parts 8 and 4. המשל נרצה לחלק מספר י"ב לב' חלקי' שוים ו'ו' ולב' חלקים בלתי שוים ח' ד' |
Elements II-10
![\scriptstyle\left(a+b\right)^2+b^2=2\sdot\left[\left(\frac{1}{2}\sdot a\right)^2+\left[\left(\frac{1}{2}\sdot a\right)+b\right]^2\right]](/mediawiki/images/math/b/7/d/b7dd112f5309b8cd4f778bd6269c21f3.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-10 | (a+b)²+b²=2·((½a)²+((½a)+b)²) | לקוטים_מספר_פראלוקא#ijBn | If you divide any number into two equal parts, then add another number to the divided number, square it and add to it the square of the [number] you added, it is twice [the sum of] the square of the additional [number] plus half [the number] with the square of half [the number].
:![]() |
Elements/Elements II-10 | (a+b)²+b²=2·((½a)²+((½a)+b)²) | ספר_החשבון_והמדות#w9pW | If you divide any number into half and add to it another number, [the sum of] the square of the whole number plus the additional [number] and the square of the additional [number] is equal to twice [the sum of] the square of half the number and the square of half the number plus the additional [number] together.
:![]() |
Elements/Elements II-10 | (a+b)²+b²=2·((½a)²+((½a)+b)²) | ספר_המלכים#CVU6 | For any even number divided into half and another number is added to it, [the sum of] twice the product of half the number by itself and twice the product of half the number plus the additional [number] by itself is equal to [the sum of] the product of the [whole] number plus the additional [number] by itself and [the product] of the additional [number] by itself.
:![]() |
Elements/Elements II-10 | (a+b)²+b²=2·((½a)²+((½a)+b)²) | ספר_המספר_/_אליהו_מזרחי#FJSe | Any number that you divide into half and add to it another number, [the sum of] the square of the [whole] number plus the additional [number] and the square of the additional [number] is equal to twice [the sum of] the square of half the number and the square of half the number plus the additional [number] when they are summed together.
:![]() |
Examples
![\scriptstyle\left(10+2\right)^2+2^2=2\sdot\left[\left(\frac{1}{2}\sdot10\right)^2+\left[\left(\frac{1}{2}\sdot10\right)+2\right]^2\right]](/mediawiki/images/math/1/7/e/17e6636845a2c76b49ae47fe3529eed9.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-10 | 10,2 | ספר_המספר_/_אליהו_מזרחי#0WFg | Example: we have the number ten, we divide it into two halves and add to it the number 2, so it bacomes 12. דמיון יש לנו מספר עשרה וחלקנוהו לשני חציים והוספנו עליו מספר ב' ונהיה י"ב |
Elements/Elements II-10 | 10,2 | ספר_החשבון_והמדות#zIUc | Example: we have the number ten, we divide it into two halves, which are 5, and add to it another number 2, so it bacomes 12. דמיון יש לנו מספר מניינו עשרה וחלקנוהו לשני חצאים על ה' והוספנו עליו 33rמספר אחר ב' ונהיה י"ב |
![\scriptstyle\left(12+8\right)^2+8^2=2\sdot\left[\left(\frac{1}{2}\sdot12\right)^2+\left[\left(\frac{1}{2}\sdot12\right)+8\right]^2\right]](/mediawiki/images/math/d/e/d/ded4fd897bb41789811e35212b9516ff.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements II-10 | 12,8 | לקוטים_מספר_פראלוקא#wuja | Example: we have 12, you divide it to 6 and 6, then add to 12 another number. Suppose that we add 8 to it. המשל יש לנו מספר י"ב ותחלקהו על ו'ו' ותוסיף על י"ב 148vמספר אחר ונניח כי נוסיף בם ח' |
Elements V
Elements V-9
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements V-9 | definition | ספר_המספר_/_אליהו_מזרחי#2X92 | For, any two magnitudes, which have the same ratio to the same magnitude, necessarily equal one another, according to what is clarified in Euclid's Book of Elements.
:![]() |
Elements V-15
![\scriptstyle\left(n\sdot a\right):\left(n\sdot b\right)=a:b](/mediawiki/images/math/b/d/d/bdd91a40a3a471fc4acdcd37cf5f666d.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements V-15 | (n·a)÷(n·b)=a÷b | ספר_המספר_/_אליהו_מזרחי#wUJB | For, it was already clarified in Euclid's Book of Elements, in the fifth section, that any numbers, whose multiples are equal, have the same ratio as the ratio of their equimultiples.
:![]() |
Elements/Elements V-15 | (n·a)÷(n·b)=a÷b | ספר_המספר_/_אליהו_מזרחי#PIBA | For, it was already clarified in Euclid's Book of Elements, according to what was preceded in this section, that the given numbers have the same ratio as the ratio of their equimultiples.
:![]() |
Elements VII
Elements VII-11
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements VII-11 | a÷b=c÷d→(c-a)÷(d-b) | ספר_המספר_/_אליהו_מזרחי#Iu2h | when two numbers are subtracted from two numbers and the ratio of the subtrahend to the subtrahend is the same as the ratio of the minuend to the minuend, then the [ratio of] the remainder to the remainder is the same as the ratio of the minuend to the minuend.
::![]() |
Elements VIII
Elements VIII-11
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements VIII-11 | definition | ספר_האלזיברא#Nl0O | This is because the ratio of a square to a square is the same as the ratio of its side to its side duplicate.
:![]() |
Elements/Elements VIII-11 | definition | ספר_המספר_/_אליהו_מזרחי#sPcq | Its reason is also known from what was clarified in Euclid's Book of Elements, in the eighth section that for every two squares numbers the ratio of one of them to the other is as the duplicate ratio of that which the side has to the side.
:![]() |
Elements/Elements VIII-11 | definition | ספר_האלזיברא#QcHW | the ratio of a square to a square is as the ratio of its side to its side duplicated. [ [[ספר_היסודות_לאקלידס#Elements_VIII_11|'''Euclid, Elements, Book VIII, proposition 11''']] ]
:![]() |
Elements IX
Elements IX-21
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements IX-21 | definition | ספר_המספר_/_אליהו_מזרחי#qiN5 | When even numbers are summed, as many as they may be, their sum is an even number. הוא כאשר נקבצו מספרי זוגות כמה שיהיו הנה קבוצם מספר זוג |
Elements IX-22
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements IX-22 | definition | ספר_המספר_/_אליהו_מזרחי#yrIb | When odd numbers are summed, as many as they may be, and their multitude is even, their sum is an even number. וכאשר נקבצו מספרים נפרדים כמה שיהיו והיה מספרם זוג הנה קבוצם מספר זוג |
Elements IX-23
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements IX-23 | definition | ספר_המספר_/_אליהו_מזרחי#1A6m | When odd numbers are summed, as many as they may be, and their multitude is odd, their sum is an odd number. וכאשר נקבצו מספרים נפרדים כמה שיהיו והיה מספרם מפרד הנה קבוצם נפרד |
Elements IX-28
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements IX-28 | definition | ספר_המספר_/_אליהו_מזרחי#RVMm | When an even number is multiplied by an odd number, or by an even number, then the product is even.
:![]() ![]() |
Elements IX-29
Category | Comment | Link | Annotated text |
---|---|---|---|
Elements/Elements IX-29 | definition | ספר_המספר_/_אליהו_מזרחי#DYPK | When an odd number is multiplied by an odd number, then the product is odd.
:![]() |