Difference between revisions of "Mathematical formula"
From mispar
(→Multiplication of Roots) |
(→Division) |
||
(34 intermediate revisions by the same user not shown) | |||
Line 191: | Line 191: | ||
[[category: #subtraction[0] ]] | [[category: #subtraction[0] ]] | ||
[[comment: 468-382]] | [[comment: 468-382]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle654-321</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #subtraction[0] ]] | ||
+ | [[comment: 654-321]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle956-867</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #subtraction[0] ]] | ||
+ | [[comment: 956-867]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle1000-999</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #subtraction[0] ]] | ||
+ | [[comment: 1000-999]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle2000-1999</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle2000-1999</math><div class="mw-collapsible-content"> | ||
Line 286: | Line 301: | ||
[[category: #subtraction[0] ]] | [[category: #subtraction[0] ]] | ||
[[comment: (31080+46ⁱⁱ+35ⁱⁱⁱ+47ⁱᵛ+53ᵛⁱ)-(206+50ⁱ+37ⁱⁱⁱ)]] | [[comment: (31080+46ⁱⁱ+35ⁱⁱⁱ+47ⁱᵛ+53ᵛⁱ)-(206+50ⁱ+37ⁱⁱⁱ)]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed">WP<div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #subtraction[0] ]] | ||
+ | [[comment: WP]] | ||
}}</div></div><br> | }}</div></div><br> | ||
Line 345: | Line 365: | ||
== Multiplication == | == Multiplication == | ||
+ | |||
=== units by units === | === units by units === | ||
Line 755: | Line 776: | ||
[[category: #multiplication[0] ]] | [[category: #multiplication[0] ]] | ||
[[comment: 246×140]] | [[comment: 246×140]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle321\times654</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #multiplication[0] ]] | ||
+ | [[comment: 321×654]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle348\times235</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle348\times235</math><div class="mw-collapsible-content"> | ||
Line 770: | Line 796: | ||
[[category: #multiplication[0] ]] | [[category: #multiplication[0] ]] | ||
[[comment: 462×323]] | [[comment: 462×323]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle464\times464</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #multiplication[0] ]] | ||
+ | [[comment: 464×464]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle403\times230</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle403\times230</math><div class="mw-collapsible-content"> | ||
Line 800: | Line 831: | ||
[[category: #multiplication[0] ]] | [[category: #multiplication[0] ]] | ||
[[comment: 253×1335]] | [[comment: 253×1335]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle6845\times327</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #multiplication[0] ]] | ||
+ | [[comment: 6845×327]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle1234\times4321</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle1234\times4321</math><div class="mw-collapsible-content"> | ||
Line 847: | Line 883: | ||
}}</div></div><br> | }}</div></div><br> | ||
− | == | + | === Word Problems === |
− | <div class="mw-collapsible mw-collapsed"> | + | <div class="mw-collapsible mw-collapsed">Word Problems<div class="mw-collapsible-content"> |
{{#annotask: | {{#annotask: | ||
− | [[category: # | + | [[category: #multiplication[0] ]] |
− | [[comment: | + | [[comment: WP]] |
}}</div></div><br> | }}</div></div><br> | ||
− | <div class="mw-collapsible mw-collapsed"> | + | |
+ | === Permutations === | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed">2!<div class="mw-collapsible-content"> | ||
{{#annotask: | {{#annotask: | ||
− | [[category: # | + | [[category: #permutation[0] ]] |
− | [[comment: | + | [[comment: 2]] |
}}</div></div><br> | }}</div></div><br> | ||
− | <div class="mw-collapsible mw-collapsed"> | + | <div class="mw-collapsible mw-collapsed">3!<div class="mw-collapsible-content"> |
{{#annotask: | {{#annotask: | ||
− | [[category: # | + | [[category: #permutation[0] ]] |
− | [[comment: | + | [[comment: 3]] |
}}</div></div><br> | }}</div></div><br> | ||
− | <div class="mw-collapsible mw-collapsed"> | + | <div class="mw-collapsible mw-collapsed">4!<div class="mw-collapsible-content"> |
{{#annotask: | {{#annotask: | ||
− | [[category: # | + | [[category: #permutation[0] ]] |
− | [[comment: | + | [[comment: 4]] |
}}</div></div><br> | }}</div></div><br> | ||
− | <div class="mw-collapsible mw-collapsed"> | + | <div class="mw-collapsible mw-collapsed">5!<div class="mw-collapsible-content"> |
{{#annotask: | {{#annotask: | ||
− | [[category: # | + | [[category: #permutation[0] ]] |
− | [[comment: | + | [[comment: 5]] |
}}</div></div><br> | }}</div></div><br> | ||
− | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle11^2</math><div class="mw-collapsible-content"> | + | <div class="mw-collapsible mw-collapsed">6!<div class="mw-collapsible-content"> |
+ | {{#annotask: | ||
+ | [[category: #permutation[0] ]] | ||
+ | [[comment: 6]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed">7!<div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #permutation[0] ]] | ||
+ | [[comment: 7]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed">8!<div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #permutation[0] ]] | ||
+ | [[comment: 8]] | ||
+ | }}</div></div><br> | ||
+ | |||
+ | == Squaring == | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle3^2</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #squared number[0] ]] | ||
+ | [[comment: 3²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle7^2</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #squared number[0] ]] | ||
+ | [[comment: 7²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle8^2</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #squared number[0] ]] | ||
+ | [[comment: 8²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle9^2</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #squared number[0] ]] | ||
+ | [[comment: 9²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle10^2</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #squared number[0] ]] | ||
+ | [[comment: 10²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle11^2</math><div class="mw-collapsible-content"> | ||
{{#annotask: | {{#annotask: | ||
[[category: #squared number[0] ]] | [[category: #squared number[0] ]] | ||
Line 953: | Line 1,035: | ||
[[category: #squared number[0] ]] | [[category: #squared number[0] ]] | ||
[[comment: 60²]] | [[comment: 60²]] | ||
+ | }}</div></div><br> | ||
+ | |||
+ | == Cubing== | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle3^3</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #a³[0] ]] | ||
+ | [[comment: 3³]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle4^3</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #a³[0] ]] | ||
+ | [[comment: 4³]] | ||
}}</div></div><br> | }}</div></div><br> | ||
Line 960: | Line 1,055: | ||
=== Smaller by greater === | === Smaller by greater === | ||
− | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle5\div17</math><div class="mw-collapsible-content"> | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle4\div12</math><div class="mw-collapsible-content"> |
+ | {{#annotask: | ||
+ | [[category: #division[0] ]] | ||
+ | [[comment: 4÷12]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle5\div17</math><div class="mw-collapsible-content"> | ||
{{#annotask: | {{#annotask: | ||
[[category: #division[0] ]] | [[category: #division[0] ]] | ||
[[comment: 5÷17]] | [[comment: 5÷17]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle4\div50</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #division[0] ]] | ||
+ | [[comment: 4÷50]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle6\div50</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #division[0] ]] | ||
+ | [[comment: 6÷50]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle7\div40</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle7\div40</math><div class="mw-collapsible-content"> | ||
Line 1,064: | Line 1,174: | ||
[[category: #division[0] ]] | [[category: #division[0] ]] | ||
[[comment: 125÷11]] | [[comment: 125÷11]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle218\div7</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #division[0] ]] | ||
+ | [[comment: 218÷7]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle200\div50</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle200\div50</math><div class="mw-collapsible-content"> | ||
Line 1,252: | Line 1,367: | ||
[[category: #division[0] ]] | [[category: #division[0] ]] | ||
[[comment: 3123740520÷216]] | [[comment: 3123740520÷216]] | ||
+ | }}</div></div><br> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed">WP<div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #division[0] ]] | ||
+ | [[comment: WP]] | ||
}}</div></div><br> | }}</div></div><br> | ||
Line 1,359: | Line 1,480: | ||
[[category: #division of fractions]] | [[category: #division of fractions]] | ||
[[comment: ⅜÷⅖]] | [[comment: ⅜÷⅖]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{6}{8}\div\frac{2}{4}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #division of fractions]] | ||
+ | [[comment: ⁶/₈÷²/₄]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{3}{5}\div\frac{7}{9}</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{3}{5}\div\frac{7}{9}</math><div class="mw-collapsible-content"> | ||
Line 1,664: | Line 1,790: | ||
[[category: #multiplication of fractions[0] ]] | [[category: #multiplication of fractions[0] ]] | ||
[[comment: (⁵/₇·⅓)×⅞]] | [[comment: (⁵/₇·⅓)×⅞]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{2}{3}\times\left(\frac{3}{4}\sdot\frac{1}{3}\right)</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #multiplication of fractions[0] ]] | ||
+ | [[comment: ⅔×(¾·⅓)]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{2}{3}\times\left(\frac{4}{5}\sdot\frac{1}{9}\right)</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{2}{3}\times\left(\frac{4}{5}\sdot\frac{1}{9}\right)</math><div class="mw-collapsible-content"> | ||
Line 2,107: | Line 2,238: | ||
[[category: #multiplication of fractions[0] ]] | [[category: #multiplication of fractions[0] ]] | ||
[[comment: ⅕×⅕]] | [[comment: ⅕×⅕]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{1}{4}\times\frac{1}{3}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #multiplication of fractions[0] ]] | ||
+ | [[comment: ¼×⅓]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{3}{4}\times\frac{3}{4}</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{3}{4}\times\frac{3}{4}</math><div class="mw-collapsible-content"> | ||
Line 2,261: | Line 2,397: | ||
[[category: #multiplication of fractions[0] ]] | [[category: #multiplication of fractions[0] ]] | ||
[[comment: 2×¾]] | [[comment: 2×¾]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{2}{3}\times4</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #multiplication of fractions[0] ]] | ||
+ | [[comment: ⅔×4]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle4\times\frac{2}{3}</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle4\times\frac{2}{3}</math><div class="mw-collapsible-content"> | ||
Line 2,319: | Line 2,460: | ||
[[category: #multiplication of sexagesimal fractions[0] ]] | [[category: #multiplication of sexagesimal fractions[0] ]] | ||
[[comment: (2+24'+43'')×(3+3'+8'')]] | [[comment: (2+24'+43'')×(3+3'+8'')]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(4+6^\prime+8^{\prime\prime}+12^{\prime\prime\prime}\right)\times\left(5+15^\prime+10^{\prime\prime}+13^{\prime\prime\prime}\right)</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #multiplication of sexagesimal fractions[0] ]] | ||
+ | [[comment: (4+6'+8''+12''')×(5+15'+10''+13''')]] | ||
}}</div></div><br> | }}</div></div><br> | ||
Line 2,373: | Line 2,519: | ||
[[category: #addition of fractions]] | [[category: #addition of fractions]] | ||
[[comment: ⅔+¾]] | [[comment: ⅔+¾]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{2}{3}+\frac{4}{9}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #addition of fractions]] | ||
+ | [[comment: ⅔+⁴/₉]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{3}{4}+\frac{4}{5}</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{3}{4}+\frac{4}{5}</math><div class="mw-collapsible-content"> | ||
Line 2,379: | Line 2,530: | ||
[[comment: ¾+⅘]] | [[comment: ¾+⅘]] | ||
}}</div></div><br> | }}</div></div><br> | ||
− | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{3}{4}+\frac{4}{6}</math><div class="mw-collapsible-content"> | |
+ | {{#annotask: | ||
+ | [[category: #addition of fractions]] | ||
+ | [[comment: ¾+⁴/₆]] | ||
+ | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{3}{4}+\frac{5}{6}</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{3}{4}+\frac{5}{6}</math><div class="mw-collapsible-content"> | ||
{{#annotask: | {{#annotask: | ||
Line 2,549: | Line 2,704: | ||
[[category: #subtraction of fractions]] | [[category: #subtraction of fractions]] | ||
[[comment: ⅖-⅜]] | [[comment: ⅖-⅜]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{5}{8}-\frac{3}{8}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #subtraction of fractions]] | ||
+ | [[comment: ⅝-⅜]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{5}{7}-\frac{4}{9}</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{5}{7}-\frac{4}{9}</math><div class="mw-collapsible-content"> | ||
Line 2,554: | Line 2,714: | ||
[[category: #subtraction of fractions]] | [[category: #subtraction of fractions]] | ||
[[comment: ⁵/₇-⁴/₉]] | [[comment: ⁵/₇-⁴/₉]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{6}{8}-\frac{2}{4}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #subtraction of fractions]] | ||
+ | [[comment: ⁶/₈-²/₄]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{12}{16}-\frac{4}{8}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #subtraction of fractions]] | ||
+ | [[comment: ¹²/₁₆-⁴/₈]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{14}{16}-\frac{8}{12}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #subtraction of fractions]] | ||
+ | [[comment: ¹⁴/₁₆-⁸/₁₂]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(\frac{1}{3}+\frac{1}{4}\right)-\left(\frac{1}{5}+\frac{1}{6}\right)</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(\frac{1}{3}+\frac{1}{4}\right)-\left(\frac{1}{5}+\frac{1}{6}\right)</math><div class="mw-collapsible-content"> | ||
Line 2,559: | Line 2,734: | ||
[[category: #subtraction of fractions]] | [[category: #subtraction of fractions]] | ||
[[comment: (⅓+¼)-(⅕+⅙)]] | [[comment: (⅓+¼)-(⅕+⅙)]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle1-\frac{5}{8}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #subtraction of fractions]] | ||
+ | [[comment: 1-⅝]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(2+\frac{1}{2}\right)-\frac{3}{4}</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(2+\frac{1}{2}\right)-\frac{3}{4}</math><div class="mw-collapsible-content"> | ||
Line 2,587: | Line 2,767: | ||
[[category: #rule of three]] | [[category: #rule of three]] | ||
[[comment: 2÷4=4÷8]] | [[comment: 2÷4=4÷8]] | ||
+ | }}</div></div><br> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle4:6=6:9</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #rule of three]] | ||
+ | [[comment: 4÷6=6÷9]] | ||
+ | }}</div></div><br> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle4:6=8:12</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #rule of three]] | ||
+ | [[comment: 4÷6=8÷12]] | ||
}}</div></div><br> | }}</div></div><br> | ||
Line 2,641: | Line 2,833: | ||
[[category: #rule of three]] | [[category: #rule of three]] | ||
[[comment: ⅓÷¼=⅕÷X]] | [[comment: ⅓÷¼=⅕÷X]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{2}{3}:\frac{3}{5}=\frac{1}{4}:X</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #rule of three]] | ||
+ | [[comment: ⅔÷⅗=¼÷X]] | ||
}}</div></div><br> | }}</div></div><br> | ||
Line 2,653: | Line 2,850: | ||
[[category: #rule of three]] | [[category: #rule of three]] | ||
[[comment: ⅔÷⁴/₉=⁴/₁₃÷X]] | [[comment: ⅔÷⁴/₉=⁴/₁₃÷X]] | ||
+ | }}</div></div><br> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(\frac{2}{5}\sdot\frac{3}{4}\right):\left(\frac{3}{7}\sdot\frac{5}{6}\right)=\left(\frac{4}{5}\sdot\frac{5}{8}\right):X</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #rule of three]] | ||
+ | [[comment: (⅖·¾)÷(³/₇·⅚)=(⅘·⅝)÷X]] | ||
}}</div></div><br> | }}</div></div><br> | ||
Line 2,717: | Line 2,920: | ||
}}</div></div><br> | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\sqrt{144}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #root[0] ]] | ||
+ | [[comment: √144]] | ||
+ | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle\sqrt{225}</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\sqrt{225}</math><div class="mw-collapsible-content"> | ||
{{#annotask: | {{#annotask: | ||
Line 2,756: | Line 2,964: | ||
[[category: #root[0] ]] | [[category: #root[0] ]] | ||
[[comment: √824464]] | [[comment: √824464]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\sqrt{973182}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #root[0] ]] | ||
+ | [[comment: √973182]] | ||
}}</div></div><br> | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle\sqrt{5499025}</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\sqrt{5499025}</math><div class="mw-collapsible-content"> | ||
Line 3,733: | Line 3,946: | ||
[[category: #S+R equal N]] | [[category: #S+R equal N]] | ||
[[comment: ½x²+5x=28]] | [[comment: ½x²+5x=28]] | ||
+ | }}</div></div> | ||
+ | <br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{1}{3}x^2+3x=30</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #S+R equal N]] | ||
+ | [[comment: ⅓x²+3x=30]] | ||
}}</div></div> | }}</div></div> | ||
<br> | <br> | ||
Line 3,756: | Line 3,975: | ||
}}</div></div> | }}</div></div> | ||
<br> | <br> | ||
− | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle3x^2+21=10x</math><div class="mw-collapsible-content"> | |
− | === bx+c=ax² === | + | {{#annotask: |
− | + | [[category: #S+N equal R]] | |
− | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle bx+c=ax^2</math><div class="mw-collapsible-content"> | + | [[comment: 3x²+21=10x]] |
+ | }}</div></div> | ||
+ | <br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\frac{1}{3}x^2+21=10x</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #S+N equal R]] | ||
+ | [[comment: ⅓x²+21=10x]] | ||
+ | }}</div></div> | ||
+ | <br> | ||
+ | |||
+ | === bx+c=ax² === | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle bx+c=ax^2</math><div class="mw-collapsible-content"> | ||
{{#annotask: | {{#annotask: | ||
[[category: #R+N equal S]] | [[category: #R+N equal S]] | ||
Line 4,005: | Line 4,236: | ||
[[comment: x²+3x=n²]] | [[comment: x²+3x=n²]] | ||
}}</div></div><br> | }}</div></div><br> | ||
− | |||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle x^2-6x=n^2</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle x^2-6x=n^2</math><div class="mw-collapsible-content"> | ||
{{#annotask: | {{#annotask: | ||
Line 4,011: | Line 4,241: | ||
[[comment: x²-6x=n²]] | [[comment: x²-6x=n²]] | ||
}}</div></div><br> | }}</div></div><br> | ||
− | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle x-x^2=n^2</math><div class="mw-collapsible-content"> | |
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x-x²=n²]] | ||
+ | }}</div></div><br> | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle x^2+10x+20=n^2</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle x^2+10x+20=n^2</math><div class="mw-collapsible-content"> | ||
{{#annotask: | {{#annotask: | ||
Line 4,017: | Line 4,251: | ||
[[comment: x²+10x+20=n²]] | [[comment: x²+10x+20=n²]] | ||
}}</div></div><br> | }}</div></div><br> | ||
− | |||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle x^2-8x-30=n^2</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle x^2-8x-30=n^2</math><div class="mw-collapsible-content"> | ||
{{#annotask: | {{#annotask: | ||
Line 4,023: | Line 4,256: | ||
[[comment: x²-8x-30=n²]] | [[comment: x²-8x-30=n²]] | ||
}}</div></div><br> | }}</div></div><br> | ||
− | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle 8x+109-x^2=n^2</math><div class="mw-collapsible-content"> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | <div class="mw-collapsible mw-collapsed"> | ||
{{#annotask: | {{#annotask: | ||
− | [[category: # | + | [[category: #indeterminate equation]] |
− | [[comment: | + | [[comment: 8x+109-x²=n²]] |
}}</div></div><br> | }}</div></div><br> | ||
− | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle 2x+49-x^2=n^2</math><div class="mw-collapsible-content"> | |
− | |||
− | |||
− | |||
− | |||
− | <div class="mw-collapsible mw-collapsed"> | ||
{{#annotask: | {{#annotask: | ||
− | [[category: # | + | [[category: #indeterminate equation]] |
− | [[comment: | + | [[comment: 2x+49-x²=n²]] |
}}</div></div><br> | }}</div></div><br> | ||
− | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle 10x-8-x^2=n^2</math><div class="mw-collapsible-content"> |
{{#annotask: | {{#annotask: | ||
− | [[category: # | + | [[category: #indeterminate equation]] |
− | [[comment: | + | [[comment: 10x-8-x²=n²]] |
}}</div></div><br> | }}</div></div><br> | ||
− | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle 260-6x-x^2=n^2</math><div class="mw-collapsible-content"> | |
− | Examples | + | {{#annotask: |
− | + | [[category: #indeterminate equation]] | |
− | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(2\sdot4\right)+\left(3\sdot4\right)+\left(5\sdot4\right)=10\sdot4</math><div class="mw-collapsible-content"> | + | [[comment: 260-6x-x²=n²]] |
− | {{#annotask: | + | }}</div></div><br> |
− | [[category: #Elements II-1]] | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\begin{cases}\scriptstyle x^2+x=n^2\\\scriptstyle x^2+2x=m^2\end{cases}</math><div class="mw-collapsible-content"> |
− | [[comment: 4,2+3+5]] | + | {{#annotask: |
− | }}</div></div><br> | + | [[category: #indeterminate equation]] |
− | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(2\sdot10\right)+\left(3\sdot10\right)+\left(5\sdot10\right)+\left(2\sdot10\right)=12\sdot10</math><div class="mw-collapsible-content"> | + | [[comment: x²+x=n²,x²+2x=m²]] |
− | {{#annotask: | + | }}</div></div><br> |
− | [[category: #Elements II-1]] | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\begin{cases}\scriptstyle x^2+x=n^2\\\scriptstyle x^2+3x=m^2\end{cases}</math><div class="mw-collapsible-content"> |
− | [[comment: 10,2+3+5+2]] | + | {{#annotask: |
− | }}</div></div><br> | + | [[category: #indeterminate equation]] |
− | + | [[comment: x²+x=n²,x²+3x=m²]] | |
− | ==== Elements II-2 ==== | + | }}</div></div><br> |
− | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\begin{cases}\scriptstyle x^2-2x=n^2\\\scriptstyle x^2-3x=m^2\end{cases}</math><div class="mw-collapsible-content"> | |
− | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\sum_{k=1}^n \left[\left(\sum_{i=1}^n a_i\right)\sdot a_k\right]=\left(\sum_{i=1}^n a_i\right)^2</math><div class="mw-collapsible-content"> | + | {{#annotask: |
− | {{#annotask: | + | [[category: #indeterminate equation]] |
− | [[category: #Elements II-2]] | + | [[comment: x²-2x=n²,x²-3x=m²]] |
− | [[comment: ∑ₖ((∑ᵢaᵢ)·aₖ)=(∑ᵢaᵢ)²]] | + | }}</div></div><br> |
− | }}</div></div><br> | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\begin{cases}\scriptstyle x^2+x=n^2\\\scriptstyle x^2-x=m^2\end{cases}</math><div class="mw-collapsible-content"> |
− | + | {{#annotask: | |
− | Examples | + | [[category: #indeterminate equation]] |
− | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(7\sdot10\right)+\left(3\sdot10\right)=10^2</math><div class="mw-collapsible-content"> | + | [[comment: x²+x=n²,x²-x=m²]] |
− | {{#annotask: | + | }}</div></div><br> |
− | [[category: #Elements II-2]] | + | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\begin{cases}\scriptstyle x^2+2x=n^2\\\scriptstyle x^2-3x=m^2\end{cases}</math><div class="mw-collapsible-content"> |
− | [[comment: 10,7+3]] | + | {{#annotask: |
− | }}</div></div><br> | + | [[category: #indeterminate equation]] |
− | + | [[comment: x²+2x=n²,x²-3x=m²]] | |
− | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(3\sdot12\right)+\left(4\sdot12\right)+\left(5\sdot12\right)=12^2</math><div class="mw-collapsible-content"> | + | }}</div></div><br> |
− | {{#annotask: | + | <div class="mw-collapsible mw-collapsed"> |
− | [[category: #Elements II-2]] | + | <math>\scriptstyle\begin{cases}\scriptstyle 3-x^2=n^2\\\scriptstyle 2+x^2=m^2\end{cases}</math><div class="mw-collapsible-content"> |
− | [[comment: 12,3+4+5]] | + | {{#annotask: |
− | }}</div></div><br> | + | [[category: #indeterminate equation]] |
− | + | [[comment: 3-x²=n²,2+x²=m²]] | |
− | ==== Elements II-3 ==== | + | }}</div></div><br> |
− | + | <div class="mw-collapsible mw-collapsed"> | |
− | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(a+b\right)\sdot b=\left(a\sdot b\right)+b^2</math><div class="mw-collapsible-content"> | + | <math>\scriptstyle\begin{cases}\scriptstyle 10-x^2=n^2\\\scriptstyle 20+x^2=m^2\end{cases}</math><div class="mw-collapsible-content"> |
− | {{#annotask: | + | {{#annotask: |
− | [[category: #Elements II-3]] | + | [[category: #indeterminate equation]] |
− | [[comment: (a+b)·b=(a·b)+b²]] | + | [[comment: 10-x²=n²,20-x²=m²]] |
− | }}</div></div><br> | + | }}</div></div><br> |
− | + | <div class="mw-collapsible mw-collapsed"> | |
− | Examples | + | <math>\scriptstyle\begin{cases}\scriptstyle 20+x^2=n^2\\\scriptstyle 30+x^2=m^2\end{cases}</math><div class="mw-collapsible-content"> |
− | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle10\sdot3=\left(3\sdot7\right)+3^2</math><div class="mw-collapsible-content"> | + | {{#annotask: |
− | {{#annotask: | + | [[category: #indeterminate equation]] |
− | [[category: #Elements II-3]] | + | [[comment: 20+x²=n²,30+x²=m²]] |
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle 10+x^2=n^2\\\scriptstyle 10-x^2=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: 10+x²=n²,10-x²=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\begin{cases}\scriptstyle x+x^2=n^2\\\scriptstyle x-x^2=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x+x²=n²,x-x²=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle 8x+x^2=n^2\\\scriptstyle 2x-x^2=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: 8x+x²=n²,2x-x²=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle x^2+2x=n^2\\\scriptstyle x^2+2x+3\sqrt{x^2+2x}=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²+2x=n²,x²+2x+3√(x²+2x)=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle x^2+3x=n^2\\\scriptstyle x^2+3x+6\sqrt{x^2+3x}=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²+3x=n²,x²+3x+6√(x²+3x)=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle x^2+2x=n^2\\\scriptstyle x^2+2x+\sqrt{x^2+2x}=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²+2x=n²,x²+2x+√(x²+2x)=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle x^2+4x=n^2\\\scriptstyle x^2+4x+2\sqrt{x^2+4x}=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²+4x=n²,x²+4x+2√(x²+4x)=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle x^2-4x=n^2\\\scriptstyle x^2-4x+2\sqrt{x^2-4x}=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²-4x=n²,x²-4x-2√(x²-4x)=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle x^2-5=n^2\\\scriptstyle x^2-5+\sqrt{x^2-5}=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²-5=n²,x²-5+√(x²-5)=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle x^2-2x=n^2\\\scriptstyle x^2-2x+\sqrt{x^2-2x}=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²-2x=n²,x²-2x+√(x²-2x)=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle x^2+x=n^2\\\scriptstyle x^2+1=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²+x=n²,x²+1=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle x^2+x+1=n^2\\\scriptstyle x^2+2x+2=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²+x+1=n²,x²+2x+2=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle x^2+4x=n^2\\\scriptstyle x^2-\left(2x+1\right)=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²+4x=n²,x²-(2x+1)=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle x^2+3x+1=n^2\\\scriptstyle x^2-\left(3x-2\right)=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²+3x+1=n²,x²-(3x-2)=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle x^2-\left(x-1\right)=n^2\\\scriptstyle x^2-\left(1-x\right)=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²-(x-1)=n²,x²-(1-x)=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | <math>\scriptstyle\begin{cases}\scriptstyle x^2+\left(2-x\right)=n^2\\\scriptstyle x^2-\left(3-x\right)=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²+(2-x)=n²,x²-(3-x)=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle x^2+y^2=n^2</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²+y²=n²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\begin{cases}\scriptstyle x^2-y=n^2\\\scriptstyle x^2-1\frac{1}{2}y=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²-y=n²,x²-1½y=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\begin{cases}\scriptstyle 49+x=n^2\\\scriptstyle 49+2x=m^2\end{cases}</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: 49+x=n²,49+2x=m²]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle x^2+1=10x-8</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #indeterminate equation]] | ||
+ | [[comment: x²+1=10x-8]] | ||
+ | }}</div></div><br> | ||
+ | |||
+ | == Euclid == | ||
+ | |||
+ | === Elements - Introduction === | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed">common notions<div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #Elements-Introduction]] | ||
+ | [[comment: a=b,a-c=b-c]] | ||
+ | }}</div></div><br> | ||
+ | |||
+ | === Elements II === | ||
+ | |||
+ | ==== Elements II-1 ==== | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed">proposition<div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #Elements II-1]] | ||
+ | [[comment: definition]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle a\sdot\left(\sum_{i=1}^n b_i\right)=\sum_{i=1}^n \left(a\sdot b_i\right)</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #Elements II-1]] | ||
+ | [[comment: a·∑bᵢ=∑(a·bᵢ)]] | ||
+ | }}</div></div><br> | ||
+ | |||
+ | Examples | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(2\sdot4\right)+\left(3\sdot4\right)+\left(5\sdot4\right)=10\sdot4</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #Elements II-1]] | ||
+ | [[comment: 4,2+3+5]] | ||
+ | }}</div></div><br> | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(2\sdot10\right)+\left(3\sdot10\right)+\left(5\sdot10\right)+\left(2\sdot10\right)=12\sdot10</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #Elements II-1]] | ||
+ | [[comment: 10,2+3+5+2]] | ||
+ | }}</div></div><br> | ||
+ | |||
+ | ==== Elements II-2 ==== | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\sum_{k=1}^n \left[\left(\sum_{i=1}^n a_i\right)\sdot a_k\right]=\left(\sum_{i=1}^n a_i\right)^2</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #Elements II-2]] | ||
+ | [[comment: ∑ₖ((∑ᵢaᵢ)·aₖ)=(∑ᵢaᵢ)²]] | ||
+ | }}</div></div><br> | ||
+ | |||
+ | Examples | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(7\sdot10\right)+\left(3\sdot10\right)=10^2</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #Elements II-2]] | ||
+ | [[comment: 10,7+3]] | ||
+ | }}</div></div><br> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(3\sdot12\right)+\left(4\sdot12\right)+\left(5\sdot12\right)=12^2</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #Elements II-2]] | ||
+ | [[comment: 12,3+4+5]] | ||
+ | }}</div></div><br> | ||
+ | |||
+ | ==== Elements II-3 ==== | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle\left(a+b\right)\sdot b=\left(a\sdot b\right)+b^2</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #Elements II-3]] | ||
+ | [[comment: (a+b)·b=(a·b)+b²]] | ||
+ | }}</div></div><br> | ||
+ | |||
+ | Examples | ||
+ | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle10\sdot3=\left(3\sdot7\right)+3^2</math><div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #Elements II-3]] | ||
[[comment: 10,3+7]] | [[comment: 10,3+7]] | ||
}}</div></div><br> | }}</div></div><br> | ||
Line 4,266: | Line 4,676: | ||
[[category: #Elements V-15]] | [[category: #Elements V-15]] | ||
[[comment: (n·a)÷(n·b)=a÷b]] | [[comment: (n·a)÷(n·b)=a÷b]] | ||
+ | }}</div></div><br> | ||
+ | |||
+ | === Elements VII === | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed">Elements VII-11<div class="mw-collapsible-content"> | ||
+ | {{#annotask: | ||
+ | [[category: #Elements VII-11]] | ||
+ | [[comment: a÷b=c÷d→(c-a)÷(d-b)]] | ||
}}</div></div><br> | }}</div></div><br> | ||
Latest revision as of 09:18, 13 July 2024
Contents
[hide]- 1 Addition
- 2 Subtraction
- 3 Doubling
- 4 Halving
- 5 Multiplication
- 5.1 units by units
- 5.2 units by tens
- 5.3 units by hundreds
- 5.4 tens by tens
- 5.5 tens by hundreds
- 5.6 tens by thousands
- 5.7 hundreds by hundreds
- 5.8 hundreds by thousands
- 5.9 units by tens and hundreds
- 5.10 tens by tens and hundreds
- 5.11 tens and hundreds by tens and hundreds
- 5.12 tens by units and tens
- 5.13 units by units and tens
- 5.14 units and tens by units and tens
- 5.15 tens and hundreds by units and tens
- 5.16 units by units, tens and hundreds
- 5.17 units and tens by units, tens and hundreds
- 5.18 units, tens and hundreds by units, tens and hundreds
- 5.19 Word Problems
- 5.20 Permutations
- 6 Squaring
- 7 Cubing
- 8 Division
- 9 Fractions
- 9.1 fraction of fraction
- 9.2 division of fractions
- 9.2.1 fractions by fractions
- 9.2.2 fractions by integers
- 9.2.3 fractions by integers and fractions
- 9.2.4 fractions of fractions by fractions
- 9.2.5 fractions of fractions by integers
- 9.2.6 fractions of fractions by integers and fractions
- 9.2.7 integers by fractions
- 9.2.8 integers by integers and fractions
- 9.2.9 integers and fractions by fractions
- 9.2.10 integers and fractions by integers
- 9.2.11 integers and fractions by integers and fractions
- 9.2.12 Combined Division
- 9.3 multiplication of fractions
- 9.3.1 multiplication of integer and fraction by integer and fraction
- 9.3.2 multiplication of fraction by fraction
- 9.3.3 multiplication of fraction of fraction by fraction of fraction
- 9.3.4 multiplication of fraction of integer and fraction by fraction of integer and fraction
- 9.3.5 multiplication of fraction by integer or integer by fraction
- 9.3.6 multiplication of fraction of fraction of integer by fraction of fraction of integer
- 9.3.7 multiplication of sexagesimal fractions
- 9.4 addition of fractions
- 9.5 subtraction of fractions
- 10 Rule of Three
- 11 Roots
- 12 Multiplication of Algebraic Species
- 13 Linear Equation
- 14 Quadratic Equation
- 15 Cubic Equation
- 16 Biquadratic Equation
- 17 indeterminate equation
- 18 Euclid
Addition
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

Subtraction
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]WP
Doubling
[Expand]

[Expand]

[Expand]

[Expand]

Halving
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

Multiplication
units by units
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

units by tens
[Expand]

[Expand]

units by hundreds
[Expand]

[Expand]

tens by tens
[Expand]

[Expand]

tens by hundreds
[Expand]

[Expand]

[Expand]

[Expand]

tens by thousands
[Expand]

hundreds by hundreds
[Expand]

hundreds by thousands
[Expand]

units by tens and hundreds
[Expand]

[Expand]

tens by tens and hundreds
[Expand]

tens and hundreds by tens and hundreds
[Expand]

[Expand]

tens by units and tens
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

units by units and tens
[Expand]

units and tens by units and tens
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

tens and hundreds by units and tens
[Expand]

units by units, tens and hundreds
[Expand]

units and tens by units, tens and hundreds
[Expand]

[Expand]

units, tens and hundreds by units, tens and hundreds
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

Word Problems
[Expand]Word Problems
Permutations
[Expand]2!
[Expand]3!
[Expand]4!
[Expand]5!
[Expand]6!
[Expand]7!
[Expand]8!
Squaring
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

Cubing
[Expand]

[Expand]

Division
Smaller by greater
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

Greater by smaller
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]WP
Fractions
fraction of fraction
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

division of fractions
fractions by fractions
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]![\scriptstyle\frac{2}{3}\div\left[\frac{9}{10}+\left(\frac{5}{8}\sdot\frac{1}{10}\right)\right]](/mediawiki/images/math/d/d/2/dd244e384f4422a279cba9537b8b864b.png)
![\scriptstyle\frac{2}{3}\div\left[\frac{9}{10}+\left(\frac{5}{8}\sdot\frac{1}{10}\right)\right]](/mediawiki/images/math/d/d/2/dd244e384f4422a279cba9537b8b864b.png)
[Expand]

[Expand]

[Expand]![\scriptstyle\left[\frac{2}{8}+\left(\frac{1}{2}\sdot\frac{1}{8}\right)\right]\div\frac{9}{10}](/mediawiki/images/math/3/b/0/3b05212d5998323229d3e3d7d2023235.png)
![\scriptstyle\left[\frac{2}{8}+\left(\frac{1}{2}\sdot\frac{1}{8}\right)\right]\div\frac{9}{10}](/mediawiki/images/math/3/b/0/3b05212d5998323229d3e3d7d2023235.png)
[Expand]![\scriptstyle\left[\frac{4}{9}+\left(\frac{1}{2}\sdot\frac{1}{9}\right)\right]\div\left[\frac{7}{8}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)\right]](/mediawiki/images/math/8/a/1/8a111107fc608a5ae9f5d99f4f2ec182.png)
![\scriptstyle\left[\frac{4}{9}+\left(\frac{1}{2}\sdot\frac{1}{9}\right)\right]\div\left[\frac{7}{8}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)\right]](/mediawiki/images/math/8/a/1/8a111107fc608a5ae9f5d99f4f2ec182.png)
[Expand]![\scriptstyle\left[\frac{3}{4}+\left(\frac{2}{3}\sdot\frac{1}{4}\right)\right]\div\left[\left[\frac{4}{9}+\left(\frac{5}{6}\sdot\frac{1}{9}\right)\right]\sdot\frac{2}{3}\right]](/mediawiki/images/math/a/0/b/a0bf54c86fb59c4b365c62aeb651544d.png)
![\scriptstyle\left[\frac{3}{4}+\left(\frac{2}{3}\sdot\frac{1}{4}\right)\right]\div\left[\left[\frac{4}{9}+\left(\frac{5}{6}\sdot\frac{1}{9}\right)\right]\sdot\frac{2}{3}\right]](/mediawiki/images/math/a/0/b/a0bf54c86fb59c4b365c62aeb651544d.png)
fractions by integers
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]![\scriptstyle\left[\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\div5](/mediawiki/images/math/f/3/5/f35247a33fdf18d5e069da1dd98835fe.png)
![\scriptstyle\left[\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\div5](/mediawiki/images/math/f/3/5/f35247a33fdf18d5e069da1dd98835fe.png)
[Expand]![\scriptstyle\left[\frac{10}{11}+\left(\frac{3}{5}\sdot\frac{1}{11}\right)\right]\div63](/mediawiki/images/math/9/b/0/9b0959a66fde808099c9dfefd633a000.png)
![\scriptstyle\left[\frac{10}{11}+\left(\frac{3}{5}\sdot\frac{1}{11}\right)\right]\div63](/mediawiki/images/math/9/b/0/9b0959a66fde808099c9dfefd633a000.png)
[Expand]

fractions by integers and fractions
[Expand]

[Expand]

[Expand]

[Expand]![\scriptstyle\frac{4}{5}\div\left[3+\frac{6}{7}+\left(\frac{1}{2}\sdot\frac{1}{7}\right)\right]](/mediawiki/images/math/5/7/b/57b7577cb03e6f202ca23aa4cd5ee3c2.png)
![\scriptstyle\frac{4}{5}\div\left[3+\frac{6}{7}+\left(\frac{1}{2}\sdot\frac{1}{7}\right)\right]](/mediawiki/images/math/5/7/b/57b7577cb03e6f202ca23aa4cd5ee3c2.png)
[Expand]

[Expand]![\scriptstyle\left[\frac{7}{8}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)\right]\div\left(3+\frac{1}{2}\right)](/mediawiki/images/math/a/3/1/a31d77578b5729c94a448c48170007e1.png)
![\scriptstyle\left[\frac{7}{8}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)\right]\div\left(3+\frac{1}{2}\right)](/mediawiki/images/math/a/3/1/a31d77578b5729c94a448c48170007e1.png)
fractions of fractions by fractions
[Expand]

[Expand]![\scriptstyle\left(\frac{3}{4}\sdot\frac{1}{5}\right)\div\left[\frac{3}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]](/mediawiki/images/math/e/2/6/e2635a129664cacdecfb3781e889b1cc.png)
![\scriptstyle\left(\frac{3}{4}\sdot\frac{1}{5}\right)\div\left[\frac{3}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]](/mediawiki/images/math/e/2/6/e2635a129664cacdecfb3781e889b1cc.png)
[Expand]

fractions of fractions by integers
[Expand]

fractions of fractions by integers and fractions
[Expand]

[Expand]![\scriptstyle\left(\frac{9}{10}\sdot\frac{1}{13}\right)\div\left[6+\frac{3}{8}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)\right]](/mediawiki/images/math/4/5/1/451bee3fb541e81d2eb989739ad43640.png)
![\scriptstyle\left(\frac{9}{10}\sdot\frac{1}{13}\right)\div\left[6+\frac{3}{8}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)\right]](/mediawiki/images/math/4/5/1/451bee3fb541e81d2eb989739ad43640.png)
[Expand]

integers by fractions
[Expand]

[Expand]

integers by integers and fractions
[Expand]

[Expand]

[Expand]

[Expand]

integers and fractions by fractions
[Expand]

integers and fractions by integers
[Expand]

integers and fractions by integers and fractions
[Expand]

[Expand]

[Expand]

[Expand]

Combined Division
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

multiplication of fractions
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]![\scriptstyle\left[\frac{1}{5}+\left(\frac{1}{2}\sdot\frac{1}{5}\right)\right]\times12](/mediawiki/images/math/3/8/d/38d26a85ea2cfc361c9a8a6775ab9e5b.png)
![\scriptstyle\left[\frac{1}{5}+\left(\frac{1}{2}\sdot\frac{1}{5}\right)\right]\times12](/mediawiki/images/math/3/8/d/38d26a85ea2cfc361c9a8a6775ab9e5b.png)
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]![\scriptstyle\left[\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\times\left(6+\frac{3}{5}\right)](/mediawiki/images/math/7/3/9/739d727bdcdfb4c09f59bba584125807.png)
![\scriptstyle\left[\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\times\left(6+\frac{3}{5}\right)](/mediawiki/images/math/7/3/9/739d727bdcdfb4c09f59bba584125807.png)
[Expand]

[Expand]

[Expand]![\scriptstyle\frac{3}{4}\times\left[5+\frac{7}{8}+\left(\frac{1}{6}\sdot\frac{1}{8}\right)\right]](/mediawiki/images/math/f/f/e/ffe897c7d6abf4185f4ffb7c669d3ce1.png)
![\scriptstyle\frac{3}{4}\times\left[5+\frac{7}{8}+\left(\frac{1}{6}\sdot\frac{1}{8}\right)\right]](/mediawiki/images/math/f/f/e/ffe897c7d6abf4185f4ffb7c669d3ce1.png)
[Expand]![\scriptstyle\frac{5}{6}\times\left[8+\left(\frac{5}{7}\sdot\frac{1}{9}\right)\right]](/mediawiki/images/math/e/5/f/e5f35b79321220d2b908e6078c54c785.png)
![\scriptstyle\frac{5}{6}\times\left[8+\left(\frac{5}{7}\sdot\frac{1}{9}\right)\right]](/mediawiki/images/math/e/5/f/e5f35b79321220d2b908e6078c54c785.png)
[Expand]![\scriptstyle\frac{2}{3}\times\left[9+\left(\frac{3}{7}\sdot\frac{4}{5}\right)\right]](/mediawiki/images/math/2/d/c/2dc322874e98819947f2acb35aeaa716.png)
![\scriptstyle\frac{2}{3}\times\left[9+\left(\frac{3}{7}\sdot\frac{4}{5}\right)\right]](/mediawiki/images/math/2/d/c/2dc322874e98819947f2acb35aeaa716.png)
[Expand]![\scriptstyle\left[\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\times\left[8+\frac{5}{7}+\left(\frac{1}{5}\sdot\frac{1}{7}\right)\right]](/mediawiki/images/math/b/7/f/b7f33a721f2cc7aa748520999089bce0.png)
![\scriptstyle\left[\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\times\left[8+\frac{5}{7}+\left(\frac{1}{5}\sdot\frac{1}{7}\right)\right]](/mediawiki/images/math/b/7/f/b7f33a721f2cc7aa748520999089bce0.png)
[Expand]![\scriptstyle\left[\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\times\left[9+\left(\frac{1}{6}\sdot\frac{1}{7}\right)\right]](/mediawiki/images/math/9/6/a/96a8fdd4fab69e58c8a676b813acc28d.png)
![\scriptstyle\left[\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\times\left[9+\left(\frac{1}{6}\sdot\frac{1}{7}\right)\right]](/mediawiki/images/math/9/6/a/96a8fdd4fab69e58c8a676b813acc28d.png)
[Expand]![\scriptstyle\left[\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\times\left[8+\left(\frac{9}{10}\sdot\frac{10}{11}\right)\right]](/mediawiki/images/math/5/4/3/5438e11adee878a909d719e2c39d2c62.png)
![\scriptstyle\left[\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\times\left[8+\left(\frac{9}{10}\sdot\frac{10}{11}\right)\right]](/mediawiki/images/math/5/4/3/5438e11adee878a909d719e2c39d2c62.png)
[Expand]![\scriptstyle\left(\frac{2}{3}\sdot\frac{1}{7}\right)\times\left[6+\frac{9}{10}+\left(\frac{4}{5}\sdot\frac{1}{10}\right)\right]](/mediawiki/images/math/4/c/0/4c07b959f75b107b9a85f4431149a854.png)
![\scriptstyle\left(\frac{2}{3}\sdot\frac{1}{7}\right)\times\left[6+\frac{9}{10}+\left(\frac{4}{5}\sdot\frac{1}{10}\right)\right]](/mediawiki/images/math/4/c/0/4c07b959f75b107b9a85f4431149a854.png)
[Expand]![\scriptstyle\left(\frac{3}{4}\sdot\frac{1}{9}\right)\times\left[8+\left(\frac{5}{6}\sdot\frac{1}{7}\right)\right]](/mediawiki/images/math/d/f/e/dfe926298d98140474daec8e3ef52953.png)
![\scriptstyle\left(\frac{3}{4}\sdot\frac{1}{9}\right)\times\left[8+\left(\frac{5}{6}\sdot\frac{1}{7}\right)\right]](/mediawiki/images/math/d/f/e/dfe926298d98140474daec8e3ef52953.png)
[Expand]

[Expand]![\scriptstyle\left(\frac{3}{4}+\frac{4}{5}\right)\times\left[6+\frac{7}{8}+\left(\frac{1}{6}\sdot\frac{1}{8}\right)\right]](/mediawiki/images/math/1/d/e/1de58acd88921baf39cf31c2001274d7.png)
![\scriptstyle\left(\frac{3}{4}+\frac{4}{5}\right)\times\left[6+\frac{7}{8}+\left(\frac{1}{6}\sdot\frac{1}{8}\right)\right]](/mediawiki/images/math/1/d/e/1de58acd88921baf39cf31c2001274d7.png)
[Expand]![\scriptstyle\left(\frac{3}{4}+\frac{4}{5}\right)\times\left[6+\left(\frac{1}{7}\sdot\frac{1}{8}\right)\right]](/mediawiki/images/math/a/0/8/a08d4959f373c7157cdca395fae419df.png)
![\scriptstyle\left(\frac{3}{4}+\frac{4}{5}\right)\times\left[6+\left(\frac{1}{7}\sdot\frac{1}{8}\right)\right]](/mediawiki/images/math/a/0/8/a08d4959f373c7157cdca395fae419df.png)
[Expand]

[Expand]![\scriptstyle\left[2+\frac{3}{5}+\left(\frac{1}{2}\sdot\frac{1}{5}\right)\right]\times\left[4+\frac{7}{9}+\left(\frac{6}{8}\sdot\frac{1}{9}\right)\right]](/mediawiki/images/math/1/9/4/194f683354067debfa65dc8b696fb706.png)
![\scriptstyle\left[2+\frac{3}{5}+\left(\frac{1}{2}\sdot\frac{1}{5}\right)\right]\times\left[4+\frac{7}{9}+\left(\frac{6}{8}\sdot\frac{1}{9}\right)\right]](/mediawiki/images/math/1/9/4/194f683354067debfa65dc8b696fb706.png)
[Expand]

[Expand]![\scriptstyle\left[2+\frac{3}{4}+\frac{4}{5}+\left(\frac{1}{2}\sdot\frac{1}{5}\right)\right]\times\left[6+\frac{6}{7}+\frac{9}{10}+\left(\frac{3}{8}\sdot\frac{1}{10}\right)\right]](/mediawiki/images/math/c/a/5/ca56729c1329c7234d2a3479bc3a4064.png)
![\scriptstyle\left[2+\frac{3}{4}+\frac{4}{5}+\left(\frac{1}{2}\sdot\frac{1}{5}\right)\right]\times\left[6+\frac{6}{7}+\frac{9}{10}+\left(\frac{3}{8}\sdot\frac{1}{10}\right)\right]](/mediawiki/images/math/c/a/5/ca56729c1329c7234d2a3479bc3a4064.png)
[Expand]![\scriptstyle\left[2+\frac{1}{3}+\frac{1}{5}+\left(\frac{1}{7}\sdot\frac{1}{8}\right)\right]\times\left[3+\frac{1}{9}+\frac{1}{10}+\left(\frac{1}{6}\sdot\frac{1}{11}\right)\right]](/mediawiki/images/math/2/6/7/2674bbca8a320135a18e2259c80cbc80.png)
![\scriptstyle\left[2+\frac{1}{3}+\frac{1}{5}+\left(\frac{1}{7}\sdot\frac{1}{8}\right)\right]\times\left[3+\frac{1}{9}+\frac{1}{10}+\left(\frac{1}{6}\sdot\frac{1}{11}\right)\right]](/mediawiki/images/math/2/6/7/2674bbca8a320135a18e2259c80cbc80.png)
[Expand]

[Expand]![\scriptstyle\left[\frac{6}{7}+\left(\frac{1}{3}\sdot\frac{1}{7}\right)\right]\times\frac{8}{9}](/mediawiki/images/math/f/9/7/f97a19d668836f661a08889fa51e299c.png)
![\scriptstyle\left[\frac{6}{7}+\left(\frac{1}{3}\sdot\frac{1}{7}\right)\right]\times\frac{8}{9}](/mediawiki/images/math/f/9/7/f97a19d668836f661a08889fa51e299c.png)
[Expand]![\scriptstyle\left[\frac{1}{11}+\left(\frac{1}{2}\sdot\frac{1}{11}\right)\right]\times\frac{12}{13}](/mediawiki/images/math/b/3/1/b3108e0fc4b9e093af19900912f9dbb5.png)
![\scriptstyle\left[\frac{1}{11}+\left(\frac{1}{2}\sdot\frac{1}{11}\right)\right]\times\frac{12}{13}](/mediawiki/images/math/b/3/1/b3108e0fc4b9e093af19900912f9dbb5.png)
[Expand]

[Expand]![\scriptstyle\left[\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\times\left[\frac{9}{10}+\left(\frac{7}{8}\sdot\frac{1}{10}\right)\right]](/mediawiki/images/math/5/7/8/5781c5536b7840a71d28f8ec3a3dcbdc.png)
![\scriptstyle\left[\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\times\left[\frac{9}{10}+\left(\frac{7}{8}\sdot\frac{1}{10}\right)\right]](/mediawiki/images/math/5/7/8/5781c5536b7840a71d28f8ec3a3dcbdc.png)
[Expand]![\scriptstyle\left(\frac{3}{4}+\frac{4}{5}\right)\times\left[\frac{10}{11}+\left(\frac{8}{9}\sdot\frac{1}{11}\right)\right]](/mediawiki/images/math/d/d/e/dde0eb7bd402c0e93bfdac59da3033c0.png)
![\scriptstyle\left(\frac{3}{4}+\frac{4}{5}\right)\times\left[\frac{10}{11}+\left(\frac{8}{9}\sdot\frac{1}{11}\right)\right]](/mediawiki/images/math/d/d/e/dde0eb7bd402c0e93bfdac59da3033c0.png)
[Expand]

[Expand]![\scriptstyle\left[\frac{2}{3}+\frac{5}{7}+\left(\frac{1}{6}\sdot\frac{1}{7}\right)\right]\times\left[\frac{4}{5}+\frac{9}{10}+\left(\frac{8}{9}\sdot\frac{1}{10}\right)\right]](/mediawiki/images/math/8/9/c/89c984e9a2e8e2ca9db67ecc3cae4f93.png)
![\scriptstyle\left[\frac{2}{3}+\frac{5}{7}+\left(\frac{1}{6}\sdot\frac{1}{7}\right)\right]\times\left[\frac{4}{5}+\frac{9}{10}+\left(\frac{8}{9}\sdot\frac{1}{10}\right)\right]](/mediawiki/images/math/8/9/c/89c984e9a2e8e2ca9db67ecc3cae4f93.png)
[Expand]![\scriptstyle\left[\frac{3}{4}+\frac{4}{5}+\left(\frac{1}{2}\sdot\frac{1}{7}\right)\right]\times\left[\frac{7}{8}+\frac{8}{9}+\left(\frac{1}{3}\sdot\frac{1}{10}\right)\right]](/mediawiki/images/math/b/a/6/ba6de07c368359996ed40f8c820d9fd7.png)
![\scriptstyle\left[\frac{3}{4}+\frac{4}{5}+\left(\frac{1}{2}\sdot\frac{1}{7}\right)\right]\times\left[\frac{7}{8}+\frac{8}{9}+\left(\frac{1}{3}\sdot\frac{1}{10}\right)\right]](/mediawiki/images/math/b/a/6/ba6de07c368359996ed40f8c820d9fd7.png)
[Expand]

[Expand]

[Expand]![\scriptstyle\left[\left[\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\sdot8\right]\times\left[\left[\frac{8}{9}+\left(\frac{1}{5}\sdot\frac{1}{9}\right)\right]\sdot12\right]](/mediawiki/images/math/1/6/0/1600fa727c35dec4f3c4ad5a9afdabb3.png)
![\scriptstyle\left[\left[\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\sdot8\right]\times\left[\left[\frac{8}{9}+\left(\frac{1}{5}\sdot\frac{1}{9}\right)\right]\sdot12\right]](/mediawiki/images/math/1/6/0/1600fa727c35dec4f3c4ad5a9afdabb3.png)
[Expand]![\scriptstyle\left[\left(\frac{2}{3}+\frac{3}{5}\right)\sdot8\right]\times\left[\left(\frac{6}{7}+\frac{5}{9}\right)\sdot4\right]](/mediawiki/images/math/5/1/a/51a5f2c5f34e3fd50333a6ab3d89872a.png)
![\scriptstyle\left[\left(\frac{2}{3}+\frac{3}{5}\right)\sdot8\right]\times\left[\left(\frac{6}{7}+\frac{5}{9}\right)\sdot4\right]](/mediawiki/images/math/5/1/a/51a5f2c5f34e3fd50333a6ab3d89872a.png)
[Expand]![\scriptstyle\left[\frac{3}{4}\sdot\left[5+\frac{6}{7}+\left(\frac{1}{6}\sdot\frac{1}{7}\right)\right]\right]\times\left[\frac{7}{8}\sdot\left[3+\frac{3}{10}+\left(\frac{1}{9}\sdot\frac{1}{10}\right)\right]\right]](/mediawiki/images/math/e/d/2/ed219e497be7d0951c74faa4e0f2f7d7.png)
![\scriptstyle\left[\frac{3}{4}\sdot\left[5+\frac{6}{7}+\left(\frac{1}{6}\sdot\frac{1}{7}\right)\right]\right]\times\left[\frac{7}{8}\sdot\left[3+\frac{3}{10}+\left(\frac{1}{9}\sdot\frac{1}{10}\right)\right]\right]](/mediawiki/images/math/e/d/2/ed219e497be7d0951c74faa4e0f2f7d7.png)
[Expand]![\scriptstyle\left[\frac{1}{2}\sdot\left(2+\frac{1}{5}+\frac{1}{6}\right)\right]\times\left[\frac{1}{7}\sdot\left(3+\frac{1}{8}+\frac{1}{9}\right)\right]](/mediawiki/images/math/0/0/4/004e700b6414538394bc342a34fa598e.png)
![\scriptstyle\left[\frac{1}{2}\sdot\left(2+\frac{1}{5}+\frac{1}{6}\right)\right]\times\left[\frac{1}{7}\sdot\left(3+\frac{1}{8}+\frac{1}{9}\right)\right]](/mediawiki/images/math/0/0/4/004e700b6414538394bc342a34fa598e.png)
[Expand]![\scriptstyle\left[\frac{6}{7}\sdot\left[5+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\right]\times\left[\frac{7}{8}\sdot\left[3+\left(\frac{3}{5}\sdot\frac{1}{9}\right)\right]\right]](/mediawiki/images/math/5/f/5/5f53be0be7aff5af1d6d8efd389472f7.png)
![\scriptstyle\left[\frac{6}{7}\sdot\left[5+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\right]\times\left[\frac{7}{8}\sdot\left[3+\left(\frac{3}{5}\sdot\frac{1}{9}\right)\right]\right]](/mediawiki/images/math/5/f/5/5f53be0be7aff5af1d6d8efd389472f7.png)
[Expand]![\scriptstyle\left[\left(\frac{2}{3}\sdot\frac{1}{5}\right)\sdot\left(8+\frac{1}{6}\right)\right]\times\left[\left(\frac{5}{7}\sdot\frac{1}{8}\right)\sdot\left(6+\frac{1}{9}\right)\right]](/mediawiki/images/math/9/a/0/9a08cbb7c870dbf982d1d194761990fe.png)
![\scriptstyle\left[\left(\frac{2}{3}\sdot\frac{1}{5}\right)\sdot\left(8+\frac{1}{6}\right)\right]\times\left[\left(\frac{5}{7}\sdot\frac{1}{8}\right)\sdot\left(6+\frac{1}{9}\right)\right]](/mediawiki/images/math/9/a/0/9a08cbb7c870dbf982d1d194761990fe.png)
[Expand]![\scriptstyle\left[\left(\frac{3}{4}\sdot\frac{1}{5}\right)\sdot\left[6+\frac{3}{11}+\left(\frac{5}{6}\sdot\frac{1}{11}\right)\right]\right]\times\left[\left(\frac{5}{7}\sdot\frac{1}{9}\right)\sdot\left[12+\frac{6}{13}+\left(\frac{3}{8}\sdot\frac{1}{13}\right)\right]\right]](/mediawiki/images/math/c/2/2/c22d68f0da0fd67a0798ae11bd0dcc60.png)
![\scriptstyle\left[\left(\frac{3}{4}\sdot\frac{1}{5}\right)\sdot\left[6+\frac{3}{11}+\left(\frac{5}{6}\sdot\frac{1}{11}\right)\right]\right]\times\left[\left(\frac{5}{7}\sdot\frac{1}{9}\right)\sdot\left[12+\frac{6}{13}+\left(\frac{3}{8}\sdot\frac{1}{13}\right)\right]\right]](/mediawiki/images/math/c/2/2/c22d68f0da0fd67a0798ae11bd0dcc60.png)
[Expand]![\scriptstyle\left[\left(\frac{2}{3}\sdot\frac{1}{5}\right)\sdot\left(8+\frac{3}{6}+\frac{4}{7}\right)\right]\times\left[\left(\frac{4}{9}\sdot\frac{1}{10}\right)\sdot\left(18+\frac{6}{11}+\frac{5}{8}\right)\right]](/mediawiki/images/math/9/7/d/97d9dfda0018e2b0241f56adec4bb691.png)
![\scriptstyle\left[\left(\frac{2}{3}\sdot\frac{1}{5}\right)\sdot\left(8+\frac{3}{6}+\frac{4}{7}\right)\right]\times\left[\left(\frac{4}{9}\sdot\frac{1}{10}\right)\sdot\left(18+\frac{6}{11}+\frac{5}{8}\right)\right]](/mediawiki/images/math/9/7/d/97d9dfda0018e2b0241f56adec4bb691.png)
[Expand]![\scriptstyle\left[\left(\frac{2}{3}+\frac{3}{5}\right)\sdot\left(9+\frac{5}{6}\right)\right]\times\left[\left(\frac{3}{7}+\frac{7}{8}\right)\sdot\left(12+\frac{7}{9}\right)\right]](/mediawiki/images/math/b/b/8/bb89089481d6771d64a646f1b2604e99.png)
![\scriptstyle\left[\left(\frac{2}{3}+\frac{3}{5}\right)\sdot\left(9+\frac{5}{6}\right)\right]\times\left[\left(\frac{3}{7}+\frac{7}{8}\right)\sdot\left(12+\frac{7}{9}\right)\right]](/mediawiki/images/math/b/b/8/bb89089481d6771d64a646f1b2604e99.png)
[Expand]![\scriptstyle\left[\left(\frac{2}{3}+\frac{3}{5}\right)\sdot\left(7+\frac{3}{4}+\frac{3}{5}\right)\right]\times\left[\left(\frac{5}{6}+\frac{5}{8}\right)\sdot\left(4+\frac{5}{6}+\frac{9}{10}\right)\right]](/mediawiki/images/math/b/4/9/b497ed9da24bcbdf311fe9fdd582187b.png)
![\scriptstyle\left[\left(\frac{2}{3}+\frac{3}{5}\right)\sdot\left(7+\frac{3}{4}+\frac{3}{5}\right)\right]\times\left[\left(\frac{5}{6}+\frac{5}{8}\right)\sdot\left(4+\frac{5}{6}+\frac{9}{10}\right)\right]](/mediawiki/images/math/b/4/9/b497ed9da24bcbdf311fe9fdd582187b.png)
[Expand]![\scriptstyle\left[\left[\frac{3}{5}+\left(\frac{1}{2}\sdot\frac{1}{5}\right)\right]\sdot\left[4+\frac{1}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\right]\times\left[\left[\frac{6}{7}+\left(\frac{2}{5}\sdot\frac{1}{7}\right)\right]\sdot\left[3+\frac{5}{11}+\left(\frac{5}{8}\sdot\frac{1}{11}\right)\right]\right]](/mediawiki/images/math/7/4/6/746250ab2b55cc29768a628fb82506bc.png)
![\scriptstyle\left[\left[\frac{3}{5}+\left(\frac{1}{2}\sdot\frac{1}{5}\right)\right]\sdot\left[4+\frac{1}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\right]\times\left[\left[\frac{6}{7}+\left(\frac{2}{5}\sdot\frac{1}{7}\right)\right]\sdot\left[3+\frac{5}{11}+\left(\frac{5}{8}\sdot\frac{1}{11}\right)\right]\right]](/mediawiki/images/math/7/4/6/746250ab2b55cc29768a628fb82506bc.png)
[Expand]![\scriptstyle\left[\left(\frac{2}{3}\sdot\frac{1}{5}\right)\sdot\left[8+\left(\frac{1}{4}\sdot\frac{1}{6}\right)\right]\right]\times\left[\left(\frac{3}{7}\sdot\frac{1}{8}\right)\sdot\left[12+\left(\frac{1}{2}\sdot\frac{1}{13}\right)\right]\right]](/mediawiki/images/math/b/d/3/bd39d71c41ffa67e9904a9b88747ee73.png)
![\scriptstyle\left[\left(\frac{2}{3}\sdot\frac{1}{5}\right)\sdot\left[8+\left(\frac{1}{4}\sdot\frac{1}{6}\right)\right]\right]\times\left[\left(\frac{3}{7}\sdot\frac{1}{8}\right)\sdot\left[12+\left(\frac{1}{2}\sdot\frac{1}{13}\right)\right]\right]](/mediawiki/images/math/b/d/3/bd39d71c41ffa67e9904a9b88747ee73.png)
[Expand]![\scriptstyle\left[\left(\frac{3}{5}\sdot5\right)+\left(\frac{5}{6}\sdot7\right)\right]\times\left[\left(\frac{2}{3}\sdot4\right)+\left(\frac{1}{2}\sdot5\right)\right]](/mediawiki/images/math/9/e/f/9efa063bb7945eb7d7c881b90eeae9c3.png)
![\scriptstyle\left[\left(\frac{3}{5}\sdot5\right)+\left(\frac{5}{6}\sdot7\right)\right]\times\left[\left(\frac{2}{3}\sdot4\right)+\left(\frac{1}{2}\sdot5\right)\right]](/mediawiki/images/math/9/e/f/9efa063bb7945eb7d7c881b90eeae9c3.png)
[Expand]![\scriptstyle\left[\left(\frac{3}{5}\sdot3\right)+\left[\frac{3}{4}\sdot\left(2+\frac{2}{3}\right)\right]\right]\times\left[\left(\frac{4}{5}\sdot2\right)+\left[\frac{5}{7}\sdot\left(3+\frac{1}{2}\right)\right]\right]](/mediawiki/images/math/a/c/9/ac90cb543446e9ef209b88692cd48240.png)
![\scriptstyle\left[\left(\frac{3}{5}\sdot3\right)+\left[\frac{3}{4}\sdot\left(2+\frac{2}{3}\right)\right]\right]\times\left[\left(\frac{4}{5}\sdot2\right)+\left[\frac{5}{7}\sdot\left(3+\frac{1}{2}\right)\right]\right]](/mediawiki/images/math/a/c/9/ac90cb543446e9ef209b88692cd48240.png)
[Expand]![\scriptstyle\left[\left(3+\frac{1}{2}\right)+\left(5+\frac{1}{3}\right)\right]\times\left[\left(4+\frac{3}{4}\right)+\left(6+\frac{4}{5}\right)\right]](/mediawiki/images/math/d/c/e/dce671800feba457094cdfcc90b5a6f2.png)
![\scriptstyle\left[\left(3+\frac{1}{2}\right)+\left(5+\frac{1}{3}\right)\right]\times\left[\left(4+\frac{3}{4}\right)+\left(6+\frac{4}{5}\right)\right]](/mediawiki/images/math/d/c/e/dce671800feba457094cdfcc90b5a6f2.png)
[Expand]![\scriptstyle\left[2+\left[\left(\frac{2}{3}+\frac{3}{4}\right)\sdot3\right]+\left[\left(\frac{4}{5}+\frac{5}{6}\right)\sdot4\right]\right]\times\left[1+\left[\left(\frac{3}{5}+\frac{1}{2}\right)\sdot2\right]+\left[\left(\frac{3}{11}+\frac{{\color{red}{9}}}{10}\right)\sdot3\right]\right]](/mediawiki/images/math/3/2/2/3221fe7e28f1eae00361068722aba0b0.png)
![\scriptstyle\left[2+\left[\left(\frac{2}{3}+\frac{3}{4}\right)\sdot3\right]+\left[\left(\frac{4}{5}+\frac{5}{6}\right)\sdot4\right]\right]\times\left[1+\left[\left(\frac{3}{5}+\frac{1}{2}\right)\sdot2\right]+\left[\left(\frac{3}{11}+\frac{{\color{red}{9}}}{10}\right)\sdot3\right]\right]](/mediawiki/images/math/3/2/2/3221fe7e28f1eae00361068722aba0b0.png)
[Expand]![\scriptstyle\left[2+\left[\left(\frac{1}{2}\sdot\frac{1}{5}\right)\sdot3\right]+\left[\left(\frac{2}{3}\sdot\frac{1}{6}\right)\sdot5\right]\right]\times\left[3+\left[\left(\frac{1}{4}\sdot\frac{1}{7}\right)\sdot4\right]+\left[\left(\frac{5}{6}\sdot\frac{1}{8}\right)\sdot2\right]\right]](/mediawiki/images/math/c/0/b/c0bc2ad5bc456adaef584d86297ba6fa.png)
![\scriptstyle\left[2+\left[\left(\frac{1}{2}\sdot\frac{1}{5}\right)\sdot3\right]+\left[\left(\frac{2}{3}\sdot\frac{1}{6}\right)\sdot5\right]\right]\times\left[3+\left[\left(\frac{1}{4}\sdot\frac{1}{7}\right)\sdot4\right]+\left[\left(\frac{5}{6}\sdot\frac{1}{8}\right)\sdot2\right]\right]](/mediawiki/images/math/c/0/b/c0bc2ad5bc456adaef584d86297ba6fa.png)
[Expand]![\scriptstyle\left[\left[\frac{3}{4}\sdot\left(5+\frac{1}{2}\right)\right]+\left[\frac{5}{6}\sdot\left(3+\frac{2}{5}\right)\right]\right]\times\left[\left[\frac{2}{3}\sdot\left(4+\frac{1}{7}\right)\right]+\left[\frac{3}{8}\sdot\left(2+\frac{3}{11}\right)\right]\right]](/mediawiki/images/math/f/4/c/f4cf264503d356d541b3d10d3eb20358.png)
![\scriptstyle\left[\left[\frac{3}{4}\sdot\left(5+\frac{1}{2}\right)\right]+\left[\frac{5}{6}\sdot\left(3+\frac{2}{5}\right)\right]\right]\times\left[\left[\frac{2}{3}\sdot\left(4+\frac{1}{7}\right)\right]+\left[\frac{3}{8}\sdot\left(2+\frac{3}{11}\right)\right]\right]](/mediawiki/images/math/f/4/c/f4cf264503d356d541b3d10d3eb20358.png)
[Expand]![\scriptstyle\left[\left(\frac{3}{4}\sdot\frac{4}{5}\right)+\left(\frac{5}{6}\sdot\frac{6}{7}\right)+\left(\frac{7}{8}\sdot\frac{8}{9}\right)\right]\times\left[\left(\frac{2}{3}\sdot\frac{3}{4}\right)+\left(\frac{4}{5}\sdot\frac{5}{6}\right)+\left(\frac{6}{7}\sdot\frac{7}{8}\right)\right]](/mediawiki/images/math/9/d/7/9d786b3054d18765a05eec5c1fbeed6c.png)
![\scriptstyle\left[\left(\frac{3}{4}\sdot\frac{4}{5}\right)+\left(\frac{5}{6}\sdot\frac{6}{7}\right)+\left(\frac{7}{8}\sdot\frac{8}{9}\right)\right]\times\left[\left(\frac{2}{3}\sdot\frac{3}{4}\right)+\left(\frac{4}{5}\sdot\frac{5}{6}\right)+\left(\frac{6}{7}\sdot\frac{7}{8}\right)\right]](/mediawiki/images/math/9/d/7/9d786b3054d18765a05eec5c1fbeed6c.png)
[Expand]![\scriptstyle\left[\left[\left(\frac{2}{5}\sdot\frac{5}{6}\right)+\frac{1}{2}\right]\sdot3\right]\times\left[\left[\left(\frac{2}{3}\sdot\frac{6}{7}\right)+\frac{3}{5}\right]\sdot10\right]](/mediawiki/images/math/f/5/6/f563fe0da1c5a32c4b4bb95452e54bc5.png)
![\scriptstyle\left[\left[\left(\frac{2}{5}\sdot\frac{5}{6}\right)+\frac{1}{2}\right]\sdot3\right]\times\left[\left[\left(\frac{2}{3}\sdot\frac{6}{7}\right)+\frac{3}{5}\right]\sdot10\right]](/mediawiki/images/math/f/5/6/f563fe0da1c5a32c4b4bb95452e54bc5.png)
[Expand]![\scriptstyle\left[\left(\frac{2}{3}\sdot\frac{6}{9}\right)\sdot\left(6+\frac{3}{4}\right)\right]\times\left[\left(\frac{3}{4}\sdot\frac{8}{9}\right)\sdot\left(2+\frac{2}{5}\right)\right]](/mediawiki/images/math/f/a/4/fa4daab5fb3c530e96d4f4be1abe9aec.png)
![\scriptstyle\left[\left(\frac{2}{3}\sdot\frac{6}{9}\right)\sdot\left(6+\frac{3}{4}\right)\right]\times\left[\left(\frac{3}{4}\sdot\frac{8}{9}\right)\sdot\left(2+\frac{2}{5}\right)\right]](/mediawiki/images/math/f/a/4/fa4daab5fb3c530e96d4f4be1abe9aec.png)
[Expand]![\scriptstyle\left[\left(\frac{3}{5}\sdot\frac{4}{7}\right)\sdot\left[3+\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\right]\times\left[\left(\frac{2}{3}\sdot\frac{5}{6}\right)\sdot\left[6+\frac{7}{8}+\left(\frac{2}{3}\sdot\frac{1}{8}\right)\right]\right]](/mediawiki/images/math/2/5/5/2550673eb8dc78a12727d2d5dc0b5427.png)
![\scriptstyle\left[\left(\frac{3}{5}\sdot\frac{4}{7}\right)\sdot\left[3+\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]\right]\times\left[\left(\frac{2}{3}\sdot\frac{5}{6}\right)\sdot\left[6+\frac{7}{8}+\left(\frac{2}{3}\sdot\frac{1}{8}\right)\right]\right]](/mediawiki/images/math/2/5/5/2550673eb8dc78a12727d2d5dc0b5427.png)
[Expand]![\scriptstyle\left[3+\left(\frac{3}{5}\sdot\frac{5}{6}\right)\right]\times\left[4+\left(\frac{2}{7}\sdot\frac{3}{8}\right)\right]](/mediawiki/images/math/c/c/6/cc62007c7e8709f4fde684e0c6ff424c.png)
![\scriptstyle\left[3+\left(\frac{3}{5}\sdot\frac{5}{6}\right)\right]\times\left[4+\left(\frac{2}{7}\sdot\frac{3}{8}\right)\right]](/mediawiki/images/math/c/c/6/cc62007c7e8709f4fde684e0c6ff424c.png)
[Expand]![\scriptstyle\left[2+\left(\frac{3}{7}\sdot\frac{3}{5}\right)+\frac{2}{3}\right]\times\left[3+\left(\frac{3}{4}\sdot\frac{5}{6}\right)+\frac{1}{2}\right]](/mediawiki/images/math/b/a/0/ba08b2bb8f498724f17c160ad860406d.png)
![\scriptstyle\left[2+\left(\frac{3}{7}\sdot\frac{3}{5}\right)+\frac{2}{3}\right]\times\left[3+\left(\frac{3}{4}\sdot\frac{5}{6}\right)+\frac{1}{2}\right]](/mediawiki/images/math/b/a/0/ba08b2bb8f498724f17c160ad860406d.png)
[Expand]![\scriptstyle\left[\left(\frac{3}{4}\sdot\frac{3}{5}\right)\sdot\left[2+\left(\frac{3}{{\color{red}{7}}}\sdot\frac{5}{6}\right)\right]\right]\times\left[\left(\frac{1}{2}\sdot\frac{3}{4}\right)\sdot\left[3+\left(\frac{2}{5}\sdot\frac{4}{9}\right)\right]\right]](/mediawiki/images/math/1/5/2/152a8c6ac1567adaf8da7c7a05dcaa70.png)
![\scriptstyle\left[\left(\frac{3}{4}\sdot\frac{3}{5}\right)\sdot\left[2+\left(\frac{3}{{\color{red}{7}}}\sdot\frac{5}{6}\right)\right]\right]\times\left[\left(\frac{1}{2}\sdot\frac{3}{4}\right)\sdot\left[3+\left(\frac{2}{5}\sdot\frac{4}{9}\right)\right]\right]](/mediawiki/images/math/1/5/2/152a8c6ac1567adaf8da7c7a05dcaa70.png)
[Expand]

[Expand]![\scriptstyle\left(3+\frac{1}{4}\right)\times\left[5+\left(\frac{1}{6}\sdot\frac{1}{7}\right)\right]](/mediawiki/images/math/a/e/2/ae2eb1d97e60b3daefe628a8a4333262.png)
![\scriptstyle\left(3+\frac{1}{4}\right)\times\left[5+\left(\frac{1}{6}\sdot\frac{1}{7}\right)\right]](/mediawiki/images/math/a/e/2/ae2eb1d97e60b3daefe628a8a4333262.png)
[Expand]![\scriptstyle\left[\frac{3}{4}\sdot\left(3+\frac{1}{3}\right)\right]\times\left(\frac{6}{7}\sdot5\right)](/mediawiki/images/math/1/a/c/1ac4f88a6d78fe1ca6efd685e4d7383f.png)
![\scriptstyle\left[\frac{3}{4}\sdot\left(3+\frac{1}{3}\right)\right]\times\left(\frac{6}{7}\sdot5\right)](/mediawiki/images/math/1/a/c/1ac4f88a6d78fe1ca6efd685e4d7383f.png)
[Expand]![\scriptstyle\left[\left[\frac{4}{7}\sdot\left(\frac{5}{9}\sdot\frac{1}{8}\right)\right]\right]\times\left[\left(\frac{3}{5}\sdot\frac{1}{9}\right)\sdot\left(\frac{2}{3}\sdot5\right)\right]](/mediawiki/images/math/8/e/1/8e1455aa8265c18c2b288e543c19aede.png)
![\scriptstyle\left[\left[\frac{4}{7}\sdot\left(\frac{5}{9}\sdot\frac{1}{8}\right)\right]\right]\times\left[\left(\frac{3}{5}\sdot\frac{1}{9}\right)\sdot\left(\frac{2}{3}\sdot5\right)\right]](/mediawiki/images/math/8/e/1/8e1455aa8265c18c2b288e543c19aede.png)
multiplication of integer and fraction by integer and fraction
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

multiplication of fraction by fraction
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

multiplication of fraction of fraction by fraction of fraction
[Expand]

[Expand]

multiplication of fraction of integer and fraction by fraction of integer and fraction
[Expand]![\scriptstyle\left[\frac{7}{8}\sdot\left(5+\frac{1}{3}\right)\right]\times\left[\frac{3}{5}\sdot\left(6+\frac{1}{4}\right)\right]](/mediawiki/images/math/3/c/4/3c44a996a735d16f077b6f5636f1fd0a.png)
![\scriptstyle\left[\frac{7}{8}\sdot\left(5+\frac{1}{3}\right)\right]\times\left[\frac{3}{5}\sdot\left(6+\frac{1}{4}\right)\right]](/mediawiki/images/math/3/c/4/3c44a996a735d16f077b6f5636f1fd0a.png)
[Expand]![\scriptstyle\left[\frac{2}{3}\sdot\left(5+\frac{5}{6}\right)\right]\times\left[\frac{5}{7}\sdot\left(8+\frac{4}{9}\right)\right]](/mediawiki/images/math/0/b/f/0bf7045fc49295b61cbc8cb9708697cd.png)
![\scriptstyle\left[\frac{2}{3}\sdot\left(5+\frac{5}{6}\right)\right]\times\left[\frac{5}{7}\sdot\left(8+\frac{4}{9}\right)\right]](/mediawiki/images/math/0/b/f/0bf7045fc49295b61cbc8cb9708697cd.png)
multiplication of fraction by integer or integer by fraction
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

multiplication of fraction of fraction of integer by fraction of fraction of integer
[Expand]![\scriptstyle\left[\left(\frac{3}{4}\sdot\frac{1}{5}\right)\sdot8\right]\times\left[\left(\frac{5}{6}\sdot\frac{1}{7}\right)\sdot15\right]](/mediawiki/images/math/0/5/f/05f9355bfe0fc140027cb8b0dd02c1ec.png)
![\scriptstyle\left[\left(\frac{3}{4}\sdot\frac{1}{5}\right)\sdot8\right]\times\left[\left(\frac{5}{6}\sdot\frac{1}{7}\right)\sdot15\right]](/mediawiki/images/math/0/5/f/05f9355bfe0fc140027cb8b0dd02c1ec.png)
[Expand]![\scriptstyle\left[\left(\frac{2}{3}\sdot\frac{3}{4}\right)\sdot6\right]\times\left[\left(\frac{3}{4}\sdot\frac{4}{7}\right)\sdot8\right]](/mediawiki/images/math/b/b/5/bb5eed5e9b25166de1f36bb9904c0f62.png)
![\scriptstyle\left[\left(\frac{2}{3}\sdot\frac{3}{4}\right)\sdot6\right]\times\left[\left(\frac{3}{4}\sdot\frac{4}{7}\right)\sdot8\right]](/mediawiki/images/math/b/b/5/bb5eed5e9b25166de1f36bb9904c0f62.png)
[Expand]

multiplication of sexagesimal fractions
[Expand]

[Expand]

addition of fractions
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]![\scriptstyle\left[\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]+\left(\frac{7}{8}+\frac{8}{9}\right)](/mediawiki/images/math/4/c/4/4c4b65fa69c305cfcc4cb5e5a2e49e9e.png)
![\scriptstyle\left[\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]+\left(\frac{7}{8}+\frac{8}{9}\right)](/mediawiki/images/math/4/c/4/4c4b65fa69c305cfcc4cb5e5a2e49e9e.png)
[Expand]![\scriptstyle\left[\frac{5}{11}+\left(\frac{3}{4}\sdot\frac{1}{11}\right)\right]+\left[\frac{10}{13}+\left(\frac{8}{9}\sdot\frac{1}{13}\right)\right]](/mediawiki/images/math/1/1/1/111cfe95df77cdc573d3d8c3a15e0491.png)
![\scriptstyle\left[\frac{5}{11}+\left(\frac{3}{4}\sdot\frac{1}{11}\right)\right]+\left[\frac{10}{13}+\left(\frac{8}{9}\sdot\frac{1}{13}\right)\right]](/mediawiki/images/math/1/1/1/111cfe95df77cdc573d3d8c3a15e0491.png)
[Expand]

[Expand]

[Expand]

[Expand]![\scriptstyle\left[8+\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]+\left(6+\frac{5}{7}+\frac{10}{11}\right)](/mediawiki/images/math/5/5/2/5526b3773d4250a1b558ca73bb605f6c.png)
![\scriptstyle\left[8+\frac{5}{6}+\left(\frac{1}{2}\sdot\frac{1}{6}\right)\right]+\left(6+\frac{5}{7}+\frac{10}{11}\right)](/mediawiki/images/math/5/5/2/5526b3773d4250a1b558ca73bb605f6c.png)
[Expand]

[Expand]

[Expand]

[Expand]![\scriptstyle\left[\frac{3}{4}\sdot\left(5+\frac{1}{2}\right)\right]+\left[\frac{5}{6}\sdot\left(6+\frac{1}{3}\right)\right]](/mediawiki/images/math/3/8/c/38c6011f1c3aa05525cc220db0b08a58.png)
![\scriptstyle\left[\frac{3}{4}\sdot\left(5+\frac{1}{2}\right)\right]+\left[\frac{5}{6}\sdot\left(6+\frac{1}{3}\right)\right]](/mediawiki/images/math/3/8/c/38c6011f1c3aa05525cc220db0b08a58.png)
[Expand]![\scriptstyle\left[2+\frac{3}{8}+\left(\frac{2}{4}\sdot\frac{1}{8}\right)\right]+\frac{4}{5}+\left[\frac{6}{7}+\left(\frac{3}{8}\sdot\frac{1}{7}\right)\right]](/mediawiki/images/math/1/0/f/10fe63879aceb251d84882daff3b8503.png)
![\scriptstyle\left[2+\frac{3}{8}+\left(\frac{2}{4}\sdot\frac{1}{8}\right)\right]+\frac{4}{5}+\left[\frac{6}{7}+\left(\frac{3}{8}\sdot\frac{1}{7}\right)\right]](/mediawiki/images/math/1/0/f/10fe63879aceb251d84882daff3b8503.png)
[Expand]![\scriptstyle\left(\frac{2}{5}\sdot\frac{2}{9}\sdot2\right)+\left[\left[\frac{1}{8}+\left(\frac{2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left[\frac{1}{4}+\left(\frac{2}{6}\sdot\frac{1}{4}\right)\right]\right]](/mediawiki/images/math/e/2/5/e2537ec7557a116d21369f6f61831a30.png)
![\scriptstyle\left(\frac{2}{5}\sdot\frac{2}{9}\sdot2\right)+\left[\left[\frac{1}{8}+\left(\frac{2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left[\frac{1}{4}+\left(\frac{2}{6}\sdot\frac{1}{4}\right)\right]\right]](/mediawiki/images/math/e/2/5/e2537ec7557a116d21369f6f61831a30.png)
subtraction of fractions
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]![\scriptstyle\left[\left[\frac{8}{9}+\left(\frac{3}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\right)\right]\sdot\left(\frac{5}{6}\sdot3\right)\right]-\left[\left[\frac{3}{4}+\left(\frac{2}{5}\sdot\frac{1}{4}\right)\right]\sdot\frac{2}{9}\right]](/mediawiki/images/math/d/6/d/d6d3383d94cc0c6f1b9eabdd1be5711c.png)
![\scriptstyle\left[\left[\frac{8}{9}+\left(\frac{3}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\right)\right]\sdot\left(\frac{5}{6}\sdot3\right)\right]-\left[\left[\frac{3}{4}+\left(\frac{2}{5}\sdot\frac{1}{4}\right)\right]\sdot\frac{2}{9}\right]](/mediawiki/images/math/d/6/d/d6d3383d94cc0c6f1b9eabdd1be5711c.png)
[Expand]![\scriptstyle\left[3+\frac{5}{9}+\left(\frac{3}{7}\sdot\frac{1}{9}\right)+\left(\frac{2}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]-\left[\frac{7}{9}+\left(\frac{5}{7}\sdot\frac{1}{9}\right)+\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]](/mediawiki/images/math/c/9/c/c9c6d9287898412880ce3955aec5dcbf.png)
![\scriptstyle\left[3+\frac{5}{9}+\left(\frac{3}{7}\sdot\frac{1}{9}\right)+\left(\frac{2}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]-\left[\frac{7}{9}+\left(\frac{5}{7}\sdot\frac{1}{9}\right)+\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]](/mediawiki/images/math/c/9/c/c9c6d9287898412880ce3955aec5dcbf.png)
Rule of Three
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]![\scriptstyle\left[\frac{3}{4}\sdot\left(3-\frac{1}{4}\right)\right]:\left[\frac{4}{5}\sdot\left(5-\frac{1}{5}\right)\right]=\left[\frac{5}{6}\sdot\left(6-\frac{1}{6}\right)\right]:X](/mediawiki/images/math/0/6/b/06b938d3936d7baec8744616f4c89a6b.png)
![\scriptstyle\left[\frac{3}{4}\sdot\left(3-\frac{1}{4}\right)\right]:\left[\frac{4}{5}\sdot\left(5-\frac{1}{5}\right)\right]=\left[\frac{5}{6}\sdot\left(6-\frac{1}{6}\right)\right]:X](/mediawiki/images/math/0/6/b/06b938d3936d7baec8744616f4c89a6b.png)
Roots
Extraction of Roots
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

Extraction of Cube Roots
[Expand]![\scriptstyle\sqrt[3]{\frac{8}{27}}](/mediawiki/images/math/4/b/8/4b82e09026615fc0ec7aa9b037739f7c.png)
![\scriptstyle\sqrt[3]{\frac{8}{27}}](/mediawiki/images/math/4/b/8/4b82e09026615fc0ec7aa9b037739f7c.png)
[Expand]![\scriptstyle\sqrt[3]{\frac{1}{5}}](/mediawiki/images/math/f/b/2/fb26d52f658e67321b9383ce42dd7084.png)
![\scriptstyle\sqrt[3]{\frac{1}{5}}](/mediawiki/images/math/f/b/2/fb26d52f658e67321b9383ce42dd7084.png)
[Expand]![\scriptstyle\sqrt[3]{\frac{1}{2}}](/mediawiki/images/math/3/7/d/37d8077abb00a82f2b7844e523ea4470.png)
![\scriptstyle\sqrt[3]{\frac{1}{2}}](/mediawiki/images/math/3/7/d/37d8077abb00a82f2b7844e523ea4470.png)
[Expand]![\scriptstyle\sqrt[3]{1+\frac{1}{2}}](/mediawiki/images/math/a/a/4/aa43fab9d4b2b4090452203972ea8cf1.png)
![\scriptstyle\sqrt[3]{1+\frac{1}{2}}](/mediawiki/images/math/a/a/4/aa43fab9d4b2b4090452203972ea8cf1.png)
[Expand]![\scriptstyle\sqrt[3]{2+\frac{1}{2}}](/mediawiki/images/math/2/1/b/21bb73f8e7e91638887f37289a16fa16.png)
![\scriptstyle\sqrt[3]{2+\frac{1}{2}}](/mediawiki/images/math/2/1/b/21bb73f8e7e91638887f37289a16fa16.png)
[Expand]![\scriptstyle\sqrt[3]{2+\frac{10}{27}}](/mediawiki/images/math/2/5/0/2502ba1789941bb08207b874b20e4ff6.png)
![\scriptstyle\sqrt[3]{2+\frac{10}{27}}](/mediawiki/images/math/2/5/0/2502ba1789941bb08207b874b20e4ff6.png)
[Expand]![\scriptstyle\sqrt[3]{3+\frac{3}{27}}](/mediawiki/images/math/c/b/e/cbe8600fe75f050c69dd902d601dd58c.png)
![\scriptstyle\sqrt[3]{3+\frac{3}{27}}](/mediawiki/images/math/c/b/e/cbe8600fe75f050c69dd902d601dd58c.png)
[Expand]![\scriptstyle\sqrt[3]{3+\frac{1}{4}}](/mediawiki/images/math/3/5/9/359c46cf0f610e5d6b77ea058a73a35f.png)
![\scriptstyle\sqrt[3]{3+\frac{1}{4}}](/mediawiki/images/math/3/5/9/359c46cf0f610e5d6b77ea058a73a35f.png)
[Expand]![\scriptstyle\sqrt[3]{10}](/mediawiki/images/math/9/d/f/9df29fc2932ecfc10526c2086beee64c.png)
![\scriptstyle\sqrt[3]{10}](/mediawiki/images/math/9/d/f/9df29fc2932ecfc10526c2086beee64c.png)
[Expand]![\scriptstyle\sqrt[3]{15}](/mediawiki/images/math/0/c/8/0c82b7d8e6efa71d3ec9075bc747ff5f.png)
![\scriptstyle\sqrt[3]{15}](/mediawiki/images/math/0/c/8/0c82b7d8e6efa71d3ec9075bc747ff5f.png)
[Expand]![\scriptstyle\sqrt[3]{10000}](/mediawiki/images/math/6/c/4/6c42e6b302b8432f7020b406fee3ccf7.png)
![\scriptstyle\sqrt[3]{10000}](/mediawiki/images/math/6/c/4/6c42e6b302b8432f7020b406fee3ccf7.png)
[Expand]![\scriptstyle\sqrt[3]{12167}](/mediawiki/images/math/a/b/c/abc38f531fb13e4a1ec9492e6194fa3a.png)
![\scriptstyle\sqrt[3]{12167}](/mediawiki/images/math/a/b/c/abc38f531fb13e4a1ec9492e6194fa3a.png)
[Expand]![\scriptstyle\sqrt[3]{571787}](/mediawiki/images/math/3/e/8/3e8cc95dfa131c676806e901de31e5fc.png)
![\scriptstyle\sqrt[3]{571787}](/mediawiki/images/math/3/e/8/3e8cc95dfa131c676806e901de31e5fc.png)
[Expand]![\scriptstyle\sqrt[3]{1072000}](/mediawiki/images/math/2/b/0/2b069db83734f1b9f13fe1d933e0f309.png)
![\scriptstyle\sqrt[3]{1072000}](/mediawiki/images/math/2/b/0/2b069db83734f1b9f13fe1d933e0f309.png)
[Expand]![\scriptstyle\sqrt[3]{12812904}](/mediawiki/images/math/0/7/a/07aafd0c5fd061d54bb34d4011050183.png)
![\scriptstyle\sqrt[3]{12812904}](/mediawiki/images/math/0/7/a/07aafd0c5fd061d54bb34d4011050183.png)
Approximation
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

Addition of Roots
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]![\scriptstyle\sqrt[3]{96}+\sqrt[3]{324}](/mediawiki/images/math/8/f/5/8f58716ec5d5049f48b1b6af09db62e2.png)
![\scriptstyle\sqrt[3]{96}+\sqrt[3]{324}](/mediawiki/images/math/8/f/5/8f58716ec5d5049f48b1b6af09db62e2.png)
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

Subtraction of Roots
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

Multiplication of Roots
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]![\scriptstyle3\times\sqrt[3]{8}](/mediawiki/images/math/1/3/2/1328cc433a8d6f068d82010e6cd86a87.png)
![\scriptstyle3\times\sqrt[3]{8}](/mediawiki/images/math/1/3/2/1328cc433a8d6f068d82010e6cd86a87.png)
[Expand]![\scriptstyle3\times\sqrt[3]{5}](/mediawiki/images/math/a/f/6/af6f3ea8e946c33bc42d18277529285f.png)
![\scriptstyle3\times\sqrt[3]{5}](/mediawiki/images/math/a/f/6/af6f3ea8e946c33bc42d18277529285f.png)
[Expand]![\scriptstyle\sqrt{4}\times\sqrt[3]{8}](/mediawiki/images/math/6/4/6/646c5ba2e5f167061f7a7ccea09fdf58.png)
![\scriptstyle\sqrt{4}\times\sqrt[3]{8}](/mediawiki/images/math/6/4/6/646c5ba2e5f167061f7a7ccea09fdf58.png)
[Expand]![\scriptstyle\sqrt{9}\times\sqrt[3]{8}](/mediawiki/images/math/4/c/f/4cf0598b07f1500dd82fd96f8e0f7c4b.png)
![\scriptstyle\sqrt{9}\times\sqrt[3]{8}](/mediawiki/images/math/4/c/f/4cf0598b07f1500dd82fd96f8e0f7c4b.png)
[Expand]![\scriptstyle\sqrt[3]{5}\times\sqrt[3]{6}](/mediawiki/images/math/1/8/a/18aa18babb93ca4eb54e701713e95aa6.png)
![\scriptstyle\sqrt[3]{5}\times\sqrt[3]{6}](/mediawiki/images/math/1/8/a/18aa18babb93ca4eb54e701713e95aa6.png)
[Expand]![\scriptstyle2\times\sqrt[4]{5}](/mediawiki/images/math/d/1/f/d1f0006d85c9885ba609dc92ea7557d6.png)
![\scriptstyle2\times\sqrt[4]{5}](/mediawiki/images/math/d/1/f/d1f0006d85c9885ba609dc92ea7557d6.png)
[Expand]![\scriptstyle\sqrt[3]{8}\times\sqrt[4]{16}](/mediawiki/images/math/b/e/2/be2421d68cb602563f762c6471b4910a.png)
![\scriptstyle\sqrt[3]{8}\times\sqrt[4]{16}](/mediawiki/images/math/b/e/2/be2421d68cb602563f762c6471b4910a.png)
[Expand]![\scriptstyle\sqrt[3]{3}\times\sqrt[4]{4}](/mediawiki/images/math/d/f/a/dfabf0bb07e1856908bb9477f615a484.png)
![\scriptstyle\sqrt[3]{3}\times\sqrt[4]{4}](/mediawiki/images/math/d/f/a/dfabf0bb07e1856908bb9477f615a484.png)
[Expand]![\scriptstyle\sqrt[4]{4}\times\sqrt[4]{7}](/mediawiki/images/math/2/c/4/2c4052b07cfd24ba0cf8c9519e3dcd0e.png)
![\scriptstyle\sqrt[4]{4}\times\sqrt[4]{7}](/mediawiki/images/math/2/c/4/2c4052b07cfd24ba0cf8c9519e3dcd0e.png)
Division of Roots
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]![\scriptstyle\sqrt{6}\div\sqrt[3]{10}](/mediawiki/images/math/9/a/0/9a0da3d2826409356d860ea699ebe6c3.png)
![\scriptstyle\sqrt{6}\div\sqrt[3]{10}](/mediawiki/images/math/9/a/0/9a0da3d2826409356d860ea699ebe6c3.png)
[Expand]![\scriptstyle\sqrt[3]{18}\div\sqrt[4]{10}](/mediawiki/images/math/b/2/c/b2cca0a5467cbf3de7b5c9bf4df59020.png)
![\scriptstyle\sqrt[3]{18}\div\sqrt[4]{10}](/mediawiki/images/math/b/2/c/b2cca0a5467cbf3de7b5c9bf4df59020.png)
Multiplication of Algebraic Species
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

Linear Equation
[Expand]![\scriptstyle bx=\sqrt[3]{c}](/mediawiki/images/math/4/e/c/4eced3ba1c8f51bf47cf911659b6e201.png)
![\scriptstyle bx=\sqrt[3]{c}](/mediawiki/images/math/4/e/c/4eced3ba1c8f51bf47cf911659b6e201.png)
[Expand]![\scriptstyle c=\sqrt[3]{bx}](/mediawiki/images/math/5/b/4/5b40a2184fb3c6324ff5fe2eedb9da0b.png)
![\scriptstyle c=\sqrt[3]{bx}](/mediawiki/images/math/5/b/4/5b40a2184fb3c6324ff5fe2eedb9da0b.png)
Quadratic Equation
ax²=bx
[Expand]squares equal roots 

[Expand]

[Expand]

[Expand]

ax²=c
[Expand]squares equal numbers 

[Expand]

[Expand]

[Expand]

bx=c
[Expand]roots equal numbers 

ax²+bx=c
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

ax²+c=bx
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

bx+c=ax²
[Expand]

[Expand]

Compound Quadratic Equations
[Expand]![\scriptstyle ax^2=\sqrt[3]{c}](/mediawiki/images/math/f/c/0/fc0033e1c190540235d4afbc47b31b11.png)
![\scriptstyle ax^2=\sqrt[3]{c}](/mediawiki/images/math/f/c/0/fc0033e1c190540235d4afbc47b31b11.png)
[Expand]![\scriptstyle c=\sqrt[3]{ax^2}](/mediawiki/images/math/f/7/6/f7617468fb35452327a7d2d5678e45f0.png)
![\scriptstyle c=\sqrt[3]{ax^2}](/mediawiki/images/math/f/7/6/f7617468fb35452327a7d2d5678e45f0.png)
[Expand]![\scriptstyle\left[x^2-\left(\frac{1}{3}x^2+2\right)\right]^2=x^2+24](/mediawiki/images/math/a/9/5/a957ce494441269eddb2735f8c5cdf54.png)
![\scriptstyle\left[x^2-\left(\frac{1}{3}x^2+2\right)\right]^2=x^2+24](/mediawiki/images/math/a/9/5/a957ce494441269eddb2735f8c5cdf54.png)
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]![\scriptstyle\left[x^2-\left(2\sqrt{x^2}+10\right)\right]^2=8x^2](/mediawiki/images/math/1/4/5/145c5c99f9bc23a17e6ee34a2c9df452.png)
![\scriptstyle\left[x^2-\left(2\sqrt{x^2}+10\right)\right]^2=8x^2](/mediawiki/images/math/1/4/5/145c5c99f9bc23a17e6ee34a2c9df452.png)
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

quadratic equation in two variables
[Expand]

quadratic equation in three variables
[Expand]

Cubic Equation
[Expand]![\scriptstyle ax^3=\sqrt[3]{c}](/mediawiki/images/math/a/6/4/a64e6eaeaf2d5f64610f741998d43d86.png)
![\scriptstyle ax^3=\sqrt[3]{c}](/mediawiki/images/math/a/6/4/a64e6eaeaf2d5f64610f741998d43d86.png)
Biquadratic Equation
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

indeterminate equation
[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]


[Expand]


[Expand]


[Expand]


[Expand]

[Expand]


[Expand]


[Expand]


[Expand]


[Expand]


[Expand]


[Expand]


[Expand]


[Expand]


[Expand]


[Expand]


[Expand]


[Expand]


[Expand]


[Expand]

[Expand]

[Expand]

[Expand]

Euclid
Elements - Introduction
[Expand]common notions
Elements II
Elements II-1
[Expand]proposition
[Expand]

Examples
[Expand]

[Expand]

Elements II-2
[Expand]![\scriptstyle\sum_{k=1}^n \left[\left(\sum_{i=1}^n a_i\right)\sdot a_k\right]=\left(\sum_{i=1}^n a_i\right)^2](/mediawiki/images/math/2/a/1/2a190390030d9c138d548197fab10837.png)
![\scriptstyle\sum_{k=1}^n \left[\left(\sum_{i=1}^n a_i\right)\sdot a_k\right]=\left(\sum_{i=1}^n a_i\right)^2](/mediawiki/images/math/2/a/1/2a190390030d9c138d548197fab10837.png)
Examples
[Expand]

[Expand]

Elements II-3
[Expand]

Examples
[Expand]

[Expand]

Elements II-4
[Expand]

Examples
[Expand]

[Expand]

Elements II-5
[Expand]![\scriptstyle\left[\frac{1}{2}\sdot\left(a+b\right)\right]^2=\left(b\sdot b\right)+\left[b-\left[\frac{1}{2}\sdot\left(a\sdot b\right)\right]\right]^2=\left(b\sdot b\right)+\left[\left[\frac{1}{2}\sdot\left(a\sdot b\right)\right]-a\right]^2](/mediawiki/images/math/c/6/e/c6e8ed78ec0a62f208b68c21c9ca9a2e.png)
![\scriptstyle\left[\frac{1}{2}\sdot\left(a+b\right)\right]^2=\left(b\sdot b\right)+\left[b-\left[\frac{1}{2}\sdot\left(a\sdot b\right)\right]\right]^2=\left(b\sdot b\right)+\left[\left[\frac{1}{2}\sdot\left(a\sdot b\right)\right]-a\right]^2](/mediawiki/images/math/c/6/e/c6e8ed78ec0a62f208b68c21c9ca9a2e.png)
Examples
[Expand]

[Expand]

Elements II-6
[Expand]![\scriptstyle\left[\left(a+b\right)\sdot b\right]+\left(\frac{1}{2}\sdot a\right)^2=\left[\left(\frac{1}{2}\sdot a\right)+b\right]^2](/mediawiki/images/math/a/0/b/a0b403dd8b7c15a5cb1dc47a5f8ca5bb.png)
![\scriptstyle\left[\left(a+b\right)\sdot b\right]+\left(\frac{1}{2}\sdot a\right)^2=\left[\left(\frac{1}{2}\sdot a\right)+b\right]^2](/mediawiki/images/math/a/0/b/a0b403dd8b7c15a5cb1dc47a5f8ca5bb.png)
Examples
[Expand]![\scriptstyle\left[\left(10+2\right)\sdot2\right]+\left(\frac{1}{2}\sdot10\right)^2=\left[\left(\frac{1}{2}\sdot10\right)+2\right]^2](/mediawiki/images/math/8/b/0/8b0bc2a2292912f618303ccedaba99f1.png)
![\scriptstyle\left[\left(10+2\right)\sdot2\right]+\left(\frac{1}{2}\sdot10\right)^2=\left[\left(\frac{1}{2}\sdot10\right)+2\right]^2](/mediawiki/images/math/8/b/0/8b0bc2a2292912f618303ccedaba99f1.png)
[Expand]![\scriptstyle\left[\left(12+4\right)\sdot4\right]+\left(\frac{1}{2}\sdot12\right)^2=\left[\left(\frac{1}{2}\sdot12\right)+4\right]^2](/mediawiki/images/math/e/0/3/e03cba659195933f9202d65d7ae8972e.png)
![\scriptstyle\left[\left(12+4\right)\sdot4\right]+\left(\frac{1}{2}\sdot12\right)^2=\left[\left(\frac{1}{2}\sdot12\right)+4\right]^2](/mediawiki/images/math/e/0/3/e03cba659195933f9202d65d7ae8972e.png)
Elements II-7
[Expand]![\scriptstyle\left(a+b\right)^2+a^2=\left[2\sdot\left(a+b\right)\sdot a\right]+b^2](/mediawiki/images/math/5/1/3/513fc9b907ee1cdc2dbe9bb9216406d8.png)
![\scriptstyle\left(a+b\right)^2+a^2=\left[2\sdot\left(a+b\right)\sdot a\right]+b^2](/mediawiki/images/math/5/1/3/513fc9b907ee1cdc2dbe9bb9216406d8.png)
Examples
[Expand]

[Expand]

Elements II-8
[Expand]![\scriptstyle4\sdot\left[\left(a+b\right)\sdot a\right]+b^2=\left[\left(a+b\right)+a\right]^2](/mediawiki/images/math/f/6/2/f62f5f20431f619df80a01a1d97e57cf.png)
![\scriptstyle4\sdot\left[\left(a+b\right)\sdot a\right]+b^2=\left[\left(a+b\right)+a\right]^2](/mediawiki/images/math/f/6/2/f62f5f20431f619df80a01a1d97e57cf.png)
Examples
[Expand]

[Expand]

Elements II-9
[Expand]![\scriptstyle a^2+b^2=2\sdot\left[\left[\frac{1}{2}\sdot\left(a+b\right)\right]^2+\left[a-\left[\frac{1}{2}\sdot\left(a+b\right)\right]\right]^2\right]](/mediawiki/images/math/5/e/8/5e87deb6f6b5cec598e43b4b3374a25c.png)
![\scriptstyle a^2+b^2=2\sdot\left[\left[\frac{1}{2}\sdot\left(a+b\right)\right]^2+\left[a-\left[\frac{1}{2}\sdot\left(a+b\right)\right]\right]^2\right]](/mediawiki/images/math/5/e/8/5e87deb6f6b5cec598e43b4b3374a25c.png)
Examples
[Expand]![\scriptstyle 7^2+3^2=2\sdot\left[\left(\frac{1}{2}\sdot10\right)^2+\left[7-\left(\frac{1}{2}\sdot10\right)\right]^2\right]](/mediawiki/images/math/b/7/a/b7ae10619bde151aed9b2ede0a51c890.png)
![\scriptstyle 7^2+3^2=2\sdot\left[\left(\frac{1}{2}\sdot10\right)^2+\left[7-\left(\frac{1}{2}\sdot10\right)\right]^2\right]](/mediawiki/images/math/b/7/a/b7ae10619bde151aed9b2ede0a51c890.png)
[Expand]![\scriptstyle 8^2+4^2=2\sdot\left[\left(\frac{1}{2}\sdot12\right)^2+\left[8-\left(\frac{1}{2}\sdot12\right)\right]^2\right]](/mediawiki/images/math/e/2/0/e207495b53dfdc5eee7d0560e9e524d8.png)
![\scriptstyle 8^2+4^2=2\sdot\left[\left(\frac{1}{2}\sdot12\right)^2+\left[8-\left(\frac{1}{2}\sdot12\right)\right]^2\right]](/mediawiki/images/math/e/2/0/e207495b53dfdc5eee7d0560e9e524d8.png)
Elements II-10
[Expand]![\scriptstyle\left(a+b\right)^2+b^2=2\sdot\left[\left(\frac{1}{2}\sdot a\right)^2+\left[\left(\frac{1}{2}\sdot a\right)+b\right]^2\right]](/mediawiki/images/math/b/7/d/b7dd112f5309b8cd4f778bd6269c21f3.png)
![\scriptstyle\left(a+b\right)^2+b^2=2\sdot\left[\left(\frac{1}{2}\sdot a\right)^2+\left[\left(\frac{1}{2}\sdot a\right)+b\right]^2\right]](/mediawiki/images/math/b/7/d/b7dd112f5309b8cd4f778bd6269c21f3.png)
Examples
[Expand]![\scriptstyle\left(10+2\right)^2+2^2=2\sdot\left[\left(\frac{1}{2}\sdot10\right)^2+\left[\left(\frac{1}{2}\sdot10\right)+2\right]^2\right]](/mediawiki/images/math/1/7/e/17e6636845a2c76b49ae47fe3529eed9.png)
![\scriptstyle\left(10+2\right)^2+2^2=2\sdot\left[\left(\frac{1}{2}\sdot10\right)^2+\left[\left(\frac{1}{2}\sdot10\right)+2\right]^2\right]](/mediawiki/images/math/1/7/e/17e6636845a2c76b49ae47fe3529eed9.png)
[Expand]![\scriptstyle\left(12+8\right)^2+8^2=2\sdot\left[\left(\frac{1}{2}\sdot12\right)^2+\left[\left(\frac{1}{2}\sdot12\right)+8\right]^2\right]](/mediawiki/images/math/d/e/d/ded4fd897bb41789811e35212b9516ff.png)
![\scriptstyle\left(12+8\right)^2+8^2=2\sdot\left[\left(\frac{1}{2}\sdot12\right)^2+\left[\left(\frac{1}{2}\sdot12\right)+8\right]^2\right]](/mediawiki/images/math/d/e/d/ded4fd897bb41789811e35212b9516ff.png)
Elements V
[Expand]Elements V-9
Elements V-15
[Expand]

Elements VII
[Expand]Elements VII-11
Elements VIII
[Expand]Elements VIII-11
Elements IX
[Expand]Elements IX-21
[Expand]Elements IX-22
[Expand]Elements IX-23
[Expand]Elements IX-28
[Expand]Elements IX-29