Difference between revisions of "Mathematical formula"
From mispar
Line 3: | Line 3: | ||
[[(3n+1)²=((10·(⅓·3n)²)-(⅓·3n)²)+3n+(3n+1)| | [[(3n+1)²=((10·(⅓·3n)²)-(⅓·3n)²)+3n+(3n+1)| | ||
<math>\scriptstyle\left(3n+1\right)^2=\left[\left[10\sdot\left[\frac{1}{3}\sdot\left(3n\right)\right]^2\right]-\left[\frac{1}{3}\sdot\left(3n\right)\right]^2\right]+3n+\left(3n+1\right)</math>]] | <math>\scriptstyle\left(3n+1\right)^2=\left[\left[10\sdot\left[\frac{1}{3}\sdot\left(3n\right)\right]^2\right]-\left[\frac{1}{3}\sdot\left(3n\right)\right]^2\right]+3n+\left(3n+1\right)</math>]] | ||
+ | |||
+ | |||
+ | == Linear Equation == | ||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle bx=\sqrt[3]{c}</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle bx=\sqrt[3]{c}</math><div class="mw-collapsible-content"> | ||
Line 16: | Line 19: | ||
}}</div></div> | }}</div></div> | ||
<br> | <br> | ||
+ | |||
+ | |||
+ | == Quadratic Equation == | ||
+ | |||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle ax^2=\sqrt[3]{c}</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle ax^2=\sqrt[3]{c}</math><div class="mw-collapsible-content"> | ||
{{#annotask: | {{#annotask: | ||
Line 28: | Line 35: | ||
}}</div></div> | }}</div></div> | ||
<br> | <br> | ||
+ | |||
+ | |||
+ | == Cubic Equation == | ||
+ | |||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle ax^3=\sqrt[3]{c}</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle ax^3=\sqrt[3]{c}</math><div class="mw-collapsible-content"> | ||
{{#annotask: | {{#annotask: | ||
Line 34: | Line 45: | ||
}}</div></div> | }}</div></div> | ||
<br> | <br> | ||
+ | |||
+ | == Biquadratic Equation == | ||
+ | |||
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle4\sdot\left(x^2+8\right)=x^4</math><div class="mw-collapsible-content"> | <div class="mw-collapsible mw-collapsed"><math>\scriptstyle4\sdot\left(x^2+8\right)=x^4</math><div class="mw-collapsible-content"> | ||
{{#annotask: | {{#annotask: |
Revision as of 04:42, 9 April 2019
Linear Equation
![\scriptstyle bx=\sqrt[3]{c}](/mediawiki/images/math/4/e/c/4eced3ba1c8f51bf47cf911659b6e201.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/linear equation | bx=³√c | ספר_ג'יבלי_אלמוקבאלא#NHZd | When things are equal to a cube root of the numbers:
:![]() |
![\scriptstyle c=\sqrt[3]{bx}](/mediawiki/images/math/5/b/4/5b40a2184fb3c6324ff5fe2eedb9da0b.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/linear equation | c=³√bx | ספר_ג'יבלי_אלמוקבאלא#jGFm | When numbers are equal to a cube root of a thing:
:![]() |
Quadratic Equation
![\scriptstyle ax^2=\sqrt[3]{c}](/mediawiki/images/math/f/c/0/fc0033e1c190540235d4afbc47b31b11.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | ax²=³√c | ספר_ג'יבלי_אלמוקבאלא#rGD5 | When squares are equal to a cube root of the numbers:
:![]() |
![\scriptstyle c=\sqrt[3]{ax^2}](/mediawiki/images/math/f/7/6/f7617468fb35452327a7d2d5678e45f0.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | c=³√ax² | ספר_ג'יבלי_אלמוקבאלא#zK2y | When numbers are equal to a cube root of squares:
:![]() |
Cubic Equation
![\scriptstyle ax^3=\sqrt[3]{c}](/mediawiki/images/math/a/6/4/a64e6eaeaf2d5f64610f741998d43d86.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/cubic equation | ax³=³√c | ספר_ג'יבלי_אלמוקבאלא#eOI5 | It is when cubes are equal to a cube root of the numbers:
:![]() |
Biquadratic Equation
![\scriptstyle4\sdot\left(x^2+8\right)=x^4](/mediawiki/images/math/3/1/0/3103a64edab2a35756b8a33b3ff2d2ec.png)
Category | Comment | Link | Annotated text |
---|---|---|---|
quartic equation/biquadratic equation | 4(x²+8)=x⁴ | אגרת_המספר#q2Fw | 6) ![]() |
quartic equation/biquadratic equation | 4(x²+8)=x⁴ | תחבולות_המספר#G1Mq | [6] He said: the six problem is as if you are told: we add to a certain square [eight] dirham, then multiply the sum by four dirham and the result is the same as the product of the square [by itself].
:![]() |
quartic equation/biquadratic equation | 4(x²+8)=x⁴ | חשבון_השטחים#ZxMx | ![]() |