Difference between revisions of "Sums"

From mispar
Jump to: navigation, search
Line 121: Line 121:
 
[[category: #sum of powers of two]]
 
[[category: #sum of powers of two]]
 
[[comment: 1-128]]
 
[[comment: 1-128]]
}}
+
}}</div></div><br>
 +
 
 
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle\sum_{i=3}^{6} 2^{i-1}</math><div class="mw-collapsible-content">
 
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle\sum_{i=3}^{6} 2^{i-1}</math><div class="mw-collapsible-content">
 
{{#annotask:
 
{{#annotask:
Line 130: Line 131:
 
== Sum of Powers of Three ==
 
== Sum of Powers of Three ==
  
 +
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle\sum_{i=1}^{4} 3^{i-1}</math><div class="mw-collapsible-content">
 
{{#annotask:
 
{{#annotask:
 
[[category: #sum of powers of three]]
 
[[category: #sum of powers of three]]
 
[[comment: 1-27]]
 
[[comment: 1-27]]
}}
+
}}</div></div><br>
  
 
== Sum of Powers of Four ==
 
== Sum of Powers of Four ==
  
 +
<div class="mw-collapsible mw-collapsed"><math>\scriptstyle\sum_{i=1}^{3} 4^{i-1}</math><div class="mw-collapsible-content">
 
{{#annotask:
 
{{#annotask:
 
[[category: #sum of powers of four]]
 
[[category: #sum of powers of four]]
 
[[comment: 1-16]]
 
[[comment: 1-16]]
}}
+
}}</div></div><br>

Revision as of 10:29, 7 January 2020

Sum of Natural Numbers

even number of terms = last term is even

[Expand]\scriptstyle\sum_{i=1}^8 i

[Expand]\scriptstyle\sum_{i=1}^{10} i

[Expand]\scriptstyle\sum_{i=1}^{12} i

[Expand]\scriptstyle\sum_{i=1}^{20} i

[Expand]\scriptstyle\sum_{i=1}^{100} i


odd number of terms = last term is odd

[Expand]\scriptstyle\sum_{i=1}^{7} i

[Expand]\scriptstyle\sum_{i=1}^{9} i

[Expand]\scriptstyle\sum_{i=1}^{17} i

[Expand]\scriptstyle\sum_{i=1}^{19} i

Sum of Evens

[Expand]\scriptstyle\sum_{i=1}^{4} 2i

[Expand]\scriptstyle\sum_{i=1}^{6} 2i

[Expand]\scriptstyle\sum_{i=1}^{10} 2i

Sum of Odds

[Expand]\scriptstyle\sum_{i=1}^{5} \left(2i-1\right)

[Expand]\scriptstyle\sum_{i=1}^{6} \left(2i-1\right)

[Expand]\scriptstyle\sum_{i=1}^{7} \left(2i-1\right)


Sum of Powers of Two = Sum of Even-Times-Even Numbers

[Expand]\scriptstyle\sum_{i=1}^{6} 2^{i-1}

[Expand]\scriptstyle\sum_{i=1}^{7} 2^{i-1}

[Expand]\scriptstyle\sum_{i=1}^{8} 2^{i-1}

[Expand]\scriptstyle\sum_{i=3}^{6} 2^{i-1}

Sum of Powers of Three

[Expand]\scriptstyle\sum_{i=1}^{4} 3^{i-1}

Sum of Powers of Four

[Expand]\scriptstyle\sum_{i=1}^{3} 4^{i-1}