Difference between revisions of "Mathematical formula"
From mispar
Line 4: | Line 4: | ||
<math>\scriptstyle\left(3n+1\right)^2=\left[\left[10\sdot\left[\frac{1}{3}\sdot\left(3n\right)\right]^2\right]-\left[\frac{1}{3}\sdot\left(3n\right)\right]^2\right]+3n+\left(3n+1\right)</math>]] | <math>\scriptstyle\left(3n+1\right)^2=\left[\left[10\sdot\left[\frac{1}{3}\sdot\left(3n\right)\right]^2\right]-\left[\frac{1}{3}\sdot\left(3n\right)\right]^2\right]+3n+\left(3n+1\right)</math>]] | ||
+ | {{#annotask: | ||
+ | [[category: #quadratic equation]] | ||
+ | [[comment: c=³√ax²]] | ||
+ | }} | ||
{{#annotask: | {{#annotask: | ||
[[category: #cubic equation]] | [[category: #cubic equation]] |
Revision as of 07:46, 5 April 2019
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/quadratic equation | c=³√ax² | ספר_ג'יבלי_אלמוקבאלא#zK2y | When numbers are equal to a cube root of squares: : כאשר המספרי' יהיו שוים אל שרשי' מעו' מצינסי |
Category | Comment | Link | Annotated text |
---|---|---|---|
equation/cubic equation | ax³=³√c | ספר_ג'יבלי_אלמוקבאלא#eOI5 | It is when cubes are equal to a cube root of the numbers: : וזהו כאשר המעוקבי' יהיו שוים אל שרש מעו' ממספרי' |
Category | Comment | Link | Annotated text |
---|---|---|---|
quartic equation/biquadratic equation | 4(x²+8)=x⁴ | אגרת_המספר#q2Fw | 6) הששית ממון הוספת עליו ח' זוזים והכית המקובץ בארבעה והיה היוצא הכאת הממון בעצמו |
quartic equation/biquadratic equation | 4(x²+8)=x⁴ | תחבולות_המספר#G1Mq | [6] He said: the six problem is as if you are told: we add to a certain square [eight] dirham, then multiply the sum by four dirham and the result is the same as the product of the square [by itself].
:
אמ' והשאלה הששית כמו אם יאמרו לך הוספנו על |
quartic equation/biquadratic equation | 4(x²+8)=x⁴ | חשבון_השטחים#ZxMx | אלגו תוסיף עליו שמנה אדרהם ותכה {{#annot:term|388,1217|vQSL}}המקובץ{{#annotend:vQSL}} על ארבעה אדרהם והיה כמו האלגו על עצמו |