Difference between revisions of "Search Page"
From mispar
Line 2: | Line 2: | ||
{{#annotask: | {{#annotask: | ||
[[wiki_text: %math%]] | [[wiki_text: %math%]] | ||
+ | [[page: author="Abū Kāmil"]] | ||
}} | }} |
Revision as of 12:35, 6 September 2019
Category | Comment | Link | Annotated text |
---|---|---|---|
extraction of root/addition of roots | √10+√2 | חשבון_השטחים#zdrv | ![]() |
extraction of root/addition of roots | √9+√4 | חשבון_השטחים#qIr6 | ![]() |
extraction of root/addition of roots | √10+√2 | תחבולות_המספר#MvKX | He said: if we wish to sum up the root of ten with the root of two.
:![]() |
extraction of root/addition of roots | √9+√4 | תחבולות_המספר#1OzL | As if you say: nine and four - we wish to sum their roots so that they become a root of a single number.
:![]() |
extraction of root/addition of roots | √18+√8 | תחבולות_המספר#H0sg | He said: if we wish to sum up the root of eighteen with the root of eight, so they become a root of a single number.
:![]() |
extraction of root/addition of roots | √18+√8 | חשבון_השטחים#Pk5I | ![]() |
quartic equation/biquadratic equation | 4(x²+8)=x⁴ | תחבולות_המספר#G1Mq | [6] He said: the six problem is as if you are told: we add to a certain square [eight] dirham, then multiply the sum by four dirham and the result is the same as the product of the square [by itself].
:![]() |
quartic equation/biquadratic equation | 4(x²+8)=x⁴ | חשבון_השטחים#ZxMx | ![]() |
word problem/divide a number | a+b=10,20+a=n²,50-b=m² | השאלות_החרשות/האלמות#XtSS | 13) If you are told: divide ten into two parts.
:Add the one part to twenty and the sum has a root.
:Subtract the other part from fifty and the remainder has a root.
:![]() |
word problem/divide a number | a+b=10, 20+a=n²,50+b=m² | השאלות_החרשות/האלמות#OLcA | 14) If you are told: divide ten into two parts, add the first part to twenty and it has a root; add the other part to fifty, and it has a root.
:![]() |
word problem/divide a number | a+b=10, ab=21 | חשבון_השטחים#uEcK | We divided ten into two parts, then we multiplied the one [part] by the other and the result was 21.
:![]() והכינו האחד על האחר והיה עשרים ואחד |
word problem/divide a number | a+b=10, 10²=6¼a² | חשבון_השטחים#jgC7 | You divide ten into two parts, then multiply one of them by itself and multiply the ten by itself.
:The product of ten by itself is the same as the product of one of the parts by itself 6¼ times.
:![]() ותכה אחד מהם על עצמו ותכה העשרה על עצמו ויהיה העולה מהכאת עשרה על עצמו כמו העולה מהכאת אחד החלקים על עצמו ששה פעמים ורביע |
word problem/divide a number | a+b=10, (10/a·10/b)²=20¼ | חשבון_השטחים#eIQu | If you are told: we divided ten into two parts, then you divided the ten by each of the parts and multiplied the [one by the other and then the result by itself] and it yields 20¼ dirham.
:![]() וחלקת עשרה על כל חלק מהם והכית החלק האחד ממה שיעלה לחלק בעצמו והיה עשרים אדרהמי ורביע |
word problem/divide a number | a+b=10, 40/a·40/b=100 | חשבון_השטחים#EWpj | If it is said: you divided ten into two parts, then you divided forty by each part of the two and multiplied the quotients one by the other and it yields 100 dirham.
:![]() וחלקת ארבעים על כל חלק מהשנים והכית מה שעלו אל החלקים האחד על האחר והיה מאה אהדרהמיש |
word problem/divide a number | a+b=10, (b/a)²-(a/b)²=2 | חשבון_השטחים#YT0V | [44] If you are told: you divided ten into two parts, then you divided each part by the other, multiplied each quotient by itself, subtracted the smaller [product] from the larger [product], and two dirham remain.
:![]() וחלקת כל אחד מהם על האחר ומה שעלה לכל חלק הכית על עצמו וגרעת המעט מהרב ונשאר שני דרהמי |
word problem/divide a number | a+b=10, b/a-a/b=5/6 | חשבון_השטחים#OWEq | [43] If you are told: you divided ten into two parts, then you divided each part by the other, and subtracted the quotient of the smaller divided by the larger from the quotient of the larger divided by the smaller, and five-sixths of a dirham remain.
:![]() וחלקת כל אחד מהם על האחר וגרעת מה שעלה לחלק מחלוקת המעט על הרב ממה שעלה לחלק מחלוקת הרב על המעט ונשאר חמשה ששיות מאדרהם |
word problem/divide a number | a+b=10, a/b+b/a=√5 | חשבון_השטחים#t2zn | This is as if we said: you divided ten into two parts, then divided each part by the other, and [the sum of the quotients] is the root of five.
::![]() וחלקת כל אחד מהם על האחר ועלה שרש חמשה |
word problem/divide a number | a+b=10, (a/b)²+(b/a)²=3 | חשבון_השטחים#BSCj | [42] If you are told: you divided ten into two parts, then divided each part by the other, and multiplied each quotient of one part divided by the other by itself, and [the sum of the products] is three dirham.
:![]() וחלקת כל אחד מהם על האחר והכית כל אחד מהם שיעלו לחלק על האחר בעצמו ויהיה שלשה דרהמי |
word problem/divide a number | a+b=10, a/b+b/a=√5 | חשבון_השטחים#BWTC | [41] If you are told: you divided ten into two parts, then you divided each part by the other, and summed the quotients, and [the sum] is a root of five dirham.
:![]() וחלקת כל חלק על האחר וקבצת מה שעלה לכל חלק ויהיה שרש חמשה דרהמי |
word problem/divide a number | a+b=10, b²-(a·√8)=40 | חשבון_השטחים#6AdM | [36] If you are told: you divided ten into two parts, then multiplied one part by itself and the other [part] by the root of eight, and subtracted the product of the part that is multiplied by the root of eight from the product of the part that is multiplied by itself, and forty dirham remain.
:![]() והכית החלק האחד על עצמו והאחר על שרש שמנה וגרעת המקובץ מהכאת החלק האחד בשרש שמנה מן המקובץ מהכאת החלק האחר על עצמו וישאר ארבעים דרהמי |
word problem/divide a number | a+b=10, (a/b+b/a)·a=25-2a | חשבון_השטחים#pQEI | This is like: you divided ten into two parts, then you divided each [part] by the the other [part], you summed the two quotients and multiplied [the sum] by one of the two parts of ten and [the result] is twenty five dirham minus two things.
::![]() וחלקת כל אחד על האחר וקבצת מה שעלה לכל חלק והכית אותו על חלק אחד משני חלקי העשרה והיה כ"ה דרהמי פחות שני דברים והוא כ"ה פחות הדבר האחד |
word problem/divide a number | a+b=10, (b/a+10)·b=69 | חשבון_השטחים#jitx | [25] If you are told: you divided ten into two parts, then you divided the larger [part] by the smaller [part], and added the quotient to ten and multiplied the sum by the larger part and [the result] is sixty-nine dirham.
:![]() וחלקת הגדול על הקטן והוספת מה שעלה לחלק על העשרה ותכה מה שיתקבץ על החלק הגדול ויהיה ששים ותשעה אדרהמי' |
word problem/divide a number | a+b=10, (b/a+10)·a=46 | חשבון_השטחים#tH6B | [24] If you are told: you divided ten into two parts, then you divided the larger [part] by the smaller [part], added the quotient to ten and multiplied the sum by the smaller part and [the result] is 46 dirham.
:![]() וחלקת הגדול על הקטן והוספת העולה לחלק על עשרה והכית המקובץ על החלק הקטן והיה מ"ו אדרהמיש |
word problem/divide a number | a+b=10, (a/b+b/a)·b=34 | חשבון_השטחים#Ch1h | [23] If you are told: you divided ten into two parts, then you divided each part by the other, summed both quotients and multiplied [the sum] by one of the two parts of ten and [the result] is 34 dirham.
:![]() וחלקת כל אחד מהם על האחר וקבצת מה שעלה לחלק משניהם והכית אותו על החלק האחד משני חלקי העשרה והיה ל"ד אדרהמיש |
word problem/divide a number | a+b=10, (b/a)·(b-a)=24 | חשבון_השטחים#4NOM | [22] If you are told: you divide ten into two parts, then you divide one part by the other, and multiply the quotient by excess of the dividend over the divisor and [the result] is 24 dirham.
:![]() וחלקת החלק האחד על האחר והכית מה שהגיע לחלק על ההבדל אשר יעדיף המספר הנחלק את המחלק ויהיה כ"ד דרהמי' |
word problem/divide a number | a+b=10, (b/a+b)·a=30 | חשבון_השטחים#E7PV | [19] If you are told: divide ten into two parts, then divide one part by the other, take the quotient and add it to the dividend and multiply the sum by the divisor and [the result] is thirty.
:![]() וחלק החלק האחד על האחר וקח המגיע לחלק והוסיפהו על המספר הנחלק והמקובץ תכהו על המחלק ויהיה שלשים |
word problem/divide a number | a+b=10, a/b=4¼ | חשבון_השטחים#JKBy | As the calculation in which it is said: we divide ten into two parts, then we divide one of them by the other and the result is four and a quarter.
:![]() וחלקנו אחד מהם על האחר ועלה ארבעה ורביע |
word problem/divide a number | a+b=10, (b/a)²·a=32 | חשבון_השטחים#2J8j | [21] If you are told: you divide ten into two parts, then you divide one part by the other, and multiply the quotient by itself and by the divisor and [the result] is 32 dirham.
:![]() וחלקת החלק האחד על האחר והכית מה שהגיע לחלק על עצמו ועל המחלק ויהיה ל"ב אדרהמי' |
word problem/divide a number | a+b=10, (10+b/a)·(10-a/b)=107⅓ | חשבון_השטחים#pzmE | [30] If you are told: you divided ten into two parts, then divided the larger [part] by the the smaller [part] and added the result to ten, divided the smaller [part] by the the larger [part] and subtracted the result from ten, and multiplied the [sum of each part] by the other and [the result] is one hundred and seven and [one]-third.
:![]() וחלקת הרב על המעט והוספת העולה על העשרה וחלקת המעט על הרב וגרעת מה שעלה לחלק מן העשרה והכית האחד על האחר ויהיה מאה ושבעה ושני שלישיות |
word problem/divide a number | a+b=10, (b/a+10)·(a/b+10)=122⅔ | חשבון_השטחים#zCoa | [29] If you are told: divide ten into two parts, then divide the larger [part] by the the smaller [part] and add the result to ten, divide the smaller [part] by the the larger [part] and add the result to ten, and multiply the sum of each part by the other and [the result] is one hundred twenty-two dirham and two-thirds.
:![]() ותחלק הרב על המעט ותוסיף העולה על העשרה ותחלק המעט על הרב והוסיף העולה על העשרה ומה שיתקבץ מכל חלק תכה האחד על האחר ויהיה מאה ועשרים ושנים דרהמי ושני שלישים |
word problem/divide a number | a+b=10, (a/b+b/a+10)·a=73 | חשבון_השטחים#bP5L | [26] If you are told: we divided ten into two parts, then we divided the larger [part] by the smaller [part] and the smaller [part] by the larger [part], summed the quotients and added them to ten and multiplied the sum by the larger part and [the result] is seventy-three dirham.
:![]() וחלקנו הגדול על הקטן והקטון על הגדול וקבצת מה שעלה לכל חלק והוספתם על העשרה והכית המקובץ על החלק הגדול והיה שבעים ושלש דרהמי' |
word problem/divide a number | a+b=10, 6a+⅓[(6a)/b]=56 | חשבון_השטחים#T9EL | [11] If you are told: we divide ten into two parts, then we multiply one part by six, divide the product by the other part, take a third of the quotient and add it the product and [the result] is fifty-six.
:![]() והכינו החלק האחד על ששה וחלקנו מה שעלה מההכאה על החלק האחר ומה שעלה לחלק לקחנו ממנו השליש והוספנו על מה שעלה הכאת החלק האחד על ששה והיה חמשים וששה |
word problem/divide a number | a+b=10, a/b-b/a=5/6 | חשבון_השטחים#as1Z | 3) Question.
:If you are told: divide ten into two parts, then divide each one of them by the other and subtract one [quotient] from the other [quotient], and five-sixths of a dirham remain.
:![]() ואם יאמרו לך עשרה חלקנום לשני חלקים וחלקנו כל אחד מהם על האחר וגרענו האחד מן האחר ו{{#annot:term|936,1236|yzCK}}נשאר{{#annotend:yzCK}} חמשה ששיות מאדרהם |
word problem/divide a number | a+b=10, a²-b²=80 | חשבון_השטחים#cOGN | 1) Question: if you are told: divide ten into two parts, then multiply each part by itself and subtract the product of the smaller from the product of the larger, and 80 remain.
:![]() |
word problem/divide a number | a+b=10, 10/a+10/b=6¼ | חשבון_השטחים#C69U | If you are told: you divided ten into two parts, then you divided the ten by each of the parts and [the sum of the quotients] is 6¼.
:![]() וחלקת העשרה על כל חלק מהם ועלה ששה ורביע |
word problem/divide a number | a+b=10, a²=1½ab | חשבון_השטחים#Dmzf | The first problem of the six is: If you are told: divide ten into two parts, then multiply one part by the other and multiply the larger part by itself. The [product] of the part that is multiplied by itself is the same as the product of the one part by the other and as its half.
:![]() |
word problem/divide a number | a+b=10, (a·b)/(b-a)=√6 | חשבון_השטחים#QOHt | [35] If you are told: you divided ten into two parts, then you multiplied one [part] by the other and divided the product by the difference between the two parts of ten and the result is a root of six.
:![]() והכית האחד על האחר וחלקת {{#annot:term|875,1216|AQjO}}מה שהתקבץ{{#annotend:AQjO}} על העודף משני חלקי העשרה ועלה שרש ששה |
word problem/divide a number | a+b=10, (40/a)²·(40/b)²=625 | חשבון_השטחים#P3Kn | If you are told: we divided ten into two parts, then you divided forty by each of the parts and multiplied each of the quotients by itself and they are 625.
:![]() וחלקת על כל אחד מהם ארבעים ומה שעלו לחלקים הכית כל חלק על עצמו והיו תרכ"ה |
word problem/divide a number | a+b=10, (a/b-b/a)·a=5 | חשבון_השטחים#Mlte | [27] If you are told: you divided ten into two parts, then you divided each [part] by the the other [part] and took the difference between the two quotients and multiplied it by the [larger] part and [the result] is five dirham.
:![]() וחלקת כל אחד על האחר ותקח הבדל השני חלקים שעלו לכל חלק מחלוקת האחד על האחר ותכהו על החלק האחד ויהיה חמשה דרהמי |
word problem/divide a number | a+b=10, 50/a·40/b=125 | חשבון_השטחים#N2DJ | If one says: we divided ten into two parts, then we divided fifty by one of the parts and forty by the other and multiplied the quotients one by the other and it yields 125.
:![]() וחלקנו חמישי' על החלק האחד וארבעי' על האחר והכינו העולה לחלק האחד באחר והיה קכ"ה |
word problem/divide a number | a+b=10, a·√10=b² | חשבון_השטחים#w9sl | [37] If you are told: you divided ten into two parts, then multiplied one part by the root of ten, and the other [part] by itself, and [the products] are equal.
:![]() והכית האחד בשרש עשרה והאחר על עצמו ויהיו שוים |
word problem/divide a number | a+b=10, (a/b+a)·(b/a+b)=35 | חשבון_השטחים#xMD9 | [28] If you are told: you divided ten into two parts, then you divided the larger [part] by the smaller [part] and added the quotient to the larger [part], and you divided the smaller [part] by the larger [part] and added the quotient to the smaller [part] and multiplied one [sum] by the other and the result was thirty-five.
:![]() וחלקת הרב על המעט והוספת מה שעלה לחלק על הרב וחלקת המעט על הרב והוספת מה שעלה לחלק על המעט והכית האחד על האחר והיה שלשים וחמשה דרהמי' |
word problem/divide a number | a+b=10, (b/a)·b=9 | חשבון_השטחים#5mDJ | [20] If you are told: divide ten into two parts, then divide one part by the other, and multiply the quotient by the dividend and [the result] is nine dirham.
:![]() ותחלק החלק האחד על האחר ותכה המגיע לחלק על המספר הנחלק ויהיה תשעה דרהמי' |
word problem/divide a number | a+b=10, b/a+a=5½ | חשבון_השטחים#KWTC | [18] If you are told: we divided ten into two parts, then we divided one part by the other, and the sum of the quotient with the divisor is five and a half.
:![]() וחלקנו החלק האחד על האחר ויהיה המגיע לחלק עם המחלק יהיה חמשה וחצי |
word problem/divide a number | a+b=10, a/b+b/a=4¼ | חשבון_השטחים#nue7 | [2] If you are told: divide ten into two parts, then divide each of them by the other and [the sum of] the quotients is four and a quarter.
:![]() |
word problem/divide a number | a+b=10, 10/a·10/b=6¼ | חשבון_השטחים#d6qu | If you are told: we divided ten into two parts, then we divided the ten by each of the parts and multiplied the quotients one by the other and it yields 6¼.
:![]() וחלקנו העשרה על כל חלק מהם והכינו מה שעלה לכל חלק האחד על האחר והיה ששה ורביע |
word problem/divide a number | a+b=10, a+2√a=b-2√b | חשבון_השטחים#tzY5 | If you are told: you divided ten into two parts, then you added to one part its two roots and subtracted from the other part its two roots and the parts became equal.
:![]() והוספת על החלק האחד שני שרשיו וגרעת מן החלק האחר שני שרשיו והשתוו החלקים |
word problem/divide a number | a+b+c=10, a^2+b^2=c^2, ac=b^2 | חשבון_השטחים#FwR9 | If you are told: divide ten into three parts, then multiply the smaller by itself and the middle by itself and they are the same as the larger by itself. Multiply the smaller by the larger and it yields the same as the middle by itself.
:![]() ותכה הקטן בעצמו והאמצעי בעצמו ויהיו כמו הגדול בעצמו ותכה הקטון בגדול ויהיה כמו האמצעי בעצמו |
word problem/divide a number | a+b=10, a²=9b | חשבון_השטחים#X9cD | We divided ten into two parts, then we multiplied the smaller part by nine and the larger part by itself and the [products] were equal.
:![]() והכינו החלק הקטן על תשעה והגדול על עצמו והיו שוים |
word problem/divide a number | a+b=10, b/a=4 | חשבון_השטחים#PsKJ | Divide ten into two parts, then divide the larger part by the smaller part and the result is four.
:![]() ותחלק החלק הגדול על החלק הקטן ויגיע לחלק ארבעה |
word problem/divide a number | a+b=10, ab=21 | תחבולות_המספר#Wntm | [5] He said: the fifth problem is as if you are told: divide ten into two parts, such that when we multiply one part by the other the result is 21.
:![]() |
word problem/divide a number | a+b=10, a²=9b | תחבולות_המספר#7Ia4 | [4] He said: the fourth problem is as if you are told: divide ten into two parts, such that the product of the larger part by itself is the same as the product of the smaller part multiplied by nine.
:![]() |
word problem/divide a number | a+b=10, a²=1½ab | תחבולות_המספר#nJqx | [1] He said: the first problem is as if you are told: divide ten into two parts, such that the product of the larger by itself is the same as one time and a half of the product of the one part by the other.
:![]() |
word problem/divide a number | a+b=10, 10²=6¼a² | תחבולות_המספר#LNn6 | [2] He said: and the second problem is as if you are told: divide ten into two parts, such that the product of ten by itself is the same as the product of one of the parts by itself 6¼ times.
:![]() |
word problem/divide a number | a+b=10, b/a=4 | תחבולות_המספר#ogdI | [3] He said: the third problem is as if you are told: divide ten into two parts, such that when you divide the larger part by the smaller part the quotient is four.
:![]() |
extraction of root/division of roots | √10÷√2 | חשבון_השטחים#qjLW | ![]() |
extraction of root/division of roots | √10÷√2 | תחבולות_המספר#pYYI | If it is said: divide ten by a root of two.
:![]() |
extraction of root/division of roots | (2×√20)÷(3×√6) | תחבולות_המספר#sCCw | If you are told: divide two roots of twenty by three roots of six.
:![]() |
extraction of root/division of roots | (2×√20)÷(3×√6) | חשבון_השטחים#cvXn | ![]() |
extraction of root/division of roots | √9÷√4 | תחבולות_המספר#1Gu9 | He said: if you are told: divide the root of nine by the root of four.
:![]() |
extraction of root/division of roots | √9÷√4 | חשבון_השטחים#AVTk | ![]() |
Elements/Elements XIII-3 | definition | המחומשים_והמעושרים#mhLN | Euclid has already explained [Elements XIII.3] that when line BH is divided by the ratio of a mean and two extremes, so that the greater part is equal to line DH, it is known that when a line is divided by the ratio of a mean and two extremes and we add half the greater part to the smaller part, then multiply the whole sum by itself, the square formed by the sum of the two is five times the product of [half] the greater part by itself.
:![]() |
joint purchase problem/if you give me | five people, beast | השאלות_החרשות/האלמות#mYBB | 42) If you are told: five people gathered.
:The first said to the second: if you give me half of what you have I will have the price of the beast.
:The second said to the third: if you give me a third of what you have I will have the price of the beast.
:The third said to the fourth: if you give me a quarter of what you have I will have the price of the beast.
:The fourth said to the fifth: if you give me a fifth of what you have I will have the price of the beast
:The fifth said to the first: if you give me a sixth of what you have I will have the price of the beast
:How much is the price of the beast and how much does each of them have?
:![]() ואמר השני לשלישי אם תתן לי השלישית מאשר בידך יהיה לי ערך הבהמה ואמר השלישי לרביעי אם תתן לי הרביעית מאשר בידך יהיה לי ערך הבהמה ואמר הרביעי לחמישי אם תתן לי החמישית מאשר בידך יהיה לי ערך הבהמה ואמר החמישי לראשון אם תתן לי ששית אשר בידך יהיה לי ערך הבהמה כמה יהיה ערך הבהמה וכמה יהיה אלגו מכל אחד מהחמשה |
equation/indeterminate equation | 10x-8-x²=n² | השאלות_החרשות/האלמות#JrVS | 24) If you are told: a square that has a root, if you subtract it from its ten roots minus eight dirham, the remainder has a root.
:![]() |
equation/indeterminate equation | x²+x=n²,x²-x=m² | השאלות_החרשות/האלמות#MUv8 | 22) If you are told: a square, if you add its root to it, the sum has a root; and if you subtract its root from it, the remainder has a root.
:![]() |
equation/indeterminate equation | 2x+49-x²=n² | השאלות_החרשות/האלמות#bkYa | 21) If you are told: a square, if you subtract it from its two roots plus 49 dirham, the remainder has a root.
:![]() |
equation/indeterminate equation | 8x+x²=n²,2x-x²=m² | השאלות_החרשות/האלמות#62Ll | 20) If you are told: a square, if you add its eight roots to it, it has a root; and if you subtract it from its two roots, the remainder has a root.
:![]() |
equation/indeterminate equation | 8x+109-x²=n² | השאלות_החרשות/האלמות#tMRx | 19) If you are told: a square, if you subtract it from its eight roots plus 109 dirham, it has a root.
:![]() |
equation/indeterminate equation | 10+x²=n²,10-x²=m² | השאלות_החרשות/האלמות#rWQ1 | 18) If you are told: a square, if you add it to ten, it has a root; and if you subtract it from ten, it has a root.
:![]() |
equation/indeterminate equation | x²+3x+1=n²,x²-(3x-2)=m² | השאלות_החרשות/האלמות#43ha | 36) If you are told: a square that has a root, if you add to it its three roots and one dirham, it has a root; and if you subtract its three roots minus two dirham from it, the remainder has a root.
:![]() ואם תגרע ממנו שלשת שרשיו פחות שני דרהמי יחזיק מה שישאר שרש |
equation/indeterminate equation | x²-(x-1)=n²,x²-(1-x)=m² | השאלות_החרשות/האלמות#Wdk5 | 37) If you are told: a square that has a root, if you subtract one dirham minus the root of the square from it, it has a root; [and if you subtract its root minus one dirham from it, it has a root].
:![]() |
equation/indeterminate equation | x²+5=n² | השאלות_החרשות/האלמות#rm8m | 1) When you are told: a square that has a root, if you add five to it, it has a root. How much is the square?
:![]() |
equation/indeterminate equation | x²-10=n² | השאלות_החרשות/האלמות#mV1w | 2) When you are told: a square that has a root, if you subtract ten dirham from it, what remains has a root.
:![]() |
equation/indeterminate equation | x²+3x=n² | השאלות_החרשות/האלמות#L1j9 | 3) If you are told: a square that has a root, if you add three times its root to it, it has a root. How much is the square?
:![]() |
equation/indeterminate equation | x²-6x=n² | השאלות_החרשות/האלמות#LfMV | 4) If you are told: a square that has a root, when we subtract six times its root from it, it has a root.
:![]() |
equation/indeterminate equation | x²+10x+20=n² | השאלות_החרשות/האלמות#x5bu | 5) If you are told: a square that has a root, if you add to it ten times its root plus ten dirham, it has a root.
:![]() |
equation/indeterminate equation | x²+x=n²,x²+1=m² | השאלות_החרשות/האלמות#eNRx | 32) If you are told: a square that has a root, if you add its root to it, it has a root; and if you add to one dirham to it, it has a root.
:![]() ואם תוסיף עליו דרהם אחד יחזיק שרש |
equation/indeterminate equation | x²+(2-x)=n²,x²-(3-x)=m² | השאלות_החרשות/האלמות#xP6r | 38) If you are told: a square that has a root, if you add two dirham minus the root of the square to it, it has a root; and if you subtract three minus the root of the square from it, it has a root.
:![]() ואם תגרע ממנו שלשה פחות שרש האלגו יחזיק שרש |
equation/indeterminate equation | x²-8x-30=n² | השאלות_החרשות/האלמות#67aP | 6) If you are told: a square that has a root, if you subtract from it eight times its root and thirty dirham, the remainder has a root.
:![]() |
equation/indeterminate equation | x²+x+1=n²,x²+2x+2=m² | השאלות_החרשות/האלמות#YEF9 | 39) If you are told: a square that has a root, if you add its root plus one dirham to it, it has a root; and if you add to the square its two roots plus two dirham, it has a root.
:![]() ואם תוסיף על האלגו שני שרשיו ושני דרהמי יחזיק שרש |
equation/indeterminate equation | x²-5=n²,x²-5+√(x²-5)=m² | השאלות_החרשות/האלמות#6x8t | 33) If you are told: a square that has a root, if you subtract five dirham from it, the remainder has a root; and if you add to the remainder its root, the sum has a root.
:![]() ואם תוסיף על הנשאר שרשו יחזיק המקובץ שרש |
equation/indeterminate equation | x²+4x=n²,x²-(2x+1)=m² | השאלות_החרשות/האלמות#1vZf | 34) If you are told: a square that has a root, if you add its four roots to it, it has a root; and if you subtract its two roots plus one dirham from it, the remainder has a root.
:![]() ואם תגרע ממנו שני שרשיו ודרהם אחד יחזיק הנשאר שרש |
equation/indeterminate equation | x²+x=n²,x²+2x=m² | השאלות_החרשות/האלמות#9AQM | 7) If you are told: a square that has a root, if you add its root to it, it has a root; and if you add its two roots to it, it has a root.
:![]() |
equation/indeterminate equation | x²+x=n²,x²+3x=m² | השאלות_החרשות/האלמות#5iEI | 8) If you are told: a square, if you add its root to it, it has a root; and if you add its three roots to it, it has a root.
:![]() |
equation/indeterminate equation | 49+x=n²,49+2x=m² | השאלות_החרשות/האלמות#Y9EL | If you wish to know the number that when you add it to 49, it has a root; and if you add it to it twice, it has a root.
:![]() |
equation/indeterminate equation | x²-2x=n²,x²-3x=m² | השאלות_החרשות/האלמות#65Jm | 9) If you are told: a square that has a root, if you subtract its two roots from it, the remainder has a root; and if you subtract its three roots from the square, the remainder has a root.
:![]() |
equation/indeterminate equation | x²-y=n²,x²-1½y=m² | השאלות_החרשות/האלמות#CUHD | When you wish to find a number that has a root, such that when you subtract from it another number, the remainder has a root; and if you subtract from it again the other number and its half, the remainder has a root.
:![]() |
equation/indeterminate equation | x-x²=n² | השאלות_החרשות/האלמות#hdU1 | 10) If you are told: a square that has a root, if you subtract it from its root, the remainder has a root.
:![]() |
equation/indeterminate equation | x+x²=n²,x-x²=m² | השאלות_החרשות/האלמות#Fofb | 11) If you are told: a square that has a root, if you add its root to it, it has a root; and if you subtract the square from its root, the remainder has a root.
:![]() |
equation/indeterminate equation | x²-2x=n²,x²-2x+√(x²-2x)=m² | השאלות_החרשות/האלמות#65Ct | 35) If you are told: a square that has a root, if you subtract its two roots from it, it has a root; and if you add to the remainder its root, it has a root.
:![]() ואם תוסיף על הנשאר שרשו יחזיק שרש |
equation/indeterminate equation | x²+y²=n² | השאלות_החרשות/האלמות#Onda | 12) If you are told: divide five dirham into two parts, so that each part has a root.
:![]() |
equation/indeterminate equation | 3-x²=n²,2+x²=m² | השאלות_החרשות/האלמות#6Zd3 | 15) If you are told: a square, if you subtract it from three dirham, the remainder has a root; and if you add it to two dirham, the sum has a root.
:![]() |
equation/indeterminate equation | 10-x²=n²,20-x²=m² | השאלות_החרשות/האלמות#EaVV | 16) If you are told: a square, if you subtract it from ten dirham, the remainder has a root; and if you subtract it from twenty, the remainder has a root.
:![]() |
equation/indeterminate equation | 20+x²=n²,30+x²=m² | השאלות_החרשות/האלמות#czE5 | 17) If you are told: a square, if you add it to twenty, it has a root; and if you add it to thirty, it has a root.
:![]() |
equation/indeterminate equation | x²-4x=n²,x²-4x-2√(x²-4x)=m² | השאלות_החרשות/האלמות#vAyv | 31) If you are told: a square, if you subtract its four roots from it, it has a root; and if you subtract from the remainder its two roots, it has a root.
:![]() ואם תגרע ואם תגרע מהנשאר שני שרשיו יחזיק שרש |
equation/indeterminate equation | x²+4x=n²,x²+4x+2√(x²+4x)=m² | השאלות_החרשות/האלמות#2scj | 30) If you are told: a square that has a root, if you add its four roots to it, it has a root; and if you add to the sum its two roots, it has a root.
:![]() אם תוסיף עליו ארבעת שרשיו יחזיק שרש ואם תוסיף על המתקבץ שני שרשיו יחזיק שרש |
equation/indeterminate equation | x²+2x=n²,x²+2x+√(x²+2x)=m² | השאלות_החרשות/האלמות#Csxg | 29) If you are told: a square that has a root, if you add two roots to it, it has a root; and if you add to the sum its root, it has a root.
:![]() ואם תוסיף על המקובץ שרשו יחזיק שרש |
equation/indeterminate equation | x²+3x=n²,x²+3x+6√(x²+3x)=m² | השאלות_החרשות/האלמות#RKqA | 28) If you are told: a square that has a root, if you add its three roots to it, it has a root; and if you add to the sum its six roots, it has a root.
:![]() ואם תקבץ עם העולה ששת שרשיו יחזיק שרש |
equation/indeterminate equation | x²+2x=n²,x²+2x+3√(x²+2x)=m² | השאלות_החרשות/האלמות#Xpj1 | 27) If you are told: a square that has a root, if you add its two roots to it, it has a root; and if you add to the sum its three roots, it has a root.
:![]() ואם תוסיף על המקובץ שלשת שרשיו יחזיק שרש |
equation/indeterminate equation | 260-6x-x²=n² | השאלות_החרשות/האלמות#63F7 | 26) If you are told: a square that has a root, if you subtract it from 260 minus six roots, the remainder has a root.
:![]() |
equation/indeterminate equation | x²+1=10x-8 | השאלות_החרשות/האלמות#g7c7 | 25) If you are told: a square and one dirham equal ten roots minus eight dirham.
:![]() |
equation/indeterminate equation | x²+2x=n²,x²-3x=m² | השאלות_החרשות/האלמות#ltjx | 23) If you are told: a square, if you add its two roots to it, it has a root; and if you subtract its three roots from it, it has a root.
:![]() |
algebraic operation/multiplication of algebraic expressions | (10+x)×(10+x) | חשבון_השטחים#aUXi | ![]() |
algebraic operation/multiplication of algebraic expressions | (10-x)×x | חשבון_השטחים#TINt | ![]() |
algebraic operation/multiplication of algebraic expressions | 3x×6 | חשבון_השטחים#6cOe | ![]() |
algebraic operation/multiplication of algebraic expressions | (10+x)×x | חשבון_השטחים#mpes | ![]() |
algebraic operation/multiplication of algebraic expressions | 2x×2x | חשבון_השטחים#mF0Q | ![]() |
algebraic operation/multiplication of algebraic expressions | (10+x)×(10-x) | תחבולות_המספר#FNrC | If you are told: how much is the product of ten dirham plus a thing by ten dirham minus a thing?
:![]() |
algebraic operation/multiplication of algebraic expressions | (10+x)×(x-10) | חשבון_השטחים#xrWT | ![]() |
algebraic operation/multiplication of algebraic expressions | (10-x)×(10-x) | תחבולות_המספר#wU5C | If you are told: how much is the product of ten dirham minus a thing by ten dirham minus a thing?
:![]() |
algebraic operation/multiplication of algebraic expressions | (10+x)×x | תחבולות_המספר#Dvm5 | If you are told: how much is the product of ten dirham plus a thing by one thing?
:![]() |
algebraic operation/multiplication of algebraic expressions | (10+x)×(10+x) | תחבולות_המספר#e5Fz | If you are told: how much is the product of ten dirham plus a thing by ten dirham plus a thing?
:![]() |
algebraic operation/multiplication of algebraic expressions | (10+⅔x)×(3-6x) | חשבון_השטחים#EjPJ | ![]() |
algebraic operation/multiplication of algebraic expressions | (10+x)×(10-x) | חשבון_השטחים#9LHU | ![]() |
algebraic operation/multiplication of algebraic expressions | 3x×6 | תחבולות_המספר#NmR4 | If you are told: how much is the result of multiplying three things by six dirham?
:![]() |
algebraic operation/multiplication of algebraic expressions | 2x×2x | תחבולות_המספר#AfDN | ![]() |
algebraic operation/multiplication of algebraic expressions | (10+x)×(x-10) | תחבולות_המספר#Ga64 | If you are told: how much is the product of ten dirham plus a thing by a thing minus ten dirham?
:![]() |
algebraic operation/multiplication of algebraic expressions | (10-x)×(10-x) | חשבון_השטחים#w9JD | ![]() |
algebraic operation/multiplication of algebraic expressions | (10-x)×x | תחבולות_המספר#EDhK | If you are told: how much is the product of ten dirham minus a thing by a thing?
:![]() |
algebraic operation/multiplication of algebraic expressions | (10+⅔x)×(3-6x) | תחבולות_המספר#VDLn | He said: if you are told: how much is the product of ten dirham and two-thirds of a thing by three dirham minus six things?
:![]() |
extraction of root/multiplication of roots | (2×√10)×(½×√5) | חשבון_השטחים#fTi5 | ![]() |
extraction of root/multiplication of roots | ⅔×√9 | חשבון_השטחים#4FLj | ![]() |
extraction of root/multiplication of roots | ½×√9 | חשבון_השטחים#FlzO | ![]() |
extraction of root/multiplication of roots | 2×√16 | תחבולות_המספר#tRoE | He said: we give an example for this: when we wish to know the double root of sixteen.
:![]() |
extraction of root/multiplication of roots | (2×√10)×(½×√5) | תחבולות_המספר#FwAB | He said: if you are told: how much is the product of two roots of ten by half a root of five?
:![]() |
extraction of root/multiplication of roots | √9×√4 | תחבולות_המספר#nTrH | He said: if you wish to know how much is the product of a root of nine by a root of four.
:![]() |
extraction of root/multiplication of roots | ⅔×√9 | תחבולות_המספר#MSsU | If we wish to take two-thirds of a root of nine.
:![]() |
extraction of root/multiplication of roots | ½×√9 | תחבולות_המספר#UOpW | He said: when we wish to take half a root of nine.
:![]() |
extraction of root/multiplication of roots | 2×√16 | חשבון_השטחים#USTm | ![]() |
extraction of root/multiplication of roots | √9×√4 | חשבון_השטחים#WruF | ![]() |
equation/quadratic equation | (x²+7)·√(3x²)=10x² | חשבון_השטחים#dAZJ | If you are told: a square, add to it seven dirham, then multiply the sum by a root of three times the square; it becomes ten times the square.
:![]() |
equation/quadratic equation | [√(½x²)+3]·[√(⅓x²)+2]=20 | חשבון_השטחים#Y7kO | If you are told: a square, add three dirham to a root of its half, and two dirham to a root of its third, then multiply one [sum] by the other; it is twenty dirham.
:![]() |
equation/quadratic equation | [√(6x²)·√(5x²)]+10x²+20=(x²)² | חשבון_השטחים#stdc | [34] If you are told: a square, multiply a root of its six times by a root of its five times, then add ten times the square plus twenty dirham to the product and it is the same as [the product of] the square by itself.
:![]() |
equation/quadratic equation | [√(8x²)·√(3x²)]+20=(x²)² | חשבון_השטחים#HcHI | [33] If you are told: a square, multiply a root of eight times the square by a root of three times the square, then add twenty dirham to the result and it is the same as [the product of] the square by itself.
:![]() |
equation/quadratic equation | (x²-⅓x²)·3√(x²-⅓x²)=x² | חשבון_השטחים#lFM5 | [15] If you are told: a square, we subtract its third from it, then multiply what remains by three roots of what remains from the square and the result is the square.
:![]() |
equation/quadratic equation | 3√x²+4√(x²-3√x²)=x²+4 | חשבון_השטחים#SNBo | [17] If you are told: a square, its three roots and four roots of what remains from the square are the same as the square plus four dirham.
:![]() |
equation/quadratic equation | a²+b²=c², ac=b², ab=10 | חשבון_השטחים#gGKe | If you are told: three unequal squares, if you multiply the smaller by itself and the mean by itself; they are as the greater by itself. If you multiply the smaller by the greater it is as the mean by itself. If you multiply the smaller by the mean it is ten dirham.
:![]() אם תכה הקטן בעצמו והאמצעי בעצמו יהיו כמו הגדול בעצמו ואם תכה הקטון בגדול יהיה כמו האמצעי בעצמו ואם תכה הקטן באמצעי יהיה עשרה דרהמי |
equation/quadratic equation | b²=3a², (a²+√a²)·(b²+√b²)=10b² | חשבון_השטחים#nHFm | If you are told: two squares - one is three times the other; you add to each of them its root, then multiply the one by the other; it is ten times the greater square.
:![]() |
equation/quadratic equation | [x²+√(½x²)]²=4x² | חשבון_השטחים#Fvgh | If you are told: a square, you add to it a root of its half, then multiply the result by itself; it becomes four times the square.
:![]() |
equation/quadratic equation | [x²+√(x²)+√(½x²)]²=5x² | חשבון_השטחים#omoo | If you are told: a square, add to it its root and a root of its half, then multiply the result by itself; it is five times the square.
:![]() |
equation/quadratic equation | x²+4√(x²)+√(½x²)+√(⅓x²)=10 | חשבון_השטחים#b04G | If you are told: a square, add to it its four roots plus a root of its half and a root of its third; it is ten dirham - how much is the square?
:![]() |
equation/quadratic equation | 2√(x²)+√(½x²)+√(⅓x²)=20 | חשבון_השטחים#wOZV | If one says: a square whose two roots plus a root of its half and a root of its third are twenty dirham - how much is the square?
:![]() |
equation/quadratic equation | [x²-(2√x²+10)]²=8x² | חשבון_השטחים#aPQX | If you are told: a square, subtract its two roots and ten dirham from it, then multiply what remains by itself; it becomes eight times the square.
:![]() |
equation/quadratic equation | (√10·x²)/(2√3)=x²-10 | חשבון_השטחים#8OnP | If you are told: a square, multiply it by the root of ten, then divide the product by two plus the root of three; the quotient is the same as the square minus ten.
:![]() |
equation/quadratic equation | (x²+10)·√5=(x²)² | חשבון_השטחים#hePu | [38] If you are told: a square, you add to it ten dirham, then multiply the sum by a root of five and the result is the same as the product of the square by itself.
:![]() |
equation/quadratic equation | [x²+√(3x²)]·√(2x²)=4x² | חשבון_השטחים#lk6C | If you are told: a square, add to it a root of three times of it, then multiply the sum by a root of [twice] the square; it becomes four times the square.
:![]() |
equation/quadratic equation | [x²+√(x²)+√(½x²)]²=20 | חשבון_השטחים#OX0E | ![]() |
equation/quadratic equation | 2√(x²)+√(½x²)+√(⅓x²)=x² | חשבון_השטחים#nPTX | If you are told: a square whose two roots plus a root of half the square and a root of its third are equal to the square - how much is the square?
:![]() |
equation/quadratic equation | 3√x²+4√(x²-3√x²)=20 | חשבון_השטחים#tZ8i | [13] If you are told: three roots of the square plus four roots of what remains from the square are twenty dirham.
:![]() |
equation/quadratic equation | x²·(x²+√10)=9x² | חשבון_השטחים#XpMD | [32] If you are told: a square, multiply it by itself plus a root of ten dirham and it becomes nine times the square.
:![]() |
equation/quadratic equation | √x²+√(√x²)+√(2√x²)+5√x²=10 | חשבון_השטחים#rWIe | If you are told: a square whose root and the root of its root, plus the root of its two roots, plus the root of five times the square are ten dirham.
:![]() |
equation/quadratic equation | 3√x²+2√(x²-3√x²)=x² | חשבון_השטחים#rq9x | [16] If you are told: a square, its three roots and two roots of what remains are equal to the square.
:![]() |
equation/quadratic equation | [√(x²·2x²)+2]·x²=30 | חשבון_השטחים#uwLQ | [40] If you are told: a square, you multiply it by its two times, extract the root of the product, add two dirham to it, then multiply the total by that square and the result is thirty dirham.
:![]() |
equation/quadratic equation | (x²-⅓x²)·3√x²=x² | חשבון_השטחים#ak8r | [14] If you are told: we subtract from a square its third, then multiply what remains by three roots of the original square and the result is the original square.
:![]() |
equation/quadratic equation | [x²-(⅓x²+2)]²=x²+24 | חשבון_השטחים#lT08 | [12] If you are told: a square, you subtract its third and two dirham from it, then multiply what remains by itself and the result is the square plus 24 dirham.
:![]() |
compound canonical equation/roots and numbers equal squares | 3x+4=x² | חשבון_השטחים#qrpb | ![]() |
compound canonical equation/roots and numbers equal squares | 3x+4=x² | תחבולות_המספר#VKnl | He said: roots and numbers that are equal to a square is as saying three roots and four dirham are equal to a square.
:![]() |
simple canonical equation/roots equal numbers | x=4 | חשבון_השטחים#wMvn | When the roots are equal to numbers, as if you say: the root is equal to four.
:![]() |
simple canonical equation/roots equal numbers | 5x=30 | תחבולות_המספר#jHg9 | As if one says: five roots are equal to thirty.
:![]() |
simple canonical equation/roots equal numbers | x=4 | תחבולות_המספר#PaMj | If you are told: the roots of the square are equal to four numbers.
:![]() |
simple canonical equation/roots equal numbers | ½x=10 | חשבון_השטחים#0Ojb | If you say: half a root is equal to ten.
:![]() |
simple canonical equation/roots equal numbers | 5x=30 | חשבון_השטחים#1YGh | Also if you say: five roots are equal to thirty.
:![]() |
simple canonical equation/roots equal numbers | ½x=10 | תחבולות_המספר#e4m4 | If one says: half a root is equal to ten.
:![]() |
divide a quantity problem/simple division | two amounts of money between two groups of people | חשבון_השטחים#YO6T | [6] If you are told: we divide ten dirham among people.
:Each one receives a thing.
:Then we add to them four people and divide sixty dirham among all.
:Each one of them receives five dirham more than each one of the former.
:![]() ועלה לכל אחד דבר והוספנו עליהם ארבעה אנשים וחלקנו עליהם ששים אדרהמיש ועלה לאחד יותר ממה שעלה לאחד מהראשונים חמשה אדרהמיש |
divide a quantity problem/simple division | two amounts of money between two groups of people | חשבון_השטחים#NF2x | [8] This is as when you are told: we divide twenty dirham among people.
:Each one receives a thing.
:Then we add to them two people and divide sixty dirham among all.
:Each one of them receives five dirham more than each one of the former.
:![]() והגיע לכל אחד מהם דבר והוספנו עליהם שני אנשים וחלקנו עליהם ששים אדרהמיש ועלה לאחד מהם יותר מאשר עלה לאחד מהראשונים בחמשה אדרהמיש |
divide a quantity problem/simple division | two amounts of money between two groups of people | חשבון_השטחים#fCoU | [7] If you are told: we divide sixty dirham [among people].
:Each one receives a thing.
:Then we add to them three people and divide twenty dirham among all.
:Each one of them receives twenty-six dirham less than each one of the former.
:![]() ועלה לאחד דבר והוספנו עליהם שלשה אנשים וחלקנו עליהם עשרים אדרהמיש ועלה לאחד פחות מאשר עלה לאחד מהראשונים עשרים וששה אדרהמיש |
divide a quantity problem/simple division | two amounts of money between two groups of people | חשבון_השטחים#65ve | [9] If you are told: we divide ten dirham among people.
:Each one receives a thing.
:Then we add to them six people and divide forty dirham among all.
:Each one of them receives as much as each one of the former equally.
:![]() והגיע לאחד דבר והוספנו עליהם ששה אנשים וחלקנו בין כולם ארבעים אדרהמיש והגיע לאחד מהם כמו שהגיע לאחד מהראשונים בשוה |
divide a quantity problem/simple division | two amounts of money between two groups of people | חשבון_השטחים#0rxj | [5] If you are told: we divide ten dirham among people.
:Each one receives a thing.
:Then we add to them four people and divide thirty dirham among all.
:Each one of them receives four dirham less than each one of the former.
:![]() ועלה לכל אחד מהם דבר והוספנו עליהם ארבעה אנשים וחלקנו על כלם שלשים אדרהמיש ועלה לכל אחד מהם פחות מאשר עלה לראשונים ארבעה אדרהמיש |
divide a quantity problem/simple division | same amount of money between two groups of people | חשבון_השטחים#K4Xr | [4] If you are told: we divide fifty dirham among people.
:Each one receives a thing.
:Then we add to them three [people] and divide the fifty dirham among all.
:Each one of the latter receives three dirham and three-quarters less than each one of the former.
:![]() ועלה לאחד דבר והוספנו על האנשים עוד שלשה וחלקנו עליהם החמשים אדרהמיש ועלה לכל אחד מהאחרונים פחות מאשר עלה לכל אחד מהראשונים שלשה אדרהמיש ושלשה רביעים |
compound canonical equation/squares and numbers equal roots | x²+21=10x | תחבולות_המספר#u4EA | He said: squares and numbers that are equal to roots is as if you say: when you sum twenty-one dirham with a certain square, they are equal to ten roots of the square.
:![]() |
compound canonical equation/squares and numbers equal roots | x²+25=10x | תחבולות_המספר#QWm3 | Example: one says: a square plus twenty-five [dirham] are equal to ten roots of the square.
:![]() |
compound canonical equation/squares and numbers equal roots | x²+21=10x | חשבון_השטחים#yRRf | ![]() |
compound canonical equation/squares and numbers equal roots | x²+25=10x | חשבון_השטחים#5rN4 | ![]() |
compound canonical equation/squares and roots equal numbers | ½x²+5x=28 | חשבון_השטחים#XyaI | ![]() נאמר כי כאשר {{#annot: term | #to add, #חבר | qgPe}}חברנו{{#annotend:qgPe}} על חצי האלגוש חמשה שרשי האלגוש יהיו כ"ח אדרהמיש |
compound canonical equation/squares and roots equal numbers | x²+10x=39 | חשבון_השטחים#BnUp | Squares and roots are equal to numbers, it is as if you say: a square and ten roots are equal to thirty-nine dirham.
:![]() |
compound canonical equation/squares and roots equal numbers | 3x²+15x=72 | תחבולות_המספר#HV5b | Example: if one asks: three squares and 15 roots are equal to 72 dirham.
:![]() |
compound canonical equation/squares and roots equal numbers | 2x²+10x=48 | חשבון_השטחים#cSpR | ![]() |
compound canonical equation/squares and roots equal numbers | ½x²+5x=28 | תחבולות_המספר#FJRf | Likewise, if one asks: half a square plus its five roots are equal to 28 dirham.
:![]() |
compound canonical equation/squares and roots equal numbers | x²+10x=39 | תחבולות_המספר#oMPa | He said: when squares and roots are equal to numbers, it is as if you say: the sum of one square and ten of its roots together is equal to thirty-nine dirham.
:![]() |
simple canonical equation/squares equal numbers | 5x²=45 | חשבון_השטחים#yMV8 | Likewise, when five squares are equal to forty-five.
:![]() |
simple canonical equation/squares equal numbers | x²=16 | תחבולות_המספר#fCC4 | As if you are told: the square is equal to sixteen.
:![]() |
simple canonical equation/squares equal numbers | 5x²=45 | תחבולות_המספר#C4DX | If one says: five squares are equal to forty-five.
:![]() |
simple canonical equation/squares equal numbers | x²=16 | חשבון_השטחים#lI7w | The squares that are equal to numbers is as a square that equals sixteen.
:![]() |
simple canonical equation/squares equal numbers | ⅓x²=27 | חשבון_השטחים#sOLH | Also if you say: a third of the square is equal to twenty-seven.
:![]() |
simple canonical equation/squares equal numbers | ⅓x²=27 | תחבולות_המספר#Usmi | If one says: a third of the square is equal to twenty-seven.
:![]() |
simple canonical equation/squares equal roots | x²=5x | תחבולות_המספר#EqMy | For example: if you are told; five roots are equal to one square. How much is the square?
:![]() |
simple canonical equation/squares equal roots | x²=5x | חשבון_השטחים#cbxX | The squares that are equal to roots is as if you say: a square equals five roots.
:![]() |
simple canonical equation/squares equal roots | 5x²=20x | חשבון_השטחים#sJUh | As if you say: five squares equal twenty roots.
:![]() |
simple canonical equation/squares equal roots | ½x²=10x | תחבולות_המספר#fayj | Also, if he says: half a square is equal to ten roots.
:![]() |
simple canonical equation/squares equal roots | 5x²=20x | תחבולות_המספר#WDhU | Example: if one asks: five squares are equal to twenty roots.
:![]() |
simple canonical equation/squares equal roots | ½x²=10x | חשבון_השטחים#N1ie | Likewise, if it is said: half a square equals ten roots.
:![]() |
extraction of root/subtraction of roots | √9-√4 | תחבולות_המספר#YpmS | He said: when you wish to subtract a root of four from a root of nine, so that what remains is a root of a single number.
:![]() |
extraction of root/subtraction of roots | √18-√8 | תחבולות_המספר#uKgY | If we want to subtract the root of eight from the root of eighteen.
:![]() |
extraction of root/subtraction of roots | √18-√8 | חשבון_השטחים#HW4Q | ![]() |
extraction of root/subtraction of roots | √9-√4 | חשבון_השטחים#e8VS | ![]() |