Excerpts Attributed to Immanuel Bonfils
Contents
- 1 Introduction - Decimal Fractions
- 2 Table – multiplication of sexagesimal fractions (Firenze)
- 3 Table – multiplication of sexagesimal fractions (Firenze)
- 4 Multiplication of integers (Firenze)
- 5 Division of integers
- 6 Extracting roots
- 7 Division of sexagesimal fractions
- 8 Extracting roots of sexagesimal fractions
- 9 Multiplication of sexagesimal fractions
- 10 A Rule for Checking the Squares
- 11 MS London 7r-v
- 12 Glosses on Abraham Ibn Ezra’s Book of the number (P1026; London)
- 13 Notes
- 14 Appendix: Bibliography
Introduction - Decimal Fractions |
||||||||||||||||||||||||||||||||||||||||||||||||||
The division method of R. Immanuel | [1]דרך חלוק לר' עמנואל וע'א' | |||||||||||||||||||||||||||||||||||||||||||||||||
Introduction | הקדמה | |||||||||||||||||||||||||||||||||||||||||||||||||
Know that the one is divided into ten parts called primes; each prime is divided into ten parts calles seconds and so on endlessly. | דע כי האחד נחלק לעשרה חלקים יקראו ראשונים וכן כל ראשון נחלק לעשרה חלקים יקראו שניים וכן לאין תכלית | |||||||||||||||||||||||||||||||||||||||||||||||||
Similarly I want to remind you that I call the rank of tens of integers "primes"; the hundreds of integers "seconds" and so on endlessly. | וכן אמרתי להזכירך כי הנני קורא למעלת העשרות שלימים ראאשונים ולמאות שלמים שניים וכן לאין תכלית | |||||||||||||||||||||||||||||||||||||||||||||||||
I call the rank of units by their name "units", since it is mean between the integers and the fractions, therefore, when the units are multiplied by units the result is units. | אמנם מעלת האחדים אני קורא אותם בשמם אחדים לפי שהוא אמצעי בין השלמים והשברים ולזה כשיכפל אחדים באחדים יצאו אחדים | |||||||||||||||||||||||||||||||||||||||||||||||||
I call the ranks whose name is greater "having a greater name", meaning I call the thirds "having a greater name than" the seconds, since the [name of] the thirds is derived from three and [the name of] the seconds [is derived] from two; likewise the fourths "having a greater name than" the thirds, and so the fifths ["having a greater name than"] the fourths. This is for the integers as well as for the fractions. | וכן אני קורא המעלות שהם גדולות השם גדול השם רצוני בזה שלישיים אני קורא יותר גדול השם משניים לפני ששלישיים נגזר משלשה ושניים משנים וכן רביעיים יותר גדול השם משלישיים וכן חמשיים מרביעיים וזה הוא בשלמים ובשברים | |||||||||||||||||||||||||||||||||||||||||||||||||
When I say: add the name of this to the name of this, or subtract the name of this from the name of this: | וכן כשאומר חבר שם זה עם שם זה או גרע שם זה משם זה | |||||||||||||||||||||||||||||||||||||||||||||||||
I mean add the name of the seconds to the name of the thirds and they are fifths.
|
רצוני בזה חבר שם שניים עם שם שלישיים ויהיו חמשיים | |||||||||||||||||||||||||||||||||||||||||||||||||
If the name of the seconds to the name of the seconds, they are fourths.
|
ואם שם שניים עם שם שניים יהיו רביעיים | |||||||||||||||||||||||||||||||||||||||||||||||||
Also, subtract the name of the seconds from the name of the thirds; primes remain.
|
וכן גרע שם שניים משם שלישיים וישאר ראשונים | |||||||||||||||||||||||||||||||||||||||||||||||||
If the name of the seconds from the name of the seconds, nothing remains, so they are in the rank of the units.
|
ואם שם שניים משם שניים לא ישאר דבר ויפול במעלת האחדים | |||||||||||||||||||||||||||||||||||||||||||||||||
This is for integers as well as for fractions. | וזה בשלמים ובשברים | |||||||||||||||||||||||||||||||||||||||||||||||||
When you subtract a greater name from a smaller name, as if we say: we subtract fourths from seconds, whether fractions, or integers; the result is in the rank of seconds of the other type. | וכאשר תגרע שם גדול משם קטן כאמרנו נגרע רביעיים משניים הן בשברים [הן בשלמים][2] יביא במעלת השניים לצד האחר | |||||||||||||||||||||||||||||||||||||||||||||||||
As if we say: we subtract the name of the fourths that are fractions from the name of the seconds that are fractions; the result is in the rank of seconds that are integers.
|
כאמרנו נגרע שם רביעיים בשברים משם שניים גם כן בשברים יפול במעלת שלמים שניים | |||||||||||||||||||||||||||||||||||||||||||||||||
When we say this for integers, i.e. we wish to subtract the name of the fourths that are integers from the name of the seconds that are integers, the result is of the seconds that are fractions.
|
וכן באמרנו זה בשלמים ר"ל שנרצה לגרוע שם רביעיים שלמים משם שניים שלמים יפול בשברים שניים | |||||||||||||||||||||||||||||||||||||||||||||||||
When you multiply a number by a number and they are both integers or both fractions: | כשתכפול מספר על מספר ושניהם שלמים או שניהם שברים | |||||||||||||||||||||||||||||||||||||||||||||||||
Add the names of the ranks [one to the other] and the product is [in the rank whose name is their sum], of the integers, if both are integers, or of the fractions, if both are fractions.
|
חבר שם המדרגות האחד ושם היא הנכפל בשלמים אם שניהם שלמים ובשברים אם שניהם שברים | |||||||||||||||||||||||||||||||||||||||||||||||||
If [one is] integer and the other fraction: | ואם שלמים והאחר שברים | |||||||||||||||||||||||||||||||||||||||||||||||||
If their names are the same, the product is in the rank of units.
|
אם הם שוים בשם הנה יכפול הנכפל במעלת האחדים | |||||||||||||||||||||||||||||||||||||||||||||||||
If the name of one is greater than the other, subtract the smaller from the greater and the product is as the name that remains: integers, if the [name of] the integers is greater, or fractions, if the [name of] the fractions is greater.
|
ואם שם האחד רב על האחר גרע הקטן מהגדול וכמספר השם שישאר שם יפול הנכפל בשלמים אם הם שלמים היותר גדול או בשברים אם שם השברים הוא יותר גדול | |||||||||||||||||||||||||||||||||||||||||||||||||
When you divide a number by a number and they are both integers or both fractions: | כשתחלק מספר על מספר ושניהם שלמים או שניהם שברים | |||||||||||||||||||||||||||||||||||||||||||||||||
If the names of their ranks are the same, the quotient is in the rank of units. Because, when you subtract this name from this name, nothing remains, so it is in the rank of units.
|
ושם מדרגותיהם שוה הנה יפול החלוקה במעלת האחדים לפי שכאשר תגרע שם זה משם זה לא ישאר דבר ויפול במעלת האחדים | |||||||||||||||||||||||||||||||||||||||||||||||||
If [the name of] the upper is greater than the name of the lower, subtract the name of the lower from the name of the upper and the quotient is as the name that remains of the same type, i.e. integers, if [both are] integers, or fractions, if [both are] fractions.
|
ואם העליון יותר גדול השם מתחתון גרע שם התחתון משם העליון וכמספר שֵם הנשאר יפול החלוקה בצד ההוא ר"ל בשלמים אם הי | |||||||||||||||||||||||||||||||||||||||||||||||||
If [the name of] the lower is greater, subtract the name of the greater from the name of the lower and the quotient is as the name that remains of the opposite type: fractions, if both are integers, or integers, if both are fractions.
|
ואם התחתון יותר גדול גרע שם העליון משם התחתון וכמספר שם הנשאר יפול החלוקה בהפך הצד ר"ל בשברים אם היו שניהם שלמים או בשלמים אם היו שניהם שברים | |||||||||||||||||||||||||||||||||||||||||||||||||
If one is integer and the other is fraction and the names of their ranks are the same, or not the same, add the names of their ranks and the quotient is as the name of the sum: fraction, if the upper is a fraction, or integer, if the upper if integer.
|
ואם האחד שלמים והשני שברים ושם מדרגותיהם שוה או בלתי שוה חבר שם המדרגות וכמספר שם העולה בשברים אם העליון שברים או בשלמים אם העליון שלמים שם יפול החלוקה | |||||||||||||||||||||||||||||||||||||||||||||||||
Another Version - MS Paris 903 | ||||||||||||||||||||||||||||||||||||||||||||||||||
דע כי האחד נחלק לי' חלקים יקראו שלמי'שברי' ראשוני' וכל אחד מהראשוני' לי' חלקי' יקראו שלמי' שברי' שניים וכל שניי' לי' שלישיי' וכל שלישיי' לי' רביעיי' וכן עד אין קץ | ||||||||||||||||||||||||||||||||||||||||||||||||||
וכן אני קורא מעלת העשרו' שלמים ראשונים ולמאות שלמי' שניי' ולאלפי' שלמי' שלשיי' ולרבואות שלמים רביעיי' ולרבבות חמשיי' וכן עד אין קץ | ||||||||||||||||||||||||||||||||||||||||||||||||||
אך האחדי' אני קור' בשמם אחדי' כי הם כאמצעיים בין השלמי' והשברי' על כן בכפל אחדי' באחדי' יצאו אחדי' מש"כ בשום מעל' אחרת | ||||||||||||||||||||||||||||||||||||||||||||||||||
וכן אני קורא לשניי' גדולי השם מראשוני' וכן שלישיים משניי' וכן כלם בי' בשלמי' בי' בשברי' וכן באמ' חבר שם שניי' עם שם שלישיי' יצא חמשיי' וכן כלם | ||||||||||||||||||||||||||||||||||||||||||||||||||
וכן באמ' גרע שם ראשוני' משם שניים ישאר ראשוני' | ||||||||||||||||||||||||||||||||||||||||||||||||||
ואם משם ראשונים לא ישאר דבר ויכפול במעל' האחדי' בי' בשלמי' בי' בשברי' | ||||||||||||||||||||||||||||||||||||||||||||||||||
ואם הנגרע גדול השם מאשר גרעון ממנו כגון שתגרע רביעיי' משניי' אם הם בשברי' יצאו שניי' שלמי' | ||||||||||||||||||||||||||||||||||||||||||||||||||
ואם הם בשלמי' יצאו שברי' שניים וכשתכפל שלמי' בשלמי' או שברי' בשברי' חבר שם המדרגו' ושם יפול הנכפל וכשתכפל שלמי' בשברי' אם הם שוים בשם יפול הנכפל באחדי' | ||||||||||||||||||||||||||||||||||||||||||||||||||
ואם לאו גרע שם הקטן מן שם הגדול ושם יפול הנכפל [..] בצד הגדול בשם הנשאר אחר הגרעון | ||||||||||||||||||||||||||||||||||||||||||||||||||
כאלו תכפול ג' שלמי' שניי' בב' שברי' שביעיי' תגרע ב' מז' וישאר ה נמצ' יעלה הכפל ו' שברי' חמשיים | ||||||||||||||||||||||||||||||||||||||||||||||||||
ואם ג' שברי' שניי' בב' שלמי' שביעיי' יהיה הנכפל ו' שלמי' חמשיים | ||||||||||||||||||||||||||||||||||||||||||||||||||
וזו לך צורה לזה כשתחלק מספר על מספר ושניהם שלמי' או שניה' שברי' אם שם מדרגותיה' שוה תפול החלוק באחדי' לעולם | ||||||||||||||||||||||||||||||||||||||||||||||||||
ואם שם העליון גדול מהתחתון גרע שם התחתון ממנו וכמספר הנשאר תפול החלוקה בצד ההו' ר"ל אם הם שלמי' שלמי' ואם שברי' שברי' | ||||||||||||||||||||||||||||||||||||||||||||||||||
ואם שם התחתון גדול גרע העליון ממנו וכמספר הנשאר תפול החלוק בהפך הצד ר"ל בשברי' אם החולק והנחלק שלמי' ובשלמי' אם הם שברים | ||||||||||||||||||||||||||||||||||||||||||||||||||
ואם האחד שלם והשני שברי' יהיה שם מדרגותיהם שוה או בלתי שוה חבר שמות המדרגו' יחד וכמספר המחובר יהיה שם הנופל בחלוק לצד שבו היה המספר העליון ר"ל המתחלק אם שלמי' בשלמי' ושברי' בשברי' | ||||||||||||||||||||||||||||||||||||||||||||||||||
MS Paris 1081 15r | ||||||||||||||||||||||||||||||||||||||||||||||||||
אמר עמנואל בן יעקב לפי שמעשה החלוק יותר קשה למתלמדים ממעשה הכפל והיא הדרך לשאר החשבנים החכמים להוציא המספר האחד הנעלם איזה שיהיה מתוך ידיעת החמשה מספרים הנשארים ויעשה בזה שני כפלים ושני חלקים בדרכים שונים ראינו לבאר להוציא הנעלם מתוך ידיעת החמשה הנשארים ויעשה בזה שלשה כפלים וחלוק אחד ואומר ראשונה לתת קצת אותות אל זה המעשה הנה יחס א' אל ב' מחובר מיחס ג' אל ד' ומיחס ה' אל ו' וכבר התבאר מתמונת כ"ג מששי אקלידיס שיחס השטח ההווה מן ג' בה' אל השטח ההוה מן ד' בו' מחובר מיחס צלע ג' אל צלע ד' ומיחס צלע ה' אל צלע ו' אם כן יחס ו' אל ב' כיחס השטח ההווה מן ג' בה' אל השטח ההווה מן ד' בו' ויהיה שטח ג' בה' מספר ז' ושטח ד' בו' מספר ט' אם כן יחס א' אל ב' כיחס ז' אל ט' אם כן נכפול הקצות שהם א' בט' ויהיה ל' ונחלק ל' על האמצעי והוא ב' ויעלה הז' שהוא האמצעי האחר
או נחלק ל' על האמצעי והוא ז' ויעלה ב' והוא האמצע האחר או נכפול האמצעיים שהם ב' בט' ויהיה ל' ונחלק על הקצה | ||||||||||||||||||||||||||||||||||||||||||||||||||
Table – multiplication of sexagesimal fractions (Firenze) |
לוח כפילת המעלות ושבריהם | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ||||||||||||||||||||||||||||||||||||||||||||||||||
Table – multiplication of sexagesimal fractions (Firenze) |
לוח חילוק השברים האחד על השני | |||||||||||||||||||||||||||||||||||||||||||||||||
|
Multiplication of integers (Firenze) |
|||||||||||||||||||||||||||||||
|
דמיון על דרכי הכפל רצינו לכפול קכ"ז על שנ"ה | ||||||||||||||||||||||||||||||
|
וכתבנו בטור העליון קכ"ז ובשני השפל שנ"ה וזה צורתו | ||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
|
כפלנו ז' על ה' והוא ל"ה | ||||||||||||||||||||||||||||||
|
כתבנו ה' במעלה הראשונה כנגד ז' ושמרנו הג' כדי לצרף אותה אל המעלה השנייה | ||||||||||||||||||||||||||||||
|
עוד כפלנו ז' על ה' השני התחתון עלו ל"ה | ||||||||||||||||||||||||||||||
|
חברנו הה' עם הג' ששמרנו ועלו ח' | ||||||||||||||||||||||||||||||
|
ושמנו ח' במעלה השנית תחת ב' מטור העליון והג' שמנו במעלה השלישית תחת הא' מטור העליון עם היוצא מכפל אותה המעלה | ||||||||||||||||||||||||||||||
|
עוד כפלנו ז' הראשון על הג' התחתון עלו כ"א | ||||||||||||||||||||||||||||||
|
חברנו א' עם הג' ששמרנו והיו ד' | ||||||||||||||||||||||||||||||
|
וכתבנו ד' תחת הא' במעלה השלישית וב' במעלה רביעית | ||||||||||||||||||||||||||||||
|
עוד כפלנו ב' האמצעי העליון על ה' הראשון מן הטור השפל עלו עשר | ||||||||||||||||||||||||||||||
|
כתבנו ציפרא בשינית וא' בשלישית תחת הג' שבטור השפל | ||||||||||||||||||||||||||||||
|
עוד כפלנו ב' העליון על הה' השני התחתון עלו עשר | ||||||||||||||||||||||||||||||
|
חברנו י' עם הא' ששמרנו והיא י"א | ||||||||||||||||||||||||||||||
|
שמנו א' בשלישית וא' שמרנו ברביעית | ||||||||||||||||||||||||||||||
|
עוד כפלנו ב' על ג' והיו ששה | ||||||||||||||||||||||||||||||
|
חברנו הו' עם הא' והיו ז' וכתבנוהו ברביעית | ||||||||||||||||||||||||||||||
|
עוד כפלנו א' על ה' הראשונ שבטור השפל וכתבנו ה' בשלישית עוד כפלנו א' על ה' הראשון שבטור השפל וכתבנו ה' בשלישית | ||||||||||||||||||||||||||||||
|
עוד כפלנו א' על ה' השני וכתבנו ה' ברביעית | ||||||||||||||||||||||||||||||
|
עוד כפלנו א' על ג' וכתבנו ג' במעלה החמישית | ||||||||||||||||||||||||||||||
|
נשלם כפל החבור | ||||||||||||||||||||||||||||||
נבוא לחבר היוצא מכפל שני הטורים ונכתוב ה' לכח במעלה הראשונה וח' בשנית וד' וא' וה' עולים עשרה נעשה 0' בשלישית ונשים נקודה ברביעית להיות לזיכר בעבו' העשרה | |||||||||||||||||||||||||||||||
ואחר נחבר ב'ז'ה' והם י"ד ואחר השמור הרי ט"ו נשים ה' במעלה הרביעית ונקודה בחמישית | |||||||||||||||||||||||||||||||
נחבר אחד עם הג' ויהיו ד' ונכתוב ד' במעלה החמשית נשלם החבור | |||||||||||||||||||||||||||||||
המאזניים מן הכפל על חש' ט' ט' | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
הנה חשבנו חשבון הטור העליון כאילו הם אחדים והיו עשרה כזה הדרך השלכנו התשעה ונשאר א' וכתבנוהו בצד הטור העליון | |||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
אחר כן חשבנו הטור השפל ומצאנוהו עולה י"ג הפלנו הט' ונשארו ד' וכתבנום בצדו אחד | |||||||||||||||||||||||||||||||
ואחר כפלנו א' על ד' והיה ד' ושמרנום | |||||||||||||||||||||||||||||||
ואחר חשבנו המחובר והיה זה ה ח 0 ה ד ועלה כ"ב השלכנו י"ח שהולך לתשיעיות ונשארו ד' והוא שווה לכפל מאזני שני הטורים ואז ידענו שחשבונינו אמתי | |||||||||||||||||||||||||||||||
והכלל הוא כי כשאחד ממדרגות הכפל הולך לתשיעיות הן העליון הן השפל היוצא מחבור הכפל ראוי ללכת בתשיעיות ואם לאו אינו צורך | |||||||||||||||||||||||||||||||
ואם אינו הולך לתשיעיות כל אחד משניהם תכפול העודף משני טורי הכפל זה על זה וראה מה שיעדיף על תשיעיות אם ה' אם ו' אם ז' | |||||||||||||||||||||||||||||||
ר"ל תראה מה שיעלה הטור העליון ותכפלהו על מה שיעלה הטור השפל כאלו יהיה בעליון ד' ג' שעולה ז' ובתחתון ג' ב' שעולה ה' תכפול ז' על ה' עולה ל"ה נשאר על תשיעיות שהשלכת ח' וכן יהיה בחבור בלי פחות ויתר כאשר תעיין כמה חבור הכפל וכמה יעדיף על תשעה | |||||||||||||||||||||||||||||||
ואם בין הטור העליון והשפל לא יעלה הכל ט' תפיל העליון על השפל וראה מה שיעדיף על תשיעיות וככה יהיה החבור אם הכפל יצדק ואם לא יצדק תם |
Division of integers |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[3]עשאו שין בונפייל נ"ע[4] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
כשתרצה לחלק מספרים רבים על מספרים רבים כמה שיהיו תשים המספר שתרצה לחלקו והוא ביותר גדול בטור כל אחד ואחד כפי מעלתו וקרא טור עליון[5] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
והמספר השני שתרצה לחלק עליו והוא היותר קטן תשים בטור אחד תחת הטור העליון כל מין תחת מינו ר"ל אחדים תחת אחדים עשרות תחת עשרות וכו' שהטור יקרא הטור השפל[6] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
וריוח תשים בין שני הטורים שהזכרנו כדי שתוכל לכתוב ביניהם העולה בחלוק וזה הטור יקרא טור אמצעי[7] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
וכאשר תחל לחלק חשבונך ותחשוב כל המספרי' כאלו [הם][8] אחדים תראה כמה פעמים יהיה המספר האחרון שבטור השפל כמספר אחרון שבטור עליון | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ובאופן שיהיה מספר הפעמים ההם השני לאחרון שבטור השפל ר"ל לפניו השני לאחרון שבטור העליון לפניו[9] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
וכן השלשי לאחרון שבטור | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ואותו המספר אשר יעלה לך עם האופן הקודם ר"ל מספר הפעמים אשר יהיה המספר האחרון שבטור השפל כמספר האחרון שבטור העליון תכתוב בטור האמצעי ר"ל בין הטור העליון והשפל ותכתוב כמספר ההוא רחוק מהמספר האחרון שבטור העליון אשר תקח ממנו החלק כמו מדרגות אשר רחק כמספר האחרון שבטור השפל ממדרגת האחדים[11] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ודע לך שאם לא תוכל לקחת שום פעם המספר האחרון שבטור השפל כמספר האחרון שבטור העליון כאלו נאמר דרך משל[12] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
שהאחרון שבטור השפל הוא א' והאחרון שבטור העליון הוא ח' או פחות כמו בדמיונו זה[13] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
אז תשוב כל המספר ההוא אחורנית ר"ל מספר | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
אחר כן תשים קו תחת הטור השפל וכפול זאת האות שיצא לך בחלוק ר"ל ט' עם כל הטור השפל כאשר ידעת דרך הכפל והיוצא מהכפל גרע מהטור העליון כל מין ממינו ונתחיל מן המדרגה הקרובה אל האחדים או מן האחדים אם יש שם אחדים והנשאר אחר הגרעון[15] כתוב על הטור | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
אחר זה שוב לחלק הנשאר על הטור העליון על הטור השפל על הדרך שביארנו ואחר כפול האות היוצא בחלוק על כל הטור השפל כאשר בתחלה ואחר גרע העולה מהכפל מן הנשאר בטור העליון וישאר הנשאר עליו[17] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ואחר תשוב לחלק עוד אם יש בה לחלק ולכפול ולגרוע כדבר האמור[18] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
והסימן לזה הדרך ח'כ'ם' ר"ל חלוק כפל ומגרעת[19] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
וכן תעשה תמיד עד שישאר בטור[20] עליון פחות ממה שבטור[21] השפל | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
וכאשר עשית זה ונשאר בטור העליון פחות ממה שבטור השפל ותרצה לבחון אם נעשית מלאכתך בזולת נפילת בה שום טעות תחבר כל טורי הכפל אשר יצאו לך כל מין עם מינו וגם הנשאר לך בטור עליון ותנהוג מנהג החבור אשר ידעת מנהגו ואם המחובר יהיה שוה למספר שיהיה לך ראשונה בטור העליון הנה החשבון אמיתי ואם תמצא שום התחלפות ביניהם הנה טעות ודוק ותשכח[22] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Table in MS Firenze |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MS Firenze margin | שלא מן המאמ' והוא תוס' ביאור ואם תרצה לחלק עוד הנשאר לחלק בזה הדרך שעשינו שבר הנשאר למעלה ולמדרגה שלפניה | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Extracting roots |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
After I have explained to you the method of division in the easiest possible way, in addition to mentioning most of the number operations such as division, multiplication and subtraction, as well as addition and checking, I intend to clarify and inform an easy way to find the square roots of the numbers that have a real root, or the closest to the numbers that do not have a real root, whether they are integers alone, integers with fractions, or fractions alone; their rules and approximations, while mentioning the other methods of calculation also. | [23]אחר שביארתי לך דרך החלוק על הדרך היותר קל שאיפשר מצורף מה שיש בו מן ההזכרה מרוב דרכי המספר כמו חלוק כפל ומגרעת גם החיבור בבחינה אמרתי לבאר ולהודיע דרך קל למצא שרשי המרובעים מהמספרים שיש להם שורש אמיתי או היותר קרוב להם מהמספרים אשר אין להם שורש אמיתי שלמי' לבדם הן מהמספרים שיש שלמים עם נשברים או מנשברים לבדם הן וכלליהם ודקדוקהם ויהיה גם זה מן ההזכרה בשאר דרכי החשבון[24] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
From now on I will start and say: | ומעתה אתחיל ואומר[25] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Know that in the rank of units there are three square numbers, i.e. whose roots are known integers and they are: one, whose root is one; four, whose root is two; and nine, whose root is three.
|
דע כי במעלת האחדים יש בה שלשה מספרים מרובעים ר"ל ששרשיהם שלמים וידועים והם אחד ששרשו אחד וארבעה ששרשו שנים ותשעה ששרשו שלשה[26] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The second rank, which is the rank of tens, does not have a square number at all, only together with units, because ten is not a square number, nor twenty, nor 30, nor 40, nor 50, 60, 70, 80, 90. Yet with the addition of units, it has six squares, i.e. we add to the number of tens some units: like 16, whose root is 4; 25, whose root is 5; 36, whose root is 6; 49, whose root is 7; 64 whose root is 8; 81, whose root is 9. | ובמעלה השנית שהיא מעלת עשרות אין בה מספר מרובע כלל רק עם חבור אחדים כי עשרה אינו מספר מרובע ולא עשרים ולא ל' ולא מ' ולא נ' ס' ע' פ' צ' אמנם עם חבור אחדים יש בה ששה מרובעים ר"ל שנוסיף על מספר העשרות אחדים מה כמו י"ו שרשו ד' כ"ה שרשו ה' ל"ו שרשו ו' מ"ט שרשו ז' ס"ד שרשו ח' פ"א שרשו ט'[27] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Every rank of a number, whose numerical position is odd, such as third, fifth, seventh, ninth, and the like endlessly, is analogous to the rank of units. | וכל מעלת המספר שמספר מדרגתה נפרד כמו שלישית חמישית שביעית תשיעית ודומיהן לאין תכלית דומה למעלה האחדים[28] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
As, if you say, for example, the rank of hundreds, which is the third rank, also has three squares: | כאלו תאמר דרך משל במעלת המאיות שהיא מדרגת שלישית יש בה גם כן שלשה מרובעים[29] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
והוא מאה שדומה לאחד שרשו עשרה שדומה לאחד[30] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
וארבע מאות שדומה לארבע אחדים שרשו עשרים שדומה לשנים[31] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
וט' מאות שדומה לט' אחדים שרשו שלשים שדומה לשלש[32] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Likewise every rank whose numerical position is even, like fourth, sixth, eighth, tenth, and so on endlessly, which is called an even rank, is analogous to the rank of tens, which has six squares by adding units to it as we have explained. So, the rank of thousands has six squares by adding hundreds, i.e. we shift each thousand backward as ten hundreds and add them to what is in the hundreds: | וכן כל מעלה שמספר מדרגתה זוג כמו רביעית ששית שמינית עשירית וכן לאין תכלית והיא אשר תקרא מעלה זוגיית דומה למעלה העשרות שיש בה ששה מרובעים עם חבור אחדים בה כמו שבארנו כן במעלת האלפים יש בה ששה מרובעים עם חבור המאיות ר"ל שנשים כל אלף ואלף אחורנית לעשרה מאיות ותחבר עם מה שנמצא במאיות[33] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
כמו אלף ושש מאות הדומה לשש [34]עשרה שרשו ארבעים הדומה לארבעה[35] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ואלפים ות"ק הדומה לכ"ה שרשו חמשים הדומה לחמשה | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ושלשת אלפים ושש מאות הדומה אל ל"ו שרשו ששים הדומה לששה[36] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
וארבעה אלפים ותשע מאות שדומה למ"ט שרשו שבעים שדומה לשבעה | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
וששת אלפים ארבע מאות הדומה לס"ד שרשו שמנים הדומה לשמנה | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ושמנה אלפים ומאה הדומה לפ"א שרשו תשעים הדומה לתשעה[37] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
And so on every rank whose numerical position is even, like fourth, sixth, eighth, to infinity. | וכן כל מעלה שמספר מדרגתה זוג כמו רביעית ששית שמינית לאין תכלית[38] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
You should know that the result of any number falls in the middle rank of the ranks of that number. | ולך לדעת כי היוצא מכלל איזה מספר שיהיה יפול במעלת האמצעית שבמספר המדרגות[39] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
כאלו תאמר דרך משל יש לנו מספר ד' במעלה השביעית שהוא מעלה נפרדת כמו הענין בזאת הצורה[40] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ושרשו ב' כמו שביארנו שראוי לכתוב ב' במעלה הרביעית שהיא מעלה האמצעית שיש לפניה ג' מדרגות וכהנה לאחריה[41] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Understand it for the other odd ranks. | ובין תבין בשאר המעלות הנפרדות | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The same for the even rank: as we explained, there is no square in it, unless we return the last digit in the even rank backward, so each unit becomes a ten and we add everything to what is in the preceding rank. Then, the root should be extracted. The number of the ranks becomes odd, and every odd rank has a middle rank. | וגם במעלה הזוגיית כמו שבארנו אין בה שום מרובע אם לא בהשיב כל אחד מהמספר האחרון שבמעלה הזוגיית אחורנית ולעשות מכל אחד עשרה ולחבר הכל עם מה שבמעלה שלפניה ואז ראוי לקחת השרש ואז ישובו מספרי המעלות נפרד וכל נפרד יש לה מעלה אמצעית[42] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The resulting root should be written in the middle rank, i.e. as far from the last rank, from which it is extracted, as its distant from the units, because the units stand by themselves, in their rank and the root of the units is in the rank of the units. | וראוי לכתוב השרש היוצא במדרגת האמצעית ר"ל רחוק ממדרגה האחרונה אשר ילקח מהם כאשר מרחקו מן האחדים מפני שהאחדים עומדים בעצמם ובמקומם והוא שרש האחדים בטור האחדים[43] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The meaning is that the root is as far from the rank from which it is extracted as it is far from the units, i.e. the distance from the units is the same. | והענין אחר שהשרש | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
After I have introduced this to you, I remind you the arrangement of the squares that are in the rank of units, which is the first: 1, 4, 9, whose roots are: 1, 2, 3 and in the rank of tens there are six squares: 16, 25, 36, 49, 64, 81 and their roots are: 4, 5, 6, 7, 8, 9. This is already known to you. | ואחר שהקדמתי לך זה אזהירך להזכירך מסורת המרובעים אשר במדרגת האחדים שהיא הראשונה שהם א' ד' ט' ושרשם א' ב' ג' ובמדרגות העשרות יש ששה מרובעים והם י"ו כ"ה ל"ו מ"ט ס"ד פ"א ושרשם ד' ה' ו' ז' ח' ט' ויהיה זה ידוע אצלך[45] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
I have already informed you that the odd rank follows the rule of the units and the even [rank] follows the rule of the tens. | וכבר הודעתיך כי המעלה הנפרדת הנה דינה כדין האחדים והזוגית דינה כדין העשרות[46] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Now I will teach you the procedure you apply in order to find the root of any number you want, whether it has a real root or the closest to it, if it does not have a real root: | ועתה אורה אותך דרך זו תלך בידיעת שרש איזה מספר שתרצה אם יש להם שרש [אמתי] או היותר קרוב לפניו אם אין להם שרש אמיתי[47] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Write the number, whose root you want to know, in one row by its ranks as many as they may be. | הנה תכתוב המספר אשר תרצה לדעת שרשו בטור אחד איזו מדרגות שתהיינה[48] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ותאמר תחלה שתהיינה ה' מדרגות דרך משל א'ב'ג'ד'ה'[49] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
הנה המעלה האחרונה היא נפרדת ודינה כדין האחדים לכן נדמה מספר ה' האחרון כאלו הוא ה' אחדים הנה שרשו היותר קרוב לו לפניו הוא ב' שהוא שרש ד'[50] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
לכן נכתוב ב' באמצע שהוא תחת אות הג' ונרשום קו תחת הב' עם מעט ריוח כדי שנוכל לכפול אות השרש היוצאת[51] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ונכפול אות הב' שהוא השרש בעצמו והנה ראו[י] לכתוב הכפולה רחוק ממנה אחריה כאשר היא רחוקה מן האחדים וראוי לכתוב גלגלים כמספר המדרגות אשר לפניה והתחלתם כנגד הב' ביושר ובמדרגתה כאשר נאמר עתה כנגד הב' נתחיל [52]לכתוב ב' גלגלים כאשר אות הב' רחוקה מן האחדים שני מדרגות ואחר השני גלגלים נכפול הב' בעצמה ויהיה ד' ובין תבין בכל התחלת הכפולה וזכור לך זה ואחר גרע העולה מהכפל מהמספר הראשון מן במינו כאשר נודע המגרעת והנשאר ישאר על הטור העליון[53] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
אחר תכפול השרש בשנים ר"ל שאם היה ג' תכתוב תחתיה ו' ואם ד' ח' ובדמיונו זה שהיה ב' תכתוב ד' והוא השרש הכפול בשנים[54] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
תחלק הנשאר מהמספר הראשון על זאת הד' ותקח כל מה שתוכל באופן שתוכל לקחת מרובע המספר אשר יצא מהחלוקה כאלו תאמר בדמיונו זה הנה נשוב הא' אחורנית כי לא נוכל לקחת ד' ממנו אפי' פעם אחד ונשיבהו אחורנית עם הד' אשר לפניה ויהיה י"ד ונאמר כמה פעמים נוכל לקחת ד' מן י"ד הנה נקח ג' כי מהנשאר לפניו נוכל לקחת ג' פעמים ג' שהוא מרובע המספר היוצא מחלוקה ונכתוב ג' לפני השרש הראשון[55] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ונכפול זאת הג על עצמה ראשונה ואחר על השרש הכפול[56] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ונתחיל לכתוב זאת האות הנופלת א' בצדה ותעשה ראשונה גלגלים כאשר אות הג' רחוקה מהאחדים והוא גלגל אחד ראשונה כנגד הג'[57] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ואחר נאמר ג' פעמים ג' הם ט' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ואחר נאמר ג' פעמים ד' הם ב'א' ותכתוב ב'א' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ואחר נגרע זה הטור הנכפל מן הנשאר למעלה מן במינו כמשפט המגרעת והנשאר ישאר למעלה בטור העליון[58] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
אחר זאת תכפול זאת האות השנית מן השרש שהיא ג' בשנים ונכתוב ו' תחתיה[59] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ונקח כל מה שנוכל באופן שנוכל לקחת באחרונה מרובע המספר היוצא מן החלוקה כאלו תאמר בדמיונו זה הנה נשוב הא' אחורנית כי לא נוכל לקחת ד' ממנו ויהיו י"ד ונקח ג"א כי מהנשאר נוכל לקחת ג' פעמים ומהנשאר אחר זה נוכל לקחת ג' פעמים ג' ונכתוב ג' לפני הו' והיא במעלת האחדים[60] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ונכפול זאת הג' ראשונה בעצמה והוא ט' ונכתבנה כנגדה לפי שאות הג' היא במעלת האחדים[61] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
אחר נכפול ג' על ו' ואחר ג' על ד' ואחר נגרע העולה מהכפל מן הנשאר למעלה והנשאר ישאר למעלה[62] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
וישאר למעלה ל"ב והשרש ג'ג'ב' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ונשלם באורו | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
I will give you various rules, the knowledge of which is necessary for the root extraction procedure. | אך אמנם אתן לך כללים מתחלפים יש צורך בידיעתם במעשה השרשים[63] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
הכלל הראשון כאשר לקחת השרש הראשון מהמספר האחרון אשר בידך אם היא מדרגת נפרדת או מהקודם לאחרון אם הוא מדרגת זוגית ראוי לכתוב השרש ההוא במדרגת האמצעית כאשר הראיתיך ותקח כל מה שתוכל ואם לא תוכל לקחת דבר מהמקום ההוא האחרון הנשאר ולקחת מהשני לו גם כן תכתבהו רחוק מהמקום אשר תקח ממנו החלוק כאשר השרש הראשון רחוק מהאחדים ולכן ראוי לכתוב גלגל במקום אשר לפני השרש הראשון וקודם [64]לזה הגלגל תכתוב היוצא מן החלוקה[65] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
הכלל השני כאשר תשוב לחלק הנשאר מהמספר אשר בידך כפול השרש לא תקח המספר האחרון אשר לקחת ממנו ראשונה ואף כי מהמספר אשר אחריו ואף כי תראה כי האפשר לקחת בו מפני שכאשר לוקח ממנו השרש ראשונה כבר לוקח ממנו כל הראוי כמו שנראה בדמיונו זה[66] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
רצינו לדעת השרש הקרוב אל ט'ט'ג' והנה לקחנו השרש הקרוב והוא א' | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
הכלל השלישי כאשר שבת לחלק המספר הנשאר על השרש הכפול לא תטריח בעצמך לראות אם תוכל לקחת עשרה פעמים המחלק במחולק כמו שנאמר בדמיונו שלמעלה מזה נראה כמה פעמים יהיה ב' במספר כ"ט ונאמר שיהיה בו עשרה כי זה אי אפשר ואף כי יותר מעשרה כי לא תוכל לקחת מהמדרגה שלפנינו עשרה פעמים עשרה ואין ראוי לטרוח בזה וכן זה הדין בענין החלוק[68] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
הכלל הרביעי מאשר אמרנו בכלל השני כי כאשר נשוב לחלק הנשאר על [כפל] השרש שלא נשוב לקחת מהמדרגה אשר לקחנו ראשונה זהו כאשר היה כשכפל[נו] זה השרש לא הוספנו עליו מדרגה כמו אם כפלנו ב' היה ד' באותה מדרגה וכן ג' וכן ד' אמנם אם היה השורש ה' או ו' או ז' או ח' או ט' והנה כשכפלנו זה השורש כבר נתוספה בשורש מדרגה אחת כאלו תאמר היה השורש ו' עשרות הנה כפל השורש ב' עשרות ומאה הנה ותוספת השרש מדרגת אחת ולפי זה כאשר תשוב לחלק תקח מהמדרגה אשר לקחת ממנו ראשונה ותכתבנה גם כן רחוקה מהמספר האחרון כאשר ראש השרש הכפול רחוק מן האחדים וזהו מה שרצינו לבאר[69] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Another Version - MS Paris 903 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[70]
הדרך להוציא שרשי המרובעי' ממספר בעל שרש אמתי או שרש המרוב' הקרוב מאשר אי' להן שרש אמתי הן משלמי' לבד או נשברי' לבד הן ממספר שלמי' ונשברי' יחד | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
דע כי במעלת האחדי' יש בה ג' מספרי' מרובעי' ר"ל ששרשם שלמי' וידועי' והם א' וד' וט' ששרשם א' ב' ג' | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The second rank, which is [the rank of] tens, does not have a square number at all, only together with units, because 10, 20, 30, 40, 50, 60, 70, 80, 90 none of them is a square number. Yet with the addition of units, it has six squares: like 16, whose root is 4; 25, whose root is 5; 36, whose root is 6; 49, whose root is 7; 64 whose root is 8; 81, whose root is 9. | ובמעלה השנית שהי' עשרות [אין בה] מספר מרובע כלל רק עם חבור אחדי' כי י'כ'ל'מ'נ'ס'ע'פ'צ' אי גם אחד מהם מרובע אך עם חבור אחדי' יש בה ו' מרובעי' כמו י"ו שרשו ד' כ"ה שרשו ה' ל"ו שרשו ו' מ"ט שרשו ז' ס"ד שרשו ח' פ"א שרשו ט' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Every odd rank, such as the hundreds, which is third; the tens of thousands, which is fifth; the seventh, the ninth, and the like endlessly, is analogous to the rank of units, because there are also three squares in them. | וכל מעלה נפרד' כגו' המאו' שהי' השלישי' או הרבואו' שהם חמישית ושביעי' ותשיעי' וכן כלם דומי' דומי' למעל' האחדי' בשיש בם ג"כ ג' מרובעי' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
כגו' במאו' יש ק' ושרשו י' ת' ושרשו כ' ת'ת'ק' ושרשו ל' וכן כלם | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The squares in the odd ranks are always [analogous to] 1, 4, 9 and their roots are [analogous to] 1, 2, 3 in the preceding rank to its immediate right. | ולעול' א'ד'ט' מרבעי' במעלו' נפרדו' ושרשם א'ב'ג' מהמעלה שלפניה וימינה הקרובה לה | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Every even rank is analogous to the tens. | וכן כל מעלה זוגית דומ' לעשרו' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
כגו' האלפי' יש בה ו' מרובעי' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
וכמו שבעשרו' המרובעי' עם חבור אחדי' מה שהיא המעל' הקרובה לימינ לפניה כן תחבר לעולם עם המעל' הזוגיי' אחדי' מהמעלה שלפניה במספר שתצטרך להוסיף אחדי' ע' העשרו' | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
כגו' באלפי' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
יש אלף ות"ר הדומ' לי"ו ושרשו ת'מ' והו' דומ' לד' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
אלפים ות"ק הדומ' לכ"ה ושרשו נ' הדומ' לה' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ג' אלפי' ות"ר הדומ' לל"ו ושרשו ס' הדומ' לו' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
וד' אלפים תת"ק הדומ' למ"ט ושרשו ע' הדומ' לז' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
וו' אלפי' ות' הדומ' לס"ד ושרשו פ' הדומ' לח' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
וח' אלפי' ק' הדומ' לפ"א ושרשו צ' הדומ' לט' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
וכן כל מעל' זוגיית | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
וזה הכלל כל מרובע של מעלה נפרדת הו' א' ד' ט' ושרשם א' ב' ג' וכל מעל' זוגיי' שרש מרובעיה ו"א ה"ב ו"ג ט"ד ד"ו א"ח ושרשם ד' ה' ו' ז' ח' ט' | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ואבל אי' מעלת השרשי' לעול' הסמוכה לה | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
וכה תדע מעלת מקו' השרש לעולם ראה במספרי' מעל' נפרדת להשיב השרש רחוק מהמרובע אחורני' מספר מעלו' כמספר מעלו' שירחק מהאחדי' | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
והמשל מצאנו ד' במעל' תשיעי' כזה | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
הנה ידענו כי זה המספר מרובע כי הו' מעלה נפרד' ודומ' לאחדי' ובאחדי' ד' הו' מרובע ושרשו הו' ב' א"כ גם זה שרשו ב' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ומקומה של הב' ראויה להיות ממוצעת בין מעלת האחדי' ומעלת המרובע והיינו בחמשית | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
וכן מספרי' הזוגו' מאחר שצריך לך לעול' לחבר עם המרובע אחדי' מהמעלה שלפניו וצריך להשיב מעלת הזוג אחורנית לחשבה בעשרו' ויהיו שם במעלה נפרדת עשה ג"כ כנ"ל ושים השרש באמצע | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
כאלו תאמ' מצאנו ו'ג' במעל' ח' והי' זוגיי' ודומה לל"ו שבעשרו' שהו' מרובע ושרשו ו' א"כ גם זה שרשו ו' וצרי' להשים הו' בין תחלת המספר המרובע ובין האחדי' באמצע דהיינו במעל' ד' שהו' רחוק מהאחדי' ג' מעלו' וכן הו' רחוק מהמעל' הה' אשר שם החל מספר המרובע | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
והילך מעשה ידיע' השרש הקדו' או האמתי | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
כתו' המספר הדרוש שרשו בטור אחד כפי מעלותיו | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
המשל בזה שמטהו ה' מעלו' כזה | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
והנה ידעת מהנ"ל שזה המספר נפרד ודומ' לאחדי' ר"ל הה' ושרש היותר קרו' בה הו' ב' שהו' שרש ד' הקרוב לה לפניו | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ומקו' הב' כנ"ל הו' במעל' ג' תחת הג' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ראה מעתה כמה מעלו' עברו מהאחדי' עד מקו' הב' שהי' שרשך ושם החל לכתו' גלגלי' כמספר המעלו' ההם | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
כאלו תאמ' מהאחדי' עד הב' יש ב' מעלו' לכן נכתו' תחת הקו ב' גלגלי' מתחילי' תחת הב' בעצמ' והולכי' לשמאל | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
אח"כ נכתו' העול' מכפל ב' על ב' שם והו' ד' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
אח"כ גרע הד' מהה' של מספר הדרוש וישאר א' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
וכן כתו' א' ממעל לה' והעבר קו סביב הה' כי אי' בה צורך עוד | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ומעתה נשאר לדעת השרש היותר קרוב מהב' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
וזה יצטרך לקחת לכל מה מספר שתוסיף על השרש כפל אותו מספר על פעמים זה השרש שהו' הב' במשלינו במעל' המאות וגם כפל המספר ההו' על עצמו | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ומופת זה כי אנחנו הנחנו מספר מרובע של ד' רבואו' א"כ שרשו ב' מאו' כמ' שראית ושרשו הוא מספר הצלע האחת מהמרובע בעצמ' כי ב' מאו' אמ' ארך על ב' מאו' אמ' רחב ימצא בם ד' רבואו' אמו' של אמה על אמ' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ונניח שנוסיף על שרש זה המרובע | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
נמצא שתשים ל' רצועו' כל אחת של מאתים אמ' ארך וא' אמ' רחב דהיינו רצועה אחת של מאתים על ל' ותחברנה בצלע אחד מהמרובע כאלו תאמ' למזרחו ויהיה המרובע אז ארכו יתר על רחבו ארכו ר"ל ורחבו ר' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
אח"כ הוספת עוד רצוע' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
וא"כ כבר הוספת על זה השרש כפל ל' על ר' פעמי' פעם א' המזרח ופעם א' הדרום | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ועדיין חסרה קרן זוית בזה המרובע והי' הקרן דרומי' מזרחי' אשר לא תתמלא רק אחר שומך שם מרובע ל' על ל' ואז ישוב מרובע שוה הצלעו' שרשו ר"ל | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[...] והיוצא מזה [...] שתכפול מה שתרצה להוסיף עליו על עצמו אח"כ על ב' פעמי [...] לעשו' שיהא בא צריך להוסיף עליו כפל ד' על עצמו שהו' י"ו [...] פעמי [...] גם כפל ד' ל"ד שהו' ב' פעמי' י"ז | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ונשוב לכונתינו ונאמ' אחרי שמצאת [...] וכתבתם [..] על מקומ' גם חסרונ' מרובעה של הב' מה"ה ונשאר א' שוב מעתה הוסיף על השרש מהמספר הנשאר והו' א' ב' ג' ד' א' ככל מה שתוכל וזה הדרך תלך בו | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
קח השרש שמצאת ב' פעמים ר"ל כפול אותו עם ב' אם הו' ג' כתו' ו' ואם ח' ו'א' ובדמיוננו הו' ב' לכן כת'[...] במעלתו ד' | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
וחלק מעתה המספר העליון על הד' וראה כמ' פעמי' ימצא ד' בא' האחרונ' עם הד' שלפניה כשתשיבנה אחורני' ויהיו י"ד | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
הוי או' ג' פעמי' ימצא וצריך לראו' אם ימצא ג"כ למלאת הקרן זוי' והו' ט' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
כי אם לא היה אפשר לא הייתי לוקח רק ב' והנה בדמיוננו נוכל לקח[ת] ג' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ונכתו' מעת' ג' קדם הב' לימינ' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ראה כמ' מעלו' מהאחדי' עד הג' והנה הי' אחת | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
לכן כתו' תחת הקו במעלה ב' דהיינו תחת הג' ההי' גלגל אחד | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
אח"כ כפול ג' על עצמו ויצא ט' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
כתבהו במקומו תחת הקו לשמאל הגלגל היחיד שעשית תחת הג' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
שוב כפול הג' על | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
וכתבם במקומ' אחרי הט' תחת הקו כי הג' הי' ממעל' העשרו' והד' מהמאו' וכפל עשרו' במאו' יעלו אלפי' לכן תחל לכתו' הב' תחת מעלת האלפי' והא' תחת הרבואו' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
אח"כ גרע זה מהמספר העליון כל מין ממינו | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
דהיינו הא' מן הא' ולא ישאר דבר והב' מהד' ישאר ב' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ולפי שלא נוכל לקחת אז הט' מהג' לכן נשיב א' אחורני' ונכתו' א' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ונקח הט' מהא' המושבת אחורני' על הג' שהם י"ג וישארו ד' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
וכן נכתו' ד' ונכתו' זה למעלה מהטור העליון איש איש על מעלתו כמו שתראה בדמיונינו זה | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
והעבר קו על ג"ד ועל א' כי אי' בם צרך | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
והנה מצאת שרש הקרו' ר"ל | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
עו' תרצה להגדיל המרובע והשרש כי יש עוד מספר רב מן המספר הראשון הדרוש כי נשאר לך עדיין א' ב' ד' א' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ושוב מעתה לכפול גם הג' בב' ויהיה ו' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
כתבה תחת הג' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ומעתה חלק המספר הנותר מהדרוש על כפל כל השרש והו' ו'ד' דהיינו ת"ס כי השרש הו' ר"ל | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
וראה כמה פעמי' ימצא ד' בי"ד והנהו ג' פעמי' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
כתו' ג' לפני הג'ב' של השרש ותחת הא' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
וכפול מעתה ג' על עצמו ויהיה ט' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
כתבה תחת הקו ותחת הג' האחדית [ויהיה למלא הקרן זוית] ולפי שהג' אינ' רחוקה דבר ממעלת האחדי' ע"כ אין צרי' לשים שום גלגל | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
עוד כפול הג' בשרש ב' פעמי' שהם ו'ד' ותמצא ח'ג'א' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
כתבם על מקומ' דהיינו שתתחיל אצל הט' למטה | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ויהיה המספר היוצא מכפל ג' על עצמו ועל השרש פעמים ט ח ג א | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
וזה המספר גרע מאשר נשאר לך מהמספר הדרוש והו' א ב ד א | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
והנה חסר א' מא' לא ישאר כלום | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
עוד חסר ג' מד' ישאר א' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ולפי שלא נוכל לקחת ח' מב' צריך להשיב זו הא' אחורנית ולא ישאר כלו' בזאת המעל' ג"כ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
חסר ח' מב'א' ר"ל מי"ב ישאר ד' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ועו' צרי' להשי' אחורני' א' מהד' נשאר ג' וכן תכתו' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
עו' חסר ט' מא"א והו' י"א וישאר ב' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
וכתבה במקומ' והעבר קו על א"ב ד"א כי אי' בם צורך עוד | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ויהיה השרש הקרוב למספר אבגדה בדרוש גגב ויהיה המרוב כמספר כל המרובעי' שהוצאת מהשרשי' מגגב אחרי התחברם והו' טחבדה והנשאר מהמספר הו ב"ג ואם תשוב לחבר ב"ג על המרובע יצא לך המספר הדרוש ויהיה השרש הקרוב למספר א ב ג ד ה הדרוש . ג' ג' ב' . ויהיה המרובע כמספר כל המ[רובעי'] שהוצאת מהשרשי' מגג"ב אחרי התחברם והו' ט ח ב ד ה . והנשאר מהמספר הו' ב"ג | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ואם תשוב לחבר ב"ג על המרובע יצא לך המספר הדרוש | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
אך אמנם אתן לך כללי' מתחלפי' יש צורך בידיעתם במעשה השרשים | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
הכלל הא' כשלקחת השרש הראשון מהמספר האחרון שבידי אם הו' מעלה נפרדת או מהקודם לאחרון אם היא מעלה זוגיית ראוי לכתו' השרש ההו' במדרגה האמצעי' כהראיתיך ותקח כל מה שתוכל ואם לא תוכל לקחת דבר מהמקו' ההוא הראשון ולקחת מהשני לו גם כן תכתבהו רחוק מהמקו' שתקח ממנו ראש החלוק כאש[ר] השרש הראשון רחוק מהאחדי' ולכן ראוי לכתו' גלגל במקו' שלפני השרש הראשו' וק[ודם] לזה הגלגל תכתו' היוצא מהחלוק | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
הכלל הב' כשתשוב לחלק הנשאר מהמספר שבידך על כפל השרש לא תקח המספר האחרון שלקחת ממנו ראשונה ואף כי מהמספר [שאחריו] ואף כי תראה כי האפשר לקחת בו מפני שכשלוקח ממנו השרש ראשונה כבר לו[קח ממנו כל הראוי | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Division of sexagesimal fractions |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
When you wish to divide a number that consists of degrees, minutes and seconds by another number, smaller or greater: | [71]כאשר תרצה לחלק חשבון מעלות ודקים ושניים על חשבון אחר יותר קטן או יותר גדול | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Take the number of the bottom row, which is the number by which you divide the number of the upper row, and convert all into the lowest type of fractions in it. | תקח חשבון הטור התחתון והוא החשבון אשר עליו מחלק חשבון הטור העליון ותשבר הכל אל מין השבר היותר קטן אשר בו | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
I.e. if the lowest fraction in it is seconds, convert all into seconds; if thirds, convert all into thirds and so on. | ר"ל שאם השבר היותר קטן אשר בו הוא שניים תעשה מהכל שניים ואם שלשיים תעשה מה מהכל שלשיים וכן על זה הדרך | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Then, take the number of the top row, which is the number divided by the number of the bottom row, and convert all into the [type of] fractions, which is as far from the type of fractions, into which you converted the bottom [number], as the type you want to receive in the division is far from the degrees. | ואחר כן קח חשבון הטור העליון והוא החשבון אשר יחולק על חשבון הטור התחתון וישבר אותו אל מן השברים שיהיה רחוק ממין השברים ששברת בו התחתון כמו שיהיה מרחק המין שתרצה שיצא לך בחלוקה מן המעלות | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
I.e. if you converted the number of the bottom row into seconds and you want to receive thirds in division, convert the number of the top row into fifths that are three ranks away from the seconds, as the distance of the thirds from the rank of the degrees; the result of division will be thirds. | ר"ל שאם שברת חשבון הטור התחתון מן השניים ותרצה שיצא לך בחלוקה שלשיים הנה תשבר חשבון הטור העליון למין חמשיים שהוא רחוק מן השניים שלשה מדרגות כמו מרחק השלשיים מגדר המעלות וזה יצא בחלוקה שלשיים | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
If you want to be more precise, so that the result of division will be fourths, convert the top row into sixths that are four ranks away from the seconds, as the distance of the fourths from the rank of the degrees; then you will get fourths from the division. | ואם תרצה לדקדק עוד שיצא בחלוקה רבעיים תשבר הטור העליון לששיים שהוא רחוק מהשניים ארבע מדרגות כמו מרחק הרבעיים מגדר המעלות ואז יצא לך בחלוקה רבעיים | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
And so on this way. | וכן על זה הדרך | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
If you covert the bottom row into thirds and you want to be more precise, so that you will get fourths from the division, convert the number of the top row into sevenths that are four ranks away from the fractions of the bottom row, as the distance of the fourths from the rank of the degrees; then you will get fourths from the division. | וכן אם שברת הטור התחתון לשלשיים ותרצה לדקדק עד שיצא לך בחלוקה רבעיים תשבר חשבון הטור העליון לשבעים שהוא רחוק משברי הטור התחתון ארבע מדרגות כמו מרחק הרביעיים מגדר המעלות ויצא לך בחלוק רביעיים | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
If you want to be more precise, so that you will get fifths from the division, convert the number of the top row into eighths that are five ranks away from the fractions of the bottom row, as the distance of the fifths from the rank of the degrees; then you will get fifths from the division. | ואם תרצה לדקדק עד שיצא לך בחלוקה חמשיים תשבר חשבון הטור העליון לשמניים שהוא רחוק משברי הטור התחתון חמש מדרגות כמו מרחק החמשיים מגדר המעלות ויצא לידך בחלוקה חמשיים | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
And so on this way. | וכן על זה הדרך | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
This is enough for you. | ודי לך בזה | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Extracting roots of sexagesimal fractions |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
If you wish to find a root of any number you have consisting of degrees, minutes and seconds as many as they may be. | וכן אם תרצה למצוא שרש אי זה חשבון שיהיה בידך ממעלות הראשונים ושניים כפי מה שיהיה | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Know up to which [type of] fractions you wish the root to be approximated, i.e. fourths, or fifths, or sixths, or which ever type of fraction you wish the approximate root to be composed of and denominate the root by it. | דע לך עד כמה שברים תרצה לדקדק שיצא בשרש ר"ל אם רבעיים או חמשיים או ששיים או אי זה מן שברים אשר תרצה לדקדק שיצא בשרש תקראהו מין השרש | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Then, convert the whole number you have into the type of fractions, which is as far from the type [of the fractions] of the root as the [type of the fractions of the] root is far from the degrees. | ואחר זה תתיך כל החשבון אשר בידך אל מין השברים שיהיה רחוק ממין השרש כמו מרחק מן השרש מהמעלות | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
If the type [of the fractions] of the root is fourths, convert the number into eighths and the resulting root will be fourths. | שאם מין השרש רביעיים תתיך חשבון לשמוניים ומה שיצא השרש יהיה רביעיים | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
If the type [of the fractions] of the root is fifths, convert the number into [tenths] and the resulting root will be fifths. | ואם מין השרש חמישיים תתיך החשבון לרביעיים ומה שיצא בשרש זה יהיה חמשיים | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
And so on this way. | וכן על זה הדרך | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The rule of this method is that you multiply the type [of the fractions] of the root by its own name, one duplication: if its is seconds, convert them into fourths; if it is thirds, convert them into sixths; if it is fourths, convert them into eighths; if it is fifths, convert them into tenths. | והכלל בזה הדרך שתכפול מן השרש בשלו המראה לו כפלה פשוטה שאם יהיה שניים תתיך לרביעיים ואם יהיה שלשיים תתיך לששיים ואם יהיה רביעיים תתיך לשמוניים ואם הוא חמישיים תתיך לעשריים | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Multiplication of sexagesimal fractions |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
When multiplying a number by a number, convert the top row into its lowest [type of] fraction. | אמנם בכפילת חשבון עם חשבון תתיך הטור העליון אל מין השבר היותר קטון אשר בו | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Convert also the bottom row into its lowest type of fraction. | וכן הטור התחתון תתיך אל מין השבר היותר קטון אשר בו | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The result of multiplication will be of the type of fraction denominated by the sum of the types of both rows. | והיוצא בכפילה יהיה מין השבר יקרא בשם המחובר המחובר משום הטורים | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
I.e. if you multiply seconds by seconds, the result will be fourths. | ר"ל שאם תכפול שניים על שניים יהיה היוצא רביעיי | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
If seconds by thirds, the result will be fifths. | [72]ואם שניים על שלשיים יהיה היוצא חמישיים | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
A Rule for Checking the Squares |
[כלל בבחינת המרובעים][73] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
When you have a number and you wish to check if it is a square, you can check it with the square that precedes it, or with the square that follows it: | כאשר יהיה בידך מספר ותרצה לבחון אותו אם הוא מרובע תוכל לבחון אותו עם המרובע הקודם לו לפניו ועם המרובע הקודם לו לאחריו | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
First with the square that precedes it: | ראשונה עם המרובע הקודם לו לפניו | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Consider the difference between the preceding square and the number you have. | תחשוב המרחק שבין המרובע שעבר ובין המספר אשר בידך | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Divide the difference by double the root of the preceding square, the least possible by as little as you can. | חלק המרחק ההוא על כפל שרש המרובע שעבר פחת מן האפשר על המעט שתוכל | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Subtract the quotient [and] the square of the quotient from the difference. | גרע מהמרחק ההוא היוצא מחלוקה וזה מרובע המספר היוצא מחלוקה | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
If the result of dividing the difference by double the preceding root plus the square of the quotient equals the difference you have, no more and no less, then the number is a square. Otherwise, you are wrong. | ואם היוצא לך מחלק המרחק על כפל השרש [שעבר][74] עם מרובע המספר היוצא מחלוקה שוה אל המרחק אשר בידך לא פחות ולא יתר הנה המספר מרובע ואם לא הנה טעית | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
You can check it also with the square that follows it: | תוכל לבחון גם כן עם המרובע הקודם לו לאחריו | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Consider the difference between the number and the following square. | תחשוב המרחק שבין מספר ובין המרובע העתיד | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Divide the difference by double the following square, and give it as much possible by as little as you can. | חלק המרחק ההוא על כפל שרש המרובע העתיד ונכון לו יותר על האפשר על המעט שנוכל | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Subtract the difference and the square of the quotient from the quotient. | גרע המרחק ומרובע המספר היוצא מחלוקה מהעולה בחלוק | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
If the result of division plus the square of the quotient equals the difference, then the number is a square. Otherwise, you are wrong. | ואם העולה מהחלוקה עם מרובע המספר היוצא מחלוקה שוה למרחק הנה המספר מרובע ואם לא הנה טעות | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Over and done | תם ונשלם | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Praise be to the Lord of the world. | תהלה לאל עולם | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
כאשר יהיה המרובע הנמשל פחות מהמספר המבוקש צריך שנקח החלוק מספר היותר גדול שנוכל שיעלה בחלוקה המרחק כאשר יחוסר ממנו מרובע מה שיעלה בחלוק | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
וכאשר תוסיף על המרובע הנמשל כמו הכפל עם מרובע מה שיעלה בחלוק הוא המרובע היותר קרוב על המספר המבוקש
וכאשר תוסיף על שורש המרובע הנמשל מספר מה שיעלה בחלק הוא שרשו | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
וכאשר היה המספר המבוקש פחות מהמרובע הנמשל צריך שנקח החלוק מספר היותר קטן שנוכל שיעלה כמו המרחק מחובר עם מרובע מה שיעלה בחלוק | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
וכאשר תגרע מהמרובע הנמשל כמו הכפל כאשר יחובר ממנו מרובע מה שיעלה בחלוק הוא המרובע היותר קרוב אל המספר המבוקש | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
וכאשר תגרע משרש הנמשל מספר מה שיעלה בחלוק הוא שרשו | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
המרחק הוא המרחק שבין המרובע הנמשל ובין המספר המבוקש | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
הנכפל הוא מה שיעלה מכפלת מספר מה שיעלה בחלוק עם כפל שורש המרובע הנמשל כי יהיו שני מרובעים מתחלפים יחס המחובר מכפלת אחד מן השרשים על האחר אל המרובע הראשון כיחס המרובע השני אל המחובר |
MS London 7r-v |
|
אמר טעם החלוק הם שניים
א שנכפול בדרך הכפל מה שיצא בחלוק על הטור השפל שמחלקים עליו תחבר עם העולה מה שנשאר לחלק [.....] דבר ואם המחובר שוה למספר הטור המחולק עשינו נכונה הב' שנכפול מאזני מה שעלה בחלוק עם [.....] הטור השפל ונקח ממנו העולה ואם נשאר דבר לחלק נחבריהו עמו ואם הוא שוה למאזני הטור העליון חשבונינו אמת והטעם למאזנים הראשונים כי בחשבון המחולק [....] החשבון שמחלקים עליו כשיעור אחד מה שיעלה בחלוק הוא מספר מה שימנה המספר שמחלקים עליו למספר גדול המחולק לזה הכה זה על זה ויצא המחולק | |
Chapter on Summation |
שער המחברת |
To know how much is the sum of numbers from a known number to the last number. | לדעת כמה המחובר מהמספרי' ממספר ידוע עד סוף מספר |
|
כאלו תאמר רצינו לדעת המחוברים מאחד עד עשרה כמו א' עם ב' הם ג' ג' עם ד' הם ז' ותרצה לדעת בקצור |
|
אם הם זוג כמו עשרה ונוסיף עליו א' ותקח חצי העשר שהם חמשה וכפול החמשה על הי"א והוא המספר האחרון |
|
ואם נפרד כמו מאחד עד שבע תוסיף על ז' אחד ויהיו ח' ותקח חצי המספר והם ד' וכפול הד' על הז' והוא המכוון |
Do this with any number, small of large, even or odd. | וכן תעשה בכל מספר קטן או גדול זוג א[ו] נפרד |
אם תרצה לדעת ערך נעלם כמו שתאמר ערך ד' אל ו' כערך ח' אל הנעלם ותרצה לדעת האמצעיים ו' על ח' יהיו מ"ח ותחלק המספר הראשון שהוא ד' על המ"ח ויעלה לך חלק מ"ח והוא הנעלם | |
אמר אברהם מצאתי דרך אחר שהמוסיף על מרובע סוף החשבון שרשו ולוקח חצי בעולה שם ימצא המחובר והדרך הזה יורה להבין הפך השאלה | |
דמיון שאל שואל חברתי מספרים עלו תס"ה כמה יהיה סוף החשבון כלל זה תקח בידך היוצא מחודך כפול לעולם החשבון המחובר והשורש תקח מן המרובע כלו' [..] הנכפל שעבר ובחן אותו כ"א נשאר בין המרובע ובין הנכפל כמו שורש בלי תוספת ומגרעת תדע כי החשבון והשורש הוא המבוקש והנה כפלנו תס"ה על(ה) תתק"ל ידענו כי מרובע שעבר הוא ט מאות ושרשו ל' שהם המספרי' המרובעי' ואין בין המרובע והנכפל כ"א ל' ועל כן תבין כי נכון מה שחשב והמבוקש ל' | |
Word Problems |
|
"How Many" Problem | |
---|---|
|
שאלה אדם עבר על |
|
נקח להם אחד נוסיף להם עוד אחד הנה נוסיף להם מחציתו הנה שנים וחצי נוסיף רביעיתו יהיה ג רביעי' ובעבור שהם רביעיות נוספות על השלמי' נשים גם השלמי' לרביעיות ויהיו ה וג' רביעיות הנה י"א |
|
ובעבו' כי אמר שיהיו יהיה מספרם עם התוספת ט"ט לבד אותו שדבר עמהם |
|
נחלק הט"ט שברים לרביעי' ויהיו שצ"ו |
|
נחלקם על י"א יהיו ל"ו וככה מספרם |
"If You Give Me" Problem | |
|
שאלה ארבעה קונים חפץ אחד אחד אמר לחבירו כל אחד יתן החצי אשר בכיסו ואני אתן כל מה שיש בכיסי ואקנה החפץ |
|
ערך החפץ מ"ו דינרי' |
|
לראשון ט"ו פשוטי' |
|
ולשיני כ"ג דינרי' וט' פשיטי' |
|
לשלישי ל"א דינרי' ג פשיטי' |
|
לרביעי ל"ה דינרי' |
|
ע"א להגיע עד חצי שליש ורביע החפץ י"ז פשיטי' לאחד ה' לשנים י"א לשלישי י"ג |
"Find the Amount" Problem | |
|
שאלה אדם מכר י"ג מדות בכ"ג פשי' כמה מדות יתן בז' פש' |
|
ערך ז' אל כ"ג כן ערך הנעלם אל י"ג |
|
נכפול הקצוות שהם נודעים יהיו צ"א |
|
נחלקם על כ"ג יעלו ג' מדות וכ"ב חלקי' מכ"ג במדה |
"Find the Price" Problem | |
|
ועוד נהפך הענין שנרצה לדעת בכמה יתן לו ז' מדות |
|
והנה נעשה הדמיון הזה נכפול הקצוות יהיו קס"א |
|
נחלקם על י"א והיו י"ב פשיטי' וה' חלקי' מי"ג בפשיט |
|
אם שאל בכמה יתן ז' מדות יהיה ערך הנעלם בכ"ג אל כ"ג כערך ז' אל י"ג |
Pursuit Problem | |
|
שאלה אדם הולך בכל יום כ"ט מילין אחר י' ימים נסע השני ההולך בכל יום ל"ז מילין |
|
כפול המילין שהולך בי' ימים יהיו ר"צ |
|
נחלקם על היתרון שיש בין שני המהלכים שהוא ח' והנה ל"ו ימים ורבע יום |
|
הנה כערך י' ימים אל הנעלם כן ערך היתרון שהוא ח' אל כ"ט |
Encounter Problem | |
|
שאלה בכמה ימים יכלה מהלך ק' על ידי שני מהלכים של י"ט ושל י"ז זה לקראת זה |
|
וקל לדעת כי הוא כערך מחובר שניהם אל קו וחלקם עליו יהיה ב' וכ"ח מל"ו כמו כן בב' ימים וכ"ח מל"ו ביום יכל ישהו לכלות וכ"ח מל"ו הם ז' תשיעיות היום |
|
ואם תרצה לדעת כמה שעות הם ידוע הוא כי שעות היום י"ב |
|
והנה ז' אל ט' כן ערך הנעלם אל י"ט |
שאלה אדם עם ג' שיתן לראשון ה' זהובים ויעבוד לו כ' ימי' ולא רצה לגמור כל העבודה ואמר לשיני שיתן לו ד' ולא רצה לגמור | |
הנה זה דומה לשאלת המחליף אך נשים הזהובים המחולקי' לפועלי' במטבעות והעבודה הנשכרת היא הזהוב והמורה הוא ס' ומחובר החלקי' מ"ז | |
|
והנה כערך מ"ז אל ס' כן ערך הזהוב אל הנעלם |
והנה החלק השוה זהו' אחד וי"ג ממ"ז בזהוב אחר נבקש ערך כל אחד ב' | |
והנה בעל הג' הם ו' ימי' וב' שלישיות היום | |
ובעל הד' בזהו' אחד ה' ימים | |
ובעל הה' בזהוב אחר ד' ימי' | |
והנה של ג' עובד בשביל ח חלק העולה לו במ"ז כערך י"ג אל מ"ז כן ערך הנעלם אל כ' שהוא מספר שעות עבודתו בזהו' אחד | |
ושל ד' כערך י"ג אל מ"ז כן ערך הנעלם אל מ"ח | |
ואם תחבר כל העולה בזה יעלה המחובר כ ימים | |
Boiling Problems |
|
|
שאלה אדם אמר לבשל עשרה מדות מתירוש עד השאיר שליש לאחר שנתמעטו ב והיו ח נשפך ב והיו ו ושאל השואל כמה יהיה ראוי לישאר מן העומד לכ' לפנינו אם יבא לבשלו עד שיהיה כמשפט הראשון לפי מה שהתחיל כי ידוע שנתמעטו מג' ושליש |
|
והנה כערך ו' אל ח' כן ערך הנעלם אל ג' ושליש |
Whole from Parts Problems - lance |
|
|
שאלה רומח מחציתו שלישיתו במים רביעיתו בעפר וגלוי ז אמות כמה גבהות כלו |
הנה המורה י"ב נכסה ממנו חלקיו אלה יהיה הגלוי ה | |
|
והנה כערך ה' אל י"ב כן ערך ז' אל הנעלם |
Multiple Quantities Problems |
|
|
שאלה אדם צוה לתת כ' פשוט לכ' בני אדם אנשים ונשים ובנים לאיש נתן ב' פשיט ולאישה מחצה ולבנים [...] כמה לאיש |
|
לח' אנשי' יו פשיטי' |
|
לח' בני' ב' פשיטי' |
|
לד' נשי' ב' פשי' |
|
שאלה אדם אמר לעבדו קח ל' פשיטי' וקנה לי ל' עופות אווז ב' פשיטי' שליו מחצה פרגיות פשיט כמה יהיו מכל מין |
|
ו' פרגיות ח' אווזות י"ו שלוים |
Whole from Parts Problems - fish |
|
|
שאלה דג יש לו טו אצבעות בגודל גופו לבד ראשו וזנבו וראשו מחזיק שלישית כל הדג והזנב מחזיק רביעיתו כמה מחזיק כלו עם הראש והזנב |
|
ל"ו אצבעות שלישיתו י"ב והרביעית ט |
כפל החשבון שלישי' ורביעי' ותמצא כך | |
|
שאלה גנב הולך סכום אחד והרודף יום ראשון א ויום שיני ב וכן ויוסיף כל הימי' ב' כאשר יגדלו הסכום כפל הגנב ובתוך כך תפל אחד ובתוך כך סכום ימים ישיג הגנב בכל סכום שילך כמה בכל יום |
|
שאלה שמעון הרויח שביעית ממנו היום ולמחר הרויח מן הכל חמישית ויום שלישי מן הכל שלישית והתחבר י' דינרי' ונשאל כמה הממון המורה [..] |
שאלה לשקול ביא אבני' ס' [..] גם בי"ח טבעות לשכירות לד שנים וב חדשי' יצא בכפל למשקל וכן תעשה בטבעות א ב ד ח י"ו וכפול עד שיעלה החשבון ובאבנים יצא בשלישות א ג ט כז | |
Glosses on Abraham Ibn Ezra’s Book of the number (P1026; London) |
|
"The author of the Sefer Yezira" | ובעל ספר יצירה |
Explanation: The intention of the author of Sefer Yezira [= the Book of Creation] is to inform how man was created by one act from the creatures. | פי' בעל כוונת ספר יצירה להודיע איך נברא האדם בתחבולה אחת מין הנבראים |
He said that three matters were needed for this: | ואמ' שיצטרכו בו ג' עניני' |
|
הספר הוא הכתיבה כי בכחות האותיות יורו בו באותיות יעשה היצירה |
|
וספר הוא המנין כי ההרכבה והמזגה לא תעשה רק במספר שבאחד מהם יהיה בו מיסוד האחד כפל האחר |
וספור כי חכמי חכמה זו הניחו שהם יורידו כח אשר נתן כח בהרכבה ההיא עד שיעשה פעל הכח בלתי מדבר אבל לא מדבר כי זה לא יתכן אלא לאל ית' | |
בעבור | |
מלת בעבור נמשכת עד אמרו למטה על כן כל מאזני כל מספר | |
ספר הוא המרוכב | |
וספר הוא המספר כמו אחר הספר אשר ספרם | |
וספור הוא הדבור באחדים | |
בכלל הגבוה | |
פי' הקרוב לו לפניו | |
והנשאר הוא המבוקש | |
|
פי' שהשלישית הנכפל על השלישית יצא תשיעית |
|
אם כן בכפלנו שליש המספר על שלישו יצא לנו תשיעית מרובע הדרוש |
|
וכאשר לקחנו כמוהו בכלל הגבוה ממנו יצא לנו עשרה דמיוני תשיעית המרובע |
|
אם כן כשחסרנו מזה מרובע השליש שהוא תשיעית המרובע ישאר שוה למרובע הדרוש |
| |
והמחובר הוא הדרוש | |
פי' אעפ"י שלא זכר המחבר דרך זו רק בהוצאת המרובעים יתכן זה בכפל כל שני מספרים בעלי שליש כמו י"ב וי"ח | |
|
אנו נכפול שליש האחד והוא ד' בשליש השני והוא ו' ויעלה כ"ד |
|
נגביההו מעלה אחת ויהיה ר"מ |
|
הסיר כפל השני שלישיות שהוא כ"ד ישארו רי"ו והוא כפל י"ח על י"ב |
| |
|
ואם שהם נעדרי השליש ומוסיפין אחד כמו י"ג י"ט נעש[ה] כן |
נוציא סך החשבון לי"ב וי"ח ויעלה רי"ו | |
ולפי שכל אחד מהמספרים מוסיף אחד על השליש נוסיף י"ב וי"ח ואחד ועלה רמ"ז וזהו כפל י"ג בי"ט | |
ואם היו שני המספרים חסרין אחד בי"א וי"ז נעשה החשבון בי"ב וי"ח ויעלה רי"ו ובעד חסרון האחד נגרע י"א וי"ז ואחד מן רי"ו וישאר קפ"ז והוא כפל י"א בי"ז | |
ואם האחד מוסיף אחד והשני חוסר אחד בי"א וי"ט או י"ג וי"ז נעשה החשבון בי"ב וי"ח ויעלה רי"ו הנה אם היו י"א וי"ט התוספת הוא י"א והחסרון הוא י"ח אם כן החסרון רב על התוספת ז' חסרם מן רי"ו וישאר ר"ט והוא הדרוש | |
ואם היו י"ג וי"ז הנה התוספת הוא י"ז והחסרון י"ג אם כן התוספת רב ה' נוסיפם על רי"ו והיה רכ"א והוא הדרוש | |
ואם הן כמו י"ח וי"ג נוסיף על רי"ו י"ח והיה רל"ב והוא הדרוש ואם הן י"ח וי"א נגרע י"ח מן רי"ו וישאר קצ"ח | |
דמיון רצינו לכפול כ"ט על ל"א | |
פי' דמיון אחר ברצותנו לכפול כמשל ח' על י"ב שמרחקם מי' שהוא כלל מספר שוה והוא ב' נכפול י' על עצמו והיה ק' נחסר ממנו ד' שהוא מרובע ב' | |
The explanation of this is that the multiplication of 8 by 12 is the multiplication of 8 by 10 and by 2.
|
ובאור זה שכפל ח' על י"ב הוא כפל ח' על י' ועל ב' |
The multiplication of 10 by 10 consists of the multiplication of 10 by 8 and by 2.
|
וכפל י' על י' הוא כולל כפל י' על ח' ועל ב' |
The multiplication of 10 by 2 consists of the multiplication of 8 by 2 and 2 by 2.
|
וכפל י' על ב' הוא כולל כפל ח' על ב' וב' על ב' |
We find that the excess of 10 by 10 over 8 by 12 is 2 by 2.
|
נמצא יתרון י' על י' מן ח' על י"ב הוא ב' על ב' |
ומזה תבין לכל המשלים האחרים וזה מתמונת ו' ממאמר ב' לאיקלידיס | |
וכן ההנהגה בכל שני מספרים מתחלפים אך כי לא יהיו כללים שנוסיף על המספר היותר קטן חצי יתרון שבין שני המספרים ונרבעהו ונחסר מהמרובע מרובע חצי היתרון והנשאר ישוה להכאת אחד משני המספרים באחר | |
אך זה החכם בא להקל ולא להחמיר ולזה לא באר במספרים שמרחקן מחשבון כלל מספר שוה | |
ודע כי אם יהיו שני מספרים לכפול | |
פי' כי אם תרצה להכות ב' על מ' אין כאן הכאה רק ממדרגה האחת על האחרת אך אם יהיה לנו מספר על שני מספרים או שנים על שנים אז צריך לכפול המעלות זו על זו כפי מנין המספרים | |
אתה צריך | |
פי' אמ' זה בשלוח אעפי שלפעמים יתכן בפחות מזה כי כן אמר למעלה ואם הם שנים על שנים צריך לעשות זה ד' פעמים ואחר כן באר שאפשר בפחות וגם בזה אפשר בפחות ובין | |
כאלו הם אחדים | |
פי' וסבת זה כי כל כלל יוסיף אחד על תשיעיות וכן שנים | |
לא יקבל שנוי | |
פי' כי השנוי יבא מצד ההרכבה והאחד פשוט כי מהיותו אחד | |
לא יקבל רבוי כי א' על א' הוא א' | |
ולא חלוק כי אם תחלקהו יהיו שנים | |
והוא סבת כל שנוי כי בהרכבת שני ענינים יבא השנוי וכן במספר | |
כפי מעלתו | |
פי' אחדים כנגד אחדים ועשרות כנגד עשרות | |
ופחות מהמספר | |
פי' שהמספר המחולק ראוי להיות יותר גדול מהמספר המחלק כי זה כמו המדה עם הנמדד | |
וזה ביותר נכון לא מחויב כמו שיתבאר בחלוק השברים שנחלק חמש תשיעיות על שלם | |
ולא הגיע למעלת האחדים | |
פי' שהיוצא בחלוק לא הגיע למעלת האחדים שאם היה כן כבר יצא לחוץ ולא יקבל עוד החלוקה שכבר נתך המחולק אל מספר יותר קטן מהמחולק עליו | |
ובאמרנו לא יקבל החלוקה ר"ל בשלמים אך בשברים יקבל החלוק ובין | |
כי לא יצא לחוץ | |
פי' התכת המחולק עד שיגיע למספר יותר קטן מהמחולק עליו יקרא יציאה לחוץ | |
שאם נחלק [..]יצא לחוץ ממעלת האחדים ויהיו שברים אשר העשרה מהם הוא אחד שלם יקראו ראשוניים וכן כל ראשון יחלק לי' שניים והוא לא כיון רק בחלוק שלמים על שלמים | |
ולעולם נחזור אחורנית | |
It is necessary to investigate what brought him to this, because it is more correct and easier to subtract directly. | צ"ע מה הביאו לזה כי יותר נכון ונקל לחסר ביושר |
האחד כנקדה | |
פי' כי הנקדה כיסוד לעגול כי המקוה לעגול טרם הקוותו יניח מוצק עליה יכונן רחב העגול וכן האחד הוא יסוד המספר ולכן לא יתכן לחלק כמו הנקדה מצד שהוא אחד ואולם מצד ההוה כל כלל בשם אחד עם היותו מורכב מאישים רבים כמו הגוף המורכב מד' ליחות ומשאר אברים מתדמי החלקים ומהיד והזרוע ושאר אברים הכליים והנה הוא בלי ספק יתכן בו התפרקו לחלקו חוץ לשכל יתחדש בו הדבור בעבור זה החליטו החלוק הפשוט להעשותו בו בשכל כי חוץ לשכל אי אפשר בשום פנים | |
עוד פי' כל זה הצעה לחלוקת האחד לשברים וכמו שהנקדה היא דבר בלתי מתחלק וכל הקוים יוצאים ממנה כן האחד ולזה לא היה ראוי לחלק | |
מורכב משטחים | |
פי' אין כונתו שהגוף הרכבה מזגיית משטחים ולא מקוים ונקדות כמבואר בספרי הטבע אך כונתו באמרו שטחים התכליות המקיפות ורבים בגוף האדם כמו הגלגלת יקיפהו שטח אחד וכן אברים רבים והגוף יקרא אחד | |
והוא דומה לנפרד | |
Explanation: when you sum up the odds in sequence the squares of the number of the odds are generated. | פי' שכשתחבר הנפרדים על הסדר יולידו מרובעי מספר הנפרדים |
Because 1 is the square of 1.
|
כי א' הוא מרובע א' |
1 and [3] is the square of 2.
|
וא' עם הוא מרובע ב' |
1, 3 and 5 is the square of 3.
|
וא' עם ג' וה' הוא מרובע ג' |
This is one of the properties of the number. | וזה אחד מסגלת המספר |
הוא חצי שמינית | |
אם תחלק הנכפל על מרובע המורה יהיה היוצא מהחלוקה שלמים | |
ואם לא יתחלק ר"ל שיהיה מרובע המורה יותר גדול מהנכפל או יתחלק וישאר שלא יתחלק יהיו שברים נקראין בשם המרובע ואם תחלק הנכפל על המורה יהיה היוצא שברים נקראין בשם המורה ומה שלא יתחלק יהיו שברי שברים נקראין בשם המורה ובין | |
ויהיה כלל זה מסור בידך אחר שתדע המורה ומרובעו והנכפל תחלק המרובע על הנכפל או תחלק הנכפל על המורה | |
רק אלמד דרך קצרה | |
פי' כי לפי מה שאמרנו למעלה היה צריך לעשות מורה אחד לכלן בכפל האחד על האחר כי הסבה מענין המורה הוא למצא מספר שיהיו בו כל חלקים אלו | |
עוד באמת לא היה צריך לקחת ששיים כי די לו בשלישיות וזה נכפול על ה' יהיו ט"ו עוד נכפול זה על ז' יהיו ק"ה עו' נכפול זה בח' יהיו תק"מ והוא המורה | |
נבקש המספר ראשון שהוא ב' שלישית רביעית החמשית יהיו ר"ח כי החמשית הוא קס"ח ורביעיתו מ"ב ושתי שלישיותיו כ"ח וזהו החשבון הראשון | |
וידענו ששמיניתו ק"ה | |
ושביעיתו ט"ו | |
והשש שביעיות הם צ' | |
נכפול כ"ח על צ' יעלה אלפים ת"ק חלקנום על תת"מ שהוא המורה ויעלה ג' שהן חלקים מהתת"מ שלמים והן חמשית שביעית השמינית שהשמינית ק"ה ושביעיתו ט"ו וחמישיתו ג' והוא הדרוש | |
וצ"ע בדמיון שלקח החכם כי יותר ראוי לקחת הדמיון בקטן המספר שאפשר | |
גם צ"ע למה הוצרך לבאר שאחר שיש לנו ששיות אין צריך לשלישית כאלו היה צריך לחלק ששית | |
החמשית והתשיעית ארבע | |
צ"ע איך לקח דרך זה הראשון כי לא ימשך בכל המספרים וזה שנאמר לקחנו שלישית הממון וחמשיתו ושביעיתו כמה הוא מערך הממון ולפי דרכו יהיה כן נחשב כאלו הן ג' שביעיות שהוא השבר היותר פחות אחר נכפול מה שבין השביעית והשלישית שהוא ד' על מה שבין החמישית והשלישית שהוא ב' ויעלה הכפל ח' ונעשה מהחמשה שביעית אחת ויהיו ד' שביעיות וישאר ג' ונחברם עם ב' שהוא היתרון שבין שלישית לחמישית והיה ה' ולפי זה יהיה הערך ה' שביעיות ויעלה ע"ה לפי שהמורה ק"ה ולפי הדרך שני שהוא האמתי יהיו ע"ה חלקים מן ה' | |
עו' צ"ע איך אמ' בדמיונו שהשלשה היו ג' חמשיות שביעית התשיעית והוא אמר תחלה נעשה מן הו' תשיעית אחת | |
ויש בזה דרך אחרת נכונה רק שיהיה הדלוג בשברים שוה כמו ד'ה'ו' ה'ז'ט' והוא לקחת מקום הג' מינין ג' שברים ממין האמצעי ואחר יוכפל מרחק הקצוות כמרחק הדלוגים והמחובר הוא הדרוש | |
דמיון ערך ד' וה' | |
פי' וזה יתבאר כי מרובע הקו כלו שהוא י"ו שוה לשני מרובעי י"ב וד' בתמונת ד' מ"ב לאקלידיס ושטח ו' בח' שוה לשטח שיקיפו בו י"ב וד' לפי שיחס ד' אל ו' כיחס ח' אל י"ב אם כן מרובע י"ו שוה לשני מרובעי י"ב וד' ולכפל השטח שיקיפו בו ו' וח' אבל שני מרובעי ו' ח' שוין לכפל השטח שיקיפו בו ו' ח' עם מרובע מה שבין ו' ח' כמבואר בה' מ"ב אם כן מרובע י"ו עם מרובע היתרון שבין ו' לח' שוה לד' מרובעי ד' ו' ח' י"ב ובזה יתבאר מהשני והשלישי | |
כי ערכיה מורכבין | |
פי' ערכי הנגונים הן מורכבים ערכי המדות וערכי המספר כי יעשה בחלק היתרון האחד על האחר וכיחס המספר האחד אל המספר האחר | |
כי לעולם יהיה הערך | |
כי לעולם יהיה היחס מה שבין הראשון והאמצעי אל מה שבין האמצעי והאחרון כיחס המספר הראשון אל האחרון | |
שאלה ראובן שכר שמעון | |
הכלל בכל דרכים אלו שנכפול י"א על ט' ויהיו צ"ט וחלקם על י"ו ועלה ה' פשו' וי"ד חלקים מי"ו בפשו' | |
כלל זה יהיה בידך בערכין שאותו המספר שיהיה גיל הנעלם שהוא מקום הגלגל מן המורה שאם היה הגלגל אחד מהקצוות הקצה האחד הוא המורה ואם הגלגל הוא אחד מהאמצעיים האמצעי האחר הוא המורה | |
ולא תדע השלישי כפול הראשון על השני | |
זה יתבאר מי"ט מה' באמת כאשר היה המחובר אל המחובר כיחס הכל אל הכל הנה יחס הנשאר אל הנשאר כיחס הכל אל הכל | |
ולכן בדמיונו השני לפי שיחס היתרון שבין ג' וד' הידוע אל היתרון שבין ד' והמספר הנעלם כיחס ג' הידוע אל ו' הנעלם והנה הנעלם גדול מיתרונו על ד' הנה אם כן ג' גדול יותר מהיתרון שבין ג' לד' מי"ד מה' אקלידיס | |
והיתרון שבין ג' לד' ידוע אם כן כשחסרנוהו מג' יהיה הנשאר ידוע והוא ב' וגם כן ידענו שד' הוא הנשאר כשחסרנו מו' היתרון שנוסף על ו' | |
ועתה יש לנו ג' מספרים ידועין האחד ב' והוא הנשאר מג' כשחוסר ממנו היתרון שבין ג' לד' השני ג' שהוא הכל ידוע השלישי ד' שהוא הנשאר מהנעלם כשחוסר ממנו היתרון שהוא נוסף על ד' וידענו שיחס המחוסר מג' אל המחוסר מהנעלם כיחס ג' שהוא הכל אל הנעלם אם כן יחס ב' הנשאר אל ד' הנשאר כיחס ג' אל הנעלם ולכן נכפול האמצעיים שהן ד' וג' והיו י"ב ונחלק י"ב על ב' והיה ו' וכו' | |
וכן תבין האחרים מי"ח מה' אקלידיס | |
צורת הי"ו מוציאין אותה בדרך זו לוקחין הראשונה והשביעית והן יתדות ומוציאין משתיהן צורה אחת ומהרביעית והעשירית והן יתדות מוציאין צורה אחרת ומשתיהן מוציאין צורה אחת והיא נקראת הי"ו והיא חזקה מכלן | |
ומצאתי בע"ה צורת הי"ו נקח הצורה הראשונה והשביעית ועושין משתיהן צורה אחת ונקח צורת הט"ו ומשתים אלו נעשה צורה אחרת והיא הי"ו וזה סוד | |
שאלה שלשה הלכו לקנות דג בשוק ערכו ה' פשו' אמר אחד אני אתן כל מה שבכיסי ואתם לא תתנו רק החצי שבכיסכם | |
נבקש המורה והוא י"ב כ"ט כי ממנו נוכל לעשות ג' מספרים שישתוו שלשתן למספר אחד והן ה' י"א י"ג בעל ה' ישאל החצי בעל י"א ישאל השליש בעל י"ג ישאל הרביע | |
|
שאלה ראובן שמעון לוי ויהודה אמ' ראובן לשמעון כל מה שבכיסי עם חצי שבכיסך הוא ה' די' |
תשובה ראובן ל"ז פשו' צ"ז חלקי' מקי"ו בפשו' שמעון מ"ד פשי' מ"ד חלקים | |
ובזה נמצא כל ראובן עם חצי שמעון ה' וכן שמעון עם שליש לוי | |
נסיר חצי שמעון המשותף וישאר ראובן שוה לחצי שמעון עם שליש לוי ושמעון שוה לשני שלישי לוי עם רביע יהודה | |
אם כן ראובן שוה לשני שלישי לוי עם שמינית יהודה אם כן לוי שוה לג' רבעי יהודה עם חומש ראובן | |
א'פ'ד' ראובן ע"ה שמעון פ"ח לוי צ"ג יהודה ק"ד | |
או ראובן ל"ז וחצי שמעון מ"ד לוי מ"ו וחצי יהודה נ"ב וכן לחציין וכן וכן | |
Question: a man arrived to a country and took an oath that if he will double his money every day, he will would spend a certain amount of it each day. After a few days he had nothing left.
|
שאלה אדם נכנס [בע]יר ונודר שאם יכפול ממונו בכל יום יוציא ממנו בכל יום סך מוגבל ולימים לא נשאר בידו מאומה כמה הוא הממון שבידו |
The method: we look for a number, such that, when doubled in a double ratio as many times as the number of days, at the end of which he has nothing left, the result is the amount he spends every day. We subtract this required number from the amount he spends each day and the remainder is the amount of money he has. | הדרך בזה שנבקש מספר שבהכפלו פעמים כמספר הימים על יחס הכפל שאחריהם לא נשאר לו מאומה יעלה לסך שיוציא מהם בכל יום והמספר ההוא המבוקש נגרע מהסך שיוציא בכל יום והנשאר הוא הממון שבידו |
|
המשל שיוציא בכל יום מ"ח פשי' ולסוף ג' ימים לא נשאר לו מאומה |
|
הנה המספר שבהכפלו על יחס הכפל כמספר הימים שהם ג' יעלה מ"ח הוא ו' |
|
כי כשנכפול ו' יעלה י"ב |
|
וכשנכפול י"ב עלה כ"ד |
|
וכשנכפול כ"ד עלה מ"ח |
|
נגרע מספר ו' ממ"ח וישאר מ"ב והם המעות שבידו |
|
או שיוציא בכל יום י"ח פשי' ולסוף ה' ימים לא נשאר לו מאומה |
|
הנה המספר שבהכפלו על יחס הכפל פעמים כמספר הימים שהוא ה' יעלה י"ח הוא חצי וחלק אחד מי"ו שהן ט' חלקים מי"ו |
|
כי כשנכפול חצי וחלק אחד מי"ו יעלה א' ושמינית |
|
וכשנכפול א' ושמינית יעלה ב' ורביע |
|
וכשנכפול ב' ורביע יעלה ד' וחצי |
|
וכשנכפול ד' וחצי יעלה ט' |
|
וכשנכפול חמשית ט' יעלה י"ח |
|
נגרע מספר חצי וחלק אחד מי"ו יעלה י"ז וז' חלקים מי"ו והם המעות שבידו |
טעם למה יוציא השרש אל אמצע המדרגות בין שיהיו המדרגות נפרדים כמו זה או זוגות שנשים המדרגה הזוגיית למעלה מהמדרגה שלפניה שנחבר הכל כמו שנשים [ז'] למעלה מט' ויהיה שבעים | |
לפי שלעולם בכל כפל המדרגות כפולות אחד שנעשה מהם מרובע מהכאתם עולה לששה מדרגות אם יש ליוצא מההכאה זוגות כמו זה שח' על ח' עולה לס"ד ולכן ס"ד הוא תחת המדרגה הששית | |
ואם המספר נפרד לא נקח שרש כי אם מה |
Notes
- ↑ P1054 31r
- ↑ P1054 om.
- ↑ Guenzburg 193v
- ↑ MS Firenze: ביאור החלוק עשאו ה'ה'ר' עמנואל בן יעקב ע"ב בעל הכנפיים; MS London: כלל שעשה החכם הגדול ר עמנואל בן יעקב למצוא דרך קל לכל חשבון קראו חכם אמר; MS P1081 אמר עמנואל בן יעקב
- ↑ על מספרים רבים כמה שיהיו: MS P1081 om.
- ↑ בטור: MS L om.
הטור: MS L om.
וכו': Lומאיות תחת מאיות
שהטור: MS L וזה
הטור השפל: MS L טור שפל - ↑ הטור: MS L om.
- ↑ Guenzburg: קח
- ↑ כמספר אחרון שבטור... לאחרון שבטור השפל: MS P1081 om.
- ↑ כשלשי לאחרון שבטור העליון לפניו: MS L om.
- ↑ מספר: MS L כמה
הפעמים: MS L פעמים
אשר: MS L om.
האמצעי: MS L אמצע
ותכתוב כמספר ההוא: MS L ותכתבינו
תקח: MS L יקח
שבטור: MS L om.
ממדרגת: MS L שבמדרגת - ↑ לך: MS L om.
לא: MS L om.
לקחת: MS L לדעת
פעם: MS L om.
המספר: MS L מספר
האחרון: MS P1081 אחרון
שבטור: MS P1081 שבטור שבטור - ↑ הוא: MS L om.
הוא א' ... העליון: MS P1081 om.
הוא: MS L om. - ↑ כל המספר ... ר"ל: MS L om.
הח': MS L ח'
יהיו: MS L יהיה
ותראה: MS L וראה
יהיה: MS P1081 הוא
Guenzburg: בפניו
בעצמך: MS L כל כך
המספר: MS L מספרו
בפ"ט: Guenzburg om.
שבטור העליון: MS L שבטור הח'
ט': MS L om.
ועם: MS Lחסרינועם
הנה: MS L om.
כן: MS L om.
ד' במספר פ"ד: MS L om.
ט': MS L ד' ט'
ממדרגתו: MS L ממדרגות
בט': MS P1081 הד'
במדרגת: MS L במדרגות - ↑ Guenzburg 194r
- ↑ כן: MS L om.
וכפול: MS L אחר זה כפול
האות: Guenzburg om.
זאת האות שיצא לך: MS L אשר יצא
L: הכפל ר"ל ט' על ב' על ג' על ד' על ט'
מהטור: MS L מטור
או מן האחדים: MS L om.
אחר: MS L מן
הטור: MS L טור - ↑ שוב: MS L ישוב
על הדרך ... הטור השפל: MS L om.
מהכפל: MS L om.
מן הנשאר: MS L מהנשאר - ↑ ואחר: MS L אחר כן
ולכפול: MS L לכפול - ↑ לזה הדרך: MS L om.
- ↑ בטור: MS P1081 הטור
- ↑ שבטור: MS L שהוא בטור
- ↑ עשית: MS L עשיתה
העליון: MS P1081 עליון
שבטור: MS L שנשמר בטור
נעשית מלאכתך: MS L מלאכתך נעשית
בזולת: MS L מבלי
בה: MS L om.
תחבר: MS P1081 תסדר
יצאו: Guenzburg שאו
כל: MS L om.
וגם: MS L גם
מנהג: MS L om.
ידעת מנהגו: MS L om.
העליון: MS P1081 עליון
הנה: MS L om.
החשבון: MS L חשבונך
שום התחלפות: MS L om.
הנה: MS L om. - ↑ L: אמר החכם הנז'
- ↑ לך: L om.
מה שיש בו: L om.
מן ההזכרה: L מההזכרה
היותר: P1081 margin
להם: MS L om.
אשר אין: MS L שאין
שלמים: MS L שברים
נשברים: MS L השברים
או: MS L הן
לבדם: MS L om.
מן ההזכרה: MS L מהזכרה - ↑ ומעתה: MS L ומזה
- ↑ במעלת: MS L במעלות
בה: MS P1081 בו
וארבעה: MS L ארבעה - ↑ ובמעלה: MS P1081 והמעלה
השנית: MS L שינית
שהיא מעלת עשרות: MS L om.
בה: MS L בו
כלל: MS L om.
עם: MS L om.
ולא: MS L לא
MS L: אין בהם שום מספר מרובע
אמנם: MS L רק
אחדים: MS L האחדים
בה: MS L בו
ר"ל: Guenzburg ול"י
שנוסיף על מספר: MS L שנשיב אחור
אחדים מה: MS L ונחברם עם אחדים
שרשו: MS L ששורשו five times - ↑ מעלת: P1081: מעלות; L: מעלה ממעלות
ודומיהן: MS L וכן
למעלה: MS L למעלו' - ↑ במעלת: MS L במעלות
המאיות: MS Lהאחדי'המאיות
מדרגת: MS L om.
גם כן: MS L om. - ↑ שדומה: Guenzburg ששרשו
- ↑ וארבע: MS L ד'
אחדים: MS L om. - ↑ וט': MS L ט'
אחדים: MS L om.
לשלש: Guenzburg לשלש הם; MS L: וכן כל מעלה שמספר מדרגתה נפרד כמו חמישי' ושביעי' ותשיעי' וכן לאין קץ - ↑ וכן כל: MS L וכל
שמספר: MS L om.
והיא: MS P1081 והוא
מעלה: MS L מעלת
זוגיית: MS L זוגות
בה מרובעים ... יש בה: MS L om.
המאיות: MS Lעשרותמאיות
שנשים: MS L שנשיב
ואלף: MS L אלף
ותחבר: MS L ונסדר
עם: MS L כל - ↑ Guenzburg 194v
- ↑ עשרה: MS L עשר
לארבעה: MS L לארבע - ↑ לל"ו: MS P1081 ל"ו
ששים הדומה: MS L om.
לששה: MS L ו' - ↑ וח' אלפים ומאה: MS P1081 ומאה אלפים ושמנה
- ↑ וכן: Guenzburg וכל
שמינית: Guenzburg שמנים - ↑ במעלת: Guenzburg במעלת במעלת; MS P1081 המעלה
האמצעית: MS P1081 הממוצעת - ↑ מספר: MS L om.
הענין: MS L om. - ↑ ושרשו: MS L שרשו
ב': Guenzburg om.
הרביעית: MS L רביעית כמו העניין בצורה; Guenzburg om.
המעלה: MS L למעלה - ↑ כמו שבארנו: MS P1081 om.
אחד: MS P1081 om.
שבמעלה: Guenzburgשמשבמעלה
ואז: MS P1081 ואם
ישובו: MS P1081 יש בו - ↑ האחרונה: MS L
הראשונההאחרונה
אשר ילקח: MS L שילקח
בטור: MS P1081 ביאור - ↑ אשר לוקח: MS L שלוקח
ר"ל שזה וזה: MS L נ'
מן האחדים: MS L מהאחדים - ↑ זה: MS L om.
אזהירך: MS L אזכירך
להזכירך: MS L להזהירך
במדרגת: MS P1081 במדרגות
א': MS L ב'
ד': MS P1081 א'
פ"א: MS P1081 פ"א פ"א - ↑ כי המעלה הנפרדת הנה: MS L om.
- ↑ בידיעת: MS P1081 וידיעת
שרש: MS P1081 השורש
להם: MS L לו - ↑ אשר תרצה: MS L שתרצה
- ↑ א' ... ה': MS L om.
- ↑ ה': MS L om.
הוא: MS L om.
ה': MS P1081 om.
לו: MS L om.
שורש: MS L om. - ↑ הג': MS L ג'
ונרשום: MS L וירשום
ריוח: MS L om.
אות השרש: MS L האותיות - ↑ 195r
- ↑ ממנה: MS L om.
ולכתוב ... מן האחדים: MS L om.
שני: MS P1081 שבו
מדרגות: MS L המדרגות
התחלת: MS L התחלה
מהמספר: MS L המספר
במינו: MS P10181 ממינו
ישאר: MS L יהיה - ↑ ג': MS P10181 om.
תכתוב: MS L תכפול
תחתיה: MS L תחתיו
ואם: MS Lוהאםואם
שהיה: MS L שאם היה
השרש הכפול: MS L שורש הכפל
בשנים: MS L om. - ↑ מהמספר הראשון: MS L om.
זאת: MS L אות
תאמר: MS P1081 אומר
ונשיבהו: MS L והשיבו העם הד'
נוכל: MS L תוכל
לקחת: Guenzburg om.
המספר: MS L om. - ↑ זאת הג': MS L ג'
ואחר על: MS L ועל - ↑ ונתחיל: MS L ותתחיל
הנופלת: MS P1081 הכופלת - ↑ מן הנשאר: MS L מהנשאר
במינו: MS L מן מינו
העליון: MS P1081 עליון - ↑ זאת: MS L om.
זאת: MS P1081 זה
השנית: MS P1081 השני
מן השורש: MS L מהשורש
שהיא: MS L שהוא - ↑ באופן שנוכל: MS P1081 om.
המספר: MS L om.
מן החלוקה: MS L מהחלוקה
והיא: MS P1081 והוא - ↑ ונכפול זאת הג' ... היא במעלת האחדים: MS P1081 om.
- ↑ למעלה: MS L om.
- ↑ אמנם: MS L om.
- ↑ 195v
- ↑ האחרון: MS L הראשון
גם כן: MS L ג"כ
אשר תקח: MS L שתקח
השרש: MS L ראש השורש
אשר לפני: MS L שלפני - ↑ תשוב: MS P1081 תשיב
כפול: MS L כפלו
אשר לקחת: MS L שלקחת
ממנו: MS P1081 om.
מהמספר: MS L ממספר
אשר אחריו: MS L שאחריו
תראה כי: MS L om.
השורש: MS L השורשהקרוב והואא
כל: MS L om.
כמו שנראה: MS L om. - ↑ רצינו ... ט'ט'ג': MS L om.
רצינו ... לקחנו: Guenzburg twice
מהמספר: MS L ממספר
והיא: MS L והוא
הנשאר: MS L ב' הנשאר
מהנשאר: MS P1081 מהראשון מהנשאר
מפני כי: MS L ומפני זה
יהיה: MS L om.
אשר לקחנו: MS L שלקחנו
הא': MS L הג'
ראשונה: MS L ראשון
נכתב: MS P1081 ב' נכתב
כמשפט: MS L כמספר
אשר לפניה: MS L שלפניה
כ"ט: MS L om. - ↑ המספר: MS L מספר
במחולק: MS P1081 במחלק
יהיה: MS P1081 נקוה
כי: MS L om.
ואף כי יותר מעשרה: MS L om.
זה: MS L om. - ↑ נשוב: MS P1081 נשאר
כשכפלנו: MS P1081 השפלנו
הוספנו: MS L נוסף
והנה: MS L הנה
לא הוספנו עליו... כשכפלנו זה השורש: Guenzburg om.
כבר: MS L om.
נתוספה... ומאה הנה: Guenzburg om.
ותוספת: MS P1081 נוספה
לחלק: MS L om.
גם כן: MS L ג"כ
הכפול: MS L כפול
מן האחדים: MS L מהאחדים - ↑ P903 138v
- ↑ Guenzburg 196r
- ↑ Guenzburg 196v
- ↑ Guenzburg om.
- ↑ Guenzburg: שנים
Appendix: Bibliography
Immanuel ben Jacob Tov-Elem / Immanuel Bonfils / Immanuel of Trascon (flourished c. 1340-1377)
Manuscripts:
- 1) Firenze, Biblioteca Medicea Laurenziana Plut. 88.30/2 (IMHM: f 17853), ff. 37r-38r (15th century)
- Plut. 88.30/2
- 2) London, British Library Or. 10878 (IMHM: f 8193), ff. 6r-7v (15th century)
- Or. 10878
- 3) Moscow, Russian State Library, Ms. Guenzburg 365/11 (IMHM: f 43035), ff. 193v-196v (15th-16th century)
- Guenzburg 365
- 4) Paris, Bibliothèque Nationale de France heb. 903/7 (IMHM: f 26859), ff. 138r-140r (15th century)
- heb. 903/7
- 5) Paris, Bibliothèque Nationale de France heb. 1026/6 (IMHM: f 15025), ff. 72r-80v (16th century)
- heb. 1026/6
- 6) Paris, Bibliothèque Nationale de France heb. 1054/8 (IMHM: f 33997), ff. 31r-v (15th century)
- heb. 1054/8
- 7) Paris, Bibliothèque Nationale de France heb. 1081/3 (IMHM: f 15037), ff. 4r-15v (16th-17th century)
- heb. 1081/3
Bibliography:
- Gandz, Solomon. 1936. The Invention of the Decimal Fractions and the Application of the Exponential Calculus by Immanuel Bonfils of Tarascon (c. 1350), Isis XXIV, pp. 16–45.
- Lévy, Tony. 2003. Immanuel ben Jacob de Tarascon (XIVe s.): fractions décimales, puissances de 10 et opérations arithmétiques, Centaurus 45, pp. 284-304.
- ———. 2012. Immanuel ben Jacob of Tarascon (Fourteenth Century) and Archimedean Geometry: An Alternative Proof for the Area of a Circle, Aleph. 12.1, pp. 135-159.
- Rabinovitch, Nahum. 1974. An Archimedean Tract of Immanuel Tov-Elem (14th Cent.), Historia Mathematica 1, pp. 13–27.
- Rashed, Roshdi. 1994. The development of Arabic mathematics: between arithmetic and algebra. Translated by A.F.W. Armstrong. Dordrecht, Boston, London: Kluwer Academic Publishers, pp. 85-146.
- Sarton, George. 1934. Simon Stevin of Bruges (1548-1620), Isis, vol. 21, no. 2 (Jul., 1934), pp. 241-303.
- ———.1935. The First Explanation of Decimal Fractions and Measures (1585). Together with a History of the Decimal Idea and a Facsimile (No. XVII) of Stevin's Disme, Isis, vol. 23, no. 1 (Jun., 1935), pp. 153-244.
- Steinschneider, Moritz. 1893-1901. Mathematik bei den Juden. Berlin-Leipzig-Frankfurt: Kaufmann, pp. 155-163 (f79-f87); repr. Hildesheim: G. Olms, 1964 and 2001.