Difference between revisions of "פירוש אנונימי לספר המספר"

From mispar
Jump to: navigation, search
(Chapter Six)
(Has not yet reached the ranks of the units)
 
(72 intermediate revisions by the same user not shown)
Line 11: Line 11:
 
|style="width:45%;text-align:right;"|&#x202B;<ref>39r</ref>[[ספר_המספר_/_אברהם_אבן_עזרא#the_sign_for_this|<span style=color:blue>'''האות על זה'''</span>]]
 
|style="width:45%;text-align:right;"|&#x202B;<ref>39r</ref>[[ספר_המספר_/_אברהם_אבן_עזרא#the_sign_for_this|<span style=color:blue>'''האות על זה'''</span>]]
 
|-
 
|-
|
+
|I.e. the sign that all numbers revolve around nine is when you draw a circle etc.
 
|style="text-align:right;"|ר"ל האות על היות כל המספר סובב על תשעה כשתעשה עגול וכו&#x202B;'
 
|style="text-align:right;"|ר"ל האות על היות כל המספר סובב על תשעה כשתעשה עגול וכו&#x202B;'
 
|-
 
|-
|
+
|He could have given another difference: when you multiply 9 by itself, or by 8, or by 7, or by 6, you find that the units of the tens position exceed the units themselves and from 5 and up it is the opposite as a general rule.
|style="text-align:right;"|וכן היה יכול ליתן הבדל אחד כי כשתכפול ט' על עצמו או על ח' או על ז' או על ו' תמצא האחדים שבמקום העשרות יתרים במספרם מן האחדים עצמם ומה' ולמעלה ככלל הדבר בהפך
+
|style="text-align:right;"|וכן היה יכול ליתן הבדל אחר כי כשתכפול ט' על עצמו או על ח' או על ז' או על ו' תמצא האחדים שבמקום העשרות יתרים במספרם מן האחדים עצמם ומה' ולמעלה ככלל הדבר בהפך
 
|-
 
|-
 
|
 
|
  
=== Therefore five is called round number, for it circles around itself ===
+
=== Therefore five is called round number, for it revolves around itself ===
  
 
|style="text-align:right;"|[[ספר_המספר_/_אברהם_אבן_עזרא#five_is_called_round_number|<span style=color:blue>'''על כן נקרא חמשה חשבון עגול כי הוא מתגלגל על עצמו'''</span>]]
 
|style="text-align:right;"|[[ספר_המספר_/_אברהם_אבן_עזרא#five_is_called_round_number|<span style=color:blue>'''על כן נקרא חמשה חשבון עגול כי הוא מתגלגל על עצמו'''</span>]]
 
|-
 
|-
|
+
|I.e. it is found in its square.
 
|style="text-align:right;"|ר"ל שימצא במרובעו
 
|style="text-align:right;"|ר"ל שימצא במרובעו
 
|-
 
|-
|
+
|Although it is also found in six, the square of six is not preserved in its cube.
|style="text-align:right;"|וא'ע'פ' שבששה ימצא כן אמנם ששה לא ישמר מרובעו במעוקבו כי כשתכפול ו' על ו' ויהיו ל"ו ואחר תכפול ו' על ל"ו לא ישאר בצורתו
+
|style="text-align:right;"|וא'ע'פ' שבששה ימצא כן אמנם ששה לא ישמר מרובעו במעוקבו
 +
|-
 +
|Because when you multiply 6 by 6, it is 36.
 +
:<math>\scriptstyle{\color{blue}{6\times6=36}}</math>
 +
|style="text-align:right;"|כי כשתכפול ו' על ו' ויהיו ל"ו
 +
|-
 +
|Next, you multiply 6 by 36; but it does not stay in its shape.
 +
:<math>\scriptstyle{\color{blue}{6\times36}}</math>
 +
|style="text-align:right;"|ואחר תכפול ו' על ל"ו לא ישאר בצורתו
 +
|-
 +
|But, [5] times 5, which is 25, if you multiply it by 5, it retains itself; the result is 125 and this is the absolute product, since after multiplying  its length by its width, we multiply it by its depth.
 +
:<math>\scriptstyle{\color{blue}{5\times25=125}}</math>
 +
|style="text-align:right;"|אך פעמים ה' שהם כ"ה אם תכפלם על ה' ישמר עצמו ויעלה ק'כ'ה' וזהו הכפל הגמור כי אחר שכפלנו ארכו על רחבו שהוא השטח נכפלנו בעמקו
 
|-
 
|-
|
+
|So, the height is divided into five equal parts, each of which is 5 by 5.
|style="text-align:right;"|אך פעמים ה' שהם כ"ה אם תכפלם על ה' ישמר עצמו ויעלה ק'כ'ה' וזהו הכפל הגמור כי אחר שכפלנו ארכו על רחבו שהוא השטח נכפלנו בעמקו ונחלק הגובה לה' חלקים שוים שכל אחד ה' על ה&#x202B;'
+
|style="text-align:right;"|ונחלק הגובה לה' חלקים שוים שכל אחד ה' על ה&#x202B;'
 
|-
 
|-
 
|
 
|
Line 38: Line 50:
 
|style="text-align:right;"|[[ספר_המספר_/_אברהם_אבן_עזרא#1_10_100_repeat_as_thousands|<span style=color:blue>'''כי א'י'ק' יחזור באלפים וכו&#x202B;''''</span>]]
 
|style="text-align:right;"|[[ספר_המספר_/_אברהם_אבן_עזרא#1_10_100_repeat_as_thousands|<span style=color:blue>'''כי א'י'ק' יחזור באלפים וכו&#x202B;''''</span>]]
 
|-
 
|-
|
+
|1, 10, 100 are apart of all numbers, because every number is either one [= units], or 10 [= tens], or 100 [= hundreds].
 
|style="text-align:right;"|א'י'ק' הוא חוץ לכל המספרים כי כל מספר הוא אם אחד או י' או ק&#x202B;'
 
|style="text-align:right;"|א'י'ק' הוא חוץ לכל המספרים כי כל מספר הוא אם אחד או י' או ק&#x202B;'
 
|-
 
|-
|
+
|For a thousand is one, 10 thousand returns to 10 and 100 thousand to 100.
 
|style="text-align:right;"|כי אלף הוא באחד וי' אלפים ישובו לי' וק' אלפים לק&#x202B;'
 
|style="text-align:right;"|כי אלף הוא באחד וי' אלפים ישובו לי' וק' אלפים לק&#x202B;'
 
|-
 
|-
Line 117: Line 129:
 
|style="text-align:right;"|וגרע לעולם אחד למוסד
 
|style="text-align:right;"|וגרע לעולם אחד למוסד
 
|-
 
|-
|
+
|For the units do not generate any rank for any number, because every number multiplied by units does not go out of its rank, which is not the case when multiplying by another number that rises the rank.
|style="text-align:right;"|כי אחדים לא יחדשו מדרגה בשום מספר כי &#x202B;<ref>39v</ref>כי כל מספר הנכפל על אחדים לא יצא ממדרגתו מה שאין כן בהכפלו על מספר אחר שיוסיף מדרגה
+
|style="text-align:right;"|כי אחדים לא יחדשו מדרגה בשום מספר &#x202B;<ref>39v</ref>כי כל מספר הנכפל על אחדים לא יצא ממדרגתו מה שאין כן בהכפלו על מספר אחר שיוסיף מדרגה
 
|-
 
|-
|
+
|A table to know the rank of the product of the numbers that are multiplied by each other
 
|style="text-align:right;"|לוח לדעת המספרים הכפולים אלו על אלו באיזו מדרגה ישאר הנכפל
 
|style="text-align:right;"|לוח לדעת המספרים הכפולים אלו על אלו באיזו מדרגה ישאר הנכפל
 
|-
 
|-
|
+
|Know that the rubric corresponding to both is the total and it indicates both.
 
|style="text-align:right;"|דע כי הנקודה הנכחית לשניהם הוא סך המספר המורה והיא המזכרת אותם
 
|style="text-align:right;"|דע כי הנקודה הנכחית לשניהם הוא סך המספר המורה והיא המזכרת אותם
 
|-
 
|-
|
+
| colspan=2|
 
+
{|class="wikitable" style="margin-left: auto; margin-right: auto; border: none; text-align:center;"
=== Example: we wish to multiply 29 by 31 ===
+
|-
 
+
|מאה אלף||רבבות||אלפים||מאות||עשרות||אחדים
|style="text-align:right;"|&#x202B;<ref>40r</ref>[[ספר_המספר_/_אברהם_אבן_עזרא#29 by 31|<span style=color:blue>'''דמיון רצינו לכפול כ"ט על ל"א'''</span>]]
+
|-
 
+
|אלף אלפים||מאה אלף||רבבות||אלפים||מאות||עשרות
 
|-
 
|-
|
+
|עשרת אלפי אלפים||אלף אלפים||מאה אלף||רבבות||אלפים||מאות
|style="text-align:right;"|ועל זה הדרך כל הדמים לאלה כגון כפל ע' על צ' שמרחקם מפ' אחד
 
 
|-
 
|-
|
+
|מאה אלף אלפים||עשרות אלף||אלף אלפים||מאה אלף||רבבות||אלפים
 
 
=== If the number does not have a whole third and there is an excess of one ===
 
 
 
|style="text-align:right;"|ואם לא היה למספר שלישית שלימה ויהיה בו תוספת אחד
 
 
|-
 
|-
|
+
|אלף אלפי אלפים||ק' אלף אלפים||עשרות אלף||אלף אלפים||מאה אלף||רבבות
|style="text-align:right;"|כגון עשר ותרצה לידע מרובעו חסר האחד מהמספר ישאר ט&#x202B;'
 
 
|-
 
|-
|
+
|רבבות אלפי אלפים||אלף אלפי אלפים||ק' אלף אלפים||עשרות אלף||אלף אלפים||מאה אלף
 
+
|}
=== Calculate the sought number in the procedure that I have shown you ===
 
 
 
|style="text-align:right;"|ותוציא המספר המבוקש כמשפטו שהראיתיך
 
 
 
 
|-
 
|-
|
+
| colspan=2|
|style="text-align:right;"|ר"ל שתקח שליש ט' שהוא ג' ומרובעו ט' נעלהו במדרגה שלפניו ויהיו צ' חסר ממנו ט' וישאר פ"א ואחר תוסיף עליו מספר ט' והמספר בעצמו שהוא י' ויעלה ק&#x202B;'
+
:{|class="wikitable" style="margin-left: auto; margin-right: auto; border: none; color:blue; text-align:center;"
 
|-
 
|-
|
+
|hundreds of thousands||tens of thousands||thousands||hundreds||tens||units
 
 
=== If there are two between our number and the number that has a third ===
 
 
 
|style="text-align:right;"|ואם היו שנים בין המספר שלנו ובין המספר שיש לו שלישית
 
 
 
 
|-
 
|-
|
+
|thousands of thousands||hundreds of thousands||tens of thousands||thousands||hundreds||tens
|style="text-align:right;"|כלומ' שיעדף מספרנו על שלישית שנים כי כל מספר או יש לו שלישית שיעדף יעדיף אחד או שנים
 
 
|-
 
|-
|
+
|tens of thousands of thousands||thousands of thousands||hundreds of thousands||tens of thousands||thousands||hundreds
 
 
=== We do the opposite ===
 
 
 
|style="text-align:right;"|נעשה להפך
 
 
 
 
|-
 
|-
|
+
|hundreds of thousands of thousands||tens of thousands of thousands||thousands of thousands||hundreds of thousands||tens of thousands||thousands
|style="text-align:right;"|לפי שזה התוספת יקרא חסרון בערך המספר שלאחריו כי הוא יחסר אחד משלישית שהוא החלק הקטן והוא הפך מה שאמ' למעלה נוסיף על מספר שלנו אחד כי יותר יתכן זה משנחסר שנים
 
 
|-
 
|-
|
+
|thousands of thousands of thousands||hundreds of thousands of thousands||tens of thousands of thousands||thousands of thousands||hundreds of thousands||tens of thousands
 
 
=== Know that if there are two digits to multiply by one another ===
 
 
 
|style="text-align:right;"|ודע כי אם יהיו שני מספרים לכפול זה על זה
 
 
|-
 
|-
|
+
|tens of thousands of thousands of thousands||thousands of thousands of thousands||hundreds of thousands of thousands||tens of thousands of thousands||thousands of thousands||hundreds of thousands
|style="text-align:right;"|ר"ל מספרם בין שניהם כגון ב' פעמים די לו בהכאה אחת כגון שתאמר ב' פעמים ב' כמו שאמור למעלה
+
|}
 
|-
 
|-
|
+
| colspan=2|
 
+
{|class="wikitable" style="margin-left: auto; margin-right: auto; border: none; text-align:center;"
=== If you have one digit by two digits ===
+
|-
 
+
|י||ט||ח||ז||ו||ה||ד||ג||ב||א
|style="text-align:right;"|ואם יהיה לך מספר אחד על שני מספרים
+
|-
 +
|כ||יח||יו||יד||יב||י||ח||ו||ד||ב
 
|-
 
|-
|
+
|ל||כז||כד||כא||יח||טו||יב||ט||ו||ג
|style="text-align:right;"|כגון ש' פעמים מ"ה אתה צריך להכות פעמים שתכה תחלה הש' על המ' כן ג' על ד' י"ב והנה עשרות במאות הם במדרגה רביעית שהם אלפים והוא י"ב אלף
 
 
|-
 
|-
|
+
|מ||לו||לב||כח||כד||כ||יו||יב||ח||ד
|style="text-align:right;"|עוד נכה ג' על ה' והם ט"ו מאות שהם אלף ות"ק נמצא הכל י"ג אלפים ות"ק
 
 
|-
 
|-
|
+
|נ||מה||מ||לה||ל||כה||כ||טו||י||ה
 
 
=== If three by three ===
 
 
 
|style="text-align:right;"|ואם על שלשה שלשה
 
 
|-
 
|-
|
+
|ס||נד||מח||מב||לו||ל||כד||יח||יב||ו
|style="text-align:right;"|כלומ' אם תרצה לכפול מספר אחד על ג' מספרים כגון ש' על ת'כ'ה' ג' פעמים ככה &#x202B;<ref>40v</ref>ג' פעמים ד' הם י"ב הם במדרגה חמישית שהיא רבבות והם ק"כ אלף
 
 
|-
 
|-
|
+
|ע||ס[ג]||נו||מט||מב||לה||כח||כא||יד||ז
|style="text-align:right;"|עוד נכה ג' על ב' הם ו&#x202B;'
 
 
|-
 
|-
|
+
|פ||עב||סד||נו||מח||מ||ל[ב]||כד||יו||ח
|style="text-align:right;"|עוד נכה ג' על ה'ט"ו והם מאות והכל ק'כ'ז' אלפים ות'ק&#x202B;'
 
 
|-
 
|-
|
+
|צ||פ[א]||עב||סג||נד||מה||לו||כז||יח||ט
|style="text-align:right;"|ומאה אם המספר אחד תן שיהיה המספר הנכפל אחד או רבים ראה אם הוא זוג שאם הוא זוג גם המחובר זוג
 
 
|-
 
|-
|
+
|ק||צ||פ||ע||ס||נ||מ||ל||כ||י
|style="text-align:right;"|ואף אם האחד נפרד בכפל בזוג כגון ט' פעמים ח' יהיה העולה זוג
+
|}
 
|-
 
|-
|
+
| colspan=2|
|style="text-align:right;"|אף אם שניהם נפרדים כגון ט' על ט' או ט"ו על ט"ו אז המספר נפרד
+
:{|class="wikitable" style="margin-left: auto; margin-right: auto; border: none; color:blue; text-align:center;"
 
|-
 
|-
|
+
|10||9||8||7||6||5||4||3||2||1
 
+
|-
=== The paved way ===
+
|20||18||16||14||12||10||8||6||4||2
 
+
|-
|style="text-align:right;"|והדרך סלולה
+
|30||27||24||21||18||15||12||9||6||3
 +
|-
 +
|40||36||32||28||24||20||16||12||8||4
 +
|-
 +
|50||45||40||35||30||25||20||15||10||5
 +
|-
 +
|60||54||48||42||36||30||24||18||12||6
 +
|-
 +
|70||63||56||49||42||35||28||21||14||7
 +
|-
 +
|80||72||64||56||48||40||32||24||16||8
 +
|-
 +
|90||81||72||63||54||45||36||27||18||9
 
|-
 
|-
|
+
|100||90||80||70||60||50||40||30||20||10
|style="text-align:right;"|שתשים למעלה עוד המספר כי זה יותר ישר ונאות ר"ל שכללו ומועט ולא נחוש אם יהיו הפרטים העליונים גדולים בכמות מפרטי הטור השפל אחר שכלל העליון בלתי גדול וכן לא נחוש בהיות מספרי הטור העליון שכללו קטן יותר רבים ממספרי הטור השפל
+
|}
 
|-
 
|-
 
|
 
|
  
=== Write it corresponding to the top row ===
+
=== Example: we wish to multiply 29 by 31 ===
 +
 
 +
|style="text-align:right;"|&#x202B;<ref>40r</ref>[[ספר_המספר_/_אברהם_אבן_עזרא#29 by 31|<span style=color:blue>'''דמיון רצינו לכפול כ"ט על ל"א'''</span>]]
  
|style="text-align:right;"|כתוב אותו כנגד טור העליון
 
 
|-
 
|-
|
+
|According to this way, for all those that are similar, such as the multiplication of 70 by 90, whose distance from 80 is the same.
|style="text-align:right;"|כלומר כנגד קו המספר העליון הראשון כי אחדים עם אחדים אחדים וכתוב בטור שלישי כנגד המספר השני העליון כי אחדים בעשרות יעלו עשרות
+
:<math>\scriptstyle{\color{blue}{70\times90=\left(80-10\right)\times\left(80+10\right)}}</math>
 +
|style="text-align:right;"|ועל זה הדרך כל הדמים לאלה כגון כפל ע' על צ' שמרחקם מפ' אחד
 
|-
 
|-
 
|
 
|
  
=== Write the units in the place to which they belong ===
+
=== If the number does not have a whole third and there is an excess of one ===
  
|style="text-align:right;"|תכתוב הפרט במקום הראוי לו
+
|style="text-align:right;"|ואם לא היה למספר שלישית שלימה ויהיה בו תוספת אחד
 +
|-
 +
|Such as ten and you wish to know its square:
 +
|style="text-align:right;"|כגון עשר ותרצה לידע מרובעו
 
|-
 
|-
|
+
|Subtract the one from the number; 9 remains.
|style="text-align:right;"|כלו' כפרט העודף כתבהו במדרגתו ושמור תחת הכלל אחדים כמספר וחברם וכתבם עם המספר הבא אחריו במדרגת המספר ההוא הבא אחר כן עד תום להכות הראשון עליון עם כל השפלים ואם ישאר שם כלל ופרט יכתוב הפרט וא' ואחריו הכלל כי שם תכלית הטור ההוא
+
|style="text-align:right;"|חסר האחד מהמספר ישאר ט&#x202B;'
 
|-
 
|-
 
|
 
|
  
=== Start to multiply the second digit and write the result in the third row ===
+
=== Calculate the sought number in the procedure that I have shown you ===
 +
 
 +
|style="text-align:right;"|ותוציא המספר המבוקש כמשפטו שהראיתיך
  
|style="text-align:right;"|תחל לכפול המספר השני והעולה כתבהו בטור השלישי
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כלומר תחל לכתוב בטור אחד למטה ולא באותו &#x202B;<ref>41r</ref>טור
+
|style="text-align:right;"|ר"ל שתקח שליש ט' שהוא ג' ומרובעו ט' נעלהו במדרגה שלפניו ויהיו צ' חסר ממנו ט' וישאר פ"א ואחר תוסיף עליו מספר ט' והמספר בעצמו שהוא י' ויעלה ק&#x202B;'
|-
 
|
 
|style="text-align:right;"|לפי שעשרות עם אחדים יהיו עשרות ואין ראוי לשים מדרגת עשרות במדרגה גבוהה ממנה על כן נכתבם במקום העשרות
 
 
|-
 
|-
 
|
 
|
  
=== Then, multiply the second top by the second and write it in the third row ===
+
=== If there are two between our number and the number that has a third ===
 +
 
 +
|style="text-align:right;"|ואם היו שנים בין המספר שלנו ובין המספר שיש לו שלישית
  
|style="text-align:right;"|ואחר כך תכפול השני העליון על שני וכו' ותכתבהו בטור השלישי
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל כנגד המספר השלישי שבטור העליון אבל זה טור שם הוא מהעולה מן הכפל
+
|style="text-align:right;"|כלומ' שיעדף מספרנו על שלישית שנים כי כל מספר או יש לו שלישית שיעדף יעדיף אחד או שנים
 
|-
 
|-
 
|
 
|
  
=== As the third digit ===
+
=== We do the opposite ===
 +
 
 +
|style="text-align:right;"|נעשה להפך
  
|style="text-align:right;"|במספר שלישי
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כלומ' במדרגה שלישית כי העולה מכפל עשרות בעשרות מאות
+
|style="text-align:right;"|לפי שזה התוספת יקרא חסרון בערך המספר שלאחריו כי הוא יחסר אחד משלישית שהוא החלק הקטן והוא הפך מה שאמ' למעלה נוסיף על מספר שלנו אחד כי יותר יתכן זה משנחסר שנים
 
|-
 
|-
 
|
 
|
  
=== Which is second to the digit from with which I have started ===
+
=== Know that if there are two digits to multiply by one another ===
  
|style="text-align:right;"|שהוא שני למספר שהחלותי
+
|style="text-align:right;"|ודע כי אם יהיו שני מספרים לכפול זה על זה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי מן השני התחיל
+
|style="text-align:right;"|ר"ל מספרם בין שניהם כגון ב' פעמים די לו בהכאה אחת כגון שתאמר ב' פעמים ב' כמו שאמור למעלה
 
|-
 
|-
 
|
 
|
  
=== With the rule that the units are in the lower rank ===
+
=== If you have one digit by two digits ===
  
|style="text-align:right;"|עם משפט הפרט להיותו תחתון וכו&#x202B;'
+
|style="text-align:right;"|ואם יהיה לך מספר אחד על שני מספרים
 +
|-
 +
|
 +
|style="text-align:right;"|כגון ש' פעמים מ"ה אתה צריך להכות פעמים שתכה תחלה הש' על המ' כן ג' על ד' י"ב והנה עשרות במאות הם במדרגה רביעית שהם אלפים והוא י"ב אלף
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כלו' ר"ל שתכתוב הפרט תחלה במדרגתו השפלה ואחר כן תכתוב הכלל במקום גבוה ממנו שהוא שני לפרט
+
|style="text-align:right;"|עוד נכה ג' על ה' והם ט"ו מאות שהם אלף ות"ק נמצא הכל י"ג אלפים ות"ק
 
|-
 
|-
 
|
 
|
  
=== If there is zero, whether in the top row ===
+
=== If three by three ===
  
|style="text-align:right;"|ואם היה גלגל בין בטור העליון וכו&#x202B;'
+
|style="text-align:right;"|ואם על שלשה שלשה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כלומ' כשתכה באות או אות בגלגל כתוב גלגל להוסיף מדרגה ושימהו במקומו כדרך שתעשה מן המספרים שלפני הגלגל או לאחריו
+
|style="text-align:right;"|כלומ' אם תרצה לכפול מספר אחד על ג' מספרים כגון ש' על ת'כ'ה' ג' פעמים ככה &#x202B;<ref>40v</ref>ג' פעמים ד' הם י"ב הם במדרגה חמישית שהיא רבבות והם ק"כ אלף
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|הא למדת שכפי מנין מספר הטור העליון תכתוב טורים תחת שני הטורים שמהם הכפל יוצא וכל אלו הטורים זולת קורא טור שלישי
+
|style="text-align:right;"|עוד נכה ג' על ב' הם ו&#x202B;'
 
|-
 
|-
 
|
 
|
 
+
|style="text-align:right;"|עוד נכה ג' על ה'ט"ו והם מאות והכל ק'כ'ז' אלפים ות'ק&#x202B;'
=== Then, start adding up ===
 
 
 
|style="text-align:right;"|אחר כן תחל לחבר
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כלומ' אחר שהשלמת כל ההכאות תחל לחבר העולה מן הטורים השלישי שכתבת ותכתבהו בטור אחד שפל כגון שיש לך מן העולה בכפל ג' טורים חבר בקו היושר מה שנמצא בהם במדרגה הראשונה וכתבהו ואחר כן חבר מה שנמצא במדרגתם השנית וכתבהו וכן כולם עד סופם
+
|style="text-align:right;"|ומאה אם המספר אחד תן שיהיה המספר הנכפל אחד או רבים ראה אם הוא זוג שאם הוא זוג גם המחובר זוג
 
|-
 
|-
 
|
 
|
 
+
|style="text-align:right;"|ואף אם האחד נפרד בכפל בזוג כגון ט' פעמים ח' יהיה העולה זוג
=== If there is ten, write one after it ===
 
 
 
|style="text-align:right;"|ואם יש בו עשרה תכתוב אחד אחריו
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כלומ' אם מן שתחבר מאותה מדרגה יעלו עשרה בכוון יכתוב ספרא וישמור אחד וא' יחברהו עם מה שיבא אחריו ואם יעלה החבור כלל ופרט כתוב היושר על הכלל בחבור שיש לך וכתוב אחריו במקום הכלל אחד
+
|style="text-align:right;"|אף אם שניהם נפרדים כגון ט' על ט' או ט"ו על ט"ו אז המספר נפרד
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|&#x202B;<ref>41v</ref>ואם לא ימצא באיזה מן הטורים רק גלגל כתבהו ואחר שתשלים טור החבור ותרצה לבחון אמתת מספרך ספור מנין מדרגותיו וכאיזה יהיה מעלות השני טורים בלי מדרגת אחד כי הכלל יעשהו מדרגה אחרת
+
 
 +
=== The paved way ===
 +
 
 +
|style="text-align:right;"|והדרך סלולה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|עוד ילמדך מאזנים להבחין מספרך שתמנה סכום האותיות שבטור העליון ואם הוא פחות מט' ישמרהו ואם הוא יתר מט' שמור היתר וכן תעשה ממנין אותיות הטור השפל והנשאר מט' כפלהו עם הנשאר מן הטור הראשון ואם לא ישאר על ט' באחד משני טורים אין צריך לבדוק האחד כי מה שנכפל על ט' יצא ט'ט' וככה יהיה הפחות מט' או היתר מט' ממנין טור החבור ואם לאו תדע כי טעית בחשבונך
+
|style="text-align:right;"|שתשים למעלה עוד המספר כי זה יותר ישר ונאות ר"ל שכללו ומועט ולא נחוש אם יהיו הפרטים העליונים גדולים בכמות מפרטי הטור השפל אחר שכלל העליון בלתי גדול וכן לא נחוש בהיות מספרי הטור העליון שכללו קטן יותר רבים ממספרי הטור השפל
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נשלם השער הראשון
+
 
 +
=== Write it corresponding to the top row ===
 +
 
 +
|style="text-align:right;"|כתוב אותו כנגד טור העליון
 
|-
 
|-
 
|
 
|
 
+
|style="text-align:right;"|כלומר כנגד קו המספר העליון הראשון כי אחדים עם אחדים אחדים וכתוב בטור שלישי כנגד המספר השני העליון כי אחדים בעשרות יעלו עשרות
== Chapter Two ==
 
 
 
|style="text-align:right;"|<big>השער השני</big>
 
 
|-
 
|-
 
|
 
|
=== One alone does not assume any change ===
 
  
|style="text-align:right;"|האחד לבדו לא יקבל שנוי
+
=== Write the units in the place to which they belong ===
 +
 
 +
|style="text-align:right;"|תכתוב הפרט במקום הראוי לו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כל שנוי בא מצד ההרכבה וההפך והאחד לפי [שהוא]&#x202B;<ref>marg.</ref> פשוט אין דבר שישנהו
+
|style="text-align:right;"|כלו' כפרט העודף כתבהו במדרגתו ושמור תחת הכלל אחדים כמספר וחברם וכתבם עם המספר הבא אחריו במדרגת המספר ההוא הבא אחר כן עד תום להכות הראשון עליון עם כל השפלים ואם ישאר שם כלל ופרט יכתוב הפרט וא' ואחריו הכלל כי שם תכלית הטור ההוא
 
|-
 
|-
 
|
 
|
=== No increase ===
 
  
|style="text-align:right;"|ולא רבוי
+
=== Start to multiply the second digit and write the result in the third row ===
 +
 
 +
|style="text-align:right;"|תחל לכפול המספר השני והעולה כתבהו בטור השלישי
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי כפל אחד על אחד אחד
+
|style="text-align:right;"|כלומר תחל לכתוב בטור אחד למטה ולא באותו &#x202B;<ref>41r</ref>טור
 
|-
 
|-
 
|
 
|
=== And no division ===
+
|style="text-align:right;"|לפי שעשרות עם אחדים יהיו עשרות ואין ראוי לשים מדרגת עשרות במדרגה גבוהה ממנה על כן נכתבם במקום העשרות
 +
|-
 +
|
 +
 
 +
=== Then, multiply the second top by the second and write it in the third row ===
  
|style="text-align:right;"|ולא חלוק
+
|style="text-align:right;"|ואחר כך תכפול השני העליון על שני וכו' ותכתבהו בטור השלישי
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי מצד שהוא אחד לא יתחלק
+
|style="text-align:right;"|ר"ל כנגד המספר השלישי שבטור העליון אבל זה טור שם הוא מהעולה מן הכפל
 
|-
 
|-
 
|
 
|
=== One is eternal ===
 
  
|style="text-align:right;"|והאחד קדמון לבדו
+
=== As the third digit ===
 +
 
 +
|style="text-align:right;"|במספר שלישי
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי הוא קודם אל המספר קדימה טבעית
+
|style="text-align:right;"|כלומ' במדרגה שלישית כי העולה מכפל עשרות בעשרות מאות
 
|-
 
|-
 
|
 
|
=== They did this ===
 
  
|style="text-align:right;"|ועשו זה
+
=== Which is second to the digit from with which I have started ===
 +
 
 +
|style="text-align:right;"|שהוא שני למספר שהחלותי
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל למה חלקו הגלגל לי"ב מזלות בעבור כי שנת השמש שהיא זמן סבובה מנקודה ידועה מגלגל המזלות עד שובה אליה ושנותה לסוב מהנקודה ההיא באותו הזמן סבבה הלבנה גלגלה ודבקה עמו י"ב פעם כי י"ב פעם חדושי הלבנה והמולדה שלמים יש בשנת החמה
+
|style="text-align:right;"|כי מן השני התחיל
 
|-
 
|-
 
|
 
|
=== They divided each sign to thirty degrees, because this number has more whole units than 12; for it has one-half, one-third etc. ===
 
  
|style="text-align:right;"|וחלקו המזל לשלשים מעלות כי זה המספר יש לו אחדים שלמים יותר מי"ב כי יש לו חצי &#x202B;<ref>42r</ref>חצי ושלישית וכו&#x202B;'
+
=== With the rule that the units are in the lower rank ===
 +
 
 +
|style="text-align:right;"|עם משפט הפרט להיותו תחתון וכו&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|זה מוסיף על י"ב אחד
+
|style="text-align:right;"|כלו' ר"ל שתכתוב הפרט תחלה במדרגתו השפלה ואחר כן תכתוב הכלל במקום גבוה ממנו שהוא שני לפרט
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וש"ס מוסיף עוד שמינית שהוא מ"ה ותשיעית שהוא מ&#x202B;'
+
 
 +
=== If there is zero, whether in the top row ===
 +
 
 +
|style="text-align:right;"|ואם היה גלגל בין בטור העליון וכו&#x202B;'
 
|-
 
|-
 
|
 
|
=== Each according to its rank ===
+
|style="text-align:right;"|כלומ' כשתכה באות או אות בגלגל כתוב גלגל להוסיף מדרגה ושימהו במקומו כדרך שתעשה מן המספרים שלפני הגלגל או לאחריו
 
 
|style="text-align:right;"|כל אחד כפי מעלתו
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל כפי מדרגתו
+
|style="text-align:right;"|הא למדת שכפי מנין מספר הטור העליון תכתוב טורים תחת שני הטורים שמהם הכפל יוצא וכל אלו הטורים זולת קורא טור שלישי
 
|-
 
|-
 
|
 
|
=== The number by which you divide should be less than the dividend ===
 
  
|style="text-align:right;"|וראוי להיות המספר שתחלק עליו פחות מהמספר המחולק
+
=== Then, start adding up ===
 +
 
 +
|style="text-align:right;"|אחר כן תחל לחבר
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי כשתרצה לחלק מספר אחד על אחר ראוי להיות המספר העליון גדול מהמספר השפל ואז תחלקנו עליו לידע כמה חלקים מחלקי המספר המועט ימצאו בגדול
+
|style="text-align:right;"|כלומ' אחר שהשלמת כל ההכאות תחל לחבר העולה מן הטורים השלישי שכתבת ותכתבהו בטור אחד שפל כגון שיש לך מן העולה בכפל ג' טורים חבר בקו היושר מה שנמצא בהם במדרגה הראשונה וכתבהו ואחר כן חבר מה שנמצא במדרגתם השנית וכתבהו וכן כולם עד סופם
 
|-
 
|-
 
|
 
|
=== Return back as the number of the distance ===
+
 
+
=== If there is ten, write one after it ===
|style="text-align:right;"|וכפי מספר המרחק תשוב אחורנית
+
 
 +
|style="text-align:right;"|ואם יש בו עשרה תכתוב אחד אחריו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כגון שהמספר שבטור השפל במדרגה השלישית תכתוב העולה בחילוק במדרגה באמצע אחורנית מהאחרון שבטור העליון עד שאם היה האחרון השפל כנגד האחרון העליון נכתוב העולה בחילוק כנגד הראשון העליון
+
|style="text-align:right;"|כלומ' אם מן שתחבר מאותה מדרגה יעלו עשרה בכוון יכתוב ספרא וישמור אחד וא' יחברהו עם מה שיבא אחריו ואם יעלה החבור כלל ופרט כתוב היושר על הכלל בחבור שיש לך וכתוב אחריו במקום הכלל אחד
 
|-
 
|-
 
|
 
|
=== If a number that cannot be divided remains from the last digit ===
+
|style="text-align:right;"|&#x202B;<ref>41v</ref>ואם לא ימצא באיזה מן הטורים רק גלגל כתבהו ואחר שתשלים טור החבור ותרצה לבחון אמתת מספרך ספור מנין מדרגותיו וכאיזה יהיה מעלות השני טורים בלי מדרגת אחד כי הכלל יעשהו מדרגה אחרת
 
 
|style="text-align:right;"|ואם ישאר במספר אחרון חשבון שלא נתחלק
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כלומ' אחר שחלקת המספר העליון על השפל ונתת לו חלקו והנה נשאר עדין חשבון שלא יקבל חלוק לקטנותו באחדים כגון שלקח השפל חלק או חלקים במספר מהאות העליון ונשאר קצת מהאות והוא שלא יוכל להתחלק
+
|style="text-align:right;"|עוד ילמדך מאזנים להבחין מספרך שתמנה סכום האותיות שבטור העליון ואם הוא פחות מט' ישמרהו ואם הוא יתר מט' שמור היתר וכן תעשה ממנין אותיות הטור השפל והנשאר מט' כפלהו עם הנשאר מן הטור הראשון ואם לא ישאר על ט' באחד משני טורים אין צריך לבדוק האחד כי מה שנכפל על ט' יצא ט'ט' וככה יהיה הפחות מט' או היתר מט' ממנין טור החבור ואם לאו תדע כי טעית בחשבונך
 
|-
 
|-
 
|
 
|
=== Has not yet reached the ranks of the units ===
+
|style="text-align:right;"|נשלם השער הראשון
 
 
|style="text-align:right;"|ולא הגיע למעלת האחדים
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל שלא ירד עדין כל כך שיחבר כמותו מהמחולק עליו אבל גבוה במדרגה ממנו שאם כן לא נחלקהו עוד כי כבר יצא לחוץ
+
 
 +
== Chapter Two ==
 +
 
 +
|style="text-align:right;"|<big>השער השני</big>
 
|-
 
|-
 
|
 
|
=== Return the remaining number back to the preceding rank, which is lower than it ===
+
=== One alone does not assume any change ===
  
|style="text-align:right;"|השב אחורנית מהמספר הנשאר אצל המדרגה הראשונה המדרגה שהיא פחותה ממנה
+
|style="text-align:right;"|האחד לבדו לא יקבל שנוי
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|והעולה בחילוק תכתוב אותו אחורנית רחוק מהמדרגה שחלקת עתה ממנה כמרחק השפל מדרגתו הראשונה וכתבהו לפני מה שיעלה בחילוק בראשונה
+
|style="text-align:right;"|כל שנוי בא מצד ההרכבה וההפך והאחד לפי [שהוא]&#x202B;<ref>marg.</ref> פשוט אין דבר שישנהו
 
|-
 
|-
 
|
 
|
 +
=== No increase ===
  
=== Write the remainder above the top row according to its rank ===
+
|style="text-align:right;"|ולא רבוי
 
 
|style="text-align:right;"|ואותו הנשאר תכתבהו למעלה מן הטור העליון כפי מעלתו
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כלומ' שאם הוא עשרות או מאות כתבהו למעלה במקום מדרגתו
+
|style="text-align:right;"|כי כפל אחד על אחד אחד
 
|-
 
|-
 
|
 
|
=== In the fifth chapter ===
+
=== And no division ===
  
|style="text-align:right;"|ובשער החמישי
+
|style="text-align:right;"|ולא חלוק
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|יפרש כיצד נחלק אותו הנשאר
+
|style="text-align:right;"|כי מצד שהוא אחד לא יתחלק
 
|-
 
|-
 
|
 
|
=== We give it 1 ===
+
=== One is eternal ===
  
|style="text-align:right;"|ונתן לו א&#x202B;'
+
|style="text-align:right;"|והאחד קדמון לבדו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כלו' נקח מן הט' שביעית אחת
+
|style="text-align:right;"|כי הוא קודם אל המספר קדימה טבעית
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נשיבם אחורנית על &#x202B;<ref>42v</ref>הגלגל שלפני ט' נשארו ששה נשיבהו אחורנית על הגלגל השני
+
=== They did this ===
|-
 
|
 
=== Calculate from this position ===
 
  
|style="text-align:right;"|ותחשוב מאותו המקום
+
|style="text-align:right;"|ועשו זה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כלומ' משם התחיל לחלוק על השפל
+
|style="text-align:right;"|ר"ל למה חלקו הגלגל לי"ב מזלות בעבור כי שנת השמש שהיא זמן סבובה מנקודה ידועה מגלגל המזלות עד שובה אליה ושנותה לסוב מהנקודה ההיא באותו הזמן סבבה הלבנה גלגלה ודבקה עמו י"ב פעם כי י"ב פעם חדושי הלבנה והמולדה שלמים יש בשנת החמה
 
|-
 
|-
 
|
 
|
=== According to the distance of the divisor ===
+
=== They divided each sign to thirty degrees, because this number has more whole units than 12; for it has one-half, one-third etc. ===
  
|style="text-align:right;"|וכפי מרחק המספר המחולק עליו
+
|style="text-align:right;"|וחלקו המזל לשלשים מעלות כי זה המספר יש לו אחדים שלמים יותר מי"ב כי יש לו חצי &#x202B;<ref>42r</ref>חצי ושלישית וכו&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כלו' כפי מרחק המספר האחרון שבטור השפל מהראשון תשיב זה העולה אחורנית מהמספר שחלקת ממנו
+
|style="text-align:right;"|זה מוסיף על י"ב אחד
 
|-
 
|-
 
|
 
|
=== If there is a zero in one of the positions ===
+
|style="text-align:right;"|וש"ס מוסיף עוד שמינית שהוא מ"ה ותשיעית שהוא מ&#x202B;'
 
 
|style="text-align:right;"|ואם היה גלגל באחד המקומות
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל שהוא מפסיק בין מספרים חלוקים מגלגל אי איפשר ליקח כלום ולא לתת לו כלום
+
=== Each according to its rank ===
 +
 
 +
|style="text-align:right;"|כל אחד כפי מעלתו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכשיגיע המספר הגדול המחולק לתכלית החלוקה כגון שיחסר מהמספר התחתון שנחלק עליו
+
|style="text-align:right;"|ר"ל כפי מדרגתו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|או יאמר עליו שכבר יצא לחוץ
+
=== The number by which you divide should be less than the dividend ===
 +
 
 +
|style="text-align:right;"|וראוי להיות המספר שתחלק עליו פחות מהמספר המחולק
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כל זמן שיהיה העליון פחות מהשפל נשיב לו כל אותו העליון אחורנית ונשיבם עשרות
+
|style="text-align:right;"|כי כשתרצה לחלק מספר אחד על אחר ראוי להיות המספר העליון גדול מהמספר השפל ואז תחלקנו עליו לידע כמה חלקים מחלקי המספר המועט ימצאו בגדול
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ומשם נמנה החלק
+
=== Return back as the number of the distance ===
 +
 +
|style="text-align:right;"|וכפי מספר המרחק תשוב אחורנית
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כלל הדבר כל מה שנוכל לתת מהאחרון העליון על האחרון השפל נתן והוא שיהיה אפשר להגיע במספר חלקים לשני שהוא שני אחורנית מן השני ומן השלישי לשלישי
+
|style="text-align:right;"|כגון שהמספר שבטור השפל במדרגה השלישית תכתוב העולה בחילוק במדרגה באמצע אחורנית מהאחרון שבטור העליון עד שאם היה האחרון השפל כנגד האחרון העליון נכתוב העולה בחילוק כנגד הראשון העליון
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם לא נחלק בפעם ראשון נשוב לחלק מן הראשון לאחרון אם לא נשאר באחרון כלום או אם נשאר פחות מהשפל ואז נשיבהו אחורנית
+
=== If a number that cannot be divided remains from the last digit ===
 +
 
 +
|style="text-align:right;"|ואם ישאר במספר אחרון חשבון שלא נתחלק
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ונתן לאחרון שבטור השפל ומן השלישי לאחרון לשני מן השפל ומן הרביעי לשלישי עד שנתחיל לחלק מהעליון שהוא כנגד האחרון ונחלק כלם על כלם כנגד וכזאת החלוקה נעשה הכל כי המחולק נשאר פחות ואז נכתוב מה שעלה בחלוק באחרונה במדרגת האחדים ושוב אי איפשר לדחות כי כבר יצא לחוץ
+
|style="text-align:right;"|כלומ' אחר שחלקת המספר העליון על השפל ונתת לו חלקו והנה נשאר עדין חשבון שלא יקבל חלוק לקטנותו באחדים כגון שלקח השפל חלק או חלקים במספר מהאות העליון ונשאר קצת מהאות והוא שלא יוכל להתחלק
 
|-
 
|-
 
|
 
|
=== Give the last in the bottom row of the top row ===
+
=== Has not yet reached the rank of the units ===
  
|style="text-align:right;"|תן לאחרון שבטור השפל מהטור העליון
+
|style="text-align:right;"|ולא הגיע למעלת האחדים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כלו' שהוא שפל מהטור העליון
+
|style="text-align:right;"|ר"ל שלא ירד עדין כל כך שיחבר כמותו מהמחולק עליו אבל גבוה במדרגה ממנו שאם כן לא נחלקהו עוד כי כבר יצא לחוץ
 
|-
 
|-
 
|
 
|
=== Give the preceding in the bottom row ===
 
  
|style="text-align:right;"|ותתן לראשון מן הטור השפל
+
=== Return the remaining number back to the preceding rank, which is lower than it ===
 +
 
 +
|style="text-align:right;"|השב אחורנית מהמספר הנשאר אצל המדרגה הראשונה המדרגה שהיא פחותה ממנה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כלו' במספר החלקים שנתת לאחרון שהוא &#x202B;<ref>43r</ref>שהוא אחרון מהמספר מטור השפל כזה תן לראשון מן האחרון שבטור השפל מן הראשון לאחרון שבטור העליון
+
|style="text-align:right;"|והעולה בחילוק תכתוב אותו אחורנית רחוק מהמדרגה שחלקת עתה ממנה כמרחק השפל מדרגתו הראשונה וכתבהו לפני מה שיעלה בחילוק בראשונה
 
|-
 
|-
 
|
 
|
=== If you cannot do this ===
 
  
|style="text-align:right;"|ואם לא תוכל לעשות ככה
+
=== Write the remainder above the top row according to its rank ===
 +
 
 +
|style="text-align:right;"|ואותו הנשאר תכתבהו למעלה מן הטור העליון כפי מעלתו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כלו' לא תוכל לתת לו כל החלקים שנתת לו כי יגרע מן האחדים מנינם
+
|style="text-align:right;"|כלומ' שאם הוא עשרות או מאות כתבהו למעלה במקום מדרגתו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|שוב וגרע מהמספרים שחשבת לתת לו בתחלה
+
=== In the fifth chapter ===
|-
 
|
 
=== When you have to take any digit from the digit that precedes the last ===
 
  
|style="text-align:right;"|וכשאתה צריך לקחת שום מספר מהטור הראשון לאחרון
+
|style="text-align:right;"|ובשער החמישי
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כגון שלא יספיק לך המספר ההוא בהיותו במקום האחרון השיבהו לאחור במקום שלפני האחרון וחשוב כל אחד עשרה ולא תקח ממנו רק כפי מה שתגזרהו החלוקה
+
|style="text-align:right;"|יפרש כיצד נחלק אותו הנשאר
 
|-
 
|-
 
|
 
|
 +
=== We give it 1 ===
  
=== Return back from the higher rank ===
+
|style="text-align:right;"|ונתן לו א&#x202B;'
 
 
|style="text-align:right;"|השב מן הגבוה ממנו
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כלומ' שלא תחלק כל המספר הגבוה על השפל רק תשאיר ממנו קצת ותשפיל מן הנשאר שם והניחהו במעלות הגלגל כפי שתצטרך וחלק ממנו לאשר כנגד מדרגתו
+
|style="text-align:right;"|כלו' נקח מן הט' שביעית אחת
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי כפי מדרגת האחרון העליון לאחרון השפל יהיו מדרגות הראשונים העליונים לראשונים התחתונים
+
|style="text-align:right;"|נשיבם אחורנית על &#x202B;<ref>42v</ref>הגלגל שלפני ט' נשארו ששה נשיבהו אחורנית על הגלגל השני
 
|-
 
|-
 
|
 
|
=== Return back the higher that corresponds to the digit ===
+
=== Calculate from this position ===
  
|style="text-align:right;"|השב אחורנית הגבוה שהוא כנגד החשבון
+
|style="text-align:right;"|ותחשוב מאותו המקום
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כגון שיש בטור העליון סיפרא לפני האחרון הנה נשיב הגבוה האחרון אחורנית אל גלגל אחרון אשר לפניו ותקח ממנו מה שתצטרך או כלו
+
|style="text-align:right;"|כלומ' משם התחיל לחלוק על השפל
 
|-
 
|-
 
|
 
|
=== From the remainder there ===
+
=== According to the distance of the divisor ===
  
|style="text-align:right;"|ומהנשאר שם
+
|style="text-align:right;"|וכפי מרחק המספר המחולק עליו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל בגלגל ההוא השיב כפי <s>רצונך</s> צרכך אחורנית לגלגל הראשון ותחלוק ממנו מה שצריך אל השפל הראוי לו כפי מדרגתו
+
|style="text-align:right;"|כלו' כפי מרחק המספר האחרון שבטור השפל מהראשון תשיב זה העולה אחורנית מהמספר שחלקת ממנו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ולעולם לא נכתוב אלו מה שיעלה נחלוק בתחלה ונתן לו כפי מספר החלוקות שנשוב לעשות ובכל חלוק נכוין שיגיע לכל אח' אחד חלקו על דרך כפל שלקח תחלה האחרון מהאחרון
+
=== If there is a zero in one of the positions ===
 +
 
 +
|style="text-align:right;"|ואם היה גלגל באחד המקומות
 
|-
 
|-
 
|
 
|
=== Two are left on the two ===
+
|style="text-align:right;"|ר"ל שהוא מפסיק בין מספרים חלוקים מגלגל אי איפשר ליקח כלום ולא לתת לו כלום
 
 
|style="text-align:right;"|נשארו שנים על השנים
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל על מקום הב' שהיה שם תחלה
+
|style="text-align:right;"|וכשיגיע המספר הגדול המחולק לתכלית החלוקה כגון שיחסר מהמספר התחתון שנחלק עליו
 
|-
 
|-
 
|
 
|
=== We return on the 8 back ===
+
|style="text-align:right;"|או יאמר עליו שכבר יצא לחוץ
 
 
|style="text-align:right;"|נשיב של הח' אחורנית
 
 
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כלומ' הא' שהוא עתה על מקום הח' שהיה תחלה נשיבהו אחורנית על מקום הב' שיש עתה עליו א' והיו &#x202B;<ref>43v</ref>י"א
+
|style="text-align:right;"|כל זמן שיהיה העליון פחות מהשפל נשיב לו כל אותו העליון אחורנית ונשיבם עשרות
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נחלק אותם על ג' שהוא בטור השפל כנגד מדרגתו ומעתה יקח כל אחד ממדרגתו ביושר
+
|style="text-align:right;"|ומשם נמנה החלק
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי אינו יכול לקחת הג' הד' הראשונים מהי' מבלי השבת אחד אחורנית וזהו אמרו בתשובה כלומ' בראשית שתקח אחד מהי' ונשיבהו אחורנית לפי שאינו מעלתו עכשו כמו שביארנו
+
|style="text-align:right;"|כלל הדבר כל מה שנוכל לתת מהאחרון העליון על האחרון השפל נתן והוא שיהיה אפשר להגיע במספר חלקים לשני שהוא שני אחורנית מן השני ומן השלישי לשלישי
 
|-
 
|-
 
|
 
|
=== Because it was first third to it ===
+
|style="text-align:right;"|ואם לא נחלק בפעם ראשון נשוב לחלק מן הראשון לאחרון אם לא נשאר באחרון כלום או אם נשאר פחות מהשפל ואז נשיבהו אחורנית
 
 
|style="text-align:right;"|כי בראשונה היה שלישי לו
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כלו' מקום הא' היה נחשב מחלוק ראשון שלישי והיה נחלק על ג' הראשון באלכסון שהוא שלישי
+
|style="text-align:right;"|ונתן לאחרון שבטור השפל ומן השלישי לאחרון לשני מן השפל ומן הרביעי לשלישי עד שנתחיל לחלק מהעליון שהוא כנגד האחרון ונחלק כלם על כלם כנגד וכזאת החלוקה נעשה הכל כי המחולק נשאר פחות ואז נכתוב מה שעלה בחלוק באחרונה במדרגת האחדים ושוב אי איפשר לדחות כי כבר יצא לחוץ
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכאשר תשיבהו אחורנית הנה עם הג' י"ג וט"ו ד' פעמים ל"ו על כן לא יכולנו לתת ל"כ מן הט' ד' על כן לא נתן לו רק ג&#x202B;'
+
=== Give the last in the bottom row of the top row ===
|-
 
|
 
=== Two, which is one ===
 
  
|style="text-align:right;"|שנים שהם אחד
+
|style="text-align:right;"|תן לאחרון שבטור השפל מהטור העליון
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כלו' נקח מאותם הה' ב' שהוא חלק אחד לב' השפלים
+
|style="text-align:right;"|כלו' שהוא שפל מהטור העליון
 
|-
 
|-
 
|
 
|
=== We take one from the 3 that is above the three ===
+
=== Give the preceding in the bottom row ===
  
|style="text-align:right;"|נקח מן השלשה שעל השלשה אחד
+
|style="text-align:right;"|ותתן לראשון מן הטור השפל
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כלומ' שעל מקום הג' בתחלה וישארו שנים כנגד אותו מקום הג' הקודם ויש לנו לחלק על ט' ולא יספיק
+
|style="text-align:right;"|כלו' במספר החלקים שנתת לאחרון שהוא &#x202B;<ref>43r</ref>שהוא אחרון מהמספר מטור השפל כזה תן לראשון מן האחרון שבטור השפל מן הראשון לאחרון שבטור העליון
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|אך נתן לו אחד ונכתבהו כנגד ט' נתן לב' שהוא רביעי ח' פעמים ב' שהוא י"ו נשארו ח' על הד&#x202B;'
+
=== If you cannot do this ===
 +
 
 +
|style="text-align:right;"|ואם לא תוכל לעשות ככה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|אם נאמר נשיב מהם שבעה
+
|style="text-align:right;"|כלו' לא תוכל לתת לו כל החלקים שנתת לו כי יגרע מן האחדים מנינם
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|סדר הדברים הנה באמת נאמר שנשיב מהח' שנשארו על מקום הד' ז' אצל הו' שהנחנו על הגלגל שלא נוכל להשיב מהם אחורנית אל הד' שעל מקום הט' שלשה <s>לבד</s> לבד מן הטעם שמבאר
+
|style="text-align:right;"|שוב וגרע מהמספרים שחשבת לתת לו בתחלה
 
|-
 
|-
 
|
 
|
=== Eight remains on the 4 that is on the 9 ===
+
=== When you have to take any digit from the digit that precedes the last ===
  
|style="text-align:right;"|וישארו שמנה על הד' שהם על הט&#x202B;'
+
|style="text-align:right;"|וכשאתה צריך לקחת שום מספר מהטור הראשון לאחרון
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כלומ' ישארו שמנה על מקום הט' שהנחנו עליו אחר כן בחלוקתנו ארבעה
+
|style="text-align:right;"|כגון שלא יספיק לך המספר ההוא בהיותו במקום האחרון השיבהו לאחור במקום שלפני האחרון וחשוב כל אחד עשרה ולא תקח ממנו רק כפי מה שתגזרהו החלוקה
 
|-
 
|-
 
|
 
|
  
=== It is taken as tens for us but that is still not enough ===
+
=== Return back from the higher rank ===
  
|style="text-align:right;"|יצא לנו בעשרות ועוד לא יספיק
+
|style="text-align:right;"|השב מן הגבוה ממנו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כלומ' עדין לו יספיק
+
|style="text-align:right;"|כלומ' שלא תחלק כל המספר הגבוה על השפל רק תשאיר ממנו קצת ותשפיל מן הנשאר שם והניחהו במעלות הגלגל כפי שתצטרך וחלק ממנו לאשר כנגד מדרגתו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כלומ' עדין לו יספיק לפי שהוא גלגל בגלגל על כן נצטרך עוד שנקח ג' מהם ונשיבם אחורנית
+
|style="text-align:right;"|כי כפי מדרגת האחרון העליון לאחרון השפל יהיו מדרגות הראשונים העליונים לראשונים התחתונים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|והשלשה הם שלשים על הד' והם ל"ד
+
=== Return back the higher that corresponds to the digit ===
 +
 
 +
|style="text-align:right;"|השב אחורנית הגבוה שהוא כנגד החשבון
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נשארו שבעה במקום ד&#x202B;'
+
|style="text-align:right;"|כגון שיש בטור העליון סיפרא לפני האחרון הנה נשיב הגבוה האחרון אחורנית אל גלגל אחרון אשר לפניו ותקח ממנו מה שתצטרך או כלו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי יש לנו לקחת ממנו ג' פעמים ט' &#x202B;<ref>44r</ref>והם כ"ז ואז ישארו י"ו על הד'
+
=== From the remainder there ===
 +
 
 +
|style="text-align:right;"|ומהנשאר שם
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ועתה נשלם חלוק ראשון [.]גלגל שלפני הד' וב' שבטור העליון
+
|style="text-align:right;"|ר"ל בגלגל ההוא השיב כפי <s>רצונך</s> צרכך אחורנית לגלגל הראשון ותחלוק ממנו מה שצריך אל השפל הראוי לו כפי מדרגתו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|לפי שהניח בד' הזכיר הנשאר לפניו ואחר כן יזכיר הנשאר לאחריו
+
|style="text-align:right;"|ולעולם לא נכתוב אלו מה שיעלה נחלוק בתחלה ונתן לו כפי מספר החלוקות שנשוב לעשות ובכל חלוק נכוין שיגיע לכל אח' אחד חלקו על דרך כפל שלקח תחלה האחרון מהאחרון
 
|-
 
|-
 
|
 
|
=== We give it three ===
+
=== Two are left on the two ===
  
|style="text-align:right;"|נתן לו שלשה
+
|style="text-align:right;"|נשארו שנים על השנים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כלומ' נתן לב' ג' חלקים כמהו שהם ו' מז' שעל הח' וישאר שם אחד והג' נכתבם תחת הגלגל הראשון
+
|style="text-align:right;"|ר"ל על מקום הב' שהיה שם תחלה
 
|-
 
|-
 
|
 
|
=== And it is impossible to return the digit back on the two, because the two is not in its rank ===
+
=== We return on the 8 back ===
 +
 
 +
|style="text-align:right;"|נשיב של הח' אחורנית
  
|style="text-align:right;"|וגם לא נוכל להשיב אות אחורנית על השנים כי השנים אינם מעלתו
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|זה לא היה צריך להזכיר ועוד כי אין על הגלגל כלום
+
|style="text-align:right;"|כלומ' הא' שהוא עתה על מקום הח' שהיה תחלה נשיבהו אחורנית על מקום הב' שיש עתה עליו א' והיו &#x202B;<ref>43v</ref>י"א
 +
|-
 +
|
 +
|style="text-align:right;"|נחלק אותם על ג' שהוא בטור השפל כנגד מדרגתו ומעתה יקח כל אחד ממדרגתו ביושר
 +
|-
 +
|
 +
|style="text-align:right;"|כי אינו יכול לקחת הג' הד' הראשונים מהי' מבלי השבת אחד אחורנית וזהו אמרו בתשובה כלומ' בראשית שתקח אחד מהי' ונשיבהו אחורנית לפי שאינו מעלתו עכשו כמו שביארנו
 
|-
 
|-
 
|
 
|
=== 3 remains above the zero ===
+
=== Because it was first third to it ===
  
|style="text-align:right;"|נשארו ג' על הגלגל
+
|style="text-align:right;"|כי בראשונה היה שלישי לו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל אחר שנקח מן השלשים כ"ז שהוא חלקו
+
|style="text-align:right;"|כלו' מקום הא' היה נחשב מחלוק ראשון שלישי והיה נחלק על ג' הראשון באלכסון שהוא שלישי
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|מאזני החלוק הוא שתמנה המספר השפל שעליו נחלק ונקח הנשאר בו על ט' ט' ונמנה כמה ישאר מט' ט' ושמרהו ואם נשאר למעלה דבר לחלק והוא הכתוב למעלה נראה מה שבו על ט' ונחברהו עם השמור וכזה יעדף על ט' במספר הגדול המחולק אם ימנה כהוגן
+
|style="text-align:right;"|וכאשר תשיבהו אחורנית הנה עם הג' י"ג וט"ו ד' פעמים ל"ו על כן לא יכולנו לתת ל"כ מן הט' ד' על כן לא נתן לו רק ג&#x202B;'
 
|-
 
|-
 
|
 
|
=== If you multiply the quotient ===
+
=== Two, which is one ===
  
|style="text-align:right;"|ואם תכפול מה שעלה בחלוק וכו&#x202B;'
+
|style="text-align:right;"|שנים שהם אחד
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|זהו בוחן אחד והוא פשוט
+
|style="text-align:right;"|כלו' נקח מאותם הה' ב' שהוא חלק אחד לב' השפלים
 
|-
 
|-
 
|
 
|
 +
=== We take one from the 3 that is above the three ===
  
== Chapter Three ==
+
|style="text-align:right;"|נקח מן השלשה שעל השלשה אחד
 
 
|style="text-align:right;"|<big>השער השלישי</big>
 
 
|-
 
|-
 
|
 
|
=== Every number is in accordance with these two ways ===
+
|style="text-align:right;"|כלומ' שעל מקום הג' בתחלה וישארו שנים כנגד אותו מקום הג' הקודם ויש לנו לחלק על ט' ולא יספיק
 
 
|style="text-align:right;"|ועל אלו שני הדרכים כל החשבון
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל דרך הזוגות שנחשב בו ב' חשבונות כפל כל החשבון על חציו וכפלו על חצי אחד
+
|style="text-align:right;"|אך נתן לו אחד ונכתבהו כנגד ט' נתן לב' שהוא רביעי ח' פעמים ב' שהוא י"ו נשארו ח' על הד&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ודרך הנפרדים שנכפול על חציו לבד
+
|style="text-align:right;"|אם נאמר נשיב מהם שבעה
 
|-
 
|-
 
|
 
|
=== Another way ===
+
|style="text-align:right;"|סדר הדברים הנה באמת נאמר שנשיב מהח' שנשארו על מקום הד' ז' אצל הו' שהנחנו על הגלגל שלא נוכל להשיב מהם אחורנית אל הד' שעל מקום הט' שלשה <s>לבד</s> לבד מן הטעם שמבאר
 
 
|style="text-align:right;"|דרך אחרת
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|שנקח סוף החשבון שנרצה לידע המחובר מהמספרים שעברו לפניו ונכפלהו על עצמו ואחר כן &#x202B;<ref>44v</ref>נוסיף על המרובע הזה שרשו שהוא סוף החשבון והנה חצי זה הוא המבוקש
+
=== Eight remains on the 4 that is on the 9 ===
 +
 
 +
|style="text-align:right;"|וישארו שמנה על הד' שהם על הט&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|דרך אחרת שנכפול מרובע חצי המספר ונוסיף עליו שרש זה המרובע שהוא חצי החשבון והוא המבוקש המבוקש
+
|style="text-align:right;"|כלומ' ישארו שמנה על מקום הט' שהנחנו עליו אחר כן בחלוקתנו ארבעה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|הרוצה לידע מספרים מחוברים בדלוג אחד עד מספר ידוע כמו שירצה
+
 
 +
=== It is taken as tens for us but that is still not enough ===
 +
 
 +
|style="text-align:right;"|יצא לנו בעשרות ועוד לא יספיק
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|לידע הנפרדים שהם עד ט' יוסיף על החשבון אחד והיו עשרה נכפול עשרה על רביע' רביעיתם שהוא ב' וחצי <s>והוכה</s> והיו כ"ה וככה המחובר
+
|style="text-align:right;"|כלומ' עדין לו יספיק
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ונחבר אליו שלישית הסכום שהוא כ"ו כי כפל אחד ע"ח הוא ע"ח וכפל אחד על ע"ח הוא שליש ע"ח שהוא כ"ו
+
|style="text-align:right;"|כלומ' עדין לו יספיק לפי שהוא גלגל בגלגל על כן נצטרך עוד שנקח ג' מהם ונשיבם אחורנית
 +
|-
 +
|
 +
|style="text-align:right;"|והשלשה הם שלשים על הד' והם ל"ד
 
|-
 
|-
 
|
 
|
=== Add the scale of the top row ===
+
|style="text-align:right;"|נשארו שבעה במקום ד&#x202B;'
 
 
|style="text-align:right;"|חבר מאזני הטור העליון
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל הנשאר בו מתשעיות
+
|style="text-align:right;"|כי יש לנו לקחת ממנו ג' פעמים ט' &#x202B;<ref>44r</ref>והם כ"ז ואז ישארו י"ו על הד'
 
|-
 
|-
 
|
 
|
=== In the tables of the planets there is no [more fractions] ===
+
|style="text-align:right;"|ועתה נשלם חלוק ראשון [.]גלגל שלפני הד' וב' שבטור העליון
 
 
|style="text-align:right;"|ואין בלוחות המשרתים
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|לא ידקדקו יותר מזה
+
|style="text-align:right;"|לפי שהניח בד' הזכיר הנשאר לפניו ואחר כן יזכיר הנשאר לאחריו
 
|-
 
|-
 
|
 
|
=== One according to the solar years ===
+
=== We give it three ===
  
|style="text-align:right;"|האחד על שנות השמש
+
|style="text-align:right;"|נתן לו שלשה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כגון האמות המונים לשמש ועושים מחזורים מעשרים עשרים שנה שיזכרו מהלך כל משרת בזה המספר מן השנים
+
|style="text-align:right;"|כלומ' נתן לב' ג' חלקים כמהו שהם ו' מז' שעל הח' וישאר שם אחד והג' נכתבם תחת הגלגל הראשון
 
|-
 
|-
 
|
 
|
=== The same is done with the whole hours that have passed after the middle of the day ===
+
=== And it is impossible to return the digit back on the two, because the two is not in its rank ===
  
|style="text-align:right;"|וככה תעשה בשעות השלמות שעברו אחר חצי היום
+
|style="text-align:right;"|וגם לא נוכל להשיב אות אחורנית על השנים כי השנים אינם מעלתו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי הם ימנו תחלת היום מחצי היום
+
|style="text-align:right;"|זה לא היה צריך להזכיר ועוד כי אין על הגלגל כלום
 
|-
 
|-
 
|
 
|
=== Write them alone ===
+
=== 3 remains above the zero ===
  
|style="text-align:right;"|כתבם לבדד
+
|style="text-align:right;"|נשארו ג' על הגלגל
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי הוא רוצה לדעת מקום המשרת בזה השעה
+
|style="text-align:right;"|ר"ל אחר שנקח מן השלשים כ"ז שהוא חלקו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|על כן יכתוב העולה מן המחובר בטור מיוחד השם . כתוב השניים המחוברים מטורי השניים לפניהם הראשונים ולפניהם המעלות וכן <s>כולם</s> כולם וישמור כל העולה למה שרצהו
+
|style="text-align:right;"|מאזני החלוק הוא שתמנה המספר השפל שעליו נחלק ונקח הנשאר בו על ט' ט' ונמנה כמה ישאר מט' ט' ושמרהו ואם נשאר למעלה דבר לחלק והוא הכתוב למעלה נראה מה שבו על ט' ונחברהו עם השמור וכזה יעדף על ט' במספר הגדול המחולק אם ימנה כהוגן
 
|-
 
|-
 
|
 
|
 +
=== If you multiply the quotient ===
  
== Chapter Four ==
+
|style="text-align:right;"|ואם תכפול מה שעלה בחלוק וכו&#x202B;'
 
 
|style="text-align:right;"|<big>השער הרביעי</big>
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כשנרצה לגרוע מספרים ממספרים נכתוב המספרים שנרצה לגרוע מהם עליונים ותחתיהם טור הנגרעים וצריך שיהיה אחרון שבטור העליון כללו גדול משכנגדו השפל ולא נפקד בגודל הפרטים השפלים כי הכל תלוי בכלל
+
|style="text-align:right;"|זהו בוחן אחד והוא פשוט
 
|-
 
|-
 
|
 
|
=== If you find in one of the ranks ===
+
 
+
== Chapter Three ==
|style="text-align:right;"|והנה אם מצות באחדות המעלות
+
 
 +
|style="text-align:right;"|<big>השער השלישי</big>
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|&#x202B;<ref>45r</ref>פי' כי כשנמצא במדרגות האחדות שהן לפני האחרון שהשפל גדול ממספר הטור העליון שכנגדו נקח אחד מהעליון ונחשבהו ונחל לגרוע מהאחרונים הגבוהים במדרגה זהו דרך אבן עזרא ואין זה סדר נכון שאחר שיכתוב הנשאר מן הראשון יצטרך לפעמים לגרוע ממנו ולהוסיף לראשון ויצטרך לפי זה שבטרם יכתוב האחרון אם יעדיף השפל שלפניו ויתן לו אחד ויגיע אחד מהמספר האחרון
+
=== Every number is in accordance with these two ways ===
 +
 
 +
|style="text-align:right;"|ועל אלו שני הדרכים כל החשבון
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|אבל הסדר היותר נאות שנחל נמנות מן האחדים ומה שיתחבר מהם כלל יחברהו עם הכלל שלאחריו וכן כולם כדרך שנעשה בשניים ובראשונים ובמעלות ובמזלות
+
|style="text-align:right;"|ר"ל דרך הזוגות שנחשב בו ב' חשבונות כפל כל החשבון על חציו וכפלו על חצי אחד
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|דמיון חסרון אחד מב' וכו&#x202B;'
+
|style="text-align:right;"|ודרך הנפרדים שנכפול על חציו לבד
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כגון שתרצה לגרוע י"ז מכ' ונכתוב שני הטורים כן
+
=== Another way ===
 +
 
 +
|style="text-align:right;"|דרך אחרת
 +
|-
 +
|
 +
|style="text-align:right;"|שנקח סוף החשבון שנרצה לידע המחובר מהמספרים שעברו לפניו ונכפלהו על עצמו ואחר כן &#x202B;<ref>44v</ref>נוסיף על המרובע הזה שרשו שהוא סוף החשבון והנה חצי זה הוא המבוקש
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נחסר א' מב' ונשאר א' והנה אין על הז' כלום נשיב ז' א' הא' כנגד הז' והוא י' נחסר ממנו ז' ונשאר ג&#x202B;'
+
|style="text-align:right;"|דרך אחרת שנכפול מרובע חצי המספר ונוסיף עליו שרש זה המרובע שהוא חצי החשבון והוא המבוקש המבוקש
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|הנה מאזני הטור העליון ב' ומאזני הטור השני ח' ולא נוכל לחסר ח' מב' על כן נוסיף ט' עם הב' יהיו י"א נגרע ממנו ח' ועתה נשאר מאזני שני הטורים ג' וכן מאזני השלישי
+
|style="text-align:right;"|הרוצה לידע מספרים מחוברים בדלוג אחד עד מספר ידוע כמו שירצה
 
|-
 
|-
 
|
 
|
=== He adds six to the scale of the upper seconds ===
+
|style="text-align:right;"|לידע הנפרדים שהם עד ט' יוסיף על החשבון אחד והיו עשרה נכפול עשרה על רביע' רביעיתם שהוא ב' וחצי <s>והוכה</s> והיו כ"ה וככה המחובר
 
 
|style="text-align:right;"|יוסיף על מאזני השנים העליונים ששה
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי כך ישאר מששים על ט' ט&#x202B;'
+
|style="text-align:right;"|ונחבר אליו שלישית הסכום שהוא כ"ו כי כפל אחד ע"ח הוא ע"ח וכפל אחד על ע"ח הוא שליש ע"ח שהוא כ"ו
 
|-
 
|-
 
|
 
|
=== Add three to the scale of the degrees that were written first ===
+
=== Add the scale of the top row ===
  
|style="text-align:right;"|הוסף על מאזני המעלות הכתובים בראשונה שלשה
+
|style="text-align:right;"|חבר מאזני הטור העליון
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי כן ישאר מל' מעלות הנוספות
+
|style="text-align:right;"|ר"ל הנשאר בו מתשעיות
 
|-
 
|-
 
|
 
|
=== Add three to the scale of the signs that were written first ===
+
=== In the tables of the planets there is no [more fractions] ===
  
|style="text-align:right;"|הוסף על מאזני המזלות הכתובים בראשונה שלשה
+
|style="text-align:right;"|ואין בלוחות המשרתים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי כן ישאר מי"ב מזלות
+
|style="text-align:right;"|לא ידקדקו יותר מזה
 
|-
 
|-
 
|
 
|
=== One thing that is necessary when subtracting: the last [digit] at the end of the upper row must always be greater ===
+
=== One according to the solar years ===
+
 
|style="text-align:right;"|דבר שהוא צורך למגרעת לעולם אותו בסוף הטור העליון יהיה גדול
+
|style="text-align:right;"|האחד על שנות השמש
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|זה מדבר על דעת חכמי החשבון כי האחרונים גבוהים במדרגה
+
|style="text-align:right;"|כגון האמות המונים לשמש ועושים מחזורים מעשרים עשרים שנה שיזכרו מהלך כל משרת בזה המספר מן השנים
 
|-
 
|-
 
|
 
|
 +
=== The same is done with the whole hours that have passed after the middle of the day ===
  
== Chapter Five ==
+
|style="text-align:right;"|וככה תעשה בשעות השלמות שעברו אחר חצי היום
 +
|-
 +
|
 +
|style="text-align:right;"|כי הם ימנו תחלת היום מחצי היום
 +
|-
 +
|
 +
=== Write them alone ===
  
|style="text-align:right;"|<big>השער החמישי</big>
+
|style="text-align:right;"|כתבם לבדד
 
|-
 
|-
 
|
 
|
=== One is as a point in a circle ===
+
|style="text-align:right;"|כי הוא רוצה לדעת מקום המשרת בזה השעה
 
 
|style="text-align:right;"|[[ספר_המספר_/_אברהם_אבן_עזרא#one_is_as_a_point_in_a_circle|<span style=color:blue>'''האחד כמו נקודה בתוך עגולה'''</span>]]
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל כי האחד אמצעי בין השלמים והשברים על כן לא יתכן להיות האחד נשבר כי מאשר הוא אמצעי לא יתחלק
+
|style="text-align:right;"|על כן יכתוב העולה מן המחובר בטור מיוחד השם . כתוב השניים המחוברים מטורי השניים לפניהם הראשונים ולפניהם המעלות וכן <s>כולם</s> כולם וישמור כל העולה למה שרצהו
 
|-
 
|-
 
|
 
|
=== The whole is named with one name, as the shape represents the entire body ===
 
  
|style="text-align:right;"|&#x202B;<ref>45r</ref>[[ספר_המספר_/_אברהם_אבן_עזרא#the_whole_has_one_name|<span style=color:blue>'''רק בעבור שיקרא הכלל בשם אחד כמו צורת הגוף ותבניתו שהיא כוללת כל הגוף'''</span>]]
+
== Chapter Four ==
  
 +
|style="text-align:right;"|<big>השער הרביעי</big>
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ונקרא הכל בגוף אחד וא'ע'פ' שהוא מורכב מאברים רבים שכל אבר הוא אחד כן האחד נקחנו כולל ותחתיו שברים רבים שהם אחדים רק בערך אל האחד הכולל יקראו שברים וכל זה במחשבה כי האחד האמתי לא יתחלק
+
|style="text-align:right;"|כשנרצה לגרוע מספרים ממספרים נכתוב המספרים שנרצה לגרוע מהם עליונים ותחתיהם טור הנגרעים וצריך שיהיה אחרון שבטור העליון כללו גדול משכנגדו השפל ולא נפקד בגודל הפרטים השפלים כי הכל תלוי בכלל
 
|-
 
|-
 
|
 
|
=== Therefore they take the half from two ===
+
=== If you find in one of the ranks ===
 
+
|style="text-align:right;"|[[ספר_המספר_/_אברהם_אבן_עזרא#arithmeticians_take_half_from_two|<span style=color:blue>'''על כן יוציאו החצי משנים'''</span>]]
+
|style="text-align:right;"|והנה אם מצות באחדות המעלות
 +
|-
 +
|
 +
|style="text-align:right;"|&#x202B;<ref>45r</ref>פי' כי כשנמצא במדרגות האחדות שהן לפני האחרון שהשפל גדול ממספר הטור העליון שכנגדו נקח אחד מהעליון ונחשבהו ונחל לגרוע מהאחרונים הגבוהים במדרגה זהו דרך אבן עזרא ואין זה סדר נכון שאחר שיכתוב הנשאר מן הראשון יצטרך לפעמים לגרוע ממנו ולהוסיף לראשון ויצטרך לפי זה שבטרם יכתוב האחרון אם יעדיף השפל שלפניו ויתן לו אחד ויגיע אחד מהמספר האחרון
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי החצי הוא אחד משני חלקי הדבר
+
|style="text-align:right;"|אבל הסדר היותר נאות שנחל נמנות מן האחדים ומה שיתחבר מהם כלל יחברהו עם הכלל שלאחריו וכן כולם כדרך שנעשה בשניים ובראשונים ובמעלות ובמזלות
 
|-
 
|-
 
|
 
|
=== The analogous number from which they derive is called the "denominator" ===
+
|style="text-align:right;"|דמיון חסרון אחד מב' וכו&#x202B;'
 
 
|style="text-align:right;"|[[ספר_המספר_/_אברהם_אבן_עזרא#the_analogous_is_called_denominator|<span style=color:blue>'''ואותו שיקחו הדמיון ממנו יקראו המורה'''</span>]]
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כמו השלשה לשליש וארבעה לרביעית
+
|style="text-align:right;"|כגון שתרצה לגרוע י"ז מכ' ונכתוב שני הטורים כן
 
|-
 
|-
 
|
 
|
=== For the product is divided by its square ===
+
|style="text-align:right;"|נחסר א' מב' ונשאר א' והנה אין על הז' כלום נשיב ז' א' הא' כנגד הז' והוא י' נחסר ממנו ז' ונשאר ג&#x202B;'
 
 
|style="text-align:right;"|[[ספר_המספר_/_אברהם_אבן_עזרא#the_product_is_divided_by_its_square|<span style=color:blue>'''כי כל מרובע יחלקו העולה בחשבון'''</span>]]
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כגון שנכפול שני רביעיים על שני רביעית הנה הנכפל ד' והמורה ומרובעו י"ו שהוא אחד שלם ונכפול ב' על ב' והם ד' נחלק ד' על ט' יגיע לכל אחד שליש ותשיעית אחד
+
|style="text-align:right;"|הנה מאזני הטור העליון ב' ומאזני הטור השני ח' ולא נוכל לחסר ח' מב' על כן נוסיף ט' עם הב' יהיו י"א נגרע ממנו ח' ועתה נשאר מאזני שני הטורים ג' וכן מאזני השלישי
 
|-
 
|-
 
|
 
|
 +
=== He adds six to the scale of the upper seconds ===
  
=== The remainder that cannot be divided ===
+
|style="text-align:right;"|יוסיף על מאזני השנים העליונים ששה
 
 
|style="text-align:right;"|[[ספר_המספר_/_אברהם_אבן_עזרא#the_remainder_that_cannot_be_divided|<span style=color:blue>'''והנשאר שלא יתחלק'''</span>]]
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כלומ' אחר שנחלק מרובע המורה על החשבון הנכפל אם ישאר חשבון שלא יוכל להתחלק לחלקים שלמים אלא כשנחלק אחד מהם לחלקים רבים כגון המשל השני שהמשלנו נכנה אותו החלק בשם רביעית או תשיעית כפי מה שיהיה החשבון
+
|style="text-align:right;"|כי כך ישאר מששים על ט' ט&#x202B;'
 
|-
 
|-
 
|
 
|
=== The one, on the one hand, is not a number ===
+
=== Add three to the scale of the degrees that were written first ===
  
|style="text-align:right;"|[[ספר_המספר_/_אברהם_אבן_עזרא#one_is_not_a_number|<span style=color:blue>'''האחד מפאה אחת איננו מספר'''</span>]]
+
|style="text-align:right;"|הוסף על מאזני המעלות הכתובים בראשונה שלשה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל כי אינו מספר כי אם בהתחברו למספרים
+
|style="text-align:right;"|כי כן ישאר מל' מעלות הנוספות
 
|-
 
|-
 
|
 
|
=== Because when you sum all the odd numbers ===
+
=== Add three to the scale of the signs that were written first ===
  
|style="text-align:right;"|[[ספר_המספר_/_אברהם_אבן_עזרא#the_sum_of_odd_numbers|<span style=color:blue>'''כי בחברך כל הנפרדים'''</span>]]
+
|style="text-align:right;"|הוסף על מאזני המזלות הכתובים בראשונה שלשה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי אם א[.] וג' הם ד' והוא מרובע שנים ד' וה' הם ט' והוא מרובע ג' ט' וז' הם י"ו והם מרובע ד' וכן כולם על הסדר וכל זה ככה האחד ושתותיו
+
|style="text-align:right;"|כי כן ישאר מי"ב מזלות
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|
+
=== One thing that is necessary when subtracting: the last [digit] at the end of the upper row must always be greater ===
=== ודברים רבים ===
+
 
+
|style="text-align:right;"|דבר שהוא צורך למגרעת לעולם אותו בסוף הטור העליון יהיה גדול
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ימצאו באחד
+
|style="text-align:right;"|זה מדבר על דעת חכמי החשבון כי האחרונים גבוהים במדרגה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|
 
=== אין צורך להזכירם והנה נשארו במערכה הראשונה כו&#x202B;' ===
 
  
 +
== Chapter Five ==
 +
 +
|style="text-align:right;"|<big>השער החמישי</big>
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|מערכת הראשונה הם ט' האחדים והנה דבר על האחד והנה נשאר לדבר על שמונה
+
=== One is as a point in a circle ===
 +
 
 +
|style="text-align:right;"|[[ספר_המספר_/_אברהם_אבן_עזרא#one_is_as_a_point_in_a_circle|<span style=color:blue>'''האחד כמו נקודה בתוך עגולה'''</span>]]
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|
+
|style="text-align:right;"|ר"ל כי האחד אמצעי בין השלמים והשברים על כן לא יתכן להיות האחד נשבר כי מאשר הוא אמצעי לא יתחלק
 +
|-
 +
|
 +
=== The whole is named with one name, as the shape represents the entire body ===
  
=== והנה חציים ראשונים ===
+
|style="text-align:right;"|&#x202B;<ref>45r</ref>[[ספר_המספר_/_אברהם_אבן_עזרא#the_whole_has_one_name|<span style=color:blue>'''רק בעבור שיקרא הכלל בשם אחד כמו צורת הגוף ותבניתו שהיא כוללת כל הגוף'''</span>]]
  
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ראשון נקרא כל חשבון פשוט שאינו מתחלק בשוה
+
|style="text-align:right;"|ונקרא הכל בגוף אחד וא'ע'פ' שהוא מורכב מאברים רבים שכל אבר הוא אחד כן האחד נקחנו כולל ותחתיו שברים רבים שהם אחדים רק בערך אל האחד הכולל יקראו שברים וכל זה במחשבה כי האחד האמתי לא יתחלק
אלא לאחדים במספרו כגון שנים שנים &#x202B;<ref>46r</ref>שנים לשני אחדים וג' לג' וכן כלם . המספר [...........] למספרים שוים
 
 
|-
 
|-
 
|
 
|
=== When there is a need for two fractions that are not of one kind ===
+
=== Therefore they take the half from two ===
  
|style="text-align:right;"|
+
|style="text-align:right;"|[[ספר_המספר_/_אברהם_אבן_עזרא#arithmeticians_take_half_from_two|<span style=color:blue>'''על כן יוציאו החצי משנים'''</span>]]
[[ספר_המספר_/_אברהם_אבן_עזרא#2_fractions_of_different_kinds|<span style=color:blue>'''וכאשר יצטרכו שברים שאינם ממין אחד וכו&#x202B;''''</span>]]
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כגון שנרצה לכפול שני שלישים על שני רביעיים הנה כפל שנים על שנים ד' והנה נבקש לכל אחד המורה שיצא ממנו שהוא שלשה וארבעה ונכפול המורה האחד על המורה האחר והוא המורה ואליו נחלק כפל החשבון הראשון
+
|style="text-align:right;"|כי החצי הוא אחד משני חלקי הדבר
 
|-
 
|-
 
|
 
|
 +
=== The analogous number from which they derive is called the "denominator" ===
  
=== If there are 3 types ===
+
|style="text-align:right;"|[[ספר_המספר_/_אברהם_אבן_עזרא#the_analogous_is_called_denominator|<span style=color:blue>'''ואותו שיקחו הדמיון ממנו יקראו המורה'''</span>]]
 
 
|style="text-align:right;"|[[ספר_המספר_/_אברהם_אבן_עזרא#3_types_of_fractions|<span style=color:blue>'''ואם היו שלשה מינים'''</span>]]
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כגון שנרצה לכפול ב' שלישיים וב' רביעיים וב' חמישיים זה על זה נכפול שלשה על ארבעה והם י"ב
+
|style="text-align:right;"|כמו השלשה לשליש וארבעה לרביעית
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נכפול י"ב על חמשה והם ס' וזהו המורה
+
=== For the product is divided by its square ===
 +
 
 +
|style="text-align:right;"|[[ספר_המספר_/_אברהם_אבן_עזרא#the_product_is_divided_by_its_square|<span style=color:blue>'''כי כל מרובע יחלקו העולה בחשבון'''</span>]]
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ונכפול החשבון שהוא י"ב ב' על ב' והם ד' נכפול ד' על ב' והם ח'
+
|style="text-align:right;"|כגון שנכפול שני רביעיים על שני רביעית הנה הנכפל ד' והמורה ומרובעו י"ו שהוא אחד שלם ונכפול ב' על ב' והם ד' נחלק ד' על ט' יגיע לכל אחד שליש ותשיעית אחד
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נחלק ח' על ס' . [.] שנרצה לכפול ב' שלישים על ג' רביעיים וד' חמשים נעשה מורה אחד לרביעים ולחמישיים והוא כ'
+
 
 +
=== The remainder that cannot be divided ===
 +
 
 +
|style="text-align:right;"|[[ספר_המספר_/_אברהם_אבן_עזרא#the_remainder_that_cannot_be_divided|<span style=color:blue>'''והנשאר שלא יתחלק'''</span>]]
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נכפול מורה שלישיים על ד' עלה ח&#x202B;'
+
|style="text-align:right;"|כלומ' אחר שנחלק מרובע המורה על החשבון הנכפל אם ישאר חשבון שלא יוכל להתחלק לחלקים שלמים אלא כשנחלק אחד מהם לחלקים רבים כגון המשל השני שהמשלנו נכנה אותו החלק בשם רביעית או תשיעית כפי מה שיהיה החשבון
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נכפול ג' רביעיים על ד' חמישיים והם י"ב
+
=== The one, on the one hand, is not a number ===
 +
 
 +
|style="text-align:right;"|[[ספר_המספר_/_אברהם_אבן_עזרא#one_is_not_a_number|<span style=color:blue>'''האחד מפאה אחת איננו מספר'''</span>]]
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נכפול ב' שלישיים על י"ב והם כ"ד
+
|style="text-align:right;"|ר"ל כי אינו מספר כי אם בהתחברו למספרים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|הנה החשבון כערך כ"ד אל ס&#x202B;'
+
=== Because when you sum all the odd numbers ===
 +
 
 +
|style="text-align:right;"|[[ספר_המספר_/_אברהם_אבן_עזרא#the_sum_of_odd_numbers|<span style=color:blue>'''כי בחברך כל הנפרדים'''</span>]]
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|או אם נרצה אחר שעשינו תחלה מורה מכ&#x202B;'
+
|style="text-align:right;"|כי אם א[.] וג' הם ד' והוא מרובע שנים ד' וה' הם ט' והוא מרובע ג' ט' וז' הם י"ו והם מרובע ד' וכן כולם על הסדר וכל זה ככה האחד ושתותיו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכפלנו ג' על ד' שהוא י"ב
+
|style="text-align:right;"|
 +
=== ודברים רבים ===
 +
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נסיר מהם ב' שלישיות והוא ח&#x202B;'
+
|style="text-align:right;"|ימצאו באחד
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|והכל שוה כי ערך ח' אל כ' כערך כ"ד אל ס' והוא ב' חמישיות אחד
+
|style="text-align:right;"|
 +
=== אין צורך להזכירם והנה נשארו במערכה הראשונה כו&#x202B;' ===
 +
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ודע כי בקשת המורה כדי שנדע אי זה חשבון הוא שימצאו בו חלקים אלו ונחלוק אותו על מרובע המורה כדי שנדע אי זה <s>חשבון הוא שימצאו בו חלקים</s> ערך יש לחשבון מן האחד כשיכפול אדם שני שלישים על ג' רביעים צריך שנבקש לשניהם מורה אחד והוא העולה מכפל שניהם והנה יעשה לו מרובע בדרך שנעשה במורה אחד ויעשה כפי השני במספר
+
|style="text-align:right;"|מערכת הראשונה הם ט' האחדים והנה דבר על האחד והנה נשאר לדבר על שמונה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם ירצה יקח כפל השני מורים מקום מרובע כי הוא מרובע אמצעי ביניהם כי כפל ג' הוא ט' ומרובע ד' י"ו
+
|style="text-align:right;"|
 +
 
 +
=== והנה חציים ראשונים ===
 +
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וזה המורה הוא י"ב
+
|style="text-align:right;"|ראשון נקרא כל חשבון פשוט שאינו מתחלק בשוה
 +
אלא לאחדים במספרו כגון שנים שנים &#x202B;<ref>46r</ref>שנים לשני אחדים וג' לג' וכן כלם . המספר [...........] למספרים שוים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואחר שנדע המורה נראה כמה הוא ג' רביעיותיו ונקח <ref>46ב</ref>מהם ב' שלישיים כי הוא כאמרו קח ב' שלישיים מב' רביעיים או בהפך והכל שוה
+
=== When there is a need for two fractions that are not of one kind ===
 +
 
 +
|style="text-align:right;"|
 +
[[ספר_המספר_/_אברהם_אבן_עזרא#2_fractions_of_different_kinds|<span style=color:blue>'''וכאשר יצטרכו שברים שאינם ממין אחד וכו&#x202B;''''</span>]]
 
|-
 
|-
 
|
 
|
=== The multiplication of fractions is opposite to the multiplication of integers ===
+
|style="text-align:right;"|כגון שנרצה לכפול שני שלישים על שני רביעיים הנה כפל שנים על שנים ד' והנה נבקש לכל אחד המורה שיצא ממנו שהוא שלשה וארבעה ונכפול המורה האחד על המורה האחר והוא המורה ואליו נחלק כפל החשבון הראשון
 
 
|style="text-align:right;"|[[ספר_המספר_/_אברהם_אבן_עזרא#multiplication_of_fractions_is_opposite_to_multiplication_of_integers|<span style=color:blue>'''כפל השברים הפך כפלי השלמים'''</span>]]
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי השלמים הנכפלים אלה על אלה יוסיפו בחשבון כפי מה שיעלה
+
 
מכפל אבל שברים על שברים יהיה העולה שבר אחד מהשברים הנכפלים וכפי התוספת בשלמים נכוין לגרוע בשברים
+
=== If there are 3 types ===
 +
 
 +
|style="text-align:right;"|[[ספר_המספר_/_אברהם_אבן_עזרא#3_types_of_fractions|<span style=color:blue>'''ואם היו שלשה מינים'''</span>]]
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי האחד הנכפל על איזה חשבון לא יוסיף על אותו חשבון כלום כי אחד על שנים שנים ואחד על חצי כלו' פעם פעם אחד חצי הוא חצי אם כן חצי על חצי הוא רביע כאלו תאמר חצי החצי
+
|style="text-align:right;"|כגון שנרצה לכפול ב' שלישיים וב' רביעיים וב' חמישיים זה על זה נכפול שלשה על ארבעה והם י"ב
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכן שלישית על שלישית כאלו תאמר שלישית השלישית שהוא תשיעית
+
|style="text-align:right;"|נכפול י"ב על חמשה והם ס' וזהו המורה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכפל  רביעית על רביעית יהיה חלק אחד מי"ו והוא חצי שמינית שהוא השלם ועל כן אמר והנכפל אחד
+
|style="text-align:right;"|ונכפול החשבון שהוא י"ב ב' על ב' והם ד' נכפול ד' על ב' והם ח'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי לעולם ירד ממדרגה אחת בדרך שכפל ראשונים בראשונים יהיו שניים
+
|style="text-align:right;"|נחלק ח' על ס' . [.] שנרצה לכפול ב' שלישים על ג' רביעיים וד' חמשים נעשה מורה אחד לרביעים ולחמישיים והוא כ'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|
+
|style="text-align:right;"|נכפול מורה שלישיים על ד' עלה ח&#x202B;'
=== ועל זה הדרך תכפול שברי המין האחד על שברי המין בעצמו ===
+
|-
 
+
|
 +
|style="text-align:right;"|נכפול ג' רביעיים על ד' חמישיים והם י"ב
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כמו שהמשלנו משלישיות על שלישיות או מרביעיות על רביעיות
+
|style="text-align:right;"|נכפול ב' שלישיים על י"ב והם כ"ד
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|
+
|style="text-align:right;"|הנה החשבון כערך כ"ד אל ס&#x202B;'
=== בין שיהיו שוים ===
 
 
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כגון ב' רביעית על ב' רביעיות
+
|style="text-align:right;"|או אם נרצה אחר שעשינו תחלה מורה מכ&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|או שיהיו שברי אחד מהם גדולים כגון ב' רביעיות על ג'
+
|style="text-align:right;"|וכפלנו ג' על ד' שהוא י"ב
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|
+
|style="text-align:right;"|נסיר מהם ב' שלישיות והוא ח&#x202B;'
=== ואם תרצה חלק תשעה על הארבעה ===
 
 
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|שהוא המורה
+
|style="text-align:right;"|והכל שוה כי ערך ח' אל כ' כערך כ"ד אל ס' והוא ב' חמישיות אחד
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|
+
|style="text-align:right;"|ודע כי בקשת המורה כדי שנדע אי זה חשבון הוא שימצאו בו חלקים אלו ונחלוק אותו על מרובע המורה כדי שנדע אי זה <s>חשבון הוא שימצאו בו חלקים</s> ערך יש לחשבון מן האחד כשיכפול אדם שני שלישים על ג' רביעים צריך שנבקש לשניהם מורה אחד והוא העולה מכפל שניהם והנה יעשה לו מרובע בדרך שנעשה במורה אחד ויעשה כפי השני במספר
=== והדבר יצא בשוה ===
 
 
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי העולה בחלוק לכל אחד הוא ב' ורובע שהוא ב'
+
|style="text-align:right;"|ואם ירצה יקח כפל השני מורים מקום מרובע כי הוא מרובע אמצעי ביניהם כי כפל ג' הוא ט' ומרובע ד' י"ו
רביעיים ורביעית רביעית והוא חצי וחצי [.] שמינית כי האר'
 
הארבעה שנחלק עליהם הם רביעית מרובע המורה . ל"א כי
 
התשעה הם רביעיים . והיו שתי חמישיות המרובע וכו' . כי
 
עשר שתי חמישיות מרובע המורה שהוא כ"ה והשנים שתי
 
חמישיות חמישית שהם בשנים . והנה נקח בעבור שתי ש'
 
שלישיות שמונה . כי ח' ב' שלישי י"ב שהוא המורה . והוא חצי
 
ק'מ'ד' שהוא מרובע הי"ב ואם עשית זה משנים מורים כלומ' אתה
 
<ref>47א</ref>אתה רשאי להעריך חשבונך לכפל השני מורים [........]מרובע
 
בענין שהקדמנו . כי העולה שהוא ששה נקח ערכו אליו . ר"ל אל הי"ב
 
שהוא המורה והוא חציו . כי השביעית הם תשעה . כלומ' כי אחר ש'
 
שהמורה הוא ס"ג שיש בו ז' תשיעיות או ט' שביעיות אם כן שביעיותיו
 
הוא ט' ותשיעיתו הוא ז' . וכאשר חלקנו חשבוננו הראשון ת'ת'ר'
 
ת'ש'ס'ד' על ס"ג עלו כ"ח . אם כן ערך ת'ת'ר' ת'ש'ס'ד' אל ג' אלפים ות'ת'ק'ס'ט'
 
כערך כ"ח אל ס"ג כי כמו שתחלק כ"ח מס"ג ישאר ל"ה כי כשתחלק ת'ת'ר'
 
ת'ש'ס'ד' שהם כ"ח פעמים ס"ג מג' אלפים ות'ת'ק'ס'ט' שהם ס"ג פעמים
 
ס"ג ישאר ל"ה פעמים ס"ג . ואם לקחנו בשנים מורים יהיה הנכפל
 
ס"ג וכו' . ואם נרצה נסיר משבע תשיעיות ס"ג שהם מ"ט והנה
 
העולה כ"ח שהוא פחות מחצי האחד . וקח שנים כי משלשה לק'
 
לקחנו אותו כלומ' בעבור כל צורה נקח המספר המיוחד לו כי
 
לולי ג' לא היה נאמר ב' שלישיים ולולי מורה ד' לא יתכן לו'
 
לומר ג' רביעיים
 
 
|-
 
|-
 
|
 
|
=== Example: we wish to multiply 4 integers by 3 fifths ===
+
|style="text-align:right;"|וזה המורה הוא י"ב
 
 
|style="text-align:right;"|[[ספר_המספר_/_אברהם_אבן_עזרא#4_by_3_fifths|<span style=color:blue>'''דמיון רצינו לכפול ד' שלמים על ג' חמישיות וכו''''</span>]]
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|והנה שלמים על נשברים עלו נשברים בע[..] מעלות על ראשונים שהם ראשונים על כן נקח המורה שהוא ה' ומרובעו כ"ה וד' פעמים ג' הם י"ב והנה ערך י"ב אל כ"ה הם [ב'] שלמים וב' חמישיות
+
|style="text-align:right;"|ואחר שנדע המורה נראה כמה הוא ג' רביעיותיו ונקח <ref>46ב</ref>מהם ב' שלישיים כי הוא כאמרו קח ב' שלישיים מב' רביעיים או בהפך והכל שוה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נכפול כ"ב על כ"ח שהם נשברים ראשונים והיו ת'ר'י'ו' שנים ר"ל שכל אחד חלק מכ"ה . עלו כ"ד שלמים וישארו י"ו שניים והט"ו הם ג' חמישיים והאחד חומש החומש שהוא חלק מכ"ה באחד . כי הם חלקי המורה כי מהשברים וקח המורה . לכן המחובר מהם הוא חלקים ממנו
+
=== The multiplication of fractions is opposite to the multiplication of integers ===
 +
 
 +
|style="text-align:right;"|[[ספר_המספר_/_אברהם_אבן_עזרא#multiplication_of_fractions_is_opposite_to_multiplication_of_integers|<span style=color:blue>'''כפל השברים הפך כפלי השלמים'''</span>]]
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|והנה נכפול זה על זה ועלה מ"א אלף ות"ת והנה כל ארבעים מהם הוא אחד שלם כי הם <ref>47v</ref>במדרגה שנית מארבעים גם כן ועל כן שבו הנשארים ה' חלקים ממ' עלו אלף קנ"ה שכל ע"ז הוא אחד מע"ז הראשונים על כן ט"ו פעמים ע"ז הם ט"ו מע"ז שהוא המורה . והוא מנין שהיה יכול לעשות מרובע למורה שהוא ע"ז ויהיה ה' אלפים ות'ת'ק'כ'ט' ויהיה ערך אלף קנ"ה אליו כ' כערך ט"ו אל ע"ה (ע"ז) כי מרחק ט"ו מע"ה (ע"ז) ס"ב ומרחק אלף קנ"ה מה' אלפים
+
|style="text-align:right;"|כי השלמים הנכפלים אלה על אלה יוסיפו בחשבון כפי מה שיעלה
ת'ת'ק'כ'ט' ס"ב פעמים ע"ז . כל שבר נפרד שהוא למעלה מי' שיש בו שני מספרים כגון י"א או י"ג וי"ט נקרא חשבון שלא יוכל אדם לב' לבטא בו . אבל כל זוג יכול לבטא כי אם יש לנו ב' חלקים מי"ב נקח ששית אחת
+
מכפל אבל שברים על שברים יהיה העולה שבר אחד מהשברים הנכפלים וכפי התוספת בשלמים נכוין לגרוע בשברים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|דמיון כמה ג' שביעיות על ה' חלקים מאחד עשר וכו&#x202B;'
+
|style="text-align:right;"|כי האחד הנכפל על איזה חשבון לא יוסיף על אותו חשבון כלום כי אחד על שנים שנים ואחד על חצי כלו' פעם פעם אחד חצי הוא חצי אם כן חצי על חצי הוא רביע כאלו תאמר חצי החצי
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|והדרך הקרובה שאחר שמענו שהמורה ע"ז ושה' חלקים מי"א מע"ז הם ל"ה נחסר ג' שביעיות מל"ה שהם ט"ו מע"ז והוא המבוקש כי הוא כאמרנו ג' שביעיות מה' חלקים מי"א
+
|style="text-align:right;"|וכן שלישית על שלישית כאלו תאמר שלישית השלישית שהוא תשיעית
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|או כפול מספר ג' על ה' והוא ט
+
|style="text-align:right;"|וכפל  רביעית על רביעית יהיה חלק אחד מיוהוא חצי שמינית שהוא השלם ועל כן אמר והנכפל אחד
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נכפול קע"א על רכ"א יעלו ל"ז אלפים ות'ש'צ'א&#x202B;'
+
|style="text-align:right;"|כי לעולם ירד ממדרגה אחת בדרך שכפל ראשונים בראשונים יהיו שניים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נחלקים על ר'מ'ז' והנם ק'נ'ג&#x202B;'
+
|style="text-align:right;"|
 +
=== ועל זה הדרך תכפול שברי המין האחד על שברי המין בעצמו ===
 +
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל ק'נ'ג' פעמים ר'מ'ז' שכל ר'מ'ז' חלקים מאלו באחד מחלקי ר'מ'ז' שהוא המורה נמצא שיש לנו ק'נ'ג' חלקים מר'מ'ז&#x202B;'
+
|style="text-align:right;"|כמו שהמשלנו משלישיות על שלישיות או מרביעיות על רביעיות
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכערך ק'נ'ג' מר'מ'ז' שיחסר ממנו צ'ד' כן ערך המספר הראשון שהוא ל"ז אלפים ות'ש'צ'א' אל מרובע ר'מ'ז&#x202B;'
+
|style="text-align:right;"|
 +
=== בין שיהיו שוים ===
 +
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי כן יחסר ממנו צ"ד פעמים ר'מ'ז&#x202B;'
+
|style="text-align:right;"|כגון ב' רביעית על ב' רביעיות
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ומרובע ר'מ'ז' הוא ששים ואחד אלף ותשעה
+
|style="text-align:right;"|או שיהיו שברי אחד מהם גדולים כגון ב' רביעיות על ג'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכן כפל ט' בי"ז שהוא המספר יעלה ק'נ'ג&#x202B;'
+
|style="text-align:right;"|
 +
=== ואם תרצה חלק תשעה על הארבעה ===
 +
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכן אם תקח מר'כ'א' הוא י"ז וט' פעמים י"ז הוא ק'נ'ג&#x202B;'
+
|style="text-align:right;"|שהוא המורה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|אחר שיש לנו ששיות אין צריך לשלשה
+
|style="text-align:right;"|
 +
=== והדבר יצא בשוה ===
 +
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי שלשה הם בכלל ששה
+
|style="text-align:right;"|כי העולה בחלוק לכל אחד הוא ב' ורובע שהוא ב'
 +
רביעיים ורביעית רביעית והוא חצי וחצי [.] שמינית כי האר'
 +
הארבעה שנחלק עליהם הם רביעית מרובע המורה . ל"א כי
 +
התשעה הם רביעיים . והיו שתי חמישיות המרובע וכו' . כי
 +
עשר שתי חמישיות מרובע המורה שהוא כ"ה והשנים שתי
 +
חמישיות חמישית שהם בשנים . והנה נקח בעבור שתי ש'
 +
שלישיות שמונה . כי ח' ב' שלישי י"ב שהוא המורה . והוא חצי
 +
ק'מ'ד' שהוא מרובע הי"ב ואם עשית זה משנים מורים כלומ' אתה
 +
<ref>47א</ref>אתה רשאי להעריך חשבונך לכפל השני מורים [........]מרובע
 +
בענין שהקדמנו . כי העולה שהוא ששה נקח ערכו אליו . ר"ל אל הי"ב
 +
שהוא המורה והוא חציו . כי השביעית הם תשעה . כלומ' כי אחר ש'
 +
שהמורה הוא ס"ג שיש בו ז' תשיעיות או ט' שביעיות אם כן שביעיותיו
 +
הוא ט' ותשיעיתו הוא ז' . וכאשר חלקנו חשבוננו הראשון ת'ת'ר'
 +
ת'ש'ס'ד' על ס"ג עלו כ"ח . אם כן ערך ת'ת'ר' ת'ש'ס'ד' אל ג' אלפים ות'ת'ק'ס'ט'
 +
כערך כ"ח אל ס"ג כי כמו שתחלק כ"ח מס"ג ישאר ל"ה כי כשתחלק ת'ת'ר'
 +
ת'ש'ס'ד' שהם כ"ח פעמים ס"ג מג' אלפים ות'ת'ק'ס'ט' שהם ס"ג פעמים
 +
ס"ג ישאר ל"ה פעמים ס"ג . ואם לקחנו בשנים מורים יהיה הנכפל
 +
ס"ג וכו' . ואם נרצה נסיר משבע תשיעיות ס"ג שהם מ"ט והנה
 +
העולה כ"ח שהוא פחות מחצי האחד . וקח שנים כי משלשה לק'
 +
לקחנו אותו כלומ' בעבור כל צורה נקח המספר המיוחד לו כי
 +
לולי ג' לא היה נאמר ב' שלישיים ולולי מורה ד' לא יתכן לו'
 +
לומר ג' רביעיים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|גם זה על שבעה
+
=== Example: we wish to multiply 4 integers by 3 fifths ===
 +
 
 +
|style="text-align:right;"|[[ספר_המספר_/_אברהם_אבן_עזרא#4_by_3_fifths|<span style=color:blue>'''דמיון רצינו לכפול ד' שלמים על ג' חמישיות וכו''''</span>]]
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל גם שלשים על ז&#x202B;'
+
|style="text-align:right;"|והנה שלמים על נשברים עלו נשברים בע[..] מעלות על ראשונים שהם ראשונים על כן נקח המורה שהוא ה' ומרובעו כ"ה וד' פעמים ג' הם י"ב והנה ערך י"ב אל כ"ה הם [ב'] שלמים וב' חמישיות
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|גם זה על ח' ר"ל [ר"י] ורביעיותיו פ"ד ר"ל רביעית של"ו הוא פושתי שלישיות פ"ד הוא נ"ו כי הוא כאלו אמרנו נכפול שני שלישיות הלקוחות מרביעית הלקוח מחמישית על שש רביעיות הלקוחות משמינית
+
|style="text-align:right;"|נכפול כ"ב על כ"ח שהם נשברים ראשונים והיו ת'י'ו' שנים ר"ל שכל אחד חלק מכ"ה . עלו כשלמים וישארו י"ו שניים והטהם ג' חמישיים והאחד חומש החומש שהוא חלק מכ"ה באחד . כי הם חלקי המורה כי מהשברים וקח המורה . לכן המחובר מהם הוא חלקים ממנו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|על כן נקח&#x202B;<ref>48r-49r: illegible</ref>
+
|style="text-align:right;"|והנה נכפול זה על זה ועלה מ"א אלף ות"ת והנה כל ארבעים מהם הוא אחד שלם כי הם <ref>47v</ref>במדרגה שנית מארבעים גם כן ועל כן שבו הנשארים ה' חלקים ממ' עלו אלף קנ"ה שכל ע"ז הוא אחד מע"ז הראשונים על כן ט"ו פעמים ע"ז הם ט"ו מע"ז שהוא המורה . והוא מנין שהיה יכול לעשות מרובע למורה שהוא ע"ז ויהיה ה' אלפים ות'ת'ק'כ'ט' ויהיה ערך אלף קנ"ה אליו כ' כערך ט"ו אל ע"ה (ע"ז) כי מרחק ט"ו מע"ה (ע"ז) ס"ב ומרחק אלף קנ"ה מה' אלפים
 +
ת'ת'ק'כ'ט' ס"ב פעמים ע"ז . כל שבר נפרד שהוא למעלה מי' שיש בו שני מספרים כגון י"א או י"ג וי"ט נקרא חשבון שלא יוכל אדם לב' לבטא בו . אבל כל זוג יכול לבטא כי אם יש לנו ב' חלקים מי"ב נקח ששית אחת
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|&#x202B;<ref>49v</ref>בספר [...]
+
|style="text-align:right;"|דמיון כמה ג' שביעיות על ה' חלקים מאחד עשר וכו&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ועוד כי מצאו בשנת ה[שמש] וכו' זה טעם למה חלקו הגלגל לי"ב
+
|style="text-align:right;"|והדרך הקרובה שאחר שמענו שהמורה ע"ז ושה' חלקים מי"א מע"ז הם ל"ה נחסר ג' שביעיות מל"ה שהם ט"ו מע"ז והוא המבוקש כי הוא כאמרנו ג' שביעיות מה' חלקים מי"א
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כאומר חשבון חברנו אליו כל החלקים מחצי עד עשירית מה ערך המספר אליו
+
|style="text-align:right;"|או כפול מספר ג' על ה' והוא ט"ו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ראם ישאלך אדם ממון היה אצלי וחברתי עמו חציו ושלישיתו וכל החלקים עד עשירית והיה כך כמה היה החשבון תחלה
+
|style="text-align:right;"|נכפול קע"א על רכ"א יעלו ל"ז אלפים ות'ש'צ'א&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי אם נצטרך לכפול כל החלקים אלו על אלו כדרך שעשינו במה שעבר היה טורח גדול ואמ' שלא נצטרך לזה רק שנקח זה החשבון תחת המורה שהוא אלפים ותק"כ כי בו נמצאו כל אלו החלקים ולא בפחות ממנו ואע"פ שימצאו בגובה ממנו כי צורך בקשת המורה כדי שנמצא חשבון שיהיו החלקים הנרצים והוא הדין שאם נמצא חשבון פחות מזה הנכפל שיהיו בו אלו החלקים בעצמם שזה יספיק לנו ויגיענו למבוקשנו
+
|style="text-align:right;"|נחלקים על ר'מ'ז' והנם ק'נ'ג&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|דמיון זה ממון חברנו אליו שלישיתו ורביעיתו (וחמישיתו) וששיתו והיה השלם כ"א נכפול המורה בחשבון והוא ש"ס נחלק ש"ס על כ"א עלו [י"ז] שלמים וג' חלקים מכ"א שהן שביעית אחד כך היה סך הממון הראשון ובחן זה ותמצא
+
|style="text-align:right;"|ר"ל ק'נ'ג' פעמים ר'מ'ז' שכל ר'מ'ז' חלקים מאלו באחד מחלקי ר'מ'ז' שהוא המורה נמצא שיש לנו ק'נ'ג' חלקים מר'מ'ז&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכן כשנצטרך למצוא כל החלקים לא נצטרך לכפול כל החלקים אבל נקח אלפים ותק"כ ואע"פ שהוא פחות הרבה מהנכפל מאלה החלקים ונוסיף מע מחציתו ושלישיתו ורביעיתו וכל החלקים והמחובר א"ח ג"ז וזהו השלם
+
|style="text-align:right;"|וכערך ק'נ'ג' מר'מ'ז' שיחסר ממנו צ'ד' כן ערך המספר הראשון שהוא ל"ז אלפים ות'ש'צ'א' אל מרובע ר'מ'ז&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ונחשוב שהחשבון ס' נכפול המורה בחשבון ויהיה העולה נחלק על זה הנכפל על השלם הנה נבחן זה
+
|style="text-align:right;"|כי כן יחסר ממנו צ"ד פעמים ר'מ'ז&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|הנה חצי השלמים ורביעיתם וחמישיתם ד' ועשיריתם ב' ושלישיתם ו' וישארו שניים
+
|style="text-align:right;"|ומרובע ר'מ'ז' הוא ששים ואחד אלף ותשעה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נשיבם אל שברי השלם שהוא א"ח גונחבר עמהם החלקים הנשארים למעלה שהם ג' אלפים ותק"ף ומן המחובר נקח השלישי
+
|style="text-align:right;"|וכן כפל ט' בישהוא המספר יעלה ק'נ'ג&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכן נעשה מן השתות ומן התשיעית כי כשלקחנו בעבור השתות
+
|style="text-align:right;"|וכן אם תקח מר'כ'א' הוא י"ז וט' פעמים י"ז הוא ק'נ'ג&#x202B;'
ג' ובעבור התשיעית ב' ישארו ב' שלמים וכשלקחנו בעבור השמינית <ref>50א</ref>השמינית ב' ישארו ד' וכשלקחנו בעבור התשיעית (שביעית) ב' ישארו ו' שנשיבם לשברים הנה כל השלמים נ"ו נעשה מן השלמים הנשארים
 
חלקים הנה השער ב"ו זד"א ועם  0 ח הג  יהיה בדג חא  עם 0
 
והג' הם ד 0 אג ג  וג' שלמים      [........] ועם החלקים הנשארים  
 
הנזכרים  וו  ח  זד  וזה מספר כל חלק החלקים שהם מחצי עד עשירי
 
נחבר עם  0  ח  ה  ג ויעלה דבהט"ב נחלק על אחגז  ויעלו ד' שלמים נחברם עם הי"ו (נ"ו) שהיו לנו והנה כל המספר ס'
 
 
|-
 
|-
 
|
 
|
=== The rule: the product of degrees by any type is the same type itself ===
+
|style="text-align:right;"|אחר שיש לנו ששיות אין צריך לשלשה
 
 
|style="text-align:right;"|והכלל כפל מעלות על אי זה מין שיהיה ישאר אותו המין בעצמו    
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כמו כפל אחדים על השברים שיהיה ישאר אותו המין בעצמו כמו העולה אותו המין מן השברים    
+
|style="text-align:right;"|כי שלשה הם בכלל ששה
 
|-
 
|-
 
|
 
|
=== The product of minutes by minutes is seconds ===
+
|style="text-align:right;"|גם זה על שבעה
 
 
|style="text-align:right;"|וכפל ראשונים על ראשונים יהיה העולה שנים
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כמו שהחצי על חצי העולה יהיה רביעית
+
|style="text-align:right;"|ר"ל גם שלשים על ז&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וראשונים על שנים יהיה העולה שלישיים וכו&#x202B;'
+
|style="text-align:right;"|גם זה על ח' ר"ל [ר"י] ורביעיותיו פ"ד ר"ל רביעית של"ו הוא פ"ד ושתי שלישיות פ"ד הוא נ"ו כי הוא כאלו אמרנו נכפול שני שלישיות הלקוחות מרביעית הלקוח מחמישית על שש רביעיות הלקוחות משמינית
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|עד שיהיה כפל שלישים על רביעים וחמישיים על חמישיים עשרים כי לעולם נחבר מספר השתי מדרגות והוא היוצא וכן מבואר בלוח המעלות והשברים
+
|style="text-align:right;"|על כן נקח&#x202B;<ref>48r-49r: illegible</ref>
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואחר שנכפול ראשונים בראשונים שהם שניים
+
|style="text-align:right;"|&#x202B;<ref>49v</ref>בספר [...]
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כגון ל' ראשונים יהיה העולה הת"ק נחלקנו על ס' יעלה ט"ו והם ראשונים
+
|style="text-align:right;"|ועוד כי מצאו בשנת ה[שמש] וכו' זה טעם למה חלקו הגלגל לי"ב
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכן אם נכפול ראשונים על שניים והיו שלישיים
+
|style="text-align:right;"|כאומר חשבון חברנו אליו כל החלקים מחצי עד עשירית מה ערך המספר אליו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נחלק השלישיים על ס' ומה שיעלה יעלה למדרגת השניים כי לעולם יעלה בחלוק מדרגה אחת והנשאר הוא מן השלישיים
+
|style="text-align:right;"|ר"ל אם ישאלך אדם ממון היה אצלי וחברתי עמו חציו ושלישיתו וכל החלקים עד עשירית והיה כך כמה היה החשבון תחלה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כגון שנכפול מ"ה ראשונים על נ' שניים יעלה אלפים וכן שלישים נחלקם על ששים עלו ל"ז שניים וישארו &#x202B;<ref>50v</ref>ל' שלישים שלישיים באיזו מעלה מן השברים ר"ל באיזו מדרגה
+
|style="text-align:right;"|כי אם נצטרך לכפול כל החלקים אלו על אלו כדרך שעשינו במה שעבר היה טורח גדול ואמ' שלא נצטרך לזה רק שנקח זה החשבון תחת המורה שהוא אלפים ותק"כ כי בו נמצאו כל אלו החלקים ולא בפחות ממנו ואע"פ שימצאו בגובה ממנו כי צורך בקשת המורה כדי שנמצא חשבון שיהיו החלקים הנרצים והוא הדין שאם נמצא חשבון פחות מזה הנכפל שיהיו בו אלו החלקים בעצמם שזה יספיק לנו ויגיענו למבוקשנו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם יהיו שנים חשבונים כלומ' אם יהיה לך ב' מעלות תכתוב 0ב במקומו ואם יש לך שני חשבונות כגון כ"ה תכתוב שם ה"ב
+
|style="text-align:right;"|דמיון זה ממון חברנו אליו שלישיתו ורביעיתו (וחמישיתו) וששיתו והיה השלם כ"א נכפול המורה בחשבון והוא ש"ס נחלק ש"ס על כ"א עלו [י"ז] שלמים וג' חלקים מכ"א שהן שביעית אחד כך היה סך הממון הראשון ובחן זה ותמצא
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כדרך שתעשה בשלמים &#x202B;<ref>51r</ref>כפול המספר הטור העליון במספר הטור אשר תחתיו והחל לכפול מעלות במעלות וכתוב במדרגת המעלות ואחר מעלות בראשונים וכתבם תחת הראשונים וכן כל אחד במדרגתו כמשפט ואם היה היו שם שני מספרים בכלם ביחד וכתבהו במקומו וכתוב האחדים ראשונה ואחר העשרות ואחר המאות כל אחד באותו הטור אם יעלה כל כך הכפל ההוא תכתוב הכל על הסדר ולא תתערבב
+
|style="text-align:right;"|וכן כשנצטרך למצוא כל החלקים לא נצטרך לכפול כל החלקים אבל נקח אלפים ותק"כ ואע"פ שהוא פחות הרבה מהנכפל מאלה החלקים ונוסיף מע מחציתו ושלישיתו ורביעיתו וכל החלקים והמחובר א"ח ג"ז וזהו השלם
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם תרצה כפול האות האחת באות הראשון שבאותו הטור וכתבהו לבד במקומו
+
|style="text-align:right;"|ונחשוב שהחשבון ס' נכפול המורה בחשבון ויהיה העולה נחלק על זה הנכפל על השלם הנה נבחן זה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואחר כן כפול האות ההוא באות השני וכתבהו סמוך לו באותו טור
+
|style="text-align:right;"|הנה חצי השלמים ורביעיתם וחמישיתם ד' ועשיריתם ב' ושלישיתם ו' וישארו שניים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם נשאר מכפל האות הראשון עשרה חשבהו כאחדים וחברהו עם
+
|style="text-align:right;"|נשיבם אל שברי השלם שהוא א"ח ג"ז ונחבר עמהם החלקים הנשארים למעלה שהם ג' אלפים ותק"ף ומן המחובר נקח השלישי
כפל האות שאחריו וכתבהו
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם ישאר לסוף עשרה כתוב שם בסוף א' בדרך שלמדך החכם אבן עזרא בשער הכפל
+
|style="text-align:right;"|וכן נעשה מן השתות ומן התשיעית כי כשלקחנו בעבור השתות
 +
ג' ובעבור התשיעית ב' ישארו ב' שלמים וכשלקחנו בעבור השמינית <ref>50א</ref>השמינית ב' ישארו ד' וכשלקחנו בעבור התשיעית (שביעית) ב' ישארו ו' שנשיבם לשברים הנה כל השלמים נ"ו נעשה מן השלמים הנשארים
 +
חלקים הנה השער ב"ו זד"א ועם  0 ח הג  יהיה בדג חא  עם 0
 +
והג' הם ד 0 אג ג  וג' שלמים      [........] ועם החלקים הנשארים  
 +
הנזכרים  וו  ח  זד  וזה מספר כל חלק החלקים שהם מחצי עד עשירי
 +
נחבר עם  0  ח  ה  ג  ויעלה דבהט"ב נחלק על אחגז  ויעלו ד' שלמים נחברם עם הי"ו (נ"ו) שהיו לנו והנה כל המספר ס'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם תרצה <s>[..]ל</s> תוכל לעשות בדרך האלכסונות ולא תצטרך רק לטור אחד ולא תצטרך לחבור כי הוא העולה רק יכבד הדבר עליך
+
=== The rule: the product of degrees by any type is the same type itself ===
 +
 
 +
|style="text-align:right;"|והכלל כפל מעלות על אי זה מין שיהיה ישאר אותו המין בעצמו    
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואחר חבר הכל וכתוב העולה הכל טור למטה כנגדו מהאחדים שבאותו טור על הסדר
+
|style="text-align:right;"|כמו כפל אחדים על השברים שיהיה ישאר אותו המין בעצמו כמו העולה אותו המין מן השברים    
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם ישאר לך כלל שמרהו וחברהו עם העולה מהמספר שאחריו באותו טור
+
=== The product of minutes by minutes is seconds ===
 +
 
 +
|style="text-align:right;"|וכפל ראשונים על ראשונים יהיה העולה שנים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכן תעשה מכל טור וטור כמו שתראה בצורה בטור השפל
+
|style="text-align:right;"|כמו שהחצי על חצי העולה יהיה רביעית
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|אחר תחל לחלק על ששים הטור האחרון
+
|style="text-align:right;"|וראשונים על שנים יהיה העולה שלישיים וכו&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כגון שהוא חמישיים ולכל ששים קח אחד וחברהו עם המדרגה שלפניו שהם רביעיים והנשאר פחות מס' השאר שם במקומו שהוא חמישיים
+
|style="text-align:right;"|עד שיהיה כפל שלישים על רביעים וחמישיים על חמישיים עשרים כי לעולם נחבר מספר השתי מדרגות והוא היוצא וכן מבואר בלוח המעלות והשברים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכן תעשה מהרביעים הוציאם ס' ס' ומכל ששים חבר אחד עם השלישיים והנשאר תכתבהו במעלת הרביעיים
+
|style="text-align:right;"|ואחר שנכפול ראשונים בראשונים שהם שניים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכן כולם עד שתעלה המספר למדרגת המעלות והנשאר בכל מעלה ישאר וזה הנשאר אחר החלוק
+
|style="text-align:right;"|כגון ל' ראשונים יהיה העולה הת"ק נחלקנו על ס' יעלה ט"ו והם ראשונים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|&#x202B;<ref>51v</ref>זהו דרך חכמי המזלות
+
|style="text-align:right;"|וכן אם נכפול ראשונים על שניים והיו שלישיים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|אבל דרך חכמי החשבון
+
|style="text-align:right;"|נחלק השלישיים על ס' ומה שיעלה יעלה למדרגת השניים כי לעולם יעלה בחלוק מדרגה אחת והנשאר הוא מן השלישיים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כשיגיעו לכפול הטור העליון שבצורה ראשונה על הטור השפל שבו כל מה שבטור העליון למדרגת המספר הקטן שהוא בכאן השלישיים וכן כל מה שבטור השפל
+
|style="text-align:right;"|כגון שנכפול מ"ה ראשונים על נ' שניים יעלה אלפים וכן שלישים נחלקם על ששים עלו ל"ז שניים וישארו &#x202B;<ref>50v</ref>ל' שלישים שלישיים באיזו מעלה מן השברים ר"ל באיזו מדרגה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכיצד יעשו יכפלו המעלות על ששים והנם ראשונים
+
|style="text-align:right;"|ואם יהיו שנים חשבונים כלומ' אם יהיה לך ב' מעלות תכתוב 0ב במקומו ואם יש לך שני חשבונות כגון כ"ה תכתוב שם ה"ב
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נחברם עם הראשונים ונכפלם על ס' יהיו שלישיים כי לעולם ירד ממדרגה אחת
+
|style="text-align:right;"|כדרך שתעשה בשלמים &#x202B;<ref>51r</ref>כפול המספר הטור העליון במספר הטור אשר תחתיו והחל לכפול מעלות במעלות וכתוב במדרגת המעלות ואחר מעלות בראשונים וכתבם תחת הראשונים וכן כל אחד במדרגתו כמשפט ואם היה היו שם שני מספרים בכלם ביחד וכתבהו במקומו וכתוב האחדים ראשונה ואחר העשרות ואחר המאות כל אחד באותו הטור אם יעלה כל כך הכפל ההוא תכתוב הכל על הסדר ולא תתערבב
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכן נעשה בכאן
+
|style="text-align:right;"|ואם תרצה כפול האות האחת באות הראשון שבאותו הטור וכתבהו לבד במקומו
 
|-
 
|-
 
|
 
|
::We multiply 2 by 60; they are 120 primes.
+
|style="text-align:right;"|ואחר כן כפול האות ההוא באות השני וכתבהו סמוך לו באותו טור
::<math>\scriptstyle{\color{blue}{2\sdot60^{\prime}=120^{\prime}}}</math>
 
|style="text-align:right;"|נכפול ב' על ס' והם ק"כ ראשונים
 
 
|-
 
|-
 
|
 
|
::We add them to the 9, which are also primes; they are 129.
+
|style="text-align:right;"|ואם נשאר מכפל האות הראשון עשרה חשבהו כאחדים וחברהו עם
::<math>\scriptstyle{\color{blue}{120^{\prime}+9^{\prime}=129^{\prime}}}</math>
+
כפל האות שאחריו וכתבהו
|style="text-align:right;"|נחברם עם ט' שהם ראשונים כמו כן והם קכ"ט
 
 
|-
 
|-
 
|
 
|
::We multiply 129 by sixty; with the 4, they are 7 thousand and 744 seconds.
+
|style="text-align:right;"|ואם ישאר לסוף עשרה כתוב שם בסוף א' בדרך שלמדך החכם אבן עזרא בשער הכפל
::<math>\scriptstyle{\color{blue}{129^{\prime}\sdot60^{\prime}+7^{\prime\prime}=7744^{\prime\prime}}}</math>
 
|style="text-align:right;"|נכפול קכ"ט על ששים ועם הד' הם ז' אלפים תשמ"ד שניים
 
 
|-
 
|-
 
|
 
|
::We multiply them by 60; with the 3, they are 464 thousand and 643 thirds.
+
|style="text-align:right;"|ואם תרצה <s>[..]ל</s> תוכל לעשות בדרך האלכסונות ולא תצטרך רק לטור אחד ולא תצטרך לחבור כי הוא העולה רק יכבד הדבר עליך
::<math>\scriptstyle{\color{blue}{7744^{\prime\prime}\sdot60^{\prime}+3^{\prime\prime\prime}=464643^{\prime\prime\prime}}}</math>
 
|style="text-align:right;"|נכפול זה על ס' ועם הג' הם תס"ד אלפים [...] אלפים ותרמ"ג שלישיים
 
 
|-
 
|-
 
|
 
|
::We do the same with the second line; the result is 715 thousand and 451 thirds.
+
|style="text-align:right;"|ואחר חבר הכל וכתוב העולה הכל טור למטה כנגדו מהאחדים שבאותו טור על הסדר
|style="text-align:right;"|וכן נעשה מן הטור <s>נעשה מן</s> השני ויעלה תשט"ו אלפים ותנ"א שלישיים
 
 
|-
 
|-
 
|
 
|
::We multiply them by each other; the result is 332429[29]8993 sixths.
+
|style="text-align:right;"|ואם ישאר לך כלל שמרהו וחברהו עם העולה מהמספר שאחריו באותו טור
::<math>\scriptstyle{\color{blue}{464643^{\prime\prime\prime}\times715451^{\prime\prime\prime}=332429298993^{vi}}}</math>
 
|style="text-align:right;"|נכפול אלו על אלו ועלה גטטחטבדבגג והם ששיים
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|אחר נחלקם על ס' ותן לו מכל אחד מה שתוכל וכתבהו במקום הראוי לו
+
|style="text-align:right;"|וכן תעשה מכל טור וטור כמו שתראה בצורה בטור השפל
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם היה העליון פחות השיבהו אחורנית בעשרות ותן לו מה שתוכל ומה שישאר השיבהו אחורנית שלפניו וכן תמיד
+
|style="text-align:right;"|אחר תחל לחלק על ששים הטור האחרון
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכשיקרה באחד מן האמצעיים שיכלה בכוון אל הו' והאות שלפניו פחות מו' כתוב בספרא כנגדו בטור האמצעי והאות שלפניו השיבהו אחורנית וחלק ממנו כמשפט עד שתגיע כנגד הראשון שהיא מדרגת האחדים
+
|style="text-align:right;"|כגון שהוא חמישיים ולכל ששים קח אחד וחברהו עם המדרגה שלפניו שהם רביעיים והנשאר פחות מס' השאר שם במקומו שהוא חמישיים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ומה שישאר לחלק שהוא פחות מששיים ישאר במדרגתו והעולה בחלוק יהיה רביעיים
+
|style="text-align:right;"|וכן תעשה מהרביעים הוציאם ס' ס' ומכל ששים חבר אחד עם השלישיים והנשאר תכתבהו במעלת הרביעיים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ומה שישאר לחלק הוא חמשים כבתחלה וכן נעתיקנו תמיד ממדרגה והעולה בחלוק יהיה רביעיים
+
|style="text-align:right;"|וכן כולם עד שתעלה המספר למדרגת המעלות והנשאר בכל מעלה ישאר וזה הנשאר אחר החלוק
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ומה שישאר לחלק הוא למדרגה עד הגיעו למעלות כי בכל חלק יעלה מדרגה אחת
+
|style="text-align:right;"|&#x202B;<ref>51v</ref>זהו דרך חכמי המזלות
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם תחשוב כראוי תמצא הנשאר מכל המדרגות שוה &#x202B;<ref>52r</ref>לחשבון הראשון וזה הדרך השני הוא שקרא דרך המבטא
+
|style="text-align:right;"|אבל דרך חכמי החשבון
 
|-
 
|-
 
|
 
|
::When we divide the line of the sixths by sixty, the result of division is 5540[4]88316 fifths and 33 sixths remain.
+
|style="text-align:right;"|כשיגיעו לכפול הטור העליון שבצורה ראשונה על הטור השפל שבו כל מה שבטור העליון למדרגת המספר הקטן שהוא בכאן השלישיים וכן כל מה שבטור השפל
::<math>\scriptstyle{\color{blue}{332429298993^{vi}\div60=5540488316^{v}+33^{vi}}}</math>
 
|style="text-align:right;"|וכשנחלק טור הששים על ששים יצאו בחלוק מן החמישיים ואגחח0דהה וישארו מן הששים גג
 
 
|-
 
|-
 
|
 
|
::When we divide these fifths by sixty, the result is 92341471 fourths and 56 fifths remain.
+
|style="text-align:right;"|וכיצד יעשו יכפלו המעלות על ששים והנם ראשונים
::<math>\scriptstyle{\color{blue}{5540488316^{v}\div60=92341471^{iv}+56^{v}}}</math>
 
|style="text-align:right;"|וכשנחלק אלו החמישיים על ששיים יעלו הרביעים אזדאדגבט וישאר מן החמישיים וה
 
 
|-
 
|-
 
|
 
|
::When we divide these fourths by 60, the result is 1539024 thirds and 31 fourths remain.
+
|style="text-align:right;"|נחברם עם הראשונים ונכפלם על ס' יהיו שלישיים כי לעולם ירד ממדרגה אחת
::<math>\scriptstyle{\color{blue}{92341471^{iv}\div60=1539024^{\prime\prime\prime}+31^{iv}}}</math>
 
|style="text-align:right;"|וכשנחלק אלו הרביעיים על ס' יעלו השלישיים דב0טגהא וישאר ממין הרביעים אג
 
 
|-
 
|-
 
|
 
|
::When we divide the thirds, the result of division is 25650 seconds and 24 thirds remain.
+
|style="text-align:right;"|וכן נעשה בכאן
::<math>\scriptstyle{\color{blue}{1539024^{\prime\prime\prime}\div60=25650^{\prime\prime}+24^{\prime\prime\prime}}}</math>
 
|style="text-align:right;"|וכשנחלק השלישיים יצא בחלוק מהשניים 0הוהב וישאר מהשלישיים דב
 
 
|-
 
|-
 
|
 
|
::When we divide the seconds by 60, the result is 427 primes and 30 seconds remain.
+
::We multiply 2 by 60; they are 120 primes.
::<math>\scriptstyle{\color{blue}{25650^{\prime\prime}\div60=427^{\prime}+30^{\prime\prime}}}</math>
+
::<math>\scriptstyle{\color{blue}{2\sdot60^{\prime}=120^{\prime}}}</math>
|style="text-align:right;"|וכשנחלק השניים על ס' יצא זבד ראשונים וישאר מהשניים 0ג
+
|style="text-align:right;"|נכפול ב' על ס' והם ק"כ ראשונים
 
|-
 
|-
 
|
 
|
::When we divide the primes by [60], they are 7 degrees and 7 primes remain.
+
::We add them to the 9, which are also primes; they are 129.
::<math>\scriptstyle{\color{blue}{427^{\prime}\div60=7+7^{\prime}}}</math>
+
::<math>\scriptstyle{\color{blue}{120^{\prime}+9^{\prime}=129^{\prime}}}</math>
|style="text-align:right;"|נחלק הראשונים על מעלות ויהיו המעלות ז' וישארו ז' ראשונים
+
|style="text-align:right;"|נחברם עם ט' שהם ראשונים כמו כן והם קכ"ט
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|והיה זה שוה לנשאר תחלה
+
::We multiply 129 by sixty; with the 4, they are 7 thousand and 744 seconds.
 +
::<math>\scriptstyle{\color{blue}{129^{\prime}\sdot60^{\prime}+7^{\prime\prime}=7744^{\prime\prime}}}</math>
 +
|style="text-align:right;"|נכפול קכ"ט על ששים ועם הד' הם ז' אלפים תשמ"ד שניים
 
|-
 
|-
 
|
 
|
 
+
::We multiply them by 60; with the 3, they are 464 thousand and 643 thirds.
=== The chords of the arcs ===
+
::<math>\scriptstyle{\color{blue}{7744^{\prime\prime}\sdot60^{\prime}+3^{\prime\prime\prime}=464643^{\prime\prime\prime}}}</math>
 
+
|style="text-align:right;"|נכפול זה על ס' ועם הג' הם תס"ד אלפים [...] אלפים ותרמ"ג שלישיים
|style="text-align:right;"|יתרי הקשתות
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כגון שנדע המרחק מנקודה ידועה מהקשת עד נקודה ידועה ממנו ונרצה לידע אורך היתר שמנקודה זו אל נקודה האחרת מהקשת ביושר או כמה אלכסון המיתר ההוא
+
::We do the same with the second line; the result is 715 thousand and 451 thirds.
 +
|style="text-align:right;"|וכן נעשה מן הטור <s>נעשה מן</s> השני ויעלה תשט"ו אלפים ותנ"א שלישיים
 
|-
 
|-
 
|
 
|
=== The perimeter should be three times the diameter ===
+
::We multiply them by each other; the result is 332429[29]8993 sixths.
 
+
::<math>\scriptstyle{\color{blue}{464643^{\prime\prime\prime}\times715451^{\prime\prime\prime}=332429298993^{vi}}}</math>
|style="text-align:right;"|הקו הסובב ראוי שלשה מהאלכסון
+
|style="text-align:right;"|נכפול אלו על אלו ועלה גטטחטבדבגג והם ששיים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל שלשה מקטרו ושביעית וא'ע'פ' שלפי החוג שהקיפו שלשה ממנו לבד אין ראיה כי החוג [....] מיתר ברחב העגול שהוא קו ישר שאין [....] שעקם העגול שבין שתי נקודות אלו יותר גדול
+
|style="text-align:right;"|אחר נחלקם על ס' ותן לו מכל אחד מה שתוכל וכתבהו במקום הראוי לו
 
|-
 
|-
 
|
 
|
 
+
|style="text-align:right;"|ואם היה העליון פחות השיבהו אחורנית בעשרות ותן לו מה שתוכל ומה שישאר השיבהו אחורנית שלפניו וכן תמיד
== Chapter Six ==
 
 
 
|style="text-align:right;"|<big>השער הששי</big>
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כונת זה השער לזכור ערכי המדות
+
|style="text-align:right;"|וכשיקרה באחד מן האמצעיים שיכלה בכוון אל הו' והאות שלפניו פחות מו' כתוב בספרא כנגדו בטור האמצעי והאות שלפניו השיבהו אחורנית וחלק ממנו כמשפט עד שתגיע כנגד הראשון שהיא מדרגת האחדים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ומתוך כך רצה להודיע מיני הערכים כמה הם ערכי החשבון והם על הסדר שכפי היתרון שיש לשני על הראשון יש לשלישי על השני
+
|style="text-align:right;"|ומה שישאר לחלק שהוא פחות מששיים ישאר במדרגתו והעולה בחלוק יהיה רביעיים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|והדרך השני ערכי המדות כמו ד'ז'ט'
+
|style="text-align:right;"|ומה שישאר לחלק הוא חמשים כבתחלה וכן נעתיקנו תמיד ממדרגה והעולה בחלוק יהיה רביעיים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|שבערך שיש לו' אל ד' שמידתו גדולה ממנו השליש כן ערך ט' אל ו' שעודף עליו שלישו
+
|style="text-align:right;"|ומה שישאר לחלק הוא למדרגה עד הגיעו למעלות כי בכל חלק יעלה מדרגה אחת
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|על כן כפל הקטן על הגדול
+
|style="text-align:right;"|ואם תחשוב כראוי תמצא הנשאר מכל המדרגות שוה &#x202B;<ref>52r</ref>לחשבון הראשון וזה הדרך השני הוא שקרא דרך המבטא
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל אחר שיחסר ד' מן הו' כמו שיעדיף ט' על ו' על כן כפל הקטן על הגדול וכו'
+
::When we divide the line of the sixths by sixty, the result of division is 5540[4]88316 fifths and 33 sixths remain.
 +
::<math>\scriptstyle{\color{blue}{332429298993^{vi}\div60=5540488316^{v}+33^{vi}}}</math>
 +
|style="text-align:right;"|וכשנחלק טור הששים על ששים יצאו בחלוק מן החמישיים ואגחח0דהה וישארו מן הששים גג
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ודע כי אלה <ref>52v</ref>השלשה מספרים כמו ארבעה הם
+
::When we divide these fifths by sixty, the result is 92341471 fourths and 56 fifths remain.
 +
::<math>\scriptstyle{\color{blue}{5540488316^{v}\div60=92341471^{iv}+56^{v}}}</math>
 +
|style="text-align:right;"|וכשנחלק אלו החמישיים על ששיים יעלו הרביעים אזדאדגבט וישאר מן החמישיים וה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|לפי שאמצעי ל[..] <s>בעשירית</s> בעשיית הערך כי נאמר ערך ד' אל ו' כערך ח' אל י"ב
+
::When we divide these fourths by 60, the result is 1539024 thirds and 31 fourths remain.
 +
::<math>\scriptstyle{\color{blue}{92341471^{iv}\div60=1539024^{\prime\prime\prime}+31^{iv}}}</math>
 +
|style="text-align:right;"|וכשנחלק אלו הרביעיים על ס' יעלו השלישיים דב0טגהא וישאר ממין הרביעים אג
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|על כן אם תחשב מרובע ד'ו'ט' כאלו היה ד' מספרים יהיה שוה אל העולה ממרובע מחובר הראשון והרביעי והוא ק'ס'ט'
+
::When we divide the thirds, the result of division is 25650 seconds and 24 thirds remain.
 +
::<math>\scriptstyle{\color{blue}{1539024^{\prime\prime\prime}\div60=25650^{\prime\prime}+24^{\prime\prime\prime}}}</math>
 +
|style="text-align:right;"|וכשנחלק השלישיים יצא בחלוק מהשניים 0הוהב וישאר מהשלישיים דב
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי האמצעי יחשב
+
::When we divide the seconds by 60, the result is 427 primes and 30 seconds remain.
 +
::<math>\scriptstyle{\color{blue}{25650^{\prime\prime}\div60=427^{\prime}+30^{\prime\prime}}}</math>
 +
|style="text-align:right;"|וכשנחלק השניים על ס' יצא זבד ראשונים וישאר מהשניים 0ג
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כלומ' ואם תאמר אלה השלשה כמו ארבעה והלא ארבעה יש בו ב' אמצעיים
+
::When we divide the primes by [60], they are 7 degrees and 7 primes remain.
 +
::<math>\scriptstyle{\color{blue}{427^{\prime}\div60=7+7^{\prime}}}</math>
 +
|style="text-align:right;"|נחלק הראשונים על מעלות ויהיו המעלות ז' וישארו ז' ראשונים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|דע כי אותם השנים יחשבו כאלו הם מספר אחד כמו שיאמר למטה כי שניהם חברים על כן אמ' שנקח מרובע המחובר משניהם
+
|style="text-align:right;"|והיה זה שוה לנשאר תחלה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ועוד כי כמו שאמרנו [ב]ג' מספרים שכפל הקטן על הגדול ככפל
+
 
התיכון על עצמו כן נאמר בד' מספרים שנכפול האמצעי האחד על חברו כמו שנכפול התיכון על עצמו |-
+
=== The chords of the arcs ===
|
+
 
|style="text-align:right;"|המשל בזה ד ו ח יב
+
|style="text-align:right;"|יתרי הקשתות
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי כפל ד' על י"ב הוא מ"ח וככה כפל ו' על ח'
+
|style="text-align:right;"|כגון שנדע המרחק מנקודה ידועה מהקשת עד נקודה ידועה ממנו ונרצה לידע אורך היתר שמנקודה זו אל נקודה האחרת מהקשת ביושר או כמה אלכסון המיתר ההוא
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|דמיון ב' ג' ו'
+
=== The perimeter should be three times the diameter ===
 +
 
 +
|style="text-align:right;"|הקו הסובב ראוי שלשה מהאלכסון
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|שכפי יחס היתרון שבין ב' וג' אל היתרון שבין ג' וו' שהוא שלישיתו כן הוא ערך הראשון שהוא ב' אל האחרון שהוא ו'
+
|style="text-align:right;"|ר"ל שלשה מקטרו ושביעית וא'ע'פ' שלפי החוג שהקיפו שלשה ממנו לבד אין ראיה כי החוג [....] מיתר ברחב העגול שהוא קו ישר שאין [....] שעקם העגול שבין שתי נקודות אלו יותר גדול
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי לעולם ערך האמצעי האחד אל האמצעי השני כערך הראשון אל האחרון
+
 
 +
== Chapter Six ==
 +
 
 +
|style="text-align:right;"|<big>השער הששי</big>
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכל אלו הדמיונות שיעשה מב'ג'ו' ומג'ד'ו' הם על דרך ערכי הנגינות שהם ג' מספרים ב'ג'ו' קו[רא] דמיון ראשון וג'ד'ו' דמיון שני <s>וע</s>
+
|style="text-align:right;"|כונת זה השער לזכור ערכי המדות
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|והעולה בחלוק נכפלנו
+
|style="text-align:right;"|ומתוך כך רצה להודיע מיני הערכים כמה הם ערכי החשבון והם על הסדר שכפי היתרון שיש לשני על הראשון יש לשלישי על השני
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל שנמנהו ב' פעמים היו בערכי הנגינות דין כל אחד מהג' בפני עצמו
+
=== The second way is the geometric proportions as 4 6 9 ===
 +
 
 +
|style="text-align:right;"|והדרך השני ערכי המדות כמו ד'ו'ט&#x202B;'
 
|-
 
|-
|
+
|As the ratio of 6 to 4, which exceeds it by its third, so is the ratio of 9 to 6, which exceeds it by its third.
|style="text-align:right;"|והיו עשרה
+
:<math>\scriptstyle{\color{blue}{6:4=\left[4+\left(\frac{1}{3}\sdot6\right)\right]:4=\left[6+\left(\frac{1}{3}\sdot9\right)\right]:6=9:6}}</math>
 +
|style="text-align:right;"|שכערך שיש לו' אל ד' שמידתו גדולה ממנו השליש כן ערך ט' אל ו' שעודף עליו שלישו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל אלו החלקים המחוברים כמה היה כל הממון שהיו העשרה בכללם
+
=== So the product of the smaller number by the greater number ===
 +
 
 +
|style="text-align:right;"|על כן כפל הקטן על הגדול
 
|-
 
|-
|
+
|I.e. since 4 is smaller than 6 by the same as 9 exceeds 6
|style="text-align:right;"|כפלנו הקצוות שהם עשרה ור"י והיו אלפים ומאה חלקנום על האמצעי
+
:<math>\scriptstyle{\color{blue}{4=6-\left(\frac{1}{3}\sdot6\right)\quad6=9-\left(\frac{1}{3}\sdot9\right)}}</math>
 +
|style="text-align:right;"|ר"ל אחר שיחסר ד' מן הו' כמו שיעדיף ט' על ו&#x202B;'
 
|-
 
|-
|
+
|So the product of the smaller number by the greater number.
|style="text-align:right;"|הנודע שהוא ק"ו ויצא לנו האמצעי הנעלם שהוא כל הממון יעלה
+
|style="text-align:right;"|על כן כפל הקטן על הגדול וכו&#x202B;'
כל הממון י"ט שלמים וס"ז חלקים
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|דמיון אחר לקחנו שביעיתו<ref>53r</ref> שביעיתו ותשיעיתו והיו שבעה כמה היה הממון
+
=== Know that these three numbers are like four numbers ===
 +
 
 +
|style="text-align:right;"|ודע כי אלה &#x202B;<ref>52v</ref>השלשה מספרים כמו ארבעה הם
 
|-
 
|-
|
+
|Since the means are the same when extracting the ratio.
|style="text-align:right;"|הנה המורה ס"ג ושביעיתו ותשיעיתו י"ו וערך ז' אל הממון כערך י"ו אל ס"ג
+
|style="text-align:right;"|לפי שאמצעי לשוה <s>בעשירית</s> בעשיית הערך
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נכפול הקצוות שהם ז' וס"ג והיו ת'מ'א'
+
:Because we say the ratio of 4 to 6 is the same as the ratio of 8 to 12.
 +
:<math>\scriptstyle{\color{blue}{4:6=8:12}}</math>
 +
|style="text-align:right;"|כי נאמר ערך ד' אל ו' כערך ח' אל י"ב
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נחלק זה על י"ו ועלה כ"ז שלמים וט' חלקים מי"ו
+
:So, if you consider the squares of 4, 6, 9 as if they are four numbers [their sum] is equal to the square of the sum of the first and the fourth, which is 169.
 +
:<math>\scriptstyle{\color{blue}{4^2+6^2+6^2+9^2=169=\left(4+9\right)^2}}</math>
 +
|style="text-align:right;"|על כן אם תחשב מרובע ד'ו'ט' כאלו היה ד' מספרים יהיה שוה אל העולה ממרובע מחובר הראשון והרביעי והוא ק'ס'ט&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|<s>עם</s> ואם הפך הדבר
+
 
 +
=== The means are regarded ===
 +
 
 +
|style="text-align:right;"|כי האמצעי יחשב
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל כשנדע החלקים לבד נחלק כפל הקצוות על חלקי המורה ויודע הנשאר אבל כשיהיה בהפך שלא נדע רק הנשאר מן החלקים גם אנו נחלק על הנשאר […] חלק המורה ויודע לנו סך החלקים
+
|style="text-align:right;"|כלומ' ואם תאמר אלה השלשה כמו ארבעה והלא ארבעה יש בו ב' אמצעיים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נחבר ראשי ממונם
+
|style="text-align:right;"|דע כי אותם השנים יחשבו כאלו הם מספר אחד כמו שיאמר למטה כי שניהם חברים על כן אמ' שנקח מרובע המחובר משניהם
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל חשבונות ממונם יעלו שלשה נ"ו שלמים שהם ג' דינ' ומ"א חלקים מנ"ו שהם מ"א חלקים מדינר שכל נ"ו בכאן נחשב כאחד מחלקי המורה
+
|style="text-align:right;"|ועוד כי כמו שאמרנו [ב]ג' מספרים שכפל הקטן על הגדול ככפל
 +
התיכון על עצמו כן נאמר בד' מספרים שנכפול האמצעי האחד על חברו כמו שנכפול התיכון על עצמו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|עלה ד' פשו'
+
*Example: 4, 6, 8, 12
 +
|style="text-align:right;"|המשל בזה ד ו ח יב
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל לכל חלק מנשהוא דינר אחד על כן כל אחד יקח לכל דינר מממונו ד' פשו'
+
:Because the product of 4 by 12 is 48 and so is the product of 6 by 8.
 +
:<math>\scriptstyle{\color{blue}{4\times12=48=6\times8}}</math>
 +
|style="text-align:right;"|כי כפל ד' על י"ב הוא מ"ח וככה כפל ו' על ח&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|גם ד' חלקים מנ"ו ר"ל שישארו עוד ד' פשו' לחלק שיש לכל דינר ודינר שיקח מהם ד' חלקים מנ"ו
+
 
 +
=== Example 2 3 6 ===
 +
 
 +
|style="text-align:right;"|דמיון ב' ג' ו&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי כל פשו' יתחלק לנ"ו
+
:As the ratio of the difference between 2 and 3 to the difference between 3 and 6, which is a third, so is the ratio of the first, which is 2, to the last, which is 6.
 +
:<math>\scriptstyle{\color{blue}{\left(3-2\right):\left(6-3\right)=\frac{1}{3}=2:6}}</math>
 +
|style="text-align:right;"|שכפי יחס היתרון שבין ב' וג' אל היתרון שבין ג' וו' שהוא שלישיתו כן הוא ערך הראשון שהוא ב' אל האחרון שהוא ו&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם יש לכל דינר שיקח מפשו' אחד חלק אחד מנ"ו אם כן יקח מד' פשו' ד' חלקים מנ"ו שהם חלק אחד מי"ד שהוא חצי שביעית
+
|style="text-align:right;"|כי לעולם ערך האמצעי האחד אל האמצעי השני כערך הראשון אל האחרון
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכן אם נשיב ארבעתם לנ"ו נ"ו שהם ר'כ'ב' (רכ"ח) ונחלקם על נ"ו יעלה לכל אחד ד' מאותם החלקים ומד' חלקי פשו' מנ"ו חלקים שבו
+
|style="text-align:right;"|וכל אלו הדמיונות שיעשה מב'ג'ו' ומג'ד'ו' הם על דרך ערכי הנגינות שהם ג' מספרים ב'ג'ו' קורא דמיון ראשון וג'ד' דמיון שני <s>וע</s>
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|והנה נחבר החלקים כלם
+
 
 +
=== We double the quotient ===
 +
 
 +
|style="text-align:right;"|והעולה בחלוק נכפלנו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל אותם שנשארו מהחלקים יהיו שנים פשו' ושנים שחברנו מהחלקים היו ד' ונחבר עתה הפשוט כלם היו ב' דינ'
+
|style="text-align:right;"|ר"ל שנמנהו ב' פעמים היו בערכי הנגינות דין כל אחד מהג' בפני עצמו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכל החלקים הנ[זכר]ים
+
=== They are ten ===
 +
 
 +
|style="text-align:right;"|והיו עשרה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל שלישית ורביעית וששית מי"ב הם טא והוא הדינר
+
|style="text-align:right;"|ר"ל אלו החלקים המחוברים כמה היה כל הממון שהיו העשרה בכללם
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי לעולם החלקים הם דינר אחד והמורה הוא כל הדינר
+
=== We multiply the extremes that are ten and 210; they are two thousand and one hundred ===
 +
 
 +
|style="text-align:right;"|כפלנו הקצוות שהם עשרה ור"י והיו אלפים ומאה
 +
|-
 +
|We divide it by the known mean, which is 106; we receive the unknown mean, which is the whole amount; the resulting total amount is 19 integers and 67 parts.
 +
:<math>\scriptstyle{\color{blue}{\frac{10\sdot210}{107}=\frac{2100}{107}=19+\frac{67}{107}}}</math>
 +
|style="text-align:right;"|חלקנום על האמצעי הנודע שהוא ק"ז ויצא לנו האמצעי הנעלם שהוא כל הממון יעלה כל הממון י"ט שלמים וס"ז חלקים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ונבקש מהערך י"ב אל ט'
+
=== Another example: We take its seventh and its ninth; they are seven ===
 +
 
 +
|style="text-align:right;"|דמיון אחר לקחנו &#x202B;<ref>53r</ref>שביעיתו ותשיעיתו והיו שבעה
 
|-
 
|-
|
+
|How much is the amount?
|style="text-align:right;"|כאלו אמ' נחלק י"ב על ט'
+
|style="text-align:right;"|כמה היה הממון
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|והנה הוא כמהו ושלישיתו והנה נוסיף על י"ב פשו' שהוא הדינר ד' פשו'
+
|style="text-align:right;"|הנה המורה ס"ג ושביעיתו ותשיעיתו י"ו וערך ז' אל הממון כערך י"ו אל ס"ג
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי ט' הוא הדינר אחד ועם שליש הדינר והוא י"ו ונוכל לעשות ערכים שנאמר ערך י"ב שהוא המורה אל <ref>53v</ref>אל ט' כערך כל הסך אל הדינר
+
|style="text-align:right;"|נכפול הקצוות שהם ז' וס"ג והיו ת'מ'א&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|על כן נכפול הקצוות שהוא י"ב על י"ב והם ק'מ'ד'
+
|style="text-align:right;"|נחלק זה על י"ו ועלה כ"ז שלמים וט' חלקים מי"ו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נחלק על ט' עלו י"ו והוא הדינר המחובר מג' הערכים
+
=== If one reversed the saying ===
 +
 +
|style="text-align:right;"|<s>עם</s> ואם הפך הדבר
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ונחלק המורה על זה המספר יהיו ב' דינ' וכ"ט
+
|style="text-align:right;"|ר"ל כשנדע החלקים לבד נחלק כפל הקצוות על חלקי המורה ויודע הנשאר אבל כשיהיה בהפך שלא נדע רק הנשאר מן החלקים גם אנו נחלק על הנשאר אחד חלקי המורה ויודע לנו סך החלקים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל מכל מטבע מהשלשה
+
=== We sum up their amounts of money ===
 +
 
 +
|style="text-align:right;"|נחבר ראשי ממונם
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נשיב הדינר חלקים מק'מ'ג'
+
|style="text-align:right;"|ר"ל חשבונות ממונם יעלו שלשה נ"ו שלמים שהם ג' דינ' ומ"א חלקים מנ"ו שהם מ"א חלקים מדינר שכל נ"ו בכאן נחשב כאחד מחלקי המורה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל מהב' דינ' וכ"ט חלקים
+
=== The result is 4 pešuṭim ===
 +
 
 +
|style="text-align:right;"|עלה ד' פשו&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|והנה נכפול ש'י'ה' על ה' שהם הקצוות ויהיו אלף ות'ק'ע'ה'
+
|style="text-align:right;"|ר"ל לכל חלק מנ"ו שהוא דינר אחד על כן כל אחד יקח לכל דינר מממונו ד' פשו&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ונחלק אותם על שבעה יהיו [....] ר'כ'ה'
+
=== Also 4 parts of 56 ===
 +
 
 +
|style="text-align:right;"|גם ד' חלקים מנ"ו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכפי ערך ה' אל ז' יהיה הערך ר'כ'ה' אל ש'י'ה וכן תאמר בכלם
+
|style="text-align:right;"|ר"ל שישארו עוד ד' פשו' לחלק שיש לכל דינר ודינר שיקח מהם ד' חלקים מנ"ו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכאשר החלפנו זה המספר ממטבע שבעה
+
=== Because each pašuṭ is divided to 56 ===
 +
 
 +
|style="text-align:right;"|כי כל פשו' יתחלק לנ"ו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל כי לעולם נקח המורה במקום סך המטבע שנרצה להשיב הכל אליו והנה שביעית המורה מה שהוא ז' פעמים מ"ה כי השבעה ישובו ל"ה והם ר'כ'ה' ממטבע הוא שהוא דינ' אחד ופ"ב חלקים
+
|style="text-align:right;"|ואם יש לכל דינר שיקח מפשו' אחד חלק אחד מנ"ו אם כן יקח מד' פשו' ד' חלקים מנ"ו שהם חלק אחד מי"ד שהוא חצי שביעית
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכן כשנרצה להשיב הב' דינ' וכ"ט חלקים ממטבע ט' אל מטבע ה' נמנה ה' פעמים ל"ה שהוא התשיעית והוא קע"א
+
|style="text-align:right;"|וכן אם נשיב ארבעתם לנ"ו נ"ו שהם ר'כ'ב' ונחלקם על נ"ו יעלה לכל אחד ד' מאותם החלקים ומד' חלקי פשו' מנ"ו חלקים שבו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכן כשנרצה להשיב הכל למטבע ז' נקח בעבור ז' ש'י'ה'
+
=== We sum all the parts ===
 +
 
 +
|style="text-align:right;"|והנה נחבר החלקים כלם
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ובעבור שנרצה לעשות מ"ה ז' נחשוב ז' פעמים ס"ג והנו ת'מ'ה' (ת'מ'א') ממטבע ז'
+
|style="text-align:right;"|ר"ל אותם שנשארו מהחלקים יהיו שנים פשו' ושנים שחברנו מהחלקים היו ד' ונחבר עתה הפשוט כלם היו ב' דינ&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכן נחשוב ז' פעמים ל"ה יהיו ר'מ'ה' ועל זה הדרך תשיב הכל למטבע ט'
+
=== All the mentioned parts ===
 +
 
 +
|style="text-align:right;"|וכל החלקים הנזכרים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ונרצה לדעת כמה חלקים יקח ממטבע חמשה
+
|style="text-align:right;"|ר"ל שלישית ורביעית וששית מי"ב הם טא והוא הדינר
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל כמה חלקים יקח מזה המטבע שהוא מטבע ז' בעבור מה שיהיה לנו ממטבע חמשה כלו' כמה יהיה
+
|style="text-align:right;"|כי לעולם החלקים הם דינר אחד והמורה הוא כל הדינר
ממטבע ז'
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|או נעשה כן כשנרצה להשיב ב' דינ' וכ"ט של מטבע ז' למטבע ה' ונסיר מש'י'ה' שהיו מנין חלקיו שיש בו ז' פעמים מ"ה ב' שביעיות שהן צ' כי יתרון ז' על הב'
+
=== We ask what is the ratio of 12 to 9 ===
 +
 
 +
|style="text-align:right;"|ונבקש מה ערך י"ב אל ט&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכן כשנרצה להחזיר ט' ל"ה נסיר תשיעית ש'ה' שהם ד' פעמים ל"ה שהם ק"ם ביתרון ט' מ"ה והנשאר יהיה של י"ה
+
|style="text-align:right;"|כאלו אמ' נחלק י"ב על ט&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכשתרצה לגרוע המטבע ולהשיב
+
=== It is the same as it and its third, we add 4 pešuṭim to 12 pešuṭim, which is the dinar ===
כנל לז' או לט' הוסף על חלקי האחד כיתרון האחד עליו
+
 
 +
|style="text-align:right;"|והנה הוא כמהו ושלישיתו והנה נוסיף על י"ב פשו' שהוא הדינר ד' פשו&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|דמיון <ref>54r</ref>זה אם תרצה להשיב הכל למטבע ז' הוסף בעבור מטבע ה' ב' [חמיש']
+
|style="text-align:right;"|כי ט' הוא הדינר אחד ועם שליש הדינר והוא י"ו ונוכל לעשות ערכים שנאמר ערך י"ב שהוא המורה אל &#x202B;<ref>53v</ref>אל ט' כערך כל הסך אל הדינר
חמישיות שהם ק'כ'ו' ובעבור מטבע ט' גרע ממנו ב' תשיעיות
 
שהם ע' ועל זה הדרך הכל והכל יוצא שוה . נחשוב כי הז' [.........]
 
מדות הולך כל י"ז [...] . ולכן לא [נזכרו] בערך [....] אבל נעשה
 
הערך מהמדות שלא השלים ומהסך שלא הרויח כלו כי כערך ז'
 
אל י"ג כן ערך מה שיוצא לי"ט ובעבור שלא ידענו הריוח נכתוב
 
תחתיו גלגל ונעשה הצורה כן ז יג והנה בזה
 
הסדר היו הקצוות ז' וי"ט על כן נכפלם והיו
 
ק'ל'ג' נחלקם על י"ג שהוא האמצעי 0 יט הנודע יעלה
 
י' שלמים ונשארו ג' חלקים מי"ג ולפי שחסר
 
תנאי המילין נעשה ערך אחר ולא נזכר מדות כלל אבל נאמר
 
כערך י"א מילין אל ז' יהיה ערך מה שיקח אל הריוח הנזכר שהוא
 
י' וג' על זה הדמיון ט נכפול י"א על י' עלו ק'י' נכ'
 
נכפול י"א על ג' שהם 0    י  ו ג חלקים והיו ל"ג חלקי י"ג והנה
 
[הנו] ב' שלמים נחברם ק'י' והיו ק'י'ב' ונשארו ז' חלקים
 
מי"ג והנה נחלקם על י"ז שהוא האמצעי הנה נחלק העולה ק'י'ב' על
 
י"ז עלו ו' פשו' ונשארו י' לחלק נשיבם לחלקים מי"ג ונחברם עם הז'
 
שהם כמו כן חלקים מי"ג ויעלה ק'ל'ז' נשיב ק'ל'ז' לחלקים מי"ג (מי"ז) שנכ'
 
שנכפלם על י"ז ועלה  ט  ב  ג  ב  נחלקם על ר'כ'א' שהוא כפל י"ג
 
על י"ז והוא אחד שלם ועלה ק'ל'ה' (קל"ז) שהם חלקים מרכ"א והם ח' חלקים
 
מי"ג עם חלק אחד מי"ז בחלק או אם תרצה הם י' חלקים מי"ז עם
 
ז' חלקים מי"ג בחלק . או אם תרצה תחשוב י' פעמים רכ"א ולא תצ'
 
תצטרך אלא לשום בראש ר'כ'ה' (רכ"א) גלגל שבעשותך כן העלית כל אות
 
ממנו מדרגה אחת שהיא עשרה ותחבר עמו כפל הז' בי"ז שהוא
 
 
 
54ב
 
ק'י'ט' . והנה נכפול המספר הראשון . רצה במספר ראשון התנאי
 
ובמספר השני המעשה ר"ל מדת הספירה . ועתה נעשה דמיון
 
הערכים ויהיו קצוות בקשתם שהוא המספר הקטן ומעורב
 
בתנאי שהוא הגדול שבד' המספרים הנערכים
 
ונאמר כי ערך הריוח המבוקש אל י"א כערך ק"כ אל ר"י על כן נ'
 
נכפול האמצעיים שהם ק"כ וי"א ונחלק על 0 אא
 
ר"י שהוא הקצה האחרון הנודע והעולה יהיה
 
הקצה הראשון הנעלם . או אם נרצה נעשה
 
אלו האמצעיים קצוות שנאמר ערך ק"כ אל 0 בא 0 אב
 
ר"י כערך המבוקש אל י"א והכל שוה . ותוכל להשיבם לשעות היום .
 
ר"ל תוכל להשיב הז' תשיעיות לשעות היום בדרך הערכין ותכת'
 
ותכתוב כן  ז  ט  כי כערך ז' תשיעיות אל ט' יש לשעור היום
 
המבוקש    0 יב מי"ב . ידענו כי ערך י"ב אל ט' כמהו וש'
 
ושלישיתו כלו' תשיעית יום הוא יותר מחלק י"ב מיום השלישית
 
והוא שעה ושליש על כן נחשוב בעבור ז' תשיעיות ז' שעות וז' שלישי
 
שעה . והנה בעבור שיש לנו שלישית נשיב הכל לדרך שלישית
 
כלומ' נעשה מכל הימים שלישיים והנה כערך י"ג אל מ"ז כן ערך
 
מה שיקח מן הזהוב . ונבקש לדעת כמה חייב כל אחד שיעבוד
 
בעבור י"ג וכו' . ונאמר כערך י"ג אל מ"[ז] שהוא הזהוב הנה ערך
 
עבודתו אל כ' שלישיים . עלו ה' שלישיות נשארו כ"ה חלקים ממ"ז
 
שהוא שלישית ששלישית יום הוא ד' שעות . אם כן הכ"ה חלקים
 
הם כ"ה חלקים ממ"ז חלקים שבד' שעות היום . גם נכפול כ"ה
 
חלקים על ארבעה עלו מאה . כי אם יש לו כ"ה חלקים מד' שעות
 
שבמ"ז הנה מכל שעה כ"ה חלקים ממ"ז בשעה יעלה לד' שעות ה'
 
55א
 
ה' חלקים ממ"ז שבשעה נחלקם על מ"ז שנחשבהו עתה שעה אחת
 
ונשארו ו' חלקים ממ"ז בשעה . והנה נעשה הערך לשמעון . כי
 
כערך י"ג אל מ"ז כן ערך עבודתו אל ט"ו שלישיות . נחלקם על שלשה
 
כלומ' שנחזירם לשלמים . גם נכפול ז' על ד' כי הז' הם חלקים ממ"ז
 
שבו ד' שעות וכשנקח כן מכל שעה יהיו כ"ח ממ"ז בשעה . תעשה
 
הדמיון ככה . ו    ח כי כערך ו' אל א' הוא ערך הנש'
 
הנשאר אל ג' 0  ג  ג ושליש . דמיון אחר היו לו ט'
 
מדות תירוש ורצה שיתבשלו עד שישאר השליש
 
וכו' . ונשארו שנים והנה כערך ב' אל ו' כן ערך הנשאר אל ג' ..
 
שאלה ממון חברנו חמישיתו וכו' . נעשה הערך כי כערך ק'מ'ג' על
 
ש'ט'ו' כן ערך י' אל הממון והנה נרצה לידע הקצה האחד על כן נכפול
 
האמצעיים זה על זה שהוא ש'ט'ו' על י' נחלקנו על הקצה הידוע . נע'
 
נעשה להפך ממון חסרנו ממנו וכו' . נעשה הערך . ונאמר
 
כי ערך י' שהוא הנשאר אל כל הממון כערך ק'ע'ב' אל ש'ט'ו' . ישארו
 
חמשה . והנה אם היה הנשאר מן האילן ה' לבד היה י"ב הוא כל הג'
 
הגובה אך בעבור שהוא י' נעשה הערך ונאמר כי כערך ה' אל י"ב
 
ערך י' אל כל האילן ונכפול האמצעיים שהם י' על י"ב או נשיב הא'
 
האמצעיים קצוות כשנאמר כן ערך אל כל האילן כערך ה' אל י"ב
 
ונכפול הקצוות שהן י' וי"ב והכל אחד . וחכמי הגויים יחלקו זה
 
הממון על דרך ערך ממון כל אחד . ר"ל כדרך חכמי החשבון .
 
וחכמי ישראל מחלקים אותו וכו' . למטה יפרש זה . וחכמי החש'
 
החשבון יבקשו ממון שיהיו בו אלו החלקים ויקחו ממנו ערך לז'
 
לזה הממון אם לא כמהו שאם היה כמהו הנה נמצא . יהיה הכל
 
שניים וחצי ששית כי השלישית הוא רביע וחלק מי"ב . והשברים
 
 
 
55ב
 
והנ השברים י"ג ובקש הכל כ"ה . נעשה הערך ככה על דרך ר"ל שנקח
 
האחד ששים ונחבר אליו החלקים השברים . וזה צורת ערך המ'
 
הממון שיקח ראובן כלומ' שאם היה הממון . קכ"ה הנה היה נוטל
 
ששים שהוא כל האחד אך עתה שאינו רק ק"כ אין ספק כי פחות
 
מס' יקח לפי חסרון ק"כ מן [.] ק'כ'ה' על כן נעריך ונאמר כי כערך
 
ק"כ אל ק'כ'ה' יהיה ערך מה שיקח מס' או נאמר ערך ס' אל מה
 
שיקח כערך ק'כ'ה' אל ק"כ ומכל מקום נכפול הקצוות שהם על ק"כ
 
ועל זה הדרך צורת כל אחד כי אלו היה ק'כ'ה' היה שמעון נוטל
 
עתה יחסר מזה כפי גרעון ק'כ'ה' מק'כ'ה' ונעשה צורתו ככה ..
 
0ג 0 וצורת חלק לו ובדרך 0ב 0
 
קצרה יקח לעולם
 
הבא 0בא שמעון . חצי חלק הבא 0בא
 
ראובן כמו שהיה אלו
 
היו ק'כ'ה' על כן לעולם
 
אחר שנדע חלק ראובן על דרך הערך אין צריך להעריך האחרים .
 
ועל דרך חכמי ישראל וכו' . איפשר שאמ' כן לפי מה ששנינו זה
 
אומר כלה שלי וזה אומר חציה שלי (בבלי, בבא מציעא א ד"ב ע"א, משנה) וכו' . וכבר לקחת חלקת מהשלישים
 
כלו' באותם מ' שהיית תובע בל' היינו ד' חולקים ועל כן לקחנו כל אחד
 
רביע ונשאר מהם י' שאתה תובע והנה בהם ג' חולקים על כן תקח
 
שלושים . שארבעתנו ערערנו עליהם . כי הגדולים מערערים
 
בכל חלקי הקטנים כי בכלל חצי השליש והרביע ולא בהפך .. כי בת'
 
בתיקון לבנה בתיקון ה' משרתים . אך לא בתיקון חמה .
 
טור יקרא טור הערך . טור הערך טור אחד שבו מספרים
 
רבים על הסדר זה למעלה מזה שכנגד כל מספר מהם ימצא
 
56א
 
ימצא מספר אחד בטור אחד שבו מספרים
 
שהם בסדר זה למעלה מזה ואותו טור
 
הבא אחר טור הערך יקרא טור חמישי או
 
שביעי . ונראה איזה מספר יש בטור
 
הערך ונביט מה ערך יש לו אל ס' אם שליש
 
או רביע וכפי זה נקח מטור החמישי
 
או השביעי ואם היה בו ס' נקח כל הכתו'
 
בטור החמישי . דמיון יש עמך חלקים
 
יתרים על המעלות מ' ובטור הערך ט"ו
 
לא הוצרך להראות לקיחת הערך מן המ'
 
המעלות כי נקל הוא אך הוצרך להראות
 
בחלקים וכל שכן כשלא ימצא להם ערך .
 
והנם כ"ב וחצי שהם ל' שניים . כי לא נכ'
 
נכתוב בלוחות חצי נכפול ג' על כ'
 
יהיו ששים . וכן נוכל להפך ולומר
 
כמה ערך כ' אל ס' שליש כן נקח שליש
 
אחד והוא ראשון אחד . ובעבור שהוספנו
 
שנים ר"ל בחשבוננו שמנינו אותם יותר
 
מן הראוי . ולעולם ראה אם היו
 
חלקים נוספים על מעלות המוצק
 
המתוקן . טור אחד יש לפני טור
 
הערך שבו מספרים רבים זה
 
למעלה מזה כל מספר שבו כנגד
 
מספר שבטור הערך וממנו יכנסו
 
 
 
<ref>56v</ref>לטור הערך ויקרא המוצק המתוקן כגון שבטור המוצק כ' וכנגדו בטור הערך ט"ו ולמטה בטור המוצק כ"א וכנגדו בטור הערך י"ו וכן על הסדר הולך ומוסיף והנה אם היו יותר מל' חשבם במעלה אחת והכנס בטור הערך למטה ואם נמצאת המנה המתוק' שהוא ב' ד' מזלות . שאם היה פחות מד' או יותר מח' עשה כדרך שהראיתיך במעלות המוצק שאם אין לך לא תחוש אך מד' ועד ח' דקדק באלו החלקים ליקח ערך כגון שהיו לך ל' חלקים נוספים על ד' מעלות והנה אם לא היו הל' היה נכנס בט"ו בטור הערך ואם היה לנו מעלה אחת יותר . היה נכנס בי"ו . כי בעבור כל מעלה יוסיף אחד עכשיו שיש לנו חצי מעלה נוסיפנו עם הכתוב במעלת הד' ונראה מה ערך ט"ו וחצי אל ס' ונעשה בדרך הכפל כפי צרכנו ..
 
 
|-
 
|-
 
|
 
|
 
+
|style="text-align:right;"|על כן נכפול הקצוות שהוא י"ב על י"ב והם ק'מ'ד&#x202B;'
== Chapter Seven ==
 
 
 
|style="text-align:right;"|השער השביעי
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|הדרך האחד שרשים וכו'
+
|style="text-align:right;"|נחלק על ט' עלו י"ו והוא הדינר המחובר מג' הערכים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל כל חשבון יבוקש מצד שהוא שורש או מצד שהוא מרובע או <ref>57r</ref> או לא יבוקש מטעם אחד מאלו השנים . ויש חשבון שאין לו שורש אמת כלל . ר"ל שלא ידענו שרשו באמת ובדקדוק . והיה לאחד שרש מרובע כי אחד על אחד . הסתכל אם לא היו מאזני המרובע וכו' כלומ' אם תמצא מספר אחד ותרצה לדעת האם הוא מרובע אם לא הסתכל אם יהיה הכל ט' או כמה ישאר וראה בשורש הנשאר מט' וכפלהו על עצמו ואם יהיה הנשאר מט' אחר הכפל בנשאר מן המרובע אפשר להיותו מרובע כי בהכפל השורש נכפלו המאזנים והנשאר מכפלם ישאר במרובע ואם לא ימצא כן תדע באמת שאינו מרובע
+
=== We divide the denominator by this number; the result is 2 dinar and 29 ===
 +
 
 +
|style="text-align:right;"|ונחלק המורה על זה המספר יהיו ב' דינ' וכ"ט
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|המשל בזה אם יאמר לך אדם ק'כ'א' הוא מרובע הסתכל במאזניו והנם ד' ככה תמצא בכפל מאזני שרשו שהוא י"א על כן נאותו דבריו אך אם אמר שק'כ'ב' הוא מרובע ה[....]הו מאזנים אחרים [....] מידיעת הנשאר על מאזני המרובע [.....] ולא יצטרך להסתכל בשרש שאם ישאר כגב' או ג' או ה' או ו' או ח' אינו מרובע כי לעולם יצאו מאזני המרובע ממאזני השורש שהם מא' עד ח' והנה מכפל אחד מהם לא יולד לעולם במרובע אחד מ[הערכים <ref>57v</ref>הנזכרים שהם ב'ג' ה'ו'ח' . רק היוצא מן הכפל א' או ד' או ט' או ז' על כן אם תמצא המאזנים אחד מאלו אפשר היותו מרובע עיין בכולם אחד ותמצא כן . אמר גם שבעה עמהם כלו' א'ע'פ' שאיננו מרובע
+
|style="text-align:right;"|ר"ל מכל מטבע מהשלשה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ודע כל אחד מא' או ד' או ז' יצאו מאחד משני אותיות והט' תוכל לצאת משלשה והנה לך לוח לדעת זה
+
=== We convert the dinar to parts of 143 ===
 +
 
 +
|style="text-align:right;"|נשיב הדינר חלקים מק'מ'ג&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|מאזנים אחרים אם היה הנשאר מאחדים על מספרנו ב' או ג' ז' או ח' תדע כי אין המספר מרובע כי לעולם לא יולדו הפרטים על כלל המרובע אלא מתוספת אחדים על כלל ואותו התוספת יהיה אחת מט' אותיות והנם מכפלם לא ישאר ב' ולא ג' ז' וח' רק א' או ד' או ט' או מן המתגלגלים שהם ה' וו' כי ימצאו במרובעים ועל זה הדרך ביותר מעשרות שהם כאחדים על מאות . אם מצאת במספר המבוקש שהנוסף בו אחד דע כי יש בשרש א' או ט' כי לעולם [...] מכפל אחד מאלו יולד א' ויצא ד' מב' שהוא בשרש או מח' וית[חד]ש ו' במרובע מהכפל ו' או ד' וט' יפול מכפל ג' או ז' וה' יצא מכפל ה'
+
|style="text-align:right;"|ר"ל מהב' דינ' וכ"ט חלקים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|<ref>58r</ref>לשון אדננו מורנו יצ"ו על זה אם יש בידך מרובע ויש בתוספת הכללים א' דע שיש בשורש א' או ט' ואם תרצה לידע אחד משניהם דע מאזני המספר ואחר דע מאזני השורש כי אם תקחהו עם א' ויהיו מאזני המספר שוה כשתקחהו עם ט' ושוה למאזני המספר דע שיש בשרש ט'ט' ע"ד לשונו . כל מעלה שאינה זוג כמו מאות רבבות אלפים אלפים הנה מרובעיהם על דרך מרובעי המעלה הראשונה ובמספרם כי מרובעי המאות ק' ת' ת'ת'ק' ומרובעי הרבואות עשרת אלפים וארבעים אלף וצ' אלף ועל זה הדרך הכל
+
|style="text-align:right;"|והנה נכפול ש'י'ה' על ה' שהם הקצוות ויהיו אלף ות'ק'ע'ה&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ולעולם יהיו המרובעים הנמשלים וכו'
+
|style="text-align:right;"|ונחלק אותם על שבעה יהיו בדנר ר'כ'ה&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל לעולם במרובע כל מעלה שהיא בלתי זוג לא ימצא רק מספר אחד על דרך שהוא במעלה הראשונה ומרובעי המעלות בעלות הזוג לעולם ימצא בהם ב' מספרים כמו באלפים אלף ות"ר וכן כולם
+
|style="text-align:right;"|וכפי ערך ה' אל ז' יהיה הערך ר'כ'ה' אל ש'י'ה וכן תאמר בכלם
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ומהנמשלים תוכל לדעת כל שהם לפניהם או אחריהם
+
=== When we exchange this number of coin seven ===
 +
 
 +
|style="text-align:right;"|וכאשר החלפנו זה המספר ממטבע שבעה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל שאם ידעת מרובעי אמת ומדרגות ותדע שרשם כי אחר שידעת כי
+
|style="text-align:right;"|ר"ל כי לעולם נקח המורה במקום סך המטבע שנרצה להשיב הכל אליו והנה שביעית המורה מה שהוא ז' פעמים מ"ה כי השבעה ישובו ל"ה והם ר'כ'ה' ממטבע הוא שהוא דינ' אחד ופ"ב חלקים
מרובעי המאות ק' ות'ת'ק' והנה שורש ק' י' ושרש ת' כ' אם כן מספר המרובעים שבין ק' ות' כמספרים שהם מי' עד כ' ובין ק' ות' יפולו וכן מהאמצעיים שבין ארבעה מאות לתשע מאות
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|הנמשלים  יקראו המדרגות הבאות אחר העשרות כי אשר אינם בעלי זוג ימ' נמשלו לראשונה והמדרגות הזוגיות לשנית
+
|style="text-align:right;"|וכן כשנרצה להשיב הב' דינ' וכ"ט חלקים ממטבע ט' אל מטבע ה' נמנה ה' פעמים ל"ה שהוא התשיעית והוא קע"א
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|דע כי ההווה במעלה הראשונה מהאחדים וכו' ר"ל כגון א' שהוא א' במעלה הראשונה כן י' הוא שורש ק' וכמו שבראשונה שרש ד' הוא ב' <ref>58v</ref> ושרש ט' הוא ג' כן במעלת המאות שורש ת' הוא (כ') ושרש ת'ת'ק' ל' ושרשי מרובעי המדרגה החמישית שהיא רבבות הנמשלת לראשונה ימצאו במדרגת המאות כי שרש י' אלפים הוא מאה ושרש מ' אלפים הוא ר' ושרשי המדרגה השביעית שהיא דולגת מהחמישית שתי מדרגות הדומה אליה בהיותה נפרדת ימצאו במדרגה הבאה אחר המאות שהיא אלפים כי שרש אלף אלפים אלף ושרש ד' אלפי אלפים וככה בכולם
+
|style="text-align:right;"|וכן כשנרצה להשיב הכל למטבע ז' נקח בעבור ז' ש'י'ה&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|והאחדים שהם במעלה השנית בשרש כגון י"ו ששרשם ד' כן במדרגה הרביעית הדומה לה במרובע אלף ות"ר יהיה שרשו אות ד' בעשרות ובמרובע אל[ף] אלפים ות"ק הדומה לכיהיה השרש נ' שהוא כמו ה' ובמרובעו המדרגה הששית הנמשלת למדרגה השנית יהיה שרשם מאות כגון מרובע ק"ס אלפים הדומה לי"ו ששרשו ת' הדומה לד' שהוא שרש י"ו וכן תאמר בכלם
+
|style="text-align:right;"|ובעבור שנרצה לעשות מז' נחשוב ז' פעמים ס"ג והיו ת'מ'ה' ממטבע ז'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|לשון מורנו רבינו יצ"ו
+
|style="text-align:right;"|וכן נחשוב ז' פעמים ל"ה יהיו ר'מ'ה' ועל זה הדרך תשיב הכל למטבע ט&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|אם יש לך [...] מרובע ידוע ותרצה לדעת ממנו מרובע אחר אם הוא אחריו כפול השורש הראשון ודע כמה מרחק המספר שתרצה לדעת מרובעו ממנו וכפול הכפל ההוא במספר המרחק עוד תוסיף עליו מרובע מה שעלה בחלוק והוסף הכל על השרש הראשון ויצא המבוקש
+
=== We want to know how many parts he takes of coin five ===
 +
 
 +
|style="text-align:right;"|ונרצה לדעת כמה חלקים יקח ממטבע חמשה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם המספר שתרצה לדעת הוא לפני המספר הידוע כפול שרש המרובע הידוע ועוד תכה אותו במרחק מה שיש בו שבין מספר אשר תרצה לדעת מרובעו ובינו ומה שיצא תגרע ממנו מרובע מה שעלה בחלוק והנשאר והנשאר תגרענו ממרובע המספר הידוע
+
|style="text-align:right;"|ר"ל כמה חלקים יקח מזה המטבע שהוא מטבע ז' בעבור מה שיהיה לנו ממטבע חמשה כלו' כמה יהיה ממטבע ז&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם יש לך מרובע ידוע ותרצה לדעת ממספר אחר כמה הוא קרוב אל מרובע אם <ref>59r</ref>אם המספר ההוא הוא א אחרי המספר הידוע דע כמה המרחק וחלק אותו על כפל שורש המרובע הידוע והשאר בידך מה שיצא במרובע החלוק וחבר הכפל ותוספת מרובע החלוק עם המרובע הידוע ויצא המבוקש
+
|style="text-align:right;"|או נעשה כן כשנרצה להשיב ב' דינ' וכ"ט של מטבע ז' למטבע ה' ונסיר מש'י'ה' שהיו מנין חלקיו שיש בו ז' פעמים מ"ה ב' שביעיות שהן צ' כי יתרון ז' על הב&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|או אם המספר אשר בידך הוא לפני המרובע הידוע ראה כמה מרחקו ממספר הידוע והמרחק ההוא חלקהו על כפל שרש המרובע הידוע ותן לו מהחלוקה כדי שנוכל לגרוע ממנו מרובע מה שעלה בחלוק ולא ישאר כי אם פחות מכפל שורש המרובע ומה שיצא בכ בכפילת החלוק אחר שתגרע ממנו מרובע החלוק חסר אותו מהמרובע הנמשל ויהיה המבוקש
+
|style="text-align:right;"|וכן כשנרצה להחזיר ט' ל"ה נסיר תשיעית ש'י'ה' שהם ד' פעמים ל"ה שהם ק"ם ביתרון ט' מ"ה והנשאר יהיה של י"ה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ע"כ וכל זה שוה עם הכתוב בספר אלא שהספר יצוה לגרוע כל כפל החלוק מהמרובע הנמשל ולהוסיף על הנשאר מרובע החלוק ולגרוע הנשאר מהמרובע העתיד והכל שוה
+
|style="text-align:right;"|וכשתרצה לגרוע המטבע ולהשיב כנל לז' או לט' הוסף על חלקי האחד כיתרון האחד עליו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|אלא שמלמדנו כמות תוספת החלוקה והכונה בתוספת לגרוע כל המרחק עד שנגיע אל המרובע שעבר
+
|style="text-align:right;"|דמיון &#x202B;<ref>54r</ref>זה אם תרצה להשיב הכל למטבע ז' הוסף בעבור מטבע ה' ב' חמישיות שהם ק'נ'ו' ובעבור מטבע ט' גרע ממנו ב' תשיעיות שהם ע' ועל זה הדרך הכל והכל יוצא שוה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ודע כי כל [ב]כל אחד משני הדרכים לא נמצא רק מרובע שעבר הקרוב למספרנו ובדרך הראשון נמצאנו בין שהיה מספרנו יותר קרוב ממרובע שעבר או שהיה יותר קרוב ממרובע שאחריו והדרך השני לא יועילו רק בהיות מספרנו בלתי קרוב אל מרובע שעבר יהיו ק"נ שהוא שרש ו' ומרובע כ"ב אלף ות"ק וממנו נדע מהנשאר מרובע הקרוב על כן נחלק על כפל שרשו ונתן לו א' ו שהוא שם ונוסיפנו על מרובע הראשון שהיה לנו והיו כ"ב אלפים ותת"א עם מרובע א' שעלה בחילוק . נתן לו יותר מה שנוכל . שנתן לו ט' שהם ה' אלפים . לא נוכל לתת לו ה' ר"ל נסיר ממנו אלף ות"ר שהוא מרובע מ' ונוסיפנו על המספר יהיו ל"ג אלפים ות"ר ועתה יהיה לנו ת"ם <ref>59v</ref> ר"ל שנעשה מרובע קרוב ונחלק על כפלו מה שנשאר לנו שהוא אלפים ות' נתן לז' שהם ו' אלפים וק"ס
+
=== We think as if the 7 measures are carried 17 miles ===
 +
 
 +
|style="text-align:right;"|נחשוב כי הז' מדות הולך כל י"ז מילין
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נחסר עוד מרובע ז' שעלה בחילוק רונוסיפנו על מה שהיה לנו ויהיו ו' אלפים ור"ט
+
|style="text-align:right;"|ולכן לא נזכרם בערך א' אבל נעשה הערך מהמדות שלא השלים ומהסך שלא הרויח כלו כי כערך ז' אל י"ג כן ערך מה שיוצא לי"ט ובעבור שלא ידענו הריוח נכתוב תחתיו גלגל ונעשה הצורה כן והנה בזה הסדר היו הקצוות ז' וי"ט על כן נכפלם והיו ק'ל'ג' נחלקם על י"ג שהוא האמצעי הנודע יעלה י' שלמים ונשארו ג' חלקים מי"ג
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נחבר זה אל ל"ג אלף ותשהיה לנו ועם הכל עלה קצ"ט אלפים ות"ר
+
|style="text-align:right;"|ולפי שחסר תנאי המילין נעשה ערך אחר ולא נזכר מדות כלל אבל נאמר כערך י"א מילין אל ז' יהיה ערך מה שיקח אל הריוח הנזכר שהוא י' וג' על זה הדמיון נכפול י"א על י' עלו ק'י' נכפול י"א על ג' שהם חלקים והיו ל"ג חלקי י"ג והנה הנ"ו ב' שלמים נחברם ק'י' והיו ק'י'ב' ונשארו ז' חלקים מי"ג והנה נחלקם על י"ז שהוא האמצעי הנה נחלק העולה ק'י'ב' על י"ז עלו ו' פשו' ונשארו י' לחלק נשיבם לחלקים מי"ג ונחברם עם הז' שהם כמו כן חלקים מי"ג ויעלה ק'ל'ז' נשיב ק'ל'ז' לחלקים מי(מי"ז) שנכפלם על י"ז ועלה  ט ב ג ב נחלקם על ר'כ'א' שהוא כפל י"ג על י"ז והוא אחד שלם ועלה ק'ל'ה' (קל"ז) שהם חלקים מרכ"א והם ח' חלקים מי"ג עם חלק אחד מי"ז בחלק או אם תרצה הם י' חלקים מי"ז עם ז' חלקים מי"ג בחלק
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נשארו קצנחסרנו ממאתים אלף ישארו קצ"ט אלפים ותתוהדבר יצא שוה
+
|style="text-align:right;"|או אם תרצה תחשוב י' פעמים רכולא תצטרך אלא לשום בראש ר'כ'ה' (רכ"א) גלגל שבעשותך כן העלית כל אות ממנו מדרגה אחת שהיא עשרה ותחבר עמו כפל הז' בי"ז שהוא &#x202B;<ref>54v</ref>ק'י'ט&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ולידע השורש נוסיף ז' שעלה בחלוק על השרש שהוא ת"ם היה תמ"ז והוא השרש
 
|-
 
|
 
|style="text-align:right;"|
 
  
== נתנו לו כל מה שיכולנו ==
+
=== We multiply the first number ===
  
 +
|style="text-align:right;"|והנה נכפול המספר הראשון
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נתנו לו כל מה שיכולנו והנה המ' אלף עלה בחלוק כ"ה בצמצום והנה נתן לו יותר חלק אחד שנחברהו מן השש מאות אלף נוכל ליקח מרובע מה שעלה בחלוק והיו כ"ו וכן נחסר כ"ו משרש ומרובע הנמשל שהוא ת"ת והנה שרש מספרנו תשע"ד נחלק המספר הנשאר שהוא אלף אלפים על ד' אלפים
+
|style="text-align:right;"|רצה במספר ראשון התנאי ובמספר השני המעשה ר"ל מדת הספירה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|והנה לא נתן לו רק רל"ו שהם תת"קמ"ד אלפים ונשארו נ"ו אלפים נקח מהם מרובע מה שיעלה בחלוק שהוא נ"ה אלפים ותרצ"ו וזהו המרובע ונשאר ש"ר ואם ד' אלפי אלפים תחסרנו מאלף אלפים שאר המבוקש שהזכרנו
+
=== Now we set the proportion diagram ===
 +
 
 +
|style="text-align:right;"|ועתה נעשה דמיון הערכים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ונחבר רל"ו שעלה בחלוק עם שרש ראשון שהוא אלפים והוא השרש המבוקש
+
|style="text-align:right;"|ויהיו קצוות בקשתם שהוא המספר הקטן ומעורב בתנאי שהוא הגדול שבד' המספרים הנערכים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וזה גם כן העולה מחשבון הספר אלא שמחלק זה חלוקת רבות חלוק אחר חלוק ערך מרובע אל מרובע מרובע אותו הערך העולה הוא מרובע
+
|style="text-align:right;"|ונאמר כי ערך הריוח המבוקש אל י"א כערך ק"כ אל ר"י
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|והמבחן שאם תחלק השרש הגדול על השרש יצא שרש ערך
+
|style="text-align:right;"|על כן נכפול האמצעיים שהם ק"כ וי"א ונחלק על ר"י שהוא הקצה האחרון הנודע והעולה יהיה הקצה הראשון הנעלם
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|דמיון חלקנו ס"ד על י"ו עלה ד' וזה הערך הוא מרובע ושרשו הוא היוצא מערך ד' אל ח' שהוא ב' והנה הוא כפלו וב' שביעיות שביעיות וזהו מרובע
+
|style="text-align:right;"|או אם נרצה נעשה אלו האמצעיים קצוות שנאמר ערך ק"כ אל ר"י כערך המבוקש אל י"א והכל שוה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם נחזירנו לשביעיות שביעית ותחבר עמהם הב' היו ק' ושרשם י' שביעיות שהוא אחד ש' שלם וד' שביעיות כי שרש הנשברים גדול ממרובע
+
=== You can convert them into hours of the day ===
 +
 
 +
|style="text-align:right;"|ותוכל להשיבם לשעות היום
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|בקשנו לדעת מרובע מספר ידוע
+
|style="text-align:right;"|ר"ל תוכל להשיב הז' תשיעיות לשעות היום בדרך הערכין ותכתוב כן כי כערך ז' תשיעיות אל ט' יש לשעור היום המבוקש מי"ב
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כגון שנרצה לידע מרובע ממרובע כ"ה <ref>60א</ref>כ"ה שהוא ידוע למספר ה' שהוא ידוע נחלק י' על ה' ועלה שנים ומרובעם ד' נכפול ד' על כ"ה ועלה ק' שהוא מרובע ד' ועל זה הדרך בכלם
+
=== We know that the ratio of 12 to 9 is the same as it plus its third ===
 +
 
 +
|style="text-align:right;"|ידענו כי ערך י"ב אל ט' כמהו ושלישיתו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|
+
|style="text-align:right;"|כלו' תשיעית יום הוא יותר מחלק י"ב מיום השלישית והוא שעה ושליש על כן נחשוב בעבור ז' תשיעיות ז' שעות וז' שלישי שעה
== ואם חברנו שלשה מרובעים ונכפלם ג' פעמים ==
 
 
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם חברנו שלשה מרובעים ונכפלם ג' פעמים ר"ל אם נחבר ג' מרובעים ונכפלם המחובר על ג' ונשמור זה העולה ונקח מרובע היתרון שבין הראשון לשני ומרובע היתרון שבין השני לשלישי ומרובע היתרון שבין הראשון לשלישי ותחבר אלה הג' מרובעים והמחובר חסרהו מהעולה תחלה והנשאר מהעולה הוא מרובע ושרשו המחובר מג' המרובעים הראשונים
+
=== Since we have a third, we convert all to thirds ===
 +
 
 +
|style="text-align:right;"|והנה בעבור שיש לנו שלישית נשיב הכל לדרך שלישית
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ועל זה הדרך אם חברת ד' מספרים ותכפלם ד' פעמים או אם חברת ה' מספרים ותכפלם ה' פעמים
+
|style="text-align:right;"|כלומ' נעשה מכל הימים שלישיים והנה כערך י"ג אל מ"ז כן ערך מה שיקח מן הזהוב
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואומר לך כלל שתוכל לדעת ממנו וכו'
+
=== We want to know how much each one has to work for the 13 ===
 +
 
 +
|style="text-align:right;"|ונבקש לדעת כמה חייב כל אחד שיעבוד בעבור י"ג וכו&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|לעולם חסר אחד מהמספר המחוברים וראה סך המחובר מא' עד סוף מספר הנשאר בדרך שאמר בשער החיבור וככה מספר היתרונים כגון שהיו המספרים ד' חסר אחד והיו ג' והמחוברים מא' עד ג"ו וכן היתרונים ו'
+
|style="text-align:right;"|ונאמר כערך י"ג אל מ"[ז] שהוא הזהוב הנה ערך עבודתו אל כ' שלישיים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|רק אם יהיה בו רביעית כלומ' אם נמצא במרובע רביעית ידענו כי בשרש היה חצי ממנו יצא אם היה בו ששית ששית מששית יצא וכן בשאר
+
|style="text-align:right;"|עלו ה' שלישיות נשארו כ"ה חלקים ממ"ז שהוא שלישית ששלישית יום הוא ד' שעות
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם היה בו חצי שמינית שהוא חלוק מי"ו הנה מהרביעית יצא
+
|style="text-align:right;"|אם כן הכ"ה חלקים הם כ"ה חלקים ממ"ז חלקים שבד' שעות היום
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכן שניים שהם כמו רביעית יצאו מראשונים שהם חצי ורביעים יצאו משניים אבל שלישיים וחמשיים ושביעיים ושמניים אין להם שורש אמת
+
=== We multiply also 25 parts by four; the product is one hundred ===
 +
 
 +
|style="text-align:right;"|גם נכפול כ"ה חלקים על ארבעה עלו מאה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|הסתכל אם היה מרובע רביעית דע כי בשרש חצי
+
|style="text-align:right;"|כי אם יש לו כ"ה חלקים מד' שעות שבמ"ז הנה מכל שעה כ"ה חלקים ממ"ז בשעה יעלה לד' שעות ה' &#x202B;<ref>55r</ref>ה' חלקים ממ"ז שבשעה נחלקם על מ"ז שנחשבהו עתה שעה אחת ונשארו ו' חלקים ממ"ז בשעה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כגון שהיו לך י"ב שלמים ורביעית הנה בשרש היה חצי נשיב הכל לרביעיות היו מ"ט ושרשם ז' חצאים שהם ג' וחצי והנה כאשר נכפול ג' וחצי על עצמם יצא לך י"ב ורביעית
+
|style="text-align:right;"|והנה נעשה הערך לשמעון
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|תכפול מ' על מ' ראשונים שהם שתי שלישית מעלה יהיו אלף ות"ר
+
|style="text-align:right;"|כי כערך י"ג אל מ"ז כן ערך עבודתו אל ט"ו שלישיות
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|
+
=== We divide them by three ===
 
 
== ואם עשינו מזה המספר שלישיות ==
 
  
 +
|style="text-align:right;"|נחלקם על שלשה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם עשינו מזה המספר שלישיות ר"ל בעבור שהזכרנו שלישיות נשיב הו' ראשונים שנעשה מכל ראשון שהוא ס"ג שלישיות <ref>60ב</ref>יהיה עם הב' שלישיות עשרים וכבר אמרנו שהם כ"ו ראשונים ומ' שניים הם תשיעית אחת מס'
+
|style="text-align:right;"|כלומ' שנחזירם לשלמים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|שוב וחשוב כי הם ראשונים כי שרש שניים הוא מראשונים יהיו אלף ות"ר שניים שכל ע' הם ראשון אחר נכפול מ' על ס' ונחלק העולה על ע' כי כערך מ' אל ע' יהיה ערך העולה מס' על כן נכפול הקצוות שהם מ' על ס' ונחלק על ע' שהוא האמצעי ומה שיצא יהיה ערכו מס' יעלו ל"ד ראשונים וישארו ב' שהוא שניים יעלו ז' שהם <s>ראשונים</s> שניים וישאר לנו מהשלישיים י' שהם שביעית אחת מע' נעשה ממנו ששים והם רביעיים
+
=== We multiply also 7 by 4 ===
 +
 
 +
|style="text-align:right;"|גם נכפול ז' על ד&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נכפלנו עוד ויהיו ג' אלפים ות"ר חמישיים נחלקם על ע' יעלו כ"א רביעיים
+
|style="text-align:right;"|כי הז' הם חלקים ממ"ז שבו ד' שעות וכשנקח כן מכל שעה יהיו כ"ח ממ"ז בשעה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ונעשה חלקנו תשעים ר"ל נעשה אחד מצ' חלקים
+
=== Make the diagram like this ===
 +
 
 +
|style="text-align:right;"|תעשה הדמיון ככה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כפלנוהו על עצמו והם ת'ת'ק' נחלקם על צ' ועלה י' חלקים ראשונים והם המרובע ושרשם ל' ראשונים אם אמת כי המרובע חלק אחד ומ' שניים ר"ל הוא נכון שהוא מרובע כי חלק מס' ומ' שניים הוא ששית הששית מס' כי הששית הוא וששית י' הוא ראשון אחד ומ' שניים אם כן השורש הוא י' כי מכפל ששית יצא ששית הששית ומרובע י' ראשונים הוא ק' שניים שהוא ראשון אחד ומ' שניים
+
|style="text-align:right;"|כי כערך ו' אל א' הוא ערך הנשאר אל ג' ושליש
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|
 
  
== והנה במספר שיש לו ערך אל ששים ==
+
=== Another example: he has 9 measures of must and he wants them to be cooked until the third part of it remains ===
  
 +
|style="text-align:right;"|דמיון אחר היו לו ט' מדות תירוש ורצה שיתבשלו עד שישאר השליש וכו&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|והנה במספר שיש לו ערך אל ששים ר"ל א'ע'פ' שקצת המספרים שלא יאותו במקום אחד להיות מרובעים ובכאן לפי שיש להם ערך אל ס' הם מרובעים כמו ט"ו כי הוא רביעית ס' ושרשו ל' ראשונים שהם חצי אך לא יתכן זה בכל המספרים כי י' שהוא ששית אינם מרובע כל שכן המספרים שאין להם ערך כלל אל ס' שאינם מרובע כגון י"א גד יד יט נחלקם על כפל השרש שעבר שהוא ששה
+
|style="text-align:right;"|ונשארו שנים והנה כערך ב' אל ו' כן ערך הנשאר אל ג&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי לעולם כשנעלם ממנו שרש מרובע אחד כגון שלא נדע שרש ק' על דרך משל נבקש מרובע שעבר שהוא פ"א ששרשו ט' ונביט מה המרחק שבינו לבין ק' <ref>61א</ref>ק' והוא י"ט נחלקם על כפל השרש שעבר שהוא י"ח ונוסיף עליו המרחק שבין ט' לי' ועלה אחד נוסיף האחד <s>עש</s> על שרש ה' ראשון והיה י' והוא שרש ק' וכן בכאן נחלק המרחק על ו' יהיו ב' ראשונים והנה השרש ג' שלמים וב' ראשונים שהם שלישית אחת נכפלם ועלה י"א שלמים ותשיעית
+
=== Question: an amount of money, we sum its fifth ===
 +
 
 +
|style="text-align:right;"|שאלה ממון חברנו חמישיתו וכו&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם תרצה השב הי"א לתשיעיות והם עם התשיעיות ק' ושרשם י' שלישיות שהם ג' שלמים ושליש
+
|style="text-align:right;"|נעשה הערך כי כערך ק'מ'ג' על ש'ט'ו' כן ערך י' אל הממון והנה נרצה לידע הקצה האחד על כן נכפול האמצעיים זה על זה שהוא ש'ט'ו' על י' נחלקנו על הקצה הידוע
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וזה שנניח השבר לפי שכל השאר נחלק ולא נקח ממנו מרובע החלוק כי לא יתכן והנה במרובע תוסף אם בשלמים נחלקים כל המרחק ונניח כדי מרובע החלוק ונוסיף הנשאר בשרש והכל שוה
+
=== We do the opposite: An amount of money - we have subtracted from it ===
 +
 
 +
|style="text-align:right;"|נעשה להפך ממון חסרנו ממנו וכו&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ידענו כי יש בחשבון חומש החומש כי הכ"ד שניים ה' הם ב' חמישיות מראשון והנה חמישית לא יתכן היותו מרובע על כן הוא חומש החומש וכמה הוא חומש החומש שיש בכלל זה המרובע ב' חלקים וכ"ד שניים כי באמת חומש חומש היה בשורש שהוא י"ב וחומש הוא ב' ומק"כ ראשונים נעשה שניים שמן ק"כ וחמישיתם כ"ד והנה המרחק מהמרובע שהוא אחריו שהוא ט'
+
|style="text-align:right;"|נעשה הערך ונאמר כי ערך י' שהוא הנשאר אל כל הממון כערך ק'ע'ב' אל ש'ו&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|דע כי לעולם יהיה בין שנים מספרים ר"ל המרחק בין שני מרובעים הסדורים במספר שרשיהם על כן כשתדע מרובע אחד ולא השני לו חבר שרשיהם עם מרובע הנודע
 
|-
 
|
 
|style="text-align:right;"|
 
  
== והנה הסתכל המספר שתרצה ==
+
=== Five remain ===
  
 +
|style="text-align:right;"|ישארו חמשה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|והנה הסתכל המספר שתרצה וכו' ר"ל אם תבקש לידע שרש אי זה מרובע שיהיה כגון שתרצה לידע מרובע י"ב שהוא בין ובין י"ו והנה הסתכל  מרחקו ממרובע שעבר שהוא ט' אם היה בשרש ט' שהוא ג' והמספר נקרא אמצעי לפי שאם תחלק המרחק על אי זה משני המרובעים שתרצה תהיה חלוקתך שוה שאם תחלוק ג' על ו' שהוא כפל שרש שעבר יצא בחלוק חצי וכן אם תחלוק ד' שהוא המרחק שאחריו על כפל השרש שאחריו שהוא ח' יהיה חצי והדבר שוה
+
|style="text-align:right;"|והנה אם היה הנשאר מן האילן ה' לבד היה י"ב הוא כל הגובה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|
+
|style="text-align:right;"|אך בעבור שהוא י' נעשה הערך ונאמר כי כערך ה' אל י"ב ערך י' אל כל האילן
== וכל מספר שיהיה פחות מהאמצעי כגון י"א הוציאהו ממספר המרובע שעבר ==
 
 
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|<ref>61ב</ref>וכל מספר שיהיה פחות מהאמצעי כגון י"א הוציאהו ממספר המרובע שעבר ר"ל שתקח המרחק שבין מספרך ובין המרובע שעבר וחלקהו על כפל שרשו ואם היה המרחק יותר משרש שעבר עשה חשבונך במרובע העתיד
+
|style="text-align:right;"|ונכפול האמצעיים שהם י' על י"ב
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם חשבונך היה במאות ובאלפים זה השרש יספיק לך כי לרבויו לא יוכר בו הטעות והחסרון ויותר יוכר בו אם נקחהו מהקטן כי החסרון והשגגה הולך ורב עד כי גדל מאד רק אם היה המספר קטן אתה צריך למספר שני לפי שלא לקחת ממנו מרובע החלוק
+
|style="text-align:right;"|או נשיב האמצעיים קצוות כשנאמר כן ערך אל כל האילן כערך ה' אל י"ב
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ופעם נקח השורש בקטן מהגדול ויצא מדוייק כמו שעתיד לבאר לפי שטענת הגדול יתמעט כל אשר ירד ויחלק ויבלע מאד
+
|style="text-align:right;"|ונכפול הקצוות שהן י' וי"ב והכל אחד
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם רצית לדעת שרש עשרים אלף כפול זה השרש על עשרה לפי שה<s>ש</s>שרש גם כן יכפול ויעלה למדרגה אחרת כי שרש המאות עשרות ושרש הרבבות מאות והנה שביעית מל"ד
+
=== The Gentile sages divide the money according to the ratio of the share of each ===
 +
 
 +
|style="text-align:right;"|וחכמי הגויים יחלקו זה הממון על דרך ערך ממון כל אחד
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וזה בקירוב כי עדיין ישארו ב' שניים שלא לקחנו שביעיתם יהיו ת'ק'י'ד' ועשיריתם ר"פ וזה בקירוב
+
|style="text-align:right;"|ר"ל כדרך חכמי החשבון
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נעשה מהנשארים שהם ק'י'ט' ראשונים
+
=== The wise men of Israel divide it ===
 +
 
 +
|style="text-align:right;"|וחכמי ישראל מחלקים אותו וכו&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נחלקם על ר'פ'ב' שהוא כפל ק'מ'א' עלו כ"ה חלקים ראשונים וישארו צ' חלקים והנה לא נוכל לחלקם על ר'פ'ב' נשיבם שניים והם ה' מב' נחלקם על ר'פ'ב' שהם שרשנו עלו י"ט שניים וישארו מ"ב שלא יתחלקו ואלו ראשונים וי"ט שניים נוספים על שרשנו שהוא ק'מ'א' ואם רצה לדקדקו עוד ישיב המ"ב לשלישיים ויחלקם על ר'פ'ב'
+
|style="text-align:right;"|למטה יפרש זה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ודע כי כל שברים שתחלק על שלמים יעלה אותו המין מן השבר וכשתחלק מין שברים פחות על מין שבר יותר גדול נחסר מספר הגדול ממספר הפחות והנשאר הוא העולה החלוק
+
 
 +
=== The arithmeticians ===
 +
 
 +
|style="text-align:right;"|וחכמי החשבון
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נחלק כל מה שאמרנו מן השלמים והשנים על מאה כי כמו שאמרנו כשבקשנו שרש שניים משרש <ref>62א</ref>משרש מאתים שלקחנו עשירית שרש מאתים לפי שהוא כפלו י' פעמים כן נאמר עכשו כשנוציא שרש שניים משרש עשרים אלף שהוא כפלו מאה פעם שנקח אחד ממאה שבו הנה מן המאה קח אחד שלם ונקח בעבור המ"ב חמישיות ז' שהן כ"ד מס' לפי שערכם אל מאה כן והאחד שנשאר מק'מ'א' נעשנו ס' ראשונים ועם הכ"ה היה פ"ה והנה בעבור הפ' תקח ד' חמישיות מס' ובעבור הה' שהוא רביעית חמישית ק' נקח רביעית חמישית ס' שהוא ג' והרי לנו נ"א ובעבור הי"ט שהוא פחות אחד מחמישית מאה לקח חמישית ס' פחות א' והוא י"א
+
|style="text-align:right;"|יבקשו ממון שיהיו בו אלו החלקים ויקחו ממנו ערך לזה הממון אם לא כמהו שאם היה כמהו הנה נמצא
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם תכפול כל חשבון שהוא כפל מרובע נראה שכך הוא סדר הדבר אם תרצה לידע שרש חשבון שהוא כפל מרובע כפול שרש חציו על זה ושרש ר"ל שרש ב' השבר
+
=== The total is two and one-half of one-sixth ===
 +
 
 +
|style="text-align:right;"|יהיה הכל שניים וחצי ששית
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כי כל חשבון שתכפול על שרש מאחד יהיה מרובע אותו הנכפל נכפל אותו חשבון על עצמו מדמיוני מרובע השרש הראשון המיוחד ר"ל שכפי מספר כפל החשבון נחשוב כך פעמים המרובע הראשון
+
|style="text-align:right;"|כי השלישית הוא רביע וחלק מי"ב
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|המשל בזה כפלנו ב' שהוא שרש ד' על ג' והוא ו' הנה כפל ג' ט' נכפול ט' על מרובע ראשון שהוא ד' והוא ל"ו שהוא מרובע ו' ואם נכפול ה' על ב' שהוא י' הנה מרובע ו נכפל ה' שהוא כ"ה כפול על ד'
+
|style="text-align:right;"|והשברים &#x202B;<ref>55v</ref>והנ השברים י"ג ובקש הכל כ"ה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|רצינו לדעת כמה שרש י"ח הנה כפלנו שרש המרובע שעבר שהוא ג' על זה המספר שהוא א'נ"ד כ"א י"א שוה המספר שהוא י"ח כפלו ר"ל ממרובע ג' שהוא יעלה ד' שלמים י"ד ראשונים ל"ג שניים ל"ג שלישיים
+
=== We set the proportion at [60] ===
 +
 
 +
|style="text-align:right;"|נעשה הערך ככה על דרך
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם כפלנו זה המספר שהוא שרש י"ח יהיה זה הנשנה שרש ע"כ כי לעולם כפל שרש מרובע אם יהיה מרובעם כפל מרובע ראשון כמו שרמזנו למעלה מן חציו הוא שרש רביעית מרובע ראשון
+
|style="text-align:right;"|ר"ל שנקח האחד ששים ונחבר אליו החלקים השברים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|
+
=== This is the proportion of the money that Reuven takes ===
== ואם נקח מרובע ז' אלפים ור' ==
 
  
 +
|style="text-align:right;"|וזה צורת ערך הממון שיקח ראובן
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם נקח מרובע ז' אלפים ור' ר"ל אם נקח זה המספר מקום מרובע ונבקש לידע שרשו נעשה על הדרך הנזכר שנקח שרש חציו שהוא ס' <ref>62ב</ref>ונכפלהו על א'נ"ד נ"א י"א יהיה שרש ז' אלפים ור' פ"ד נ"א י"א וזהו שרש שנים בעצמו אלא שהעלינו כל מספר למדרגה עליונה ממדרגתו שהוא מס' לס' עד ששבו השלישיים שניים והשניים ראשונים והראשונים שלמים
+
|style="text-align:right;"|כלומ' שאם היה הממון קכ"ה הנה היה נוטל ששים שהוא כל האחד אך עתה שאינו רק ק"כ אין ספק כי פחות מס' יקח לפי חסרון ק"כ מן [.] ק'כ'ה' על כן נעריך ונאמר כי כערך ק"כ אל ק'כ'ה' יהיה ערך מה שיקח מס' או נאמר ערך ס' אל מה שיקח כערך ק'כ'ה' אל ק"כ ומכל מקום נכפול הקצוות שהם על ק"כ ועל זה הדרך צורת כל אחד כי אלו היה ק'כ'ה' היה שמעון נוטל עתה יחסר מזה כפי גרעון ק'כ'ה' מק'כ'ה' ונעשה צורתו ככה וצורת חלק לו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|
+
=== In a shorter way Shimon takes a half of Reuven's share ===
  
== כי השיבונו אותם בדרך ראשונים והנה חשוב אלה שיהיו שלמים ==
+
|style="text-align:right;"|ובדרך קצרה יקח לעולם שמעון חצי חלק ראובן
 +
|-
 +
|
 +
|style="text-align:right;"|כמו שהיה אלו היו ק'כ'ה' על כן לעולם אחר שנדע חלק ראובן על דרך הערך אין צריך להעריך האחרים
 +
|-
 +
|
 +
=== According to the procedure of the sages of Israel ===
  
 +
|style="text-align:right;"|ועל דרך חכמי ישראל וכו&#x202B;'
 +
|-
 +
|
 +
|style="text-align:right;"|איפשר שאמ' כן לפי מה ששנינו זה אומר כלה שלי וזה אומר חציה שלי (בבלי, בבא מציעא א ד"ב ע"א, משנה) וכו&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וזה רצה באמרו כי השיבונו אותם בדרך ראשונים והנה חשוב אלה שיהיו שלמים ר"ל שאם היה לנו זה השורש שהוא פ"ד נ"א י"א ולא היה לנו שרש ב' נוריד זה השרש מס' לס' ונתיכהו כדרך שהרכבנוהו ויגיע לנו שורש ב'
+
=== You have already took your share of the thirty ===
 +
 
 +
|style="text-align:right;"|וכבר לקחת חלקת מהשלישים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם תכפול זה המספר על עצמו ר"ל המבחן על זה השרש שנכפלהו על עצמו ונשיב הכל אם נרצה למדרגה שהוא שלישיים ונכפלם על עצמם והם ששיים ונחלקם על ס' עד שנשיבם לשניים וראשונים ומעלות וישאר בכל אחד מה שלא יתחלק על הדרך שהורינו בסוף שער חמישי תמצא בסוף שלא ישאר אפי' שני אחד וכל שכן ראשון כל זה אמר להראות דיוק זה השרש
+
|style="text-align:right;"|כלו' באותם מ' שהיית תובע בל' היינו ד' חולקים ועל כן לקחנו כל אחד רביע ונשאר מהם י' שאתה תובע והנה בהם ג' חולקים על כן תקח שלושים
 +
|-
 +
|
 +
=== Which all four of us have claimed ===
 +
 
 +
|style="text-align:right;"|שארבעתנו ערערנו עליהם
 +
|-
 +
|
 +
|style="text-align:right;"|כי הגדולים מערערים בכל חלקי הקטנים כי בכלל חצי השליש והרביע ולא בהפך
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|
 
== נשוב להוציא שורש שנים ==
 
  
 +
=== When determining the moon and also when determining 5 planets ===
 +
 +
|style="text-align:right;"|כי בתיקון לבנה בתיקון ה' משרתים
 +
|-
 +
|
 +
|style="text-align:right;"|אך לא בתיקון חמה
 +
|-
 +
|
 +
=== There is a row that is called the row of ratio ===
 +
 +
|style="text-align:right;"|טור יקרא טור הערך
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נשוב להוציא שורש שנים ר"ל בדרך אחרת
+
|style="text-align:right;"|טור הערך טור אחד שבו מספרים רבים על הסדר זה למעלה מזה שכנגד כל מספר מהם ימצא &#x202B;<ref>56r</ref>ימצא מספר אחד בטור אחד שבו מספרים שהם בסדר זה למעלה מזה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ויספוק לנו השרש הראשון ר"ל לא נצטרך להוציא שרש ב' מד' או מעשרים אלף כי יספיק לנו להדריכנו אל האמת השרש הראשון במה שנעשה בו כמו שמבאר והולך ובעבור שיש לנו ששיות כי הנ' הם ה' ששיות וכו'
+
|style="text-align:right;"|ואותו טור הבא אחר טור הערך יקרא טור חמישי או שביעי
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נשיבם הכל מערך ו' והיו י"ז וכן נשיב הנ"ה לששיות שנכפלם על ו' ועלה ק"נ ועתה יכשר לחלקם על הי"ו עלו מ"ט שלישיים ונשארו א' שלא יתחלקו
+
|style="text-align:right;"|ונראה איזה מספר יש בטור הערך ונביט מה ערך יש לו אל ס' אם שליש או רביע וכפי זה נקח מטור החמישי או השביעי ואם היה בו ס' נקח כל הכתו' בטור החמישי
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|
+
=== Example: you have 40 fractions exceeding over the degrees and in the row of the ratio there is 15 ===
== ואלו היינו מדקדקים עוד מדרך מרובע המ"ט ==
 
  
 +
|style="text-align:right;"|דמיון יש עמך חלקים יתרים על המעלות מ' ובטור הערך ט"ו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואלו היינו מדקדקים עוד מדרך מרובע המ"ט ר"ל שנקח מרובעם ונחלקם על כפל השרש שהיה לנו שהוא ב' מ"ט מ"ב כ"ב ונחשוב כי הכל בנ' ובעבור שהנ' הם ד' ששיות נשים הכל ששיות והיו י"ז ונשיב אצל המ"ט והקי לנו ת'ק'כ'ט' שלישיים נעשה מהם מרובע ויהיו ששיים נחלקם ונגיעם עד רביעיים ונשיבם מערך ששיות <ref>63א</ref>ששיות ונחלקם על י"ז שהיה לנו נתן לו כ"ז רביעיים כ"ז חמישיים נחסרם משרש שלנו וישאר א'כ"ד נ"א י' ל"ט ל"ד
+
|style="text-align:right;"|לא הוצרך להראות לקיחת הערך מן המעלות כי נקל הוא
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואנחנו דקדקנוהו יותר ולקחנוהו משרש ב' אלפי אלפים ויצא מדוייק בתכלית הדיוק א'כ"ד נ"א י' ז' מ"ז כי לא ישאר אפילו רביעי ולא חמשים רק ב' ושרש נ' המוצא ממנו זד טו ד' לח נה ושרש ה' אלפים עד מב כג לא כט
+
|style="text-align:right;"|אך הוצרך להראות בחלקים וכל שכן כשלא ימצא להם ערך
 +
|-
 +
|
 +
=== They are 22 and one-half that are 30 seconds ===
 +
 
 +
|style="text-align:right;"|והנם כ"ב וחצי שהם ל' שניים
 +
|-
 +
|
 +
|style="text-align:right;"|כי לא נכתוב בלוחות חצי
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ונשיב הכל מערך שלשה והיו י"ט וכן נשיב ק'ה'ק' לשלישיות שהם ש' ועלו ט"ו נשיבם שניים
+
=== We multiply 3 by 20; they are 60 ===
|-
+
 
|
+
|style="text-align:right;"|נכפול ג' על כ' יהיו ששים
|style="text-align:right;"|נראה שהוא שלישיים יהיו שלש מאות
+
|-
|-
+
|
|
+
|style="text-align:right;"|וכן נוכל להפך ולומר כמה ערך כ' אל ס' שליש כן נקח שליש אחד והוא ראשון אחד
|style="text-align:right;"|נראה זה טעות כי השניים הנשארים הם ט"ו וכשנשיבם שלישיים יעלו ת'ת'ק' וכשנחלקם על י"ט יעלו מז שלישיים מעשרה חלקים ישארו ט' מ"ד י"ג וכשנדקדקהו ונעשה מרובע מה שעלה בחילוק ונחלק על כפלם השרש יעלה בחלוק שלישי אחד נחסרהו מי"ג וישאר השורש כ"ט מ"ד י"ב
+
|-
|-
+
|
|
+
 
|style="text-align:right;"|וכשנכפול זה החשבון על עשרה וכו' כי מה שהוא במעלה הראשונה אחדים יהיה באלפים עשרות
+
=== Since we have add two ===
|-
+
 
|
+
|style="text-align:right;"|ובעבור שהוספנו שנים
|style="text-align:right;"|
+
|-
== חלקנוהו שרש י"ח ==
+
|
 
+
|style="text-align:right;"|ר"ל בחשבוננו שמנינו אותם יותר מן הראוי
|-
+
|-
|
+
|
|style="text-align:right;"|חלקנוהו שרש י"ח ר"ל אם נרצה לדעת שרש י"ח משרש כבר ידענוהו משרש כשכפלנוהו ושרשו אחד וחצי ככה שרש י"ח הוא כפל שרש ח' וחצי הכפל שהוא ג' פעמים שורש ב'
+
=== Always see if there are any fractions added to the degrees of the determined center ===
 +
 
 +
|style="text-align:right;"|ולעולם ראה אם היו חלקים נוספים על מעלות המוצק המתוקן
 +
|-
 +
|
 +
|style="text-align:right;"|טור אחד יש לפני טור הערך שבו מספרים רבים זה למעלה מזה כל מספר שבו כנגד מספר שבטור הערך וממנו יכנסו &#x202B;<ref>56v</ref>לטור הערך ויקרא המוצק המתוקן
 +
|-
 +
|
 +
|style="text-align:right;"|כגון שבטור המוצק כ' וכנגדו בטור הערך ט"ו ולמטה בטור המוצק כ"א וכנגדו בטור הערך י"ו וכן על הסדר הולך ומוסיף
 +
|-
 +
|
 +
|style="text-align:right;"|והנה אם היו יותר מל' חשבם במעלה אחת והכנס בטור הערך למטה
 +
|-
 +
|
 +
=== If you find the determined quotient between 4 constellations ===
 +
 
 +
|style="text-align:right;"|ואם נמצאת המנה המתוק' שהוא ב' ד' מזלות
 +
|-
 +
|
 +
|style="text-align:right;"|שאם היה פחות מד' או יותר מח' עשה כדרך שהראיתיך במעלות המוצק שאם אין לך לא תחוש אך מד' ועד ח' דקדק באלו החלקים ליקח ערך
 +
|-
 +
|
 +
|style="text-align:right;"|כגון שהיו לך ל' חלקים נוספים על ד' מעלות
 +
|-
 +
|
 +
|style="text-align:right;"|והנה אם לא היו הל' היה נכנס בט"ו בטור הערך
 +
|-
 +
|
 +
|style="text-align:right;"|ואם היה לנו מעלה אחת יותר היה נכנס בי"ו
 +
|-
 +
|
 +
|style="text-align:right;"|כי בעבור כל מעלה יוסיף אחד
 +
|-
 +
|
 +
|style="text-align:right;"|עכשיו שיש לנו חצי מעלה נוסיפנו עם הכתוב במעלת הד' ונראה מה ערך ט"ו וחצי אל ס' ונעשה בדרך הכפל כפי צרכנו
 +
|-
 +
|
 +
 
 +
== Chapter Seven ==
 +
 
 +
|style="text-align:right;"|<big>השער השביעי</big>
 +
|-
 +
|
 +
=== The first way is roots ===
 +
 
 +
|style="text-align:right;"|<span style=color:blue>'''הדרך האחד שרשים וכו&#x202B;''''</span>
 +
|-
 +
|Meaning: every number is required due to being a roots, or due to being a square, or required due to neither of those two.
 +
|style="text-align:right;"|ר"ל כל חשבון יבוקש מצד שהוא שורש או מצד שהוא מרובע או &#x202B;<ref>57r</ref> או לא יבוקש מטעם אחד מאלו השנים
 +
|-
 +
|
 +
=== There are numbers that have no true root at all ===
 +
 
 +
|style="text-align:right;"|<span style=color:blue>'''ויש חשבון שאין לו שורש אמת כלל'''</span>
 +
|-
 +
|Meaning: we do not know its true and exact root.
 +
|style="text-align:right;"|ר"ל שלא ידענו שרשו באמת ובדקדוק
 +
|-
 +
|
 +
=== One is a root and a square ===
 +
 
 +
|style="text-align:right;"|והיה האחד שרש מרובע
 +
|-
 +
|Because, one [multiplied] by one [is one].
 +
|style="text-align:right;"|כי אחד על אחד
 +
|-
 +
|
 +
=== Check if the scales of the square ===
 +
 
 +
|style="text-align:right;"|<span style=color:blue>'''הסתכל אם לא היו מאזני המרובע וכו&#x202B;''''</span>
 +
|-
 +
|Meaning: if you find a number and you wish to know if it is a square or not:
 +
|style="text-align:right;"|כלומ' אם תמצא מספר אחד ותרצה לדעת האם הוא מרובע אם לא
 +
|-
 +
|Check if it is all cast out by nines, or how much remains.
 +
|style="text-align:right;"|הסתכל אם יהיה הכל ט'ט' או כמה ישאר
 +
|-
 +
|Look at the remainder from the nines in the root and multiply it by itself.
 +
|style="text-align:right;"|וראה בשורש הנשאר מט' וכפלהו על עצמו
 +
|-
 +
|If the remainder from the nines after the multiplication is the same as the remainder from the square, it can be a square.
 +
|style="text-align:right;"|ואם יהיה הנשאר מט' אחר הכפל כנשאר מן המרובע אפשר להיותו מרובע
 +
|-
 +
|Because when the root is multiplied, the scales are multiplied, and the remainder from their product remains in the square.
 +
|style="text-align:right;"|כי בהכפל השורש נכפלו המאזנים והנשאר מכפלם ישאר במרובע
 +
|-
 +
|If it is not found so, you know for sure that it is not square.
 +
|style="text-align:right;"|ואם לא ימצא כן תדע באמת שאינו מרובע
 +
|-
 +
|Example: if someone tells you: 121 is a square.
 +
|style="text-align:right;"|המשל בזה אם יאמר לך אדם ק'כ'א' הוא מרובע
 +
|-
 +
|Check its scales; they are 4.
 +
:<math>\scriptstyle{\color{blue}{121_9\equiv4}}</math>
 +
|style="text-align:right;"|הסתכל במאזניו והנם ד&#x202B;'
 +
|-
 +
|You find the same in the product of the scales of its root, which is 11.
 +
:<math>\scriptstyle{\color{blue}{\left(\sqrt{121}_9\right)^2=\left(11_9\right)^2\equiv4}}</math>
 +
|style="text-align:right;"|ככה תמצא בכפל מאזני שרשו שהוא י"א
 +
|-
 +
|Therefore, his statement is correct.
 +
|style="text-align:right;"|על כן נאותו דבריו
 +
|-
 +
|But, if he says that 122 is a square, deny it.
 +
|style="text-align:right;"|אך אם אמר כי ק'כ'ב' הוא מרובע הכחישהו
 +
|-
 +
|
 +
=== Other scales ===
 +
 
 +
|style="text-align:right;"|<span style=color:blue>'''מאזנים אחרים'''</span>
 +
|-
 +
|Examined only by the knowledge of the remainder from the scales of the square and there is no need to look at the root
 +
|style="text-align:right;"|יבחנו מידיעת הנשאר על מאזני המרובע בלבד ולא יצטרך להסתכל בשרש
 +
|-
 +
|If the remainder is 2, or 3, or 5, or 6, or 8, it is not a square.
 +
|style="text-align:right;"|שאם ישאר כגב' או ג' או ה' או ו' או ח' אינו מרובע
 +
|-
 +
|For, the scales of the square are always derived from the scales of the root, which are from 1 to 8.
 +
|style="text-align:right;"|כי לעולם יצאו מאזני המרובע ממאזני השורש שהם מא' עד ח&#x202B;'
 +
|-
 +
|The product of one of them [by itself] never produces in the square any of the mentioned numbers, which are 2, 3, 5, 6, 8.
 +
|style="text-align:right;"|והנה מכפל אחד מהם לא יולד לעולם במרובע אחד מהמספרים &#x202B;<ref>57v</ref>הנזכרים שהם ב'ג'ה'ו'ח&#x202B;'
 +
|-
 +
|The result of the product is only 1, or 4, or 9, or 7.
 +
|style="text-align:right;"|רק היוצא מן הכפל א' או ד' או ט' או ז&#x202B;'
 +
|-
 +
|Therefore, if you find that the scales are one of these, it may be a square.
 +
|style="text-align:right;"|על כן אם תמצא המאזנים אחד מאלו אפשר היותו מרובע
 +
|-
 +
|Examine all of them and you will find that it is so.
 +
|style="text-align:right;"|עיין בכולם אחד ותמצא כן
 +
|-
 +
|He said: "seven is also among them".
 +
|style="text-align:right;"|אמר גם שבעה עמהם
 +
|-
 +
|Meaning: even though it is not a square.
 +
|style="text-align:right;"|כלו' א'ע'פ' שאיננו מרובע
 +
|-
 +
|Know that 1 or 4 or 7 each results from one of two numbers, but 9 can result from three and here is a table for you to know this:
 +
|style="text-align:right;"|ודע כל אחד מא' או ד' או ז' יצאו מאחד משני אותיות והט' תוכל לצאת משלשה והנה לך לוח לדעת זה
 +
|-
 +
|
 +
:{|class="wikitable" style="margin-left: auto; margin-right: auto; border: none; color:blue; text-align:center;"
 +
|-
 +
|8||1||1
 +
|-
 +
|7||2||4
 +
|-
 +
|5||4||7
 +
|-
 +
|96||3||9
 +
|}
 +
|
 +
{|class="wikitable" style="margin-left: auto; margin-right: auto; border: none; text-align:center;"
 +
|-
 +
|ח||א||א
 +
|-
 +
|ז||ב||ד
 +
|-
 +
|ה||ד||ז
 +
|-
 +
|וט||ג||ט
 +
|}
 +
|-
 +
|Other scales
 +
|style="text-align:right;"|מאזנים אחרים
 +
|-
 +
|If the units of our number are 2, or 3, or 7, or 8, know that the number is not a square.
 +
|style="text-align:right;"|אם היה הנשאר מאחדים על מספרנו ב' או ג' ז' או ח' תדע כי אין המספר מרובע
 +
|-
 +
|Because the units of the square are always generated from the units [of the root] that are one of nine digits. [The units] of their product [by themselves] are not 2, nor 3, nor 7, not 8; only 1, or 4, or 9, or of the round numbers that are 5 and 6, since they are found in the squares.
 +
|style="text-align:right;"|כי לעולם לא יולדו הפרטים על כלל המרובע אלא מתוספת אחדים על כלל ואותו התוספת יהיה אחת מט' אותיות והנם מכפלם לא ישאר ב' ולא ג' ז' וח' רק א' או ד' או ט' או מן המתגלגלים שהם ה' וו' כי ימצאו במרובעים
 +
|-
 +
|The same way for the tens, which are as units of the hundreds.
 +
|style="text-align:right;"|ועל זה הדרך בנותר מעשרות שהם כאחדים על מאות
 +
|-
 +
|If you find one [as units] in the required number, know that there is either 1 or 9 in the root.
 +
|style="text-align:right;"|אם מצאת במספר המבוקש שהנוסף בו אחד דע כי יש בשרש א' או ט&#x202B;'
 +
|-
 +
|Because 1 is always generated from the product of one of them.
 +
|style="text-align:right;"|כי לעולם <s>מכ</s> מכפל אחד מאלו יולד א&#x202B;'
 +
|-
 +
|4 is generated from 2 or 8 in the root.
 +
|style="text-align:right;"|ויצא ד' מב' שהוא בשרש או מח&#x202B;'
 +
|-
 +
|6 is generated in the square from the product of 6 or 4.
 +
|style="text-align:right;"|ויתחדש ו' במרובע מהכפל ו' או ד&#x202B;'
 +
|-
 +
|9 is generated from the product of 3 or 7.
 +
|style="text-align:right;"|וט' יפול מכפל ג' או ז&#x202B;'
 +
|-
 +
|5 is generated from the product of 5.
 +
|style="text-align:right;"|וה' יצא מכפל ה&#x202B;'
 +
|-
 +
|As our lord, our teacher, "May his Rock protect him and grant him life" said regarding that:
 +
|style="text-align:right;"|&#x202B;<ref>58r</ref><span style=color:blue>'''לשון אדננו מורנו יצ"ו על זה'''</span>
 +
|-
 +
|If you have a square and [its units are] 1, know that there is either 1 or 9 in the root.
 +
|style="text-align:right;"|אם יש בידך מרובע ויש בתוספת הכללים א' דע שיש בשורש א' או ט&#x202B;'
 +
|-
 +
|If you wish to know which of the two, know the scales of the number, then know the scales of the root. [If the scales of the number are equal to the scales of the root], know that there is 9 in the root.
 +
|style="text-align:right;"|ואם תרצה לידע אחד משניהם דע מאזני המספר ואחר דע מאזני השורש כי אם תקחהו עם א' ויהיו מאזני המספר שוה כשתקחהו עם ט' ושוה למאזני המספר דע שיש בשרש ט'ט&#x202B;'
 +
|-
 +
|End of quote.
 +
|style="text-align:right;"|ע"ד לשונו
 +
|-
 +
|
 +
:{|class="wikitable" style="margin-left: auto; margin-right: auto; border: none; color:blue; text-align:center;"
 +
|-
 +
|9||1||1
 +
|-
 +
|8||2||4
 +
|-
 +
| ||5||5
 +
|-
 +
|6||4||6
 +
|-
 +
|[7]||3||9
 +
|}
 +
|
 +
{|class="wikitable" style="margin-left: auto; margin-right: auto; border: none; text-align:center;"
 +
|-
 +
|ט||א||א
 +
|-
 +
|ח||ב||ד
 +
|-
 +
| ||ה||ה
 +
|-
 +
|ו||ד||ו
 +
|-
 +
|[ז]||ג||ט
 +
|}
 +
|-
 +
|
 +
 
 +
=== Every rank that is non-even ===
 +
 
 +
|style="text-align:right;"|<span style=color:blue>'''כל מעלה שאינה זוג'''</span>
 +
|-
 +
|As hundreds, tens of thousands, thousands of thousands.
 +
|style="text-align:right;"|כמו מאות רבבות אלפים אלפים
 +
|-
 +
|Their squares are according to the squares of the first rank and by their number.
 +
|style="text-align:right;"|הנה מרובעיהם על דרך מרובעי המעלה הראשונה ובמספרם
 +
|-
 +
|For, the squares of the hundreds are 100, 400, 900.
 +
|style="text-align:right;"|כי מרובעי המאות ק' ת' ת'ת'ק&#x202B;'
 +
|-
 +
|The squares of the tens of thousands are ten thousand, forty thousand, 90 thousand.
 +
|style="text-align:right;"|ומרובעי הרבואות עשרת אלפים וארבעים אלף וצ' אלף
 +
|-
 +
|And so on this way.
 +
|style="text-align:right;"|ועל זה הדרך הכל
 +
|-
 +
|
 +
 
 +
=== The analogous squares ===
 +
 
 +
|style="text-align:right;"|<span style=color:blue>'''ולעולם יהיו המרובעים הנמשלים וכו&#x202B;''''</span>
 +
|-
 +
|Meaning: in the square of any rank that is non-even, there is always only one number, as it is in the first rank.
 +
|style="text-align:right;"|ר"ל לעולם במרובע כל מעלה שהיא בלתי זוג לא ימצא רק מספר אחד על דרך שהוא במעלה הראשונה
 +
|-
 +
|But, in the squares of the even ranks, there are always two numbers.
 +
|style="text-align:right;"|ומרובעי המעלות בעלות הזוג לעולם ימצא בהם ב' מספרים
 +
|-
 +
|As in the thousands: one thousand and 600.
 +
|style="text-align:right;"|כמו באלפים אלף ות"ר
 +
|-
 +
|And so on.
 +
|style="text-align:right;"|וכן כולם
 +
|-
 +
|
 +
=== From the analogous squares you can know all those that precede them or succeed them ===
 +
 
 +
|style="text-align:right;"|<span style=color:blue>'''ומהנמשלים תוכל לדעת כל שהם לפניהם או אחריהם'''</span>
 +
|-
 +
|Meaning: if you know the perfect squares and their ranks, you know their roots.
 +
|style="text-align:right;"|ר"ל שאם ידעת מרובעי אמת ומדרגות ותדע שרשם
 +
|-
 +
|Because, since you know the squares of the hundreds: 100, [400] and 900; the root of 100 is 10, and the root of 400 is 20; then the number of squares between 100 and 400 is the same as the numbers from 10 to 20; and the same for the means between four hundred and nine hundred.
 +
|style="text-align:right;"|כי אחר שידעת כי מרובעי המאות ק' ות'ת'ק' והנה שורש ק' י' ושרש ת' כ' אם כן מספר המרובעים שבין ק' ות' כמספרים שהם מי' עד כ' ובין ק' ות' יפולו וכן מהאמצעיים שבין ארבעה מאות לתשע מאות
 +
|-
 +
|The analogous are the ranks after the tens, for the non-even [ranks] are analogous to the first [rank] and the even ranks [are analogous] to the second [rank].
 +
|style="text-align:right;"|הנמשלים יקראו המדרגות הבאות אחר העשרות כי אשר אינם בעלי זוג נמשלו לראשונה והמדרגות הזוגיות לשנית
 +
|-
 +
|
 +
=== Know that the units that are in the first rank ===
 +
 
 +
|style="text-align:right;"|<span style=color:blue>'''דע כי ההווה במעלה הראשונה מהאחדים וכו&#x202B;''''</span>
 +
|-
 +
|Meaning: as 1 is [the root of] 1 in the first rank, so is 10, which is the root of 100.
 +
:<math>\scriptstyle{\color{blue}{\sqrt{1}=1\quad\sqrt{100}=10}}</math>
 +
|style="text-align:right;"|ר"ל כגון א' שהוא א' במעלה הראשונה כן י' הוא שורש ק&#x202B;'
 +
|-
 +
|Also, as in the first [rank] the root of 4 is 2 and the root of 9 is 3, so in the ranks of hundreds, the root of 400 is [20] and the root of 900 is 30.
 +
:<math>\scriptstyle{\color{blue}{\sqrt{4}=2\quad\sqrt{9}=3}}</math>
 +
:<math>\scriptstyle{\color{blue}{\sqrt{400}=20\quad\sqrt{900}=30}}</math>
 +
|style="text-align:right;"|וכמו שבראשונה שרש ד' הוא ב' &#x202B;<ref>58v</ref> ושרש ט' הוא ג' כן במעלת המאות שורש ת' הוא (כ') ושרש ת'ת'ק' ל&#x202B;'
 +
|-
 +
|The roots of the squares in the fifth rank, which is the tens of thousands, that is analogous to the first [rank], are found in the rank of hundreds: because the root of 10 thousand is one hundred and the root of 40 thousand is 200.
 +
:<math>\scriptstyle{\color{blue}{\sqrt{10000}=100\quad\sqrt{40000}=200}}</math>
 +
|style="text-align:right;"|ושרשי מרובעי המדרגה החמישית שהיא רבבות הנמשלת לראשונה ימצאו במדרגת המאות כי שרש י' אלפים הוא מאה ושרש מ' אלפים הוא ר&#x202B;'
 +
|-
 +
|The roots [of the squares] in the seventh rank, which is two ranks up from the fifth, that is similar to it, since it is odd, are found in the rank that follows the hundreds, which is the thousands: because the root of a thousand of a thousand is a thousand and the root of 4 thousand of thousands is two thousand.
 +
|style="text-align:right;"|ושרשי המדרגה השביעית שהיא דולגת מהחמישית שתי מדרגות הדומה אליה בהיותה נפרדת ימצאו במדרגה הבאה אחר המאות שהיא אלפים כי שרש אלף אלפים אלף ושרש ד' אלפי אלפים
 +
|-
 +
|And so for all of them.
 +
|style="text-align:right;"|וככה בכולם
 +
|-
 +
|The units that are the roots of [the squares] in the second rank:
 +
|style="text-align:right;"|והאחדים שהם במעלה השנית בשרש
 +
|-
 +
|As 16, whose root is 4: in the fourth rank that is analogous to it, the root of the square one thousand and 600 is the digit 4 in the tens.
 +
:<math>\scriptstyle{\color{blue}{\sqrt{1600}=40\quad\sqrt{16}=4}}</math>
 +
|style="text-align:right;"|כגון י"ו ששרשם ד' כן במדרגה הרביעית הדומה לה במרובע אלף ות"ר יהיה שרשו אות ד' בעשרות
 +
|-
 +
|The root of the square two thousand and 500 that is analogous to 25, is 50, which is analogous to 5.
 +
:<math>\scriptstyle{\color{blue}{\sqrt{2500}=50\quad\sqrt{25}=5}}</math>
 +
|style="text-align:right;"|ובמרובע אלפים ות"ק הדומה לכ"ה יהיה השרש נ' שהוא כמו ה&#x202B;'
 +
|-
 +
|The roots of the squares in the sixth rank that is analogous to the second rank, are hundreds.
 +
|style="text-align:right;"|ובמרובעו המדרגה הששית הנמשלת למדרגה השנית יהיה שרשם מאות
 +
|-
 +
|As the square 160 thousand that is analogous to 16, whose root is 400 that is analogous to 4, which is the root of 16.
 +
:<math>\scriptstyle{\color{blue}{\sqrt{160000}=400\quad\sqrt{16}=4}}</math>
 +
|style="text-align:right;"|כגון מרובע ק"ס אלפים הדומה לי"ו ששרשו ת' הדומה לד' שהוא שרש י"ו
 +
|-
 +
|Say the same for all of them.
 +
|style="text-align:right;"|וכן תאמר בכלם
 +
|-
 +
|As our lord, our teacher, "May his Rock protect him and grant him life" said:
 +
|style="text-align:right;"|לשון מורנו רבינו יצ"ו
 +
|-
 +
|If you have a known square and you wish to find another square using it:
 +
|style="text-align:right;"|אם יש לך [...] מרובע ידוע ותרצה לדעת ממנו מרובע אחר
 +
|-
 +
|If it follows it:
 +
:<math>\scriptstyle{\color{OliveGreen}{a^2+b}}</math>
 +
|style="text-align:right;"|אם הוא אחריו
 +
|-
 +
|Double the root of the former.
 +
|style="text-align:right;"|כפול השורש הראשון
 +
|-
 +
|Know how much is the distance of the number, whose square you wish to know, from it.
 +
|style="text-align:right;"|ודע כמה מרחק המספר שתרצה לדעת מרובעו ממנו
 +
|-
 +
|
 +
|style="text-align:right;"|וכפול הכפל ההוא במספר המרחק עוד תוסיף עליו מרובע מה שעלה בחלוק והוסף הכל על השרש הראשון ויצא המבוקש
 +
|-
 +
|If the number you wish to find precedes the known number:
 +
:<math>\scriptstyle{\color{OliveGreen}{a^2-b}}</math>
 +
|style="text-align:right;"|ואם המספר שתרצה לדעת הוא לפני המספר הידוע
 +
|-
 +
|Double the root of the known square.
 +
|style="text-align:right;"|כפול שרש המרובע הידוע
 +
|-
 +
|
 +
|style="text-align:right;"|ועוד תכה אותו במרחק מה שיש <s>בו</s> בין מספר אשר תרצה לדעת מרובעו ובינו ומה שיצא תגרע ממנו מרובע מה שעלה בחלוק והנשאר תגרענו ממרובע המספר הידוע
 +
|-
 +
|
 +
|style="text-align:right;"|ואם יש לך מרובע ידוע ותרצה לדעת ממספר אחר כמה הוא קרוב אל מרובע אם &#x202B;<ref>59r</ref>אם המספר ההוא הוא א אחרי המספר הידוע דע כמה המרחק וחלק אותו על כפל שורש המרובע הידוע והשאר בידך מה שיצא במרובע החלוק וחבר הכפל ותוספת מרובע החלוק עם המרובע הידוע ויצא המבוקש
 +
|-
 +
|
 +
|style="text-align:right;"|או אם המספר אשר בידך הוא לפני המרובע הידוע ראה כמה מרחקו ממספר הידוע והמרחק ההוא חלקהו על כפל שרש המרובע הידוע ותן לו מהחלוקה כדי שנוכל לגרוע ממנו מרובע מה שעלה בחלוק ולא ישאר כי אם פחות מכפל שורש המרובע ומה שיצא בכ בכפילת החלוק אחר שתגרע ממנו מרובע החלוק חסר אותו מהמרובע הנמשל ויהיה המבוקש
 +
|-
 +
|
 +
|style="text-align:right;"|ע"כ וכל זה שוה עם הכתוב בספר אלא שהספר יצוה לגרוע כל כפל החלוק מהמרובע הנמשל ולהוסיף על הנשאר מרובע החלוק ולגרוע הנשאר מהמרובע העתיד והכל שוה
 +
|-
 +
|
 +
|style="text-align:right;"|אלא שמלמדנו כמות תוספת החלוקה והכונה בתוספת לגרוע כל המרחק עד שנגיע אל המרובע שעבר
 +
|-
 +
|
 +
|style="text-align:right;"|ודע כי כל [ב]כל אחד משני הדרכים לא נמצא רק מרובע שעבר הקרוב למספרנו ובדרך הראשון נמצאנו בין שהיה מספרנו יותר קרוב ממרובע שעבר או שהיה יותר קרוב ממרובע שאחריו והדרך השני לא יועילו רק בהיות מספרנו בלתי קרוב אל מרובע שעבר יהיו ק"נ שהוא שרש ו' ומרובע כ"ב אלף ות"ק וממנו נדע מהנשאר מרובע הקרוב על כן נחלק על כפל שרשו ונתן לו א' ו שהוא שם ונוסיפנו על מרובע הראשון שהיה לנו והיו כ"ב אלפים ותת"א עם מרובע א' שעלה בחילוק . נתן לו יותר מה שנוכל . שנתן לו ט' שהם ה' אלפים
 +
|-
 +
|
 +
 
 +
=== We cannot give it 5 ===
 +
 
 +
|style="text-align:right;"|<span style=color:blue>'''לא נוכל לתת לו ה&#x202B;''''</span>
 +
|-
 +
|
 +
|style="text-align:right;"|ר"ל נסיר ממנו אלף ות"ר שהוא מרובע מ' ונוסיפנו על המספר יהיו ל"ג אלפים ות"ר ועתה יהיה לנו ת"ם &#x202B;<ref>59v</ref> ר"ל שנעשה מרובע קרוב ונחלק על כפלו מה שנשאר לנו שהוא אלפים ות' נתן לז' שהם ו' אלפים וק"ס
 +
|-
 +
|
 +
|style="text-align:right;"|נחסר עוד מרובע ז' שעלה בחילוק ר"ל ונוסיפנו על מה שהיה לנו ויהיו ו' אלפים ור"ט
 +
|-
 +
|
 +
|style="text-align:right;"|נחבר זה אל ל"ג אלף ות"ר שהיה לנו ועם הכל עלה קצ"ט אלפים ות"ר
 +
|-
 +
|
 +
|style="text-align:right;"|נשארו קצ"א נחסרנו ממאתים אלף ישארו קצ"ט אלפים ותת"ט והדבר יצא שוה
 +
|-
 +
|
 +
|style="text-align:right;"|ולידע השורש נוסיף ז' שעלה בחלוק על השרש שהוא ת"ם היה תמ"ז והוא השרש
 +
|-
 +
|
 +
=== We give it all we can ===
 +
 
 +
|style="text-align:right;"|<span style=color:blue>'''נתנו לו כל מה שיכולנו'''</span>
 +
|-
 +
|
 +
|style="text-align:right;"|נתנו לו כל מה שיכולנו והנה המ' אלף עלה בחלוק כ"ה בצמצום והנה נתן לו יותר חלק אחד שנחברהו מן השש מאות אלף נוכל ליקח מרובע מה שעלה בחלוק והיו כ"ו וכן נחסר כ"ו משרש ומרובע הנמשל שהוא ת"ת והנה שרש מספרנו תשע"ד נחלק המספר הנשאר שהוא אלף אלפים על ד' אלפים
 +
|-
 +
|
 +
|style="text-align:right;"|והנה לא נתן לו רק רל"ו שהם תת"קמ"ד אלפים ונשארו נ"ו אלפים נקח מהם מרובע מה שיעלה בחלוק שהוא נ"ה אלפים ותרצ"ו וזהו המרובע ונשאר ש"ר ואם ד' אלפי אלפים תחסרנו מאלף אלפים שאר המבוקש שהזכרנו
 +
|-
 +
|
 +
|style="text-align:right;"|ונחבר רל"ו שעלה בחלוק עם שרש ראשון שהוא אלפים והוא השרש המבוקש
 +
|-
 +
|
 +
|style="text-align:right;"|וזה גם כן העולה מחשבון הספר אלא שמחלק זה חלוקת רבות חלוק אחר חלוק ערך מרובע אל מרובע מרובע אותו הערך העולה הוא מרובע
 +
|-
 +
|
 +
|style="text-align:right;"|והמבחן שאם תחלק השרש הגדול על השרש יצא שרש ערך
 +
|-
 +
|
 +
|style="text-align:right;"|דמיון חלקנו ס"ד על י"ו עלה ד' וזה הערך הוא מרובע ושרשו הוא היוצא מערך ד' אל ח' שהוא ב' והנה הוא כפלו וב' שביעיות שביעיות וזהו מרובע
 +
|-
 +
|
 +
|style="text-align:right;"|ואם נחזירנו לשביעיות שביעית ותחבר עמהם הב' היו ק' ושרשם י' שביעיות שהוא אחד ש' שלם וד' שביעיות כי שרש הנשברים גדול ממרובע
 +
|-
 +
|
 +
|style="text-align:right;"|בקשנו לדעת מרובע מספר ידוע
 +
|-
 +
|
 +
|style="text-align:right;"|כגון שנרצה לידע מרובע ממרובע כ"ה &#x202B;<ref>60r</ref>כ"ה שהוא ידוע למספר ה' שהוא ידוע נחלק י' על ה' ועלה שנים ומרובעם ד' נכפול ד' על כ"ה ועלה ק' שהוא מרובע ד' ועל זה הדרך בכלם
 +
|-
 +
|
 +
=== If we sum three squares, we triple them ===
 +
 
 +
|style="text-align:right;"|<span style=color:blue>'''ואם חברנו שלשה מרובעים ונכפלם ג' פעמים'''</span>
 +
|-
 +
|
 +
|style="text-align:right;"|ר"ל אם נחבר ג' מרובעים ונכפלם המחובר על ג' ונשמור זה העולה ונקח מרובע היתרון שבין הראשון לשני ומרובע היתרון שבין השני לשלישי ומרובע היתרון שבין הראשון לשלישי ותחבר אלה הג' מרובעים והמחובר חסרהו מהעולה תחלה והנשאר מהעולה הוא מרובע ושרשו המחובר מג' המרובעים הראשונים
 +
|-
 +
|
 +
|style="text-align:right;"|ועל זה הדרך אם חברת ד' מספרים ותכפלם ד' פעמים או אם חברת ה' מספרים ותכפלם ה' פעמים
 +
|-
 +
|
 +
|style="text-align:right;"|ואומר לך כלל שתוכל לדעת ממנו וכו&#x202B;'
 +
|-
 +
|
 +
|style="text-align:right;"|לעולם חסר אחד מהמספר המחוברים וראה סך המחובר מא' עד סוף מספר הנשאר בדרך שאמר בשער החיבור וככה מספר היתרונים כגון שהיו המספרים ד' חסר אחד והיו ג' והמחוברים מא' עד ג"ו וכן היתרונים ו&#x202B;'
 +
|-
 +
|
 +
|style="text-align:right;"|רק אם יהיה בו רביעית כלומ' אם נמצא במרובע רביעית ידענו כי בשרש היה חצי ממנו יצא אם היה בו ששית ששית מששית יצא וכן בשאר
 +
|-
 +
|
 +
|style="text-align:right;"|ואם היה בו חצי שמינית שהוא חלוק מי"ו הנה מהרביעית יצא
 +
|-
 +
|
 +
|style="text-align:right;"|וכן שניים שהם כמו רביעית יצאו מראשונים שהם חצי ורביעים יצאו משניים אבל שלישיים וחמשיים ושביעיים ושמניים אין להם שורש אמת
 +
|-
 +
|
 +
|style="text-align:right;"|הסתכל אם היה מרובע רביעית דע כי בשרש חצי
 +
|-
 +
|
 +
|style="text-align:right;"|כגון שהיו לך י"ב שלמים ורביעית הנה בשרש היה חצי נשיב הכל לרביעיות היו מ"ט ושרשם ז' חצאים שהם ג' וחצי והנה כאשר נכפול ג' וחצי על עצמם יצא לך י"ב ורביעית
 +
|-
 +
|
 +
|style="text-align:right;"|תכפול מ' על מ' ראשונים שהם שתי שלישית מעלה יהיו אלף ות"ר
 +
|-
 +
|
 +
 
 +
=== If we convert this number to thirds ===
 +
 
 +
|style="text-align:right;"|<span style=color:blue>'''ואם עשינו מזה המספר שלישיות'''</span>
 +
|-
 +
|
 +
|style="text-align:right;"|ר"ל בעבור שהזכרנו שלישיות נשיב הו' ראשונים שנעשה מכל ראשון שהוא ס"ג שלישיות <ref>60v</ref>יהיה עם הב' שלישיות עשרים וכבר אמרנו שהם כ"ו ראשונים ומ' שניים הם תשיעית אחת מס'
 +
|-
 +
|
 +
|style="text-align:right;"|שוב וחשוב כי הם ראשונים כי שרש שניים הוא מראשונים יהיו אלף ות"ר שניים שכל ע' הם ראשון אחר נכפול מ' על ס' ונחלק העולה על ע' כי כערך מ' אל ע' יהיה ערך העולה מס' על כן נכפול הקצוות שהם מ' על ס' ונחלק על ע' שהוא האמצעי ומה שיצא יהיה ערכו מס' יעלו ל"ד ראשונים וישארו ב' שהוא שניים יעלו ז' שהם <s>ראשונים</s> שניים וישאר לנו מהשלישיים י' שהם שביעית אחת מע' נעשה ממנו ששים והם רביעיים
 +
|-
 +
|
 +
|style="text-align:right;"|נכפלנו עוד ויהיו ג' אלפים ות"ר חמישיים נחלקם על ע' יעלו כ"א רביעיים
 +
|-
 +
|
 +
|style="text-align:right;"|ונעשה חלקנו תשעים ר"ל נעשה אחד מצ' חלקים
 +
|-
 +
|
 +
|style="text-align:right;"|כפלנוהו על עצמו והם ת'ת'ק' נחלקם על צ' ועלה י' חלקים ראשונים והם המרובע ושרשם ל' ראשונים אם אמת כי המרובע חלק אחד ומ' שניים ר"ל הוא נכון שהוא מרובע כי חלק מס' ומ' שניים הוא ששית הששית מס' כי הששית הוא וששית י' הוא ראשון אחד ומ' שניים אם כן השורש הוא י' כי מכפל ששית יצא ששית הששית ומרובע י' ראשונים הוא ק' שניים שהוא ראשון אחד ומ' שניים
 +
|-
 +
|
 +
=== As for the numbers that are divisible by sixty ===
 +
 
 +
|style="text-align:right;"|<span style=color:blue>'''והנה במספר שיש לו ערך אל ששים'''</span>
 +
|-
 +
|
 +
|style="text-align:right;"|ר"ל א'ע'פ' שקצת המספרים שלא יאותו במקום אחד להיות מרובעים ובכאן לפי שיש להם ערך אל ס' הם מרובעים כמו ט"ו כי הוא רביעית ס' ושרשו ל' ראשונים שהם חצי אך לא יתכן זה בכל המספרים כי י' שהוא ששית אינם מרובע כל שכן המספרים שאין להם ערך כלל אל ס' שאינם מרובע כגון י"א גד יד יט נחלקם על כפל השרש שעבר שהוא ששה
 +
|-
 +
|
 +
|style="text-align:right;"|כי לעולם כשנעלם ממנו שרש מרובע אחד כגון שלא נדע שרש ק' על דרך משל נבקש מרובע שעבר שהוא פ"א ששרשו ט' ונביט מה המרחק שבינו לבין ק' &#x202B;<ref>61r</ref>ק' והוא י"ט נחלקם על כפל השרש שעבר שהוא י"ח ונוסיף עליו המרחק שבין ט' לי' ועלה אחד נוסיף האחד <s>עש</s> על שרש ה' ראשון והיה י' והוא שרש ק' וכן בכאן נחלק המרחק על ו' יהיו ב' ראשונים והנה השרש ג' שלמים וב' ראשונים שהם שלישית אחת נכפלם ועלה י"א שלמים ותשיעית
 +
|-
 +
|
 +
|style="text-align:right;"|ואם תרצה השב הי"א לתשיעיות והם עם התשיעיות ק' ושרשם י' שלישיות שהם ג' שלמים ושליש
 +
|-
 +
|
 +
|style="text-align:right;"|וזה שנניח השבר לפי שכל השאר נחלק ולא נקח ממנו מרובע החלוק כי לא יתכן והנה במרובע תוסף אם בשלמים נחלקים כל המרחק ונניח כדי מרובע החלוק ונוסיף הנשאר בשרש והכל שוה
 +
|-
 +
|
 +
|style="text-align:right;"|ידענו כי יש בחשבון חומש החומש כי הכ"ד שניים ה' הם ב' חמישיות מראשון והנה חמישית לא יתכן היותו מרובע על כן הוא חומש החומש וכמה הוא חומש החומש שיש בכלל זה המרובע ב' חלקים וכ"ד שניים כי באמת חומש חומש היה בשורש שהוא י"ב וחומש הוא ב' ומק"כ ראשונים נעשה שניים שמן ק"כ וחמישיתם כ"ד והנה המרחק מהמרובע שהוא אחריו שהוא ט&#x202B;'
 +
|-
 +
|
 +
|style="text-align:right;"|דע כי לעולם יהיה בין שנים מספרים ר"ל המרחק בין שני מרובעים הסדורים במספר שרשיהם על כן כשתדע מרובע אחד ולא השני לו חבר שרשיהם עם מרובע הנודע
 +
|-
 +
|
 +
=== Look at the number you want ===
 +
 
 +
|style="text-align:right;"|<span style=color:blue>'''והנה הסתכל המספר שתרצה'''</span>
 +
|-
 +
|
 +
|style="text-align:right;"|וכו' ר"ל אם תבקש לידע שרש אי זה מרובע שיהיה כגון שתרצה לידע מרובע י"ב שהוא בין ובין י"ו והנה הסתכל  מרחקו ממרובע שעבר שהוא ט' אם היה בשרש ט' שהוא ג' והמספר נקרא אמצעי לפי שאם תחלק המרחק על אי זה משני המרובעים שתרצה תהיה חלוקתך שוה שאם תחלוק ג' על ו' שהוא כפל שרש שעבר יצא בחלוק חצי וכן אם תחלוק ד' שהוא המרחק שאחריו על כפל השרש שאחריו שהוא ח' יהיה חצי והדבר שוה
 +
|-
 +
|
 +
=== Extract any number that is less than the mean, as 11, from the preceding square number ===
 +
 
 +
|style="text-align:right;"|&#x202B;<ref>61v</ref><span style=color:blue>'''וכל מספר שיהיה פחות מהאמצעי כגון י"א הוציאהו ממספר המרובע שעבר'''</span>
 +
|-
 +
|
 +
|style="text-align:right;"|ר"ל שתקח המרחק שבין מספרך ובין המרובע שעבר וחלקהו על כפל שרשו ואם היה המרחק יותר משרש שעבר עשה חשבונך במרובע העתיד
 +
|-
 +
|
 +
|style="text-align:right;"|ואם חשבונך היה במאות ובאלפים זה השרש יספיק לך כי לרבויו לא יוכר בו הטעות והחסרון ויותר יוכר בו אם נקחהו מהקטן כי החסרון והשגגה הולך ורב עד כי גדל מאד רק אם היה המספר קטן אתה צריך למספר שני לפי שלא לקחת ממנו מרובע החלוק
 +
|-
 +
|
 +
|style="text-align:right;"|ופעם נקח השורש בקטן מהגדול ויצא מדוייק כמו שעתיד לבאר לפי שטענת הגדול יתמעט כל אשר ירד ויחלק ויבלע מאד
 +
|-
 +
|
 +
|style="text-align:right;"|ואם רצית לדעת שרש עשרים אלף כפול זה השרש על עשרה לפי שה<s>ש</s>שרש גם כן יכפול ויעלה למדרגה אחרת כי שרש המאות עשרות ושרש הרבבות מאות והנה שביעית מל"ד
 +
|-
 +
|
 +
|style="text-align:right;"|וזה בקירוב כי עדיין ישארו ב' שניים שלא לקחנו שביעיתם יהיו ת'ק'י'ד' ועשיריתם ר"פ וזה בקירוב
 +
|-
 +
|
 +
|style="text-align:right;"|נעשה מהנשארים שהם ק'י'ט' ראשונים
 +
|-
 +
|
 +
|style="text-align:right;"|נחלקם על ר'פ'ב' שהוא כפל ק'מ'א' עלו כ"ה חלקים ראשונים וישארו צ' חלקים והנה לא נוכל לחלקם על ר'פ'ב' נשיבם שניים והם ה' מב' נחלקם על ר'פ'ב' שהם שרשנו עלו י"ט שניים וישארו מ"ב שלא יתחלקו ואלו ראשונים וי"ט שניים נוספים על שרשנו שהוא ק'מ'א' ואם רצה לדקדקו עוד ישיב המ"ב לשלישיים ויחלקם על ר'פ'ב&#x202B;'
 +
|-
 +
|
 +
|style="text-align:right;"|ודע כי כל שברים שתחלק על שלמים יעלה אותו המין מן השבר וכשתחלק מין שברים פחות על מין שבר יותר גדול נחסר מספר הגדול ממספר הפחות והנשאר הוא העולה החלוק
 +
|-
 +
|
 +
|style="text-align:right;"|נחלק כל מה שאמרנו מן השלמים והשנים על מאה כי כמו שאמרנו כשבקשנו שרש שניים משרש &#x202B;<ref>62r</ref>משרש מאתים שלקחנו עשירית שרש מאתים לפי שהוא כפלו י' פעמים כן נאמר עכשו כשנוציא שרש שניים משרש עשרים אלף שהוא כפלו מאה פעם שנקח אחד ממאה שבו הנה מן המאה קח אחד שלם ונקח בעבור המ"ב חמישיות ז' שהן כ"ד מס' לפי שערכם אל מאה כן והאחד שנשאר מק'מ'א' נעשנו ס' ראשונים ועם הכ"ה היה פ"ה והנה בעבור הפ' תקח ד' חמישיות מס' ובעבור הה' שהוא רביעית חמישית ק' נקח רביעית חמישית ס' שהוא ג' והרי לנו נ"א ובעבור הי"ט שהוא פחות אחד מחמישית מאה לקח חמישית ס' פחות א' והוא י"א
 +
|-
 +
|
 +
|style="text-align:right;"|ואם תכפול כל חשבון שהוא כפל מרובע נראה שכך הוא סדר הדבר אם תרצה לידע שרש חשבון שהוא כפל מרובע כפול שרש חציו על זה ושרש ר"ל שרש ב' השבר
 +
|-
 +
|
 +
|style="text-align:right;"|כי כל חשבון שתכפול על שרש מאחד יהיה מרובע אותו הנכפל נכפל אותו חשבון על עצמו מדמיוני מרובע השרש הראשון המיוחד ר"ל שכפי מספר כפל החשבון נחשוב כך פעמים המרובע הראשון
 +
|-
 +
|
 +
|style="text-align:right;"|המשל בזה כפלנו ב' שהוא שרש ד' על ג' והוא ו' הנה כפל ג' ט' נכפול ט' על מרובע ראשון שהוא ד' והוא ל"ו שהוא מרובע ו' ואם נכפול ה' על ב' שהוא י' הנה מרובע ו נכפל ה' שהוא כ"ה כפול על ד&#x202B;'
 +
|-
 +
|
 +
|style="text-align:right;"|רצינו לדעת כמה שרש י"ח הנה כפלנו שרש המרובע שעבר שהוא ג' על זה המספר שהוא א'נ"ד כ"א י"א שוה המספר שהוא י"ח כפלו ר"ל ממרובע ג' שהוא יעלה ד' שלמים י"ד ראשונים ל"ג שניים ל"ג שלישיים
 +
|-
 +
|
 +
|style="text-align:right;"|ואם כפלנו זה המספר שהוא שרש י"ח יהיה זה הנשנה שרש ע"כ כי לעולם כפל שרש מרובע אם יהיה מרובעם כפל מרובע ראשון כמו שרמזנו למעלה מן חציו הוא שרש רביעית מרובע ראשון
 +
|-
 +
|
 +
=== If we take the square of 7 thousand and 200 ===
 +
 
 +
|style="text-align:right;"|<span style=color:blue>'''ואם נקח מרובע ז' אלפים ור&#x202B;''''</span>
 +
|-
 +
|
 +
|style="text-align:right;"|ר"ל אם נקח זה המספר מקום מרובע ונבקש לידע שרשו נעשה על הדרך הנזכר שנקח שרש חציו שהוא ס' &#x202B;<ref>62v</ref>ונכפלהו על א'נ"ד נ"א י"א יהיה שרש ז' אלפים ור' פ"ד נ"א י"א וזהו שרש שנים בעצמו אלא שהעלינו כל מספר למדרגה עליונה ממדרגתו שהוא מס' לס' עד ששבו השלישיים שניים והשניים ראשונים והראשונים שלמים
 +
|-
 +
|
 +
=== Because we convert them to minutes, consider these as integers ===
 +
 
 +
|style="text-align:right;"|<span style=color:blue>'''כי השיבונו אותם בדרך ראשונים והנה חשוב אלה שיהיו שלמים'''</span>
 +
|-
 +
|
 +
|style="text-align:right;"|וזה רצה באמרו כי השיבונו אותם בדרך ראשונים והנה חשוב אלה שיהיו שלמים ר"ל שאם היה לנו זה השורש שהוא פ"ד נ"א י"א ולא היה לנו שרש ב' נוריד זה השרש מס' לס' ונתיכהו כדרך שהרכבנוהו ויגיע לנו שורש ב&#x202B;'
 +
|-
 +
|
 +
|style="text-align:right;"|ואם תכפול זה המספר על עצמו ר"ל המבחן על זה השרש שנכפלהו על עצמו ונשיב הכל אם נרצה למדרגה שהוא שלישיים ונכפלם על עצמם והם ששיים ונחלקם על ס' עד שנשיבם לשניים וראשונים ומעלות וישאר בכל אחד מה שלא יתחלק על הדרך שהורינו בסוף שער חמישי תמצא בסוף שלא ישאר אפי' שני אחד וכל שכן ראשון כל זה אמר להראות דיוק זה השרש
 +
|-
 +
|
 +
=== We go back to extract the root of two ===
 +
 
 +
|style="text-align:right;"|<span style=color:blue>'''נשוב להוציא שורש שנים'''</span>
 +
|-
 +
|
 +
|style="text-align:right;"|ר"ל בדרך אחרת
 +
|-
 +
|
 +
|style="text-align:right;"|ויספוק לנו השרש הראשון ר"ל לא נצטרך להוציא שרש ב' מד' או מעשרים אלף כי יספיק לנו להדריכנו אל האמת השרש הראשון במה שנעשה בו כמו שמבאר והולך ובעבור שיש לנו ששיות כי הנ' הם ה' ששיות וכו&#x202B;'
 +
|-
 +
|
 +
|style="text-align:right;"|נשיבם הכל מערך ו' והיו י"ז וכן נשיב הנ"ה לששיות שנכפלם על ו' ועלה ק"נ ועתה יכשר לחלקם על הי"ו עלו מ"ט שלישיים ונשארו א' שלא יתחלקו
 +
|-
 +
|
 +
=== If we calculate even more precisely by taking the square of 49 ===
 +
 
 +
|style="text-align:right;"|<span style=color:blue>'''ואלו היינו מדקדקים עוד מדרך מרובע המ"ט'''</span>
 +
|-
 +
|
 +
|style="text-align:right;"|ר"ל שנקח מרובעם ונחלקם על כפל השרש שהיה לנו שהוא ב' מ"ט מ"ב כ"ב ונחשוב כי הכל בנ' ובעבור שהנ' הם ד' ששיות נשים הכל ששיות והיו י"ז ונשיב אצל המ"ט והקי לנו ת'ק'כ'ט' שלישיים נעשה מהם מרובע ויהיו ששיים נחלקם ונגיעם עד רביעיים ונשיבם מערך ששיות &#x202B;<ref>63r</ref>ששיות ונחלקם על י"ז שהיה לנו נתן לו כ"ז רביעיים כ"ז חמישיים נחסרם משרש שלנו וישאר א'כ"ד נ"א י' ל"ט ל"ד
 +
|-
 +
|
 +
|style="text-align:right;"|ואנחנו דקדקנוהו יותר ולקחנוהו משרש ב' אלפי אלפים ויצא מדוייק בתכלית הדיוק א'כ"ד נ"א י' ז' מ"ז כי לא ישאר אפילו רביעי ולא חמשים רק ב' ושרש נ' המוצא ממנו זד טו ד' לח נה ושרש ה' אלפים עד מב כג לא כט
 +
|-
 +
|
 +
|style="text-align:right;"|ונשיב הכל מערך שלשה והיו י"ט וכן נשיב ק'ה'ק' לשלישיות שהם ש' ועלו ט"ו נשיבם שניים
 +
|-
 +
|
 +
|style="text-align:right;"|נראה שהוא שלישיים יהיו שלש מאות
 +
|-
 +
|
 +
|style="text-align:right;"|נראה זה טעות כי השניים הנשארים הם ט"ו וכשנשיבם שלישיים יעלו ת'ת'ק' וכשנחלקם על י"ט יעלו מז שלישיים מעשרה חלקים ישארו ט' מ"ד י"ג וכשנדקדקהו ונעשה מרובע מה שעלה בחילוק ונחלק על כפלם השרש יעלה בחלוק שלישי אחד נחסרהו מי"ג וישאר השורש כ"ט מ"ד י"ב
 +
|-
 +
|
 +
|style="text-align:right;"|וכשנכפול זה החשבון על עשרה וכו' כי מה שהוא במעלה הראשונה אחדים יהיה באלפים עשרות
 +
|-
 +
|
 +
=== We divide the root of 18 ===
 +
 +
|style="text-align:right;"|<span style=color:blue>'''חלקנוהו שרש י"ח'''</span>
 +
|-
 +
|
 +
|style="text-align:right;"|ר"ל אם נרצה לדעת שרש י"ח משרש כבר ידענוהו משרש כשכפלנוהו ושרשו אחד וחצי ככה שרש י"ח הוא כפל שרש ח' וחצי הכפל שהוא ג' פעמים שורש ב&#x202B;'
 +
|-
 +
|
 +
|style="text-align:right;"|נקח מרובע החילוק שנשיב הכ"ב ראשונים למתכונה הל' שהם שניים יעלו ת'ת'ד' שין ומרובעם אלף אלפים ות"ר שהם שלשים אלף שע"ה שלישיים נחלקם על כפל השורש שהוא <s>תק"ה</s> ת'ק'כ'ה' ראשונים יעלה כ"ח שניים בקרוב כי שלישיים על ראשונים יצאו שניים כמו שהקדמנו נחסרם מן השרש הראשון שהוא ד'כ'כ'ל' הנה נשליך הל' שהם שניים ונחסר הכ"ח שניים הנשארים מראשון אחד שנקח וישאר השרש השני ד'כ'א' ל"ה
 +
|-
 +
|As the ratio of the versed sine to the entire diameter so is the ratio of the [sum of] the square of the versed sine with the square of half the chord to the square of the diameter and so is the ratio of the square of versed sine to the square of half the chord.
 +
|style="text-align:right;"|לעולם כערך החץ אל כל האלכסון יהיה ערך מרובע החץ עם מרובע חצי המיתר ממרובע האלכסון וככה ערך מרובע החץ אל המרובע חצי היתר
 +
|-
 +
|The reason is that if you make a circle and you draw a chord 
 +
|style="text-align:right;"|&#x202B;<ref>63v</ref>והטעם שאם תעשה עיגול ותוציא ממנו יתר בנקודה ידועה מהאלכסון ותעשה אלכסון מתחלת האלכסון שהוא ראש החץ אל קצה היתר ותמשיך קו אחד מקצה היתר עד סוף הקוטר תמצא שמרובע הקוטר הוא כנגד שני הקוים שהוא הכאת שני הזויות ומרובע <s>שנים</s> שניהם הוא ברבוע האלכסון ומה שיחסר האחד ממרובע האלכסון ישלים חברו אם כן אם היה אלכסון החץ וחצי המיתר שלישיות שני הקוים כגון שהונח בשלישית האלכסון יהיה אם כן מרובעו החץ וחצי המיתר שלישית רבוע כל הא' האלכסון כי מרובע קטרם שקול בשניהם וזה הצורה לדמיון לעולם מרובע מה שנשאר מן החץ על הנקודה וכו&#x202B;'
 +
|-
 +
|
 +
|style="text-align:right;"|והטעם שאם תוציא קו אחד מקצה המיתר עד הנקודה שהוא חצי האלכסון תראה שהוא קוטר חצי המיתר ומה שאחרי החץ מהאלכסון עד הנקודה ולכן מרובען כרבוע שניהם יהיה מרובע חצי המיתר שלשת כפלי מרובע החץ
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נקח מרובע החילוק שנשיב הכ"ב ראשונים למתכונה הל' שהם שניים יעלו ת'ת'ד' שין ומרובעם אלף אלפים ות"ר שהם שלשים אלף שע"ה שלישיים נחלקם על כפל השורש שהוא <s>תק"ה</s> ת'ק'כ'ה' ראשונים יעלה כ"ח שניים בקרוב כי שלישיים על ראשונים יצאו שניים כמו שהקדמנו נחסרם מן השרש הראשון שהוא ד'כ'כ'ל' הנה נשליך הל' שהם שניים ונחסר הכ"ח שניים הנשארים מראשון אחד שנקח וישאר השרש השני ד'כ'א' ל"ה
+
|style="text-align:right;"|שכן הקוטר כפלי החץ כי הוא רביעיתו ונמצא החץ ד' חלקים ומרובעו ו' ראשונים ומ' שניים שהוא תשיעית אחת והוא אחד מל' מנ' ונ' הנה מרובע חצי היתר הנשאר מג' שלישית שהוא ג' י"ג כ&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|לעולם כערך החץ אל כל האלכסון יהיה ערך מרובע החץ עם מרובע חצי המיתר ממרובע האלכסון וככה ערך מרובע החץ אל המרובע חצי היתר
+
=== If you multiply the requested diameter by 22 ===
  
 +
|style="text-align:right;"|<span style=color:blue>'''אם כפל האלכסון שתראה על כ"ב'''</span>
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|<ref>63ב</ref>והטעם שאם תעשה עיגול ותוציא ממנו יתר בנקודה ידועה מהאלכסון ותעשה אלכסון מתחלת האלכסון שהוא ראש החץ אל קצה היתר ותמשיך קו אחד מקצה היתר עד סוף הקוטר תמצא שמרובע הקוטר הוא כנגד שני הקוים שהוא הכאת שני הזויות ומרובע <s>שנים</s> שניהם הוא ברבוע האלכסון ומה שיחסר האחד ממרובע האלכסון ישלים חברו אם כן אם היה אלכסון החץ וחצי המיתר שלישיות שני הקוים כגון שהונח בשלישית האלכסון יהיה אם כן מרובעו החץ וחצי המיתר שלישית רבוע כל הא' האלכסון כי מרובע קטרם שקול בשניהם וזה הצורה לדמיון לעולם מרובע מה שנשאר מן החץ על הנקודה וכו'
+
|style="text-align:right;"|ר"ל מאי זה אלכסון שתדע הערך לידע הקו הסובב כגון שהקוטר עשרה תעריך ותאמר כערך י' אל ז' יהיה ערך העגול אל כ"ב ונכפול הקצוות ונחלק על ז' והנה הנוסף אל הג' שלמים
|-
 
|
 
|style="text-align:right;"|והטעם שאם תוציא קו אחד מקצה המיתר עד הנקודה שהוא חצי האלכסון תראה שהוא קוטר חצי המיתר ומה שאחרי החץ מהאלכסון עד הנקודה ולכן מרובען כרבוע שניהם יהיה מרובע חצי המיתר שלשת כפלי מרובע החץ
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|שכן הקוטר כפלי החץ כי הוא רביעיתו ונמצא החץ ד' חלקים ומרובעו ו' ראשונים ומ' שניים שהוא תשיעית אחת והוא אחד מל' מנ' ונ' הנה מרובע חצי היתר הנשאר מג' שלישית שהוא ג' י"ג כ'
+
|style="text-align:right;"|ר"ל שאם היה הנוסף ז' חלקים מע' וחצי יהיה הנוסף על הג' שלמים ח' ר"ל שאם היה הנוסף כ"ד ל"ה אך אינו כן כי הוא נתן ראיה כי ראוי להיות יותר וכיצד נחשוב נעשה הערך ככה בעבור ד' אל ק'מ'א' יהיה זה מס' ונכפול ב' על ס' שהם הקצוות ונחלק על ק'מ'א' והעולה הוא כך חלקים מס' והנשאר גם כן נשוב לכפול על ס' ונחלק על ק'מ'א' כי &#x202B;<ref>64r</ref>כי התוספת ח"ל ולעשות ערך נעשה מהכל ראשונים ר"ל ה'ג' ח"ל והם ק'פ'ח' וחצי ובעבור החצי נשיב הכל לשניים ונעשה האחד מק"כ ויהיה הכל ש'ע'ז' וכן נעשה האלכסון ק"כ ונעריך ונאמר כערך האלכסון אל קיהיה ערך קו העגול מש'ע'ז&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|
+
=== If we set the diameter as 10, the square of the chord is as one-third ===
 
 
== אם כפל האלכסון שתראה על כ"ב ==
 
  
 +
|style="text-align:right;"|<span style=color:blue>'''אם שמנו האלכסון י' יהיה מרובע היתר כשלישית'''</span>
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|אם כפל האלכסון שתראה על כ"ב ר"ל מאי זה אלכסון שתדע הערך לידע הקו הסובב כגון שהקוטר עשרה תעריך ותאמר כערך י' אל ז' יהיה ערך העגול אל כ"ב ונכפול הקצוות ונחלק על ז' והנה הנוסף אל הג' שלמים
+
|style="text-align:right;"|ר"ל כשנוציא יתר בשלישית הקוטר ונרבע אותו יותר עם השלישית יהיה כמספר הקו הסובב כי לפי זה מרובע חצי המיתר כ"ב וב' תשיעיות ושרשם ד' וב' שלישיות בקרוב נמצא כל המיתר ט' ושליש נכפלם על שליש האלכסון שהוא ג' ושליש יעלה ל"ז ותשיעית ויותר מעט כי בקרוב מנינו כל המיתר ונמצא שהוא כשעור הקו הסובב וזו הצורה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ר"ל שאם היה הנוסף ז' חלקים מע' וחצי יהיה הנוסף על הג' שלמים ח' ר"ל שאם היה הנוסף כ"ד ל"ה אך אינו כן כי הוא נתן ראיה כי ראוי להיות יותר וכיצד נחשוב נעשה הערך ככה בעבור ד' אל ק'מ'א' יהיה זה מס' ונכפול ב' על ס' שהם הקצוות ונחלק על ק'מ'א' והעולה הוא כך חלקים מס' והנשאר גם כן נשוב לכפול על ס' ונחלק על ק'מ'א' כי <ref>64א</ref>כי התוספת ח"ל ולעשות ערך נעשה מהכל ראשונים ר"ל ה'ג' ח"ל והם ק'פ'ח' וחצי ובעבור החצי נשיב הכל לשניים ונעשה האחד מק"כ ויהיה הכל ש'ע'ז' וכן נעשה האלכסון ק"כ ונעריך ונאמר כערך האלכסון אל ק"כ יהיה ערך קו העגול מש'ע'ז'
+
=== Likewise, if you make the square between the upper third and the lower third ===
|-
 
|
 
|style="text-align:right;"|אם שמנו האלכסון י' יהיה מרובע היתר בשלישית
 
|-
 
|
 
|style="text-align:right;"|אם שמנו האלכסון י' יהיה מרובע היתר בשלישית ר"ל כשנוציא יתר בשלישית הקוטר ונרבע אותו יותר עם השלישית יהיה כמספר הקו הסובב כי לפי זה מרובע חצי המיתר כ"ב וב' תשיעיות ושרשם ד' וב' שלישיות בקרוב נמצא כל המיתר ט' ושליש נכפלם על שליש האלכסון שהוא ג' ושליש יעלה ל"ז ותשיעית ויותר מעט כי בקרוב מנינו כל המיתר ונמצא שהוא כשעור הקו הסובב וזו הצורה
 
|-
 
|
 
|style="text-align:right;"|
 
== וככה אם עשית מרובע בשלישית העליונה ובשלישית השפלה ==
 
  
 +
|style="text-align:right;"|<span style=color:blue>'''וככה אם עשית מרובע בשלישית העליונה ובשלישית השפלה'''</span>
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וככה אם עשית מרובע בשלישית העליונה ובשלישית השפלה ר"ל שנוציא שני יתרים אחד למעלה בשלישית ואחד למטה בשליש הקוטר גם כן יהיו שבריו כמספר הקו כי אין חלוק בין מרובע החץ שהיא שליש האלכסון עם היתר ובין מרובע היתר ההוא למטה בשלישית האלכסון כזה
+
|style="text-align:right;"|ר"ל שנוציא שני יתרים אחד למעלה בשלישית ואחד למטה בשליש הקוטר גם כן יהיו שבריו כמספר הקו כי אין חלוק בין מרובע החץ שהיא שליש האלכסון עם היתר ובין מרובע היתר ההוא למטה בשלישית האלכסון כזה
 
|-
 
|-
 
|
 
|
Line 2,105: Line 2,760:
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|<ref>64ב</ref>המשל בזה אם תעשה אלכסון ט"ו ותוציא יתר בשלישית יהיה
+
|style="text-align:right;"|&#x202B;<ref>64v</ref>המשל בזה אם תעשה אלכסון ט"ו ותוציא יתר בשלישית יהיה
 
רבוע כל האלכסון רכ"ה ושלישיתו ע"ה וזהו מרובע חצי היתר ומרובע החץ נחסר ממנו השליש שהוא מרובע החץ וישאר נ' ויהיה שרש ז' שלמים ומשהו נכה אותו בשני שלישי האלכסון הוא שנים ושביעית אחת אם כן יהיה הקו המקיף מ"ז ויותר מעט וערכו אל ע' שהוא תשבורת המשולש כערך י' אל ט"ו
 
רבוע כל האלכסון רכ"ה ושלישיתו ע"ה וזהו מרובע חצי היתר ומרובע החץ נחסר ממנו השליש שהוא מרובע החץ וישאר נ' ויהיה שרש ז' שלמים ומשהו נכה אותו בשני שלישי האלכסון הוא שנים ושביעית אחת אם כן יהיה הקו המקיף מ"ז ויותר מעט וערכו אל ע' שהוא תשבורת המשולש כערך י' אל ט"ו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|והמשל בפחות מי' כגון שהיה האלכסון שבעה יהיה מרובע כל האלכסון מ"ט ושלישיתו י"ו כ' והוא כולל מרובע החץ וחצי היתר נוציא מהם מרובע החץ והוא ה' ושלישית ותשיעית שהוא כ"ו מ' נחסר אותו מי"ו כ' ישאר י"א פחות תשיעית ושרשו ג' י"ח ככה זה המספר בשני שלישי האלכסון שהוא ד' מ' ויהיה ט"ו כ"ד והוא תשבורת המשולש אל כ"ב שהוא הקו המקיף כערך ז' אל ז'
+
|style="text-align:right;"|והמשל בפחות מי' כגון שהיה האלכסון שבעה יהיה מרובע כל האלכסון מ"ט ושלישיתו י"ו כ' והוא כולל מרובע החץ וחצי היתר נוציא מהם מרובע החץ והוא ה' ושלישית ותשיעית שהוא כ"ו מ' נחסר אותו מי"ו כ' ישאר י"א פחות תשיעית ושרשו ג' י"ח ככה זה המספר בשני שלישי האלכסון שהוא ד' מ' ויהיה ט"ו כ"ד והוא תשבורת המשולש אל כ"ב שהוא הקו המקיף כערך ז' אל ז&#x202B;'
 
|-
 
|-
 
|
 
|
Line 2,124: Line 2,779:
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|לעולם כערך י"א אל י"ד יחסרו שברי העגול ממרובע האלכסון נמצא מרובע יתר על העיגול שביעית חצי שביעית שהוא פחות מרביע ורבותי שאמרו רביע נמשכו אחר כללם שאמרו כל שיש ברחבו טפחיים וכו'
+
|style="text-align:right;"|לעולם כערך י"א אל י"ד יחסרו שברי העגול ממרובע האלכסון נמצא מרובע יתר על העיגול שביעית חצי שביעית שהוא פחות מרביע ורבותי שאמרו רביע נמשכו אחר כללם שאמרו כל שיש ברחבו טפחיים וכו&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ודע והנה הנמשלים שהם מי' ולמעלה <ref>65א</ref>ראוי שנקח המדרגות מהם
+
|style="text-align:right;"|ודע והנה הנמשלים שהם מי' ולמעלה &#x202B;<ref>65r</ref>ראוי שנקח המדרגות מהם
 
|-
 
|-
 
|
 
|

Latest revision as of 11:51, 2 November 2024

Contents

[Chapter One]

The sign for this

[1]האות על זה
I.e. the sign that all numbers revolve around nine is when you draw a circle etc. ר"ל האות על היות כל המספר סובב על תשעה כשתעשה עגול וכו‫'
He could have given another difference: when you multiply 9 by itself, or by 8, or by 7, or by 6, you find that the units of the tens position exceed the units themselves and from 5 and up it is the opposite as a general rule. וכן היה יכול ליתן הבדל אחר כי כשתכפול ט' על עצמו או על ח' או על ז' או על ו' תמצא האחדים שבמקום העשרות יתרים במספרם מן האחדים עצמם ומה' ולמעלה ככלל הדבר בהפך

Therefore five is called round number, for it revolves around itself

על כן נקרא חמשה חשבון עגול כי הוא מתגלגל על עצמו
I.e. it is found in its square. ר"ל שימצא במרובעו
Although it is also found in six, the square of six is not preserved in its cube. וא'ע'פ' שבששה ימצא כן אמנם ששה לא ישמר מרובעו במעוקבו
Because when you multiply 6 by 6, it is 36.
\scriptstyle{\color{blue}{6\times6=36}}
כי כשתכפול ו' על ו' ויהיו ל"ו
Next, you multiply 6 by 36; but it does not stay in its shape.
\scriptstyle{\color{blue}{6\times36}}
ואחר תכפול ו' על ל"ו לא ישאר בצורתו
But, [5] times 5, which is 25, if you multiply it by 5, it retains itself; the result is 125 and this is the absolute product, since after multiplying its length by its width, we multiply it by its depth.
\scriptstyle{\color{blue}{5\times25=125}}
אך פעמים ה' שהם כ"ה אם תכפלם על ה' ישמר עצמו ויעלה ק'כ'ה' וזהו הכפל הגמור כי אחר שכפלנו ארכו על רחבו שהוא השטח נכפלנו בעמקו
So, the height is divided into five equal parts, each of which is 5 by 5. ונחלק הגובה לה' חלקים שוים שכל אחד ה' על ה‫'

For 1, 10, 100 repeat in the thousands

כי א'י'ק' יחזור באלפים וכו‫'
1, 10, 100 are apart of all numbers, because every number is either one [= units], or 10 [= tens], or 100 [= hundreds]. א'י'ק' הוא חוץ לכל המספרים כי כל מספר הוא אם אחד או י' או ק‫'
For a thousand is one, 10 thousand returns to 10 and 100 thousand to 100. כי אלף הוא באחד וי' אלפים ישובו לי' וק' אלפים לק‫'

To multiply a number by itself

לכפול חשבון על עצמו
As 25 by 25. כמו כ"ה על כ"ה
Or by other או על אחר
Such as 25 by 44. כמו כ"ה על מ"ד

Or multiplication of one number by two numbers

או כפל חשבון אחד על שנים חשבונות
As the multiplication of tens by hundreds and tens. ככפל עשרות על מאות ועשרות

Or multiplication of multiple numbers by multiple numbers

או כפל רבים על רבים
As units, tens and hundreds by units, tens and hundreds. כמו אחדים ועשרות ומאות עם אחדים ועשרות ומאות

About the scales

על המאזנים
I.e. the sign indicating the truth of multiplication, or division, or vice versa. ר"ל האות המעיד המורה על אמתת הכפל או החלוק או חלופו

Addition of a number to a number

בחבור מספר אל מספר
For example, if you want to add many numbers together with many numbers, we write those numbers in rows and add the digits in order as if they were units. כגון שתרצה לחבר יחד מספרים רבים במספרים רבים נכתוב אלו המספרים בשורות שורות ונחבר האותיות ביושר כאלו היו אחדים
If the result that exceeds ten has no units, we write zero and keep it. והעולה על עשר אם אין בו אחדים נכתוב גלגל ונשמור
If it has units, we write the units; we write the tens in another position and keep it as will be explained in its place. ואם יש עמו אחדים נכתוב האחדים ונניח הכלל במקום אחד ונשמרהו כמו שיתבאר במקומו

Subtraction of a number from a number

לחסר מספר ממספר
Meaning to subtract a number from another number greater than it and know the remainder. כלו' לגרוע מספר ממספר אחר רב ממנו ולדעת הנשאר

Always subtract one for the foundation

וגרע לעולם אחד למוסד
For the units do not generate any rank for any number, because every number multiplied by units does not go out of its rank, which is not the case when multiplying by another number that rises the rank. כי אחדים לא יחדשו מדרגה בשום מספר ‫[2]כי כל מספר הנכפל על אחדים לא יצא ממדרגתו מה שאין כן בהכפלו על מספר אחר שיוסיף מדרגה
A table to know the rank of the product of the numbers that are multiplied by each other לוח לדעת המספרים הכפולים אלו על אלו באיזו מדרגה ישאר הנכפל
Know that the rubric corresponding to both is the total and it indicates both. דע כי הנקודה הנכחית לשניהם הוא סך המספר המורה והיא המזכרת אותם
מאה אלף רבבות אלפים מאות עשרות אחדים
אלף אלפים מאה אלף רבבות אלפים מאות עשרות
עשרת אלפי אלפים אלף אלפים מאה אלף רבבות אלפים מאות
מאה אלף אלפים עשרות אלף אלף אלפים מאה אלף רבבות אלפים
אלף אלפי אלפים ק' אלף אלפים עשרות אלף אלף אלפים מאה אלף רבבות
רבבות אלפי אלפים אלף אלפי אלפים ק' אלף אלפים עשרות אלף אלף אלפים מאה אלף
hundreds of thousands tens of thousands thousands hundreds tens units
thousands of thousands hundreds of thousands tens of thousands thousands hundreds tens
tens of thousands of thousands thousands of thousands hundreds of thousands tens of thousands thousands hundreds
hundreds of thousands of thousands tens of thousands of thousands thousands of thousands hundreds of thousands tens of thousands thousands
thousands of thousands of thousands hundreds of thousands of thousands tens of thousands of thousands thousands of thousands hundreds of thousands tens of thousands
tens of thousands of thousands of thousands thousands of thousands of thousands hundreds of thousands of thousands tens of thousands of thousands thousands of thousands hundreds of thousands
י ט ח ז ו ה ד ג ב א
כ יח יו יד יב י ח ו ד ב
ל כז כד כא יח טו יב ט ו ג
מ לו לב כח כד כ יו יב ח ד
נ מה מ לה ל כה כ טו י ה
ס נד מח מב לו ל כד יח יב ו
ע ס[ג] נו מט מב לה כח כא יד ז
פ עב סד נו מח מ ל[ב] כד יו ח
צ פ[א] עב סג נד מה לו כז יח ט
ק צ פ ע ס נ מ ל כ י
10 9 8 7 6 5 4 3 2 1
20 18 16 14 12 10 8 6 4 2
30 27 24 21 18 15 12 9 6 3
40 36 32 28 24 20 16 12 8 4
50 45 40 35 30 25 20 15 10 5
60 54 48 42 36 30 24 18 12 6
70 63 56 49 42 35 28 21 14 7
80 72 64 56 48 40 32 24 16 8
90 81 72 63 54 45 36 27 18 9
100 90 80 70 60 50 40 30 20 10

Example: we wish to multiply 29 by 31

[3]דמיון רצינו לכפול כ"ט על ל"א
According to this way, for all those that are similar, such as the multiplication of 70 by 90, whose distance from 80 is the same.
\scriptstyle{\color{blue}{70\times90=\left(80-10\right)\times\left(80+10\right)}}
ועל זה הדרך כל הדמים לאלה כגון כפל ע' על צ' שמרחקם מפ' אחד

If the number does not have a whole third and there is an excess of one

ואם לא היה למספר שלישית שלימה ויהיה בו תוספת אחד
Such as ten and you wish to know its square: כגון עשר ותרצה לידע מרובעו
Subtract the one from the number; 9 remains. חסר האחד מהמספר ישאר ט‫'

Calculate the sought number in the procedure that I have shown you

ותוציא המספר המבוקש כמשפטו שהראיתיך
ר"ל שתקח שליש ט' שהוא ג' ומרובעו ט' נעלהו במדרגה שלפניו ויהיו צ' חסר ממנו ט' וישאר פ"א ואחר תוסיף עליו מספר ט' והמספר בעצמו שהוא י' ויעלה ק‫'

If there are two between our number and the number that has a third

ואם היו שנים בין המספר שלנו ובין המספר שיש לו שלישית
כלומ' שיעדף מספרנו על שלישית שנים כי כל מספר או יש לו שלישית שיעדף יעדיף אחד או שנים

We do the opposite

נעשה להפך
לפי שזה התוספת יקרא חסרון בערך המספר שלאחריו כי הוא יחסר אחד משלישית שהוא החלק הקטן והוא הפך מה שאמ' למעלה נוסיף על מספר שלנו אחד כי יותר יתכן זה משנחסר שנים

Know that if there are two digits to multiply by one another

ודע כי אם יהיו שני מספרים לכפול זה על זה
ר"ל מספרם בין שניהם כגון ב' פעמים די לו בהכאה אחת כגון שתאמר ב' פעמים ב' כמו שאמור למעלה

If you have one digit by two digits

ואם יהיה לך מספר אחד על שני מספרים
כגון ש' פעמים מ"ה אתה צריך להכות פעמים שתכה תחלה הש' על המ' כן ג' על ד' י"ב והנה עשרות במאות הם במדרגה רביעית שהם אלפים והוא י"ב אלף
עוד נכה ג' על ה' והם ט"ו מאות שהם אלף ות"ק נמצא הכל י"ג אלפים ות"ק

If three by three

ואם על שלשה שלשה
כלומ' אם תרצה לכפול מספר אחד על ג' מספרים כגון ש' על ת'כ'ה' ג' פעמים ככה ‫[4]ג' פעמים ד' הם י"ב הם במדרגה חמישית שהיא רבבות והם ק"כ אלף
עוד נכה ג' על ב' הם ו‫'
עוד נכה ג' על ה'ט"ו והם מאות והכל ק'כ'ז' אלפים ות'ק‫'
ומאה אם המספר אחד תן שיהיה המספר הנכפל אחד או רבים ראה אם הוא זוג שאם הוא זוג גם המחובר זוג
ואף אם האחד נפרד בכפל בזוג כגון ט' פעמים ח' יהיה העולה זוג
אף אם שניהם נפרדים כגון ט' על ט' או ט"ו על ט"ו אז המספר נפרד

The paved way

והדרך סלולה
שתשים למעלה עוד המספר כי זה יותר ישר ונאות ר"ל שכללו ומועט ולא נחוש אם יהיו הפרטים העליונים גדולים בכמות מפרטי הטור השפל אחר שכלל העליון בלתי גדול וכן לא נחוש בהיות מספרי הטור העליון שכללו קטן יותר רבים ממספרי הטור השפל

Write it corresponding to the top row

כתוב אותו כנגד טור העליון
כלומר כנגד קו המספר העליון הראשון כי אחדים עם אחדים אחדים וכתוב בטור שלישי כנגד המספר השני העליון כי אחדים בעשרות יעלו עשרות

Write the units in the place to which they belong

תכתוב הפרט במקום הראוי לו
כלו' כפרט העודף כתבהו במדרגתו ושמור תחת הכלל אחדים כמספר וחברם וכתבם עם המספר הבא אחריו במדרגת המספר ההוא הבא אחר כן עד תום להכות הראשון עליון עם כל השפלים ואם ישאר שם כלל ופרט יכתוב הפרט וא' ואחריו הכלל כי שם תכלית הטור ההוא

Start to multiply the second digit and write the result in the third row

תחל לכפול המספר השני והעולה כתבהו בטור השלישי
כלומר תחל לכתוב בטור אחד למטה ולא באותו ‫[5]טור
לפי שעשרות עם אחדים יהיו עשרות ואין ראוי לשים מדרגת עשרות במדרגה גבוהה ממנה על כן נכתבם במקום העשרות

Then, multiply the second top by the second and write it in the third row

ואחר כך תכפול השני העליון על שני וכו' ותכתבהו בטור השלישי
ר"ל כנגד המספר השלישי שבטור העליון אבל זה טור שם הוא מהעולה מן הכפל

As the third digit

במספר שלישי
כלומ' במדרגה שלישית כי העולה מכפל עשרות בעשרות מאות

Which is second to the digit from with which I have started

שהוא שני למספר שהחלותי
כי מן השני התחיל

With the rule that the units are in the lower rank

עם משפט הפרט להיותו תחתון וכו‫'
כלו' ר"ל שתכתוב הפרט תחלה במדרגתו השפלה ואחר כן תכתוב הכלל במקום גבוה ממנו שהוא שני לפרט

If there is zero, whether in the top row

ואם היה גלגל בין בטור העליון וכו‫'
כלומ' כשתכה באות או אות בגלגל כתוב גלגל להוסיף מדרגה ושימהו במקומו כדרך שתעשה מן המספרים שלפני הגלגל או לאחריו
הא למדת שכפי מנין מספר הטור העליון תכתוב טורים תחת שני הטורים שמהם הכפל יוצא וכל אלו הטורים זולת קורא טור שלישי

Then, start adding up

אחר כן תחל לחבר
כלומ' אחר שהשלמת כל ההכאות תחל לחבר העולה מן הטורים השלישי שכתבת ותכתבהו בטור אחד שפל כגון שיש לך מן העולה בכפל ג' טורים חבר בקו היושר מה שנמצא בהם במדרגה הראשונה וכתבהו ואחר כן חבר מה שנמצא במדרגתם השנית וכתבהו וכן כולם עד סופם

If there is ten, write one after it

ואם יש בו עשרה תכתוב אחד אחריו
כלומ' אם מן שתחבר מאותה מדרגה יעלו עשרה בכוון יכתוב ספרא וישמור אחד וא' יחברהו עם מה שיבא אחריו ואם יעלה החבור כלל ופרט כתוב היושר על הכלל בחבור שיש לך וכתוב אחריו במקום הכלל אחד
[6]ואם לא ימצא באיזה מן הטורים רק גלגל כתבהו ואחר שתשלים טור החבור ותרצה לבחון אמתת מספרך ספור מנין מדרגותיו וכאיזה יהיה מעלות השני טורים בלי מדרגת אחד כי הכלל יעשהו מדרגה אחרת
עוד ילמדך מאזנים להבחין מספרך שתמנה סכום האותיות שבטור העליון ואם הוא פחות מט' ישמרהו ואם הוא יתר מט' שמור היתר וכן תעשה ממנין אותיות הטור השפל והנשאר מט' כפלהו עם הנשאר מן הטור הראשון ואם לא ישאר על ט' באחד משני טורים אין צריך לבדוק האחד כי מה שנכפל על ט' יצא ט'ט' וככה יהיה הפחות מט' או היתר מט' ממנין טור החבור ואם לאו תדע כי טעית בחשבונך
נשלם השער הראשון

Chapter Two

השער השני

One alone does not assume any change

האחד לבדו לא יקבל שנוי
כל שנוי בא מצד ההרכבה וההפך והאחד לפי [שהוא]‫[7] פשוט אין דבר שישנהו

No increase

ולא רבוי
כי כפל אחד על אחד אחד

And no division

ולא חלוק
כי מצד שהוא אחד לא יתחלק

One is eternal

והאחד קדמון לבדו
כי הוא קודם אל המספר קדימה טבעית

They did this

ועשו זה
ר"ל למה חלקו הגלגל לי"ב מזלות בעבור כי שנת השמש שהיא זמן סבובה מנקודה ידועה מגלגל המזלות עד שובה אליה ושנותה לסוב מהנקודה ההיא באותו הזמן סבבה הלבנה גלגלה ודבקה עמו י"ב פעם כי י"ב פעם חדושי הלבנה והמולדה שלמים יש בשנת החמה

They divided each sign to thirty degrees, because this number has more whole units than 12; for it has one-half, one-third etc.

וחלקו המזל לשלשים מעלות כי זה המספר יש לו אחדים שלמים יותר מי"ב כי יש לו חצי ‫[8]חצי ושלישית וכו‫'
זה מוסיף על י"ב אחד
וש"ס מוסיף עוד שמינית שהוא מ"ה ותשיעית שהוא מ‫'

Each according to its rank

כל אחד כפי מעלתו
ר"ל כפי מדרגתו

The number by which you divide should be less than the dividend

וראוי להיות המספר שתחלק עליו פחות מהמספר המחולק
כי כשתרצה לחלק מספר אחד על אחר ראוי להיות המספר העליון גדול מהמספר השפל ואז תחלקנו עליו לידע כמה חלקים מחלקי המספר המועט ימצאו בגדול

Return back as the number of the distance

וכפי מספר המרחק תשוב אחורנית
כגון שהמספר שבטור השפל במדרגה השלישית תכתוב העולה בחילוק במדרגה באמצע אחורנית מהאחרון שבטור העליון עד שאם היה האחרון השפל כנגד האחרון העליון נכתוב העולה בחילוק כנגד הראשון העליון

If a number that cannot be divided remains from the last digit

ואם ישאר במספר אחרון חשבון שלא נתחלק
כלומ' אחר שחלקת המספר העליון על השפל ונתת לו חלקו והנה נשאר עדין חשבון שלא יקבל חלוק לקטנותו באחדים כגון שלקח השפל חלק או חלקים במספר מהאות העליון ונשאר קצת מהאות והוא שלא יוכל להתחלק

Has not yet reached the rank of the units

ולא הגיע למעלת האחדים
ר"ל שלא ירד עדין כל כך שיחבר כמותו מהמחולק עליו אבל גבוה במדרגה ממנו שאם כן לא נחלקהו עוד כי כבר יצא לחוץ

Return the remaining number back to the preceding rank, which is lower than it

השב אחורנית מהמספר הנשאר אצל המדרגה הראשונה המדרגה שהיא פחותה ממנה
והעולה בחילוק תכתוב אותו אחורנית רחוק מהמדרגה שחלקת עתה ממנה כמרחק השפל מדרגתו הראשונה וכתבהו לפני מה שיעלה בחילוק בראשונה

Write the remainder above the top row according to its rank

ואותו הנשאר תכתבהו למעלה מן הטור העליון כפי מעלתו
כלומ' שאם הוא עשרות או מאות כתבהו למעלה במקום מדרגתו

In the fifth chapter

ובשער החמישי
יפרש כיצד נחלק אותו הנשאר

We give it 1

ונתן לו א‫'
כלו' נקח מן הט' שביעית אחת
נשיבם אחורנית על ‫[9]הגלגל שלפני ט' נשארו ששה נשיבהו אחורנית על הגלגל השני

Calculate from this position

ותחשוב מאותו המקום
כלומ' משם התחיל לחלוק על השפל

According to the distance of the divisor

וכפי מרחק המספר המחולק עליו
כלו' כפי מרחק המספר האחרון שבטור השפל מהראשון תשיב זה העולה אחורנית מהמספר שחלקת ממנו

If there is a zero in one of the positions

ואם היה גלגל באחד המקומות
ר"ל שהוא מפסיק בין מספרים חלוקים מגלגל אי איפשר ליקח כלום ולא לתת לו כלום
וכשיגיע המספר הגדול המחולק לתכלית החלוקה כגון שיחסר מהמספר התחתון שנחלק עליו
או יאמר עליו שכבר יצא לחוץ
כל זמן שיהיה העליון פחות מהשפל נשיב לו כל אותו העליון אחורנית ונשיבם עשרות
ומשם נמנה החלק
כלל הדבר כל מה שנוכל לתת מהאחרון העליון על האחרון השפל נתן והוא שיהיה אפשר להגיע במספר חלקים לשני שהוא שני אחורנית מן השני ומן השלישי לשלישי
ואם לא נחלק בפעם ראשון נשוב לחלק מן הראשון לאחרון אם לא נשאר באחרון כלום או אם נשאר פחות מהשפל ואז נשיבהו אחורנית
ונתן לאחרון שבטור השפל ומן השלישי לאחרון לשני מן השפל ומן הרביעי לשלישי עד שנתחיל לחלק מהעליון שהוא כנגד האחרון ונחלק כלם על כלם כנגד וכזאת החלוקה נעשה הכל כי המחולק נשאר פחות ואז נכתוב מה שעלה בחלוק באחרונה במדרגת האחדים ושוב אי איפשר לדחות כי כבר יצא לחוץ

Give the last in the bottom row of the top row

תן לאחרון שבטור השפל מהטור העליון
כלו' שהוא שפל מהטור העליון

Give the preceding in the bottom row

ותתן לראשון מן הטור השפל
כלו' במספר החלקים שנתת לאחרון שהוא ‫[10]שהוא אחרון מהמספר מטור השפל כזה תן לראשון מן האחרון שבטור השפל מן הראשון לאחרון שבטור העליון

If you cannot do this

ואם לא תוכל לעשות ככה
כלו' לא תוכל לתת לו כל החלקים שנתת לו כי יגרע מן האחדים מנינם
שוב וגרע מהמספרים שחשבת לתת לו בתחלה

When you have to take any digit from the digit that precedes the last

וכשאתה צריך לקחת שום מספר מהטור הראשון לאחרון
כגון שלא יספיק לך המספר ההוא בהיותו במקום האחרון השיבהו לאחור במקום שלפני האחרון וחשוב כל אחד עשרה ולא תקח ממנו רק כפי מה שתגזרהו החלוקה

Return back from the higher rank

השב מן הגבוה ממנו
כלומ' שלא תחלק כל המספר הגבוה על השפל רק תשאיר ממנו קצת ותשפיל מן הנשאר שם והניחהו במעלות הגלגל כפי שתצטרך וחלק ממנו לאשר כנגד מדרגתו
כי כפי מדרגת האחרון העליון לאחרון השפל יהיו מדרגות הראשונים העליונים לראשונים התחתונים

Return back the higher that corresponds to the digit

השב אחורנית הגבוה שהוא כנגד החשבון
כגון שיש בטור העליון סיפרא לפני האחרון הנה נשיב הגבוה האחרון אחורנית אל גלגל אחרון אשר לפניו ותקח ממנו מה שתצטרך או כלו

From the remainder there

ומהנשאר שם
ר"ל בגלגל ההוא השיב כפי רצונך צרכך אחורנית לגלגל הראשון ותחלוק ממנו מה שצריך אל השפל הראוי לו כפי מדרגתו
ולעולם לא נכתוב אלו מה שיעלה נחלוק בתחלה ונתן לו כפי מספר החלוקות שנשוב לעשות ובכל חלוק נכוין שיגיע לכל אח' אחד חלקו על דרך כפל שלקח תחלה האחרון מהאחרון

Two are left on the two

נשארו שנים על השנים
ר"ל על מקום הב' שהיה שם תחלה

We return on the 8 back

נשיב של הח' אחורנית
כלומ' הא' שהוא עתה על מקום הח' שהיה תחלה נשיבהו אחורנית על מקום הב' שיש עתה עליו א' והיו ‫[11]י"א
נחלק אותם על ג' שהוא בטור השפל כנגד מדרגתו ומעתה יקח כל אחד ממדרגתו ביושר
כי אינו יכול לקחת הג' הד' הראשונים מהי' מבלי השבת אחד אחורנית וזהו אמרו בתשובה כלומ' בראשית שתקח אחד מהי' ונשיבהו אחורנית לפי שאינו מעלתו עכשו כמו שביארנו

Because it was first third to it

כי בראשונה היה שלישי לו
כלו' מקום הא' היה נחשב מחלוק ראשון שלישי והיה נחלק על ג' הראשון באלכסון שהוא שלישי
וכאשר תשיבהו אחורנית הנה עם הג' י"ג וט"ו ד' פעמים ל"ו על כן לא יכולנו לתת ל"כ מן הט' ד' על כן לא נתן לו רק ג‫'

Two, which is one

שנים שהם אחד
כלו' נקח מאותם הה' ב' שהוא חלק אחד לב' השפלים

We take one from the 3 that is above the three

נקח מן השלשה שעל השלשה אחד
כלומ' שעל מקום הג' בתחלה וישארו שנים כנגד אותו מקום הג' הקודם ויש לנו לחלק על ט' ולא יספיק
אך נתן לו אחד ונכתבהו כנגד ט' נתן לב' שהוא רביעי ח' פעמים ב' שהוא י"ו נשארו ח' על הד‫'
אם נאמר נשיב מהם שבעה
סדר הדברים הנה באמת נאמר שנשיב מהח' שנשארו על מקום הד' ז' אצל הו' שהנחנו על הגלגל שלא נוכל להשיב מהם אחורנית אל הד' שעל מקום הט' שלשה לבד לבד מן הטעם שמבאר

Eight remains on the 4 that is on the 9

וישארו שמנה על הד' שהם על הט‫'
כלומ' ישארו שמנה על מקום הט' שהנחנו עליו אחר כן בחלוקתנו ארבעה

It is taken as tens for us but that is still not enough

יצא לנו בעשרות ועוד לא יספיק
כלומ' עדין לו יספיק
כלומ' עדין לו יספיק לפי שהוא גלגל בגלגל על כן נצטרך עוד שנקח ג' מהם ונשיבם אחורנית
והשלשה הם שלשים על הד' והם ל"ד
נשארו שבעה במקום ד‫'
כי יש לנו לקחת ממנו ג' פעמים ט' ‫[12]והם כ"ז ואז ישארו י"ו על הד'
ועתה נשלם חלוק ראשון [.]גלגל שלפני הד' וב' שבטור העליון
לפי שהניח בד' הזכיר הנשאר לפניו ואחר כן יזכיר הנשאר לאחריו

We give it three

נתן לו שלשה
כלומ' נתן לב' ג' חלקים כמהו שהם ו' מז' שעל הח' וישאר שם אחד והג' נכתבם תחת הגלגל הראשון

And it is impossible to return the digit back on the two, because the two is not in its rank

וגם לא נוכל להשיב אות אחורנית על השנים כי השנים אינם מעלתו
זה לא היה צריך להזכיר ועוד כי אין על הגלגל כלום

3 remains above the zero

נשארו ג' על הגלגל
ר"ל אחר שנקח מן השלשים כ"ז שהוא חלקו
מאזני החלוק הוא שתמנה המספר השפל שעליו נחלק ונקח הנשאר בו על ט' ט' ונמנה כמה ישאר מט' ט' ושמרהו ואם נשאר למעלה דבר לחלק והוא הכתוב למעלה נראה מה שבו על ט' ונחברהו עם השמור וכזה יעדף על ט' במספר הגדול המחולק אם ימנה כהוגן

If you multiply the quotient

ואם תכפול מה שעלה בחלוק וכו‫'
זהו בוחן אחד והוא פשוט

Chapter Three

השער השלישי

Every number is in accordance with these two ways

ועל אלו שני הדרכים כל החשבון
ר"ל דרך הזוגות שנחשב בו ב' חשבונות כפל כל החשבון על חציו וכפלו על חצי אחד
ודרך הנפרדים שנכפול על חציו לבד

Another way

דרך אחרת
שנקח סוף החשבון שנרצה לידע המחובר מהמספרים שעברו לפניו ונכפלהו על עצמו ואחר כן ‫[13]נוסיף על המרובע הזה שרשו שהוא סוף החשבון והנה חצי זה הוא המבוקש
דרך אחרת שנכפול מרובע חצי המספר ונוסיף עליו שרש זה המרובע שהוא חצי החשבון והוא המבוקש המבוקש
הרוצה לידע מספרים מחוברים בדלוג אחד עד מספר ידוע כמו שירצה
לידע הנפרדים שהם עד ט' יוסיף על החשבון אחד והיו עשרה נכפול עשרה על רביע' רביעיתם שהוא ב' וחצי והוכה והיו כ"ה וככה המחובר
ונחבר אליו שלישית הסכום שהוא כ"ו כי כפל אחד ע"ח הוא ע"ח וכפל אחד על ע"ח הוא שליש ע"ח שהוא כ"ו

Add the scale of the top row

חבר מאזני הטור העליון
ר"ל הנשאר בו מתשעיות

In the tables of the planets there is no [more fractions]

ואין בלוחות המשרתים
לא ידקדקו יותר מזה

One according to the solar years

האחד על שנות השמש
כגון האמות המונים לשמש ועושים מחזורים מעשרים עשרים שנה שיזכרו מהלך כל משרת בזה המספר מן השנים

The same is done with the whole hours that have passed after the middle of the day

וככה תעשה בשעות השלמות שעברו אחר חצי היום
כי הם ימנו תחלת היום מחצי היום

Write them alone

כתבם לבדד
כי הוא רוצה לדעת מקום המשרת בזה השעה
על כן יכתוב העולה מן המחובר בטור מיוחד השם . כתוב השניים המחוברים מטורי השניים לפניהם הראשונים ולפניהם המעלות וכן כולם כולם וישמור כל העולה למה שרצהו

Chapter Four

השער הרביעי
כשנרצה לגרוע מספרים ממספרים נכתוב המספרים שנרצה לגרוע מהם עליונים ותחתיהם טור הנגרעים וצריך שיהיה אחרון שבטור העליון כללו גדול משכנגדו השפל ולא נפקד בגודל הפרטים השפלים כי הכל תלוי בכלל

If you find in one of the ranks

והנה אם מצות באחדות המעלות
[14]פי' כי כשנמצא במדרגות האחדות שהן לפני האחרון שהשפל גדול ממספר הטור העליון שכנגדו נקח אחד מהעליון ונחשבהו ונחל לגרוע מהאחרונים הגבוהים במדרגה זהו דרך אבן עזרא ואין זה סדר נכון שאחר שיכתוב הנשאר מן הראשון יצטרך לפעמים לגרוע ממנו ולהוסיף לראשון ויצטרך לפי זה שבטרם יכתוב האחרון אם יעדיף השפל שלפניו ויתן לו אחד ויגיע אחד מהמספר האחרון
אבל הסדר היותר נאות שנחל נמנות מן האחדים ומה שיתחבר מהם כלל יחברהו עם הכלל שלאחריו וכן כולם כדרך שנעשה בשניים ובראשונים ובמעלות ובמזלות
דמיון חסרון אחד מב' וכו‫'
כגון שתרצה לגרוע י"ז מכ' ונכתוב שני הטורים כן
נחסר א' מב' ונשאר א' והנה אין על הז' כלום נשיב ז' א' הא' כנגד הז' והוא י' נחסר ממנו ז' ונשאר ג‫'
הנה מאזני הטור העליון ב' ומאזני הטור השני ח' ולא נוכל לחסר ח' מב' על כן נוסיף ט' עם הב' יהיו י"א נגרע ממנו ח' ועתה נשאר מאזני שני הטורים ג' וכן מאזני השלישי

He adds six to the scale of the upper seconds

יוסיף על מאזני השנים העליונים ששה
כי כך ישאר מששים על ט' ט‫'

Add three to the scale of the degrees that were written first

הוסף על מאזני המעלות הכתובים בראשונה שלשה
כי כן ישאר מל' מעלות הנוספות

Add three to the scale of the signs that were written first

הוסף על מאזני המזלות הכתובים בראשונה שלשה
כי כן ישאר מי"ב מזלות

One thing that is necessary when subtracting: the last [digit] at the end of the upper row must always be greater

דבר שהוא צורך למגרעת לעולם אותו בסוף הטור העליון יהיה גדול
זה מדבר על דעת חכמי החשבון כי האחרונים גבוהים במדרגה

Chapter Five

השער החמישי

One is as a point in a circle

האחד כמו נקודה בתוך עגולה
ר"ל כי האחד אמצעי בין השלמים והשברים על כן לא יתכן להיות האחד נשבר כי מאשר הוא אמצעי לא יתחלק

The whole is named with one name, as the shape represents the entire body

[15]רק בעבור שיקרא הכלל בשם אחד כמו צורת הגוף ותבניתו שהיא כוללת כל הגוף
ונקרא הכל בגוף אחד וא'ע'פ' שהוא מורכב מאברים רבים שכל אבר הוא אחד כן האחד נקחנו כולל ותחתיו שברים רבים שהם אחדים רק בערך אל האחד הכולל יקראו שברים וכל זה במחשבה כי האחד האמתי לא יתחלק

Therefore they take the half from two

על כן יוציאו החצי משנים
כי החצי הוא אחד משני חלקי הדבר

The analogous number from which they derive is called the "denominator"

ואותו שיקחו הדמיון ממנו יקראו המורה
כמו השלשה לשליש וארבעה לרביעית

For the product is divided by its square

כי כל מרובע יחלקו העולה בחשבון
כגון שנכפול שני רביעיים על שני רביעית הנה הנכפל ד' והמורה ומרובעו י"ו שהוא אחד שלם ונכפול ב' על ב' והם ד' נחלק ד' על ט' יגיע לכל אחד שליש ותשיעית אחד

The remainder that cannot be divided

והנשאר שלא יתחלק
כלומ' אחר שנחלק מרובע המורה על החשבון הנכפל אם ישאר חשבון שלא יוכל להתחלק לחלקים שלמים אלא כשנחלק אחד מהם לחלקים רבים כגון המשל השני שהמשלנו נכנה אותו החלק בשם רביעית או תשיעית כפי מה שיהיה החשבון

The one, on the one hand, is not a number

האחד מפאה אחת איננו מספר
ר"ל כי אינו מספר כי אם בהתחברו למספרים

Because when you sum all the odd numbers

כי בחברך כל הנפרדים
כי אם א[.] וג' הם ד' והוא מרובע שנים ד' וה' הם ט' והוא מרובע ג' ט' וז' הם י"ו והם מרובע ד' וכן כולם על הסדר וכל זה ככה האחד ושתותיו

ודברים רבים

ימצאו באחד

אין צורך להזכירם והנה נשארו במערכה הראשונה כו‫'

מערכת הראשונה הם ט' האחדים והנה דבר על האחד והנה נשאר לדבר על שמונה

והנה חציים ראשונים

ראשון נקרא כל חשבון פשוט שאינו מתחלק בשוה

אלא לאחדים במספרו כגון שנים שנים ‫[16]שנים לשני אחדים וג' לג' וכן כלם . המספר [...........] למספרים שוים

When there is a need for two fractions that are not of one kind

וכאשר יצטרכו שברים שאינם ממין אחד וכו‫'

כגון שנרצה לכפול שני שלישים על שני רביעיים הנה כפל שנים על שנים ד' והנה נבקש לכל אחד המורה שיצא ממנו שהוא שלשה וארבעה ונכפול המורה האחד על המורה האחר והוא המורה ואליו נחלק כפל החשבון הראשון

If there are 3 types

ואם היו שלשה מינים
כגון שנרצה לכפול ב' שלישיים וב' רביעיים וב' חמישיים זה על זה נכפול שלשה על ארבעה והם י"ב
נכפול י"ב על חמשה והם ס' וזהו המורה
ונכפול החשבון שהוא י"ב ב' על ב' והם ד' נכפול ד' על ב' והם ח'
נחלק ח' על ס' . [.] שנרצה לכפול ב' שלישים על ג' רביעיים וד' חמשים נעשה מורה אחד לרביעים ולחמישיים והוא כ'
נכפול מורה שלישיים על ד' עלה ח‫'
נכפול ג' רביעיים על ד' חמישיים והם י"ב
נכפול ב' שלישיים על י"ב והם כ"ד
הנה החשבון כערך כ"ד אל ס‫'
או אם נרצה אחר שעשינו תחלה מורה מכ‫'
וכפלנו ג' על ד' שהוא י"ב
נסיר מהם ב' שלישיות והוא ח‫'
והכל שוה כי ערך ח' אל כ' כערך כ"ד אל ס' והוא ב' חמישיות אחד
ודע כי בקשת המורה כדי שנדע אי זה חשבון הוא שימצאו בו חלקים אלו ונחלוק אותו על מרובע המורה כדי שנדע אי זה חשבון הוא שימצאו בו חלקים ערך יש לחשבון מן האחד כשיכפול אדם שני שלישים על ג' רביעים צריך שנבקש לשניהם מורה אחד והוא העולה מכפל שניהם והנה יעשה לו מרובע בדרך שנעשה במורה אחד ויעשה כפי השני במספר
ואם ירצה יקח כפל השני מורים מקום מרובע כי הוא מרובע אמצעי ביניהם כי כפל ג' הוא ט' ומרובע ד' י"ו
וזה המורה הוא י"ב
ואחר שנדע המורה נראה כמה הוא ג' רביעיותיו ונקח [17]מהם ב' שלישיים כי הוא כאמרו קח ב' שלישיים מב' רביעיים או בהפך והכל שוה

The multiplication of fractions is opposite to the multiplication of integers

כפל השברים הפך כפלי השלמים
כי השלמים הנכפלים אלה על אלה יוסיפו בחשבון כפי מה שיעלה

מכפל אבל שברים על שברים יהיה העולה שבר אחד מהשברים הנכפלים וכפי התוספת בשלמים נכוין לגרוע בשברים

כי האחד הנכפל על איזה חשבון לא יוסיף על אותו חשבון כלום כי אחד על שנים שנים ואחד על חצי כלו' פעם פעם אחד חצי הוא חצי אם כן חצי על חצי הוא רביע כאלו תאמר חצי החצי
וכן שלישית על שלישית כאלו תאמר שלישית השלישית שהוא תשיעית
וכפל רביעית על רביעית יהיה חלק אחד מי"ו והוא חצי שמינית שהוא השלם ועל כן אמר והנכפל אחד
כי לעולם ירד ממדרגה אחת בדרך שכפל ראשונים בראשונים יהיו שניים

ועל זה הדרך תכפול שברי המין האחד על שברי המין בעצמו

כמו שהמשלנו משלישיות על שלישיות או מרביעיות על רביעיות

בין שיהיו שוים

כגון ב' רביעית על ב' רביעיות
או שיהיו שברי אחד מהם גדולים כגון ב' רביעיות על ג'

ואם תרצה חלק תשעה על הארבעה

שהוא המורה

והדבר יצא בשוה

כי העולה בחלוק לכל אחד הוא ב' ורובע שהוא ב'

רביעיים ורביעית רביעית והוא חצי וחצי [.] שמינית כי האר' הארבעה שנחלק עליהם הם רביעית מרובע המורה . ל"א כי התשעה הם רביעיים . והיו שתי חמישיות המרובע וכו' . כי עשר שתי חמישיות מרובע המורה שהוא כ"ה והשנים שתי חמישיות חמישית שהם בשנים . והנה נקח בעבור שתי ש' שלישיות שמונה . כי ח' ב' שלישי י"ב שהוא המורה . והוא חצי ק'מ'ד' שהוא מרובע הי"ב ואם עשית זה משנים מורים כלומ' אתה [18]אתה רשאי להעריך חשבונך לכפל השני מורים [........]מרובע בענין שהקדמנו . כי העולה שהוא ששה נקח ערכו אליו . ר"ל אל הי"ב שהוא המורה והוא חציו . כי השביעית הם תשעה . כלומ' כי אחר ש' שהמורה הוא ס"ג שיש בו ז' תשיעיות או ט' שביעיות אם כן שביעיותיו הוא ט' ותשיעיתו הוא ז' . וכאשר חלקנו חשבוננו הראשון ת'ת'ר' ת'ש'ס'ד' על ס"ג עלו כ"ח . אם כן ערך ת'ת'ר' ת'ש'ס'ד' אל ג' אלפים ות'ת'ק'ס'ט' כערך כ"ח אל ס"ג כי כמו שתחלק כ"ח מס"ג ישאר ל"ה כי כשתחלק ת'ת'ר' ת'ש'ס'ד' שהם כ"ח פעמים ס"ג מג' אלפים ות'ת'ק'ס'ט' שהם ס"ג פעמים ס"ג ישאר ל"ה פעמים ס"ג . ואם לקחנו בשנים מורים יהיה הנכפל ס"ג וכו' . ואם נרצה נסיר משבע תשיעיות ס"ג שהם מ"ט והנה העולה כ"ח שהוא פחות מחצי האחד . וקח שנים כי משלשה לק' לקחנו אותו כלומ' בעבור כל צורה נקח המספר המיוחד לו כי לולי ג' לא היה נאמר ב' שלישיים ולולי מורה ד' לא יתכן לו' לומר ג' רביעיים

Example: we wish to multiply 4 integers by 3 fifths

דמיון רצינו לכפול ד' שלמים על ג' חמישיות וכו'
והנה שלמים על נשברים עלו נשברים בע[..] מעלות על ראשונים שהם ראשונים על כן נקח המורה שהוא ה' ומרובעו כ"ה וד' פעמים ג' הם י"ב והנה ערך י"ב אל כ"ה הם [ב'] שלמים וב' חמישיות
נכפול כ"ב על כ"ח שהם נשברים ראשונים והיו ת'ר'י'ו' שנים ר"ל שכל אחד חלק מכ"ה . עלו כ"ד שלמים וישארו י"ו שניים והט"ו הם ג' חמישיים והאחד חומש החומש שהוא חלק מכ"ה באחד . כי הם חלקי המורה כי מהשברים וקח המורה . לכן המחובר מהם הוא חלקים ממנו
והנה נכפול זה על זה ועלה מ"א אלף ות"ת והנה כל ארבעים מהם הוא אחד שלם כי הם [19]במדרגה שנית מארבעים גם כן ועל כן שבו הנשארים ה' חלקים ממ' עלו אלף קנ"ה שכל ע"ז הוא אחד מע"ז הראשונים על כן ט"ו פעמים ע"ז הם ט"ו מע"ז שהוא המורה . והוא מנין שהיה יכול לעשות מרובע למורה שהוא ע"ז ויהיה ה' אלפים ות'ת'ק'כ'ט' ויהיה ערך אלף קנ"ה אליו כ' כערך ט"ו אל ע"ה (ע"ז) כי מרחק ט"ו מע"ה (ע"ז) ס"ב ומרחק אלף קנ"ה מה' אלפים

ת'ת'ק'כ'ט' ס"ב פעמים ע"ז . כל שבר נפרד שהוא למעלה מי' שיש בו שני מספרים כגון י"א או י"ג וי"ט נקרא חשבון שלא יוכל אדם לב' לבטא בו . אבל כל זוג יכול לבטא כי אם יש לנו ב' חלקים מי"ב נקח ששית אחת

דמיון כמה ג' שביעיות על ה' חלקים מאחד עשר וכו‫'
והדרך הקרובה שאחר שמענו שהמורה ע"ז ושה' חלקים מי"א מע"ז הם ל"ה נחסר ג' שביעיות מל"ה שהם ט"ו מע"ז והוא המבוקש כי הוא כאמרנו ג' שביעיות מה' חלקים מי"א
או כפול מספר ג' על ה' והוא ט"ו
נכפול קע"א על רכ"א יעלו ל"ז אלפים ות'ש'צ'א‫'
נחלקים על ר'מ'ז' והנם ק'נ'ג‫'
ר"ל ק'נ'ג' פעמים ר'מ'ז' שכל ר'מ'ז' חלקים מאלו באחד מחלקי ר'מ'ז' שהוא המורה נמצא שיש לנו ק'נ'ג' חלקים מר'מ'ז‫'
וכערך ק'נ'ג' מר'מ'ז' שיחסר ממנו צ'ד' כן ערך המספר הראשון שהוא ל"ז אלפים ות'ש'צ'א' אל מרובע ר'מ'ז‫'
כי כן יחסר ממנו צ"ד פעמים ר'מ'ז‫'
ומרובע ר'מ'ז' הוא ששים ואחד אלף ותשעה
וכן כפל ט' בי"ז שהוא המספר יעלה ק'נ'ג‫'
וכן אם תקח מר'כ'א' הוא י"ז וט' פעמים י"ז הוא ק'נ'ג‫'
אחר שיש לנו ששיות אין צריך לשלשה
כי שלשה הם בכלל ששה
גם זה על שבעה
ר"ל גם שלשים על ז‫'
גם זה על ח' ר"ל [ר"י] ורביעיותיו פ"ד ר"ל רביעית של"ו הוא פ"ד ושתי שלישיות פ"ד הוא נ"ו כי הוא כאלו אמרנו נכפול שני שלישיות הלקוחות מרביעית הלקוח מחמישית על שש רביעיות הלקוחות משמינית
על כן נקח‫[20]
[21]בספר [...]
ועוד כי מצאו בשנת ה[שמש] וכו' זה טעם למה חלקו הגלגל לי"ב
כאומר חשבון חברנו אליו כל החלקים מחצי עד עשירית מה ערך המספר אליו
ר"ל אם ישאלך אדם ממון היה אצלי וחברתי עמו חציו ושלישיתו וכל החלקים עד עשירית והיה כך כמה היה החשבון תחלה
כי אם נצטרך לכפול כל החלקים אלו על אלו כדרך שעשינו במה שעבר היה טורח גדול ואמ' שלא נצטרך לזה רק שנקח זה החשבון תחת המורה שהוא אלפים ותק"כ כי בו נמצאו כל אלו החלקים ולא בפחות ממנו ואע"פ שימצאו בגובה ממנו כי צורך בקשת המורה כדי שנמצא חשבון שיהיו החלקים הנרצים והוא הדין שאם נמצא חשבון פחות מזה הנכפל שיהיו בו אלו החלקים בעצמם שזה יספיק לנו ויגיענו למבוקשנו
דמיון זה ממון חברנו אליו שלישיתו ורביעיתו (וחמישיתו) וששיתו והיה השלם כ"א נכפול המורה בחשבון והוא ש"ס נחלק ש"ס על כ"א עלו [י"ז] שלמים וג' חלקים מכ"א שהן שביעית אחד כך היה סך הממון הראשון ובחן זה ותמצא
וכן כשנצטרך למצוא כל החלקים לא נצטרך לכפול כל החלקים אבל נקח אלפים ותק"כ ואע"פ שהוא פחות הרבה מהנכפל מאלה החלקים ונוסיף מע מחציתו ושלישיתו ורביעיתו וכל החלקים והמחובר א"ח ג"ז וזהו השלם
ונחשוב שהחשבון ס' נכפול המורה בחשבון ויהיה העולה נחלק על זה הנכפל על השלם הנה נבחן זה
הנה חצי השלמים ורביעיתם וחמישיתם ד' ועשיריתם ב' ושלישיתם ו' וישארו שניים
נשיבם אל שברי השלם שהוא א"ח ג"ז ונחבר עמהם החלקים הנשארים למעלה שהם ג' אלפים ותק"ף ומן המחובר נקח השלישי
וכן נעשה מן השתות ומן התשיעית כי כשלקחנו בעבור השתות

ג' ובעבור התשיעית ב' ישארו ב' שלמים וכשלקחנו בעבור השמינית [22]השמינית ב' ישארו ד' וכשלקחנו בעבור התשיעית (שביעית) ב' ישארו ו' שנשיבם לשברים הנה כל השלמים נ"ו נעשה מן השלמים הנשארים חלקים הנה השער ב"ו זד"א ועם 0 ח הג יהיה בדג חא עם 0 והג' הם ד 0 אג ג וג' שלמים [........] ועם החלקים הנשארים הנזכרים וו ח זד וזה מספר כל חלק החלקים שהם מחצי עד עשירי נחבר עם 0 ח ה ג ויעלה דבהט"ב נחלק על אחגז ויעלו ד' שלמים נחברם עם הי"ו (נ"ו) שהיו לנו והנה כל המספר ס'

The rule: the product of degrees by any type is the same type itself

והכלל כפל מעלות על אי זה מין שיהיה ישאר אותו המין בעצמו
כמו כפל אחדים על השברים שיהיה ישאר אותו המין בעצמו כמו העולה אותו המין מן השברים

The product of minutes by minutes is seconds

וכפל ראשונים על ראשונים יהיה העולה שנים
כמו שהחצי על חצי העולה יהיה רביעית
וראשונים על שנים יהיה העולה שלישיים וכו‫'
עד שיהיה כפל שלישים על רביעים וחמישיים על חמישיים עשרים כי לעולם נחבר מספר השתי מדרגות והוא היוצא וכן מבואר בלוח המעלות והשברים
ואחר שנכפול ראשונים בראשונים שהם שניים
כגון ל' ראשונים יהיה העולה הת"ק נחלקנו על ס' יעלה ט"ו והם ראשונים
וכן אם נכפול ראשונים על שניים והיו שלישיים
נחלק השלישיים על ס' ומה שיעלה יעלה למדרגת השניים כי לעולם יעלה בחלוק מדרגה אחת והנשאר הוא מן השלישיים
כגון שנכפול מ"ה ראשונים על נ' שניים יעלה אלפים וכן שלישים נחלקם על ששים עלו ל"ז שניים וישארו ‫[23]ל' שלישים שלישיים באיזו מעלה מן השברים ר"ל באיזו מדרגה
ואם יהיו שנים חשבונים כלומ' אם יהיה לך ב' מעלות תכתוב 0ב במקומו ואם יש לך שני חשבונות כגון כ"ה תכתוב שם ה"ב
כדרך שתעשה בשלמים ‫[24]כפול המספר הטור העליון במספר הטור אשר תחתיו והחל לכפול מעלות במעלות וכתוב במדרגת המעלות ואחר מעלות בראשונים וכתבם תחת הראשונים וכן כל אחד במדרגתו כמשפט ואם היה היו שם שני מספרים בכלם ביחד וכתבהו במקומו וכתוב האחדים ראשונה ואחר העשרות ואחר המאות כל אחד באותו הטור אם יעלה כל כך הכפל ההוא תכתוב הכל על הסדר ולא תתערבב
ואם תרצה כפול האות האחת באות הראשון שבאותו הטור וכתבהו לבד במקומו
ואחר כן כפול האות ההוא באות השני וכתבהו סמוך לו באותו טור
ואם נשאר מכפל האות הראשון עשרה חשבהו כאחדים וחברהו עם

כפל האות שאחריו וכתבהו

ואם ישאר לסוף עשרה כתוב שם בסוף א' בדרך שלמדך החכם אבן עזרא בשער הכפל
ואם תרצה [..]ל תוכל לעשות בדרך האלכסונות ולא תצטרך רק לטור אחד ולא תצטרך לחבור כי הוא העולה רק יכבד הדבר עליך
ואחר חבר הכל וכתוב העולה הכל טור למטה כנגדו מהאחדים שבאותו טור על הסדר
ואם ישאר לך כלל שמרהו וחברהו עם העולה מהמספר שאחריו באותו טור
וכן תעשה מכל טור וטור כמו שתראה בצורה בטור השפל
אחר תחל לחלק על ששים הטור האחרון
כגון שהוא חמישיים ולכל ששים קח אחד וחברהו עם המדרגה שלפניו שהם רביעיים והנשאר פחות מס' השאר שם במקומו שהוא חמישיים
וכן תעשה מהרביעים הוציאם ס' ס' ומכל ששים חבר אחד עם השלישיים והנשאר תכתבהו במעלת הרביעיים
וכן כולם עד שתעלה המספר למדרגת המעלות והנשאר בכל מעלה ישאר וזה הנשאר אחר החלוק
[25]זהו דרך חכמי המזלות
אבל דרך חכמי החשבון
כשיגיעו לכפול הטור העליון שבצורה ראשונה על הטור השפל שבו כל מה שבטור העליון למדרגת המספר הקטן שהוא בכאן השלישיים וכן כל מה שבטור השפל
וכיצד יעשו יכפלו המעלות על ששים והנם ראשונים
נחברם עם הראשונים ונכפלם על ס' יהיו שלישיים כי לעולם ירד ממדרגה אחת
וכן נעשה בכאן
We multiply 2 by 60; they are 120 primes.
\scriptstyle{\color{blue}{2\sdot60^{\prime}=120^{\prime}}}
נכפול ב' על ס' והם ק"כ ראשונים
We add them to the 9, which are also primes; they are 129.
\scriptstyle{\color{blue}{120^{\prime}+9^{\prime}=129^{\prime}}}
נחברם עם ט' שהם ראשונים כמו כן והם קכ"ט
We multiply 129 by sixty; with the 4, they are 7 thousand and 744 seconds.
\scriptstyle{\color{blue}{129^{\prime}\sdot60^{\prime}+7^{\prime\prime}=7744^{\prime\prime}}}
נכפול קכ"ט על ששים ועם הד' הם ז' אלפים תשמ"ד שניים
We multiply them by 60; with the 3, they are 464 thousand and 643 thirds.
\scriptstyle{\color{blue}{7744^{\prime\prime}\sdot60^{\prime}+3^{\prime\prime\prime}=464643^{\prime\prime\prime}}}
נכפול זה על ס' ועם הג' הם תס"ד אלפים [...] אלפים ותרמ"ג שלישיים
We do the same with the second line; the result is 715 thousand and 451 thirds.
וכן נעשה מן הטור נעשה מן השני ויעלה תשט"ו אלפים ותנ"א שלישיים
We multiply them by each other; the result is 332429[29]8993 sixths.
\scriptstyle{\color{blue}{464643^{\prime\prime\prime}\times715451^{\prime\prime\prime}=332429298993^{vi}}}
נכפול אלו על אלו ועלה גטטחטבדבגג והם ששיים
אחר נחלקם על ס' ותן לו מכל אחד מה שתוכל וכתבהו במקום הראוי לו
ואם היה העליון פחות השיבהו אחורנית בעשרות ותן לו מה שתוכל ומה שישאר השיבהו אחורנית שלפניו וכן תמיד
וכשיקרה באחד מן האמצעיים שיכלה בכוון אל הו' והאות שלפניו פחות מו' כתוב בספרא כנגדו בטור האמצעי והאות שלפניו השיבהו אחורנית וחלק ממנו כמשפט עד שתגיע כנגד הראשון שהיא מדרגת האחדים
ומה שישאר לחלק שהוא פחות מששיים ישאר במדרגתו והעולה בחלוק יהיה רביעיים
ומה שישאר לחלק הוא חמשים כבתחלה וכן נעתיקנו תמיד ממדרגה והעולה בחלוק יהיה רביעיים
ומה שישאר לחלק הוא למדרגה עד הגיעו למעלות כי בכל חלק יעלה מדרגה אחת
ואם תחשוב כראוי תמצא הנשאר מכל המדרגות שוה ‫[26]לחשבון הראשון וזה הדרך השני הוא שקרא דרך המבטא
When we divide the line of the sixths by sixty, the result of division is 5540[4]88316 fifths and 33 sixths remain.
\scriptstyle{\color{blue}{332429298993^{vi}\div60=5540488316^{v}+33^{vi}}}
וכשנחלק טור הששים על ששים יצאו בחלוק מן החמישיים ואגחח0דהה וישארו מן הששים גג
When we divide these fifths by sixty, the result is 92341471 fourths and 56 fifths remain.
\scriptstyle{\color{blue}{5540488316^{v}\div60=92341471^{iv}+56^{v}}}
וכשנחלק אלו החמישיים על ששיים יעלו הרביעים אזדאדגבט וישאר מן החמישיים וה
When we divide these fourths by 60, the result is 1539024 thirds and 31 fourths remain.
\scriptstyle{\color{blue}{92341471^{iv}\div60=1539024^{\prime\prime\prime}+31^{iv}}}
וכשנחלק אלו הרביעיים על ס' יעלו השלישיים דב0טגהא וישאר ממין הרביעים אג
When we divide the thirds, the result of division is 25650 seconds and 24 thirds remain.
\scriptstyle{\color{blue}{1539024^{\prime\prime\prime}\div60=25650^{\prime\prime}+24^{\prime\prime\prime}}}
וכשנחלק השלישיים יצא בחלוק מהשניים 0הוהב וישאר מהשלישיים דב
When we divide the seconds by 60, the result is 427 primes and 30 seconds remain.
\scriptstyle{\color{blue}{25650^{\prime\prime}\div60=427^{\prime}+30^{\prime\prime}}}
וכשנחלק השניים על ס' יצא זבד ראשונים וישאר מהשניים 0ג
When we divide the primes by [60], they are 7 degrees and 7 primes remain.
\scriptstyle{\color{blue}{427^{\prime}\div60=7+7^{\prime}}}
נחלק הראשונים על מעלות ויהיו המעלות ז' וישארו ז' ראשונים
והיה זה שוה לנשאר תחלה

The chords of the arcs

יתרי הקשתות
כגון שנדע המרחק מנקודה ידועה מהקשת עד נקודה ידועה ממנו ונרצה לידע אורך היתר שמנקודה זו אל נקודה האחרת מהקשת ביושר או כמה אלכסון המיתר ההוא

The perimeter should be three times the diameter

הקו הסובב ראוי שלשה מהאלכסון
ר"ל שלשה מקטרו ושביעית וא'ע'פ' שלפי החוג שהקיפו שלשה ממנו לבד אין ראיה כי החוג [....] מיתר ברחב העגול שהוא קו ישר שאין [....] שעקם העגול שבין שתי נקודות אלו יותר גדול

Chapter Six

השער הששי
כונת זה השער לזכור ערכי המדות
ומתוך כך רצה להודיע מיני הערכים כמה הם ערכי החשבון והם על הסדר שכפי היתרון שיש לשני על הראשון יש לשלישי על השני

The second way is the geometric proportions as 4 6 9

והדרך השני ערכי המדות כמו ד'ו'ט‫'
As the ratio of 6 to 4, which exceeds it by its third, so is the ratio of 9 to 6, which exceeds it by its third.
\scriptstyle{\color{blue}{6:4=\left[4+\left(\frac{1}{3}\sdot6\right)\right]:4=\left[6+\left(\frac{1}{3}\sdot9\right)\right]:6=9:6}}
שכערך שיש לו' אל ד' שמידתו גדולה ממנו השליש כן ערך ט' אל ו' שעודף עליו שלישו

So the product of the smaller number by the greater number

על כן כפל הקטן על הגדול
I.e. since 4 is smaller than 6 by the same as 9 exceeds 6
\scriptstyle{\color{blue}{4=6-\left(\frac{1}{3}\sdot6\right)\quad6=9-\left(\frac{1}{3}\sdot9\right)}}
ר"ל אחר שיחסר ד' מן הו' כמו שיעדיף ט' על ו‫'
So the product of the smaller number by the greater number. על כן כפל הקטן על הגדול וכו‫'

Know that these three numbers are like four numbers

ודע כי אלה ‫[27]השלשה מספרים כמו ארבעה הם
Since the means are the same when extracting the ratio. לפי שאמצעי לשוה בעשירית בעשיית הערך
Because we say the ratio of 4 to 6 is the same as the ratio of 8 to 12.
\scriptstyle{\color{blue}{4:6=8:12}}
כי נאמר ערך ד' אל ו' כערך ח' אל י"ב
So, if you consider the squares of 4, 6, 9 as if they are four numbers [their sum] is equal to the square of the sum of the first and the fourth, which is 169.
\scriptstyle{\color{blue}{4^2+6^2+6^2+9^2=169=\left(4+9\right)^2}}
על כן אם תחשב מרובע ד'ו'ט' כאלו היה ד' מספרים יהיה שוה אל העולה ממרובע מחובר הראשון והרביעי והוא ק'ס'ט‫'

The means are regarded

כי האמצעי יחשב
כלומ' ואם תאמר אלה השלשה כמו ארבעה והלא ארבעה יש בו ב' אמצעיים
דע כי אותם השנים יחשבו כאלו הם מספר אחד כמו שיאמר למטה כי שניהם חברים על כן אמ' שנקח מרובע המחובר משניהם
ועוד כי כמו שאמרנו [ב]ג' מספרים שכפל הקטן על הגדול ככפל

התיכון על עצמו כן נאמר בד' מספרים שנכפול האמצעי האחד על חברו כמו שנכפול התיכון על עצמו

  • Example: 4, 6, 8, 12
המשל בזה ד ו ח יב
Because the product of 4 by 12 is 48 and so is the product of 6 by 8.
\scriptstyle{\color{blue}{4\times12=48=6\times8}}
כי כפל ד' על י"ב הוא מ"ח וככה כפל ו' על ח‫'

Example 2 3 6

דמיון ב' ג' ו‫'
As the ratio of the difference between 2 and 3 to the difference between 3 and 6, which is a third, so is the ratio of the first, which is 2, to the last, which is 6.
\scriptstyle{\color{blue}{\left(3-2\right):\left(6-3\right)=\frac{1}{3}=2:6}}
שכפי יחס היתרון שבין ב' וג' אל היתרון שבין ג' וו' שהוא שלישיתו כן הוא ערך הראשון שהוא ב' אל האחרון שהוא ו‫'
כי לעולם ערך האמצעי האחד אל האמצעי השני כערך הראשון אל האחרון
וכל אלו הדמיונות שיעשה מב'ג'ו' ומג'ד'ו' הם על דרך ערכי הנגינות שהם ג' מספרים ב'ג'ו' קורא דמיון ראשון וג'ד'ו' דמיון שני וע

We double the quotient

והעולה בחלוק נכפלנו
ר"ל שנמנהו ב' פעמים היו בערכי הנגינות דין כל אחד מהג' בפני עצמו

They are ten

והיו עשרה
ר"ל אלו החלקים המחוברים כמה היה כל הממון שהיו העשרה בכללם

We multiply the extremes that are ten and 210; they are two thousand and one hundred

כפלנו הקצוות שהם עשרה ור"י והיו אלפים ומאה
We divide it by the known mean, which is 106; we receive the unknown mean, which is the whole amount; the resulting total amount is 19 integers and 67 parts.
\scriptstyle{\color{blue}{\frac{10\sdot210}{107}=\frac{2100}{107}=19+\frac{67}{107}}}
חלקנום על האמצעי הנודע שהוא ק"ז ויצא לנו האמצעי הנעלם שהוא כל הממון יעלה כל הממון י"ט שלמים וס"ז חלקים

Another example: We take its seventh and its ninth; they are seven

דמיון אחר לקחנו ‫[28]שביעיתו ותשיעיתו והיו שבעה
How much is the amount? כמה היה הממון
הנה המורה ס"ג ושביעיתו ותשיעיתו י"ו וערך ז' אל הממון כערך י"ו אל ס"ג
נכפול הקצוות שהם ז' וס"ג והיו ת'מ'א‫'
נחלק זה על י"ו ועלה כ"ז שלמים וט' חלקים מי"ו

If one reversed the saying

עם ואם הפך הדבר
ר"ל כשנדע החלקים לבד נחלק כפל הקצוות על חלקי המורה ויודע הנשאר אבל כשיהיה בהפך שלא נדע רק הנשאר מן החלקים גם אנו נחלק על הנשאר אחד חלקי המורה ויודע לנו סך החלקים

We sum up their amounts of money

נחבר ראשי ממונם
ר"ל חשבונות ממונם יעלו שלשה נ"ו שלמים שהם ג' דינ' ומ"א חלקים מנ"ו שהם מ"א חלקים מדינר שכל נ"ו בכאן נחשב כאחד מחלקי המורה

The result is 4 pešuṭim

עלה ד' פשו‫'
ר"ל לכל חלק מנ"ו שהוא דינר אחד על כן כל אחד יקח לכל דינר מממונו ד' פשו‫'

Also 4 parts of 56

גם ד' חלקים מנ"ו
ר"ל שישארו עוד ד' פשו' לחלק שיש לכל דינר ודינר שיקח מהם ד' חלקים מנ"ו

Because each pašuṭ is divided to 56

כי כל פשו' יתחלק לנ"ו
ואם יש לכל דינר שיקח מפשו' אחד חלק אחד מנ"ו אם כן יקח מד' פשו' ד' חלקים מנ"ו שהם חלק אחד מי"ד שהוא חצי שביעית
וכן אם נשיב ארבעתם לנ"ו נ"ו שהם ר'כ'ב' ונחלקם על נ"ו יעלה לכל אחד ד' מאותם החלקים ומד' חלקי פשו' מנ"ו חלקים שבו

We sum all the parts

והנה נחבר החלקים כלם
ר"ל אותם שנשארו מהחלקים יהיו שנים פשו' ושנים שחברנו מהחלקים היו ד' ונחבר עתה הפשוט כלם היו ב' דינ‫'

All the mentioned parts

וכל החלקים הנזכרים
ר"ל שלישית ורביעית וששית מי"ב הם טא והוא הדינר
כי לעולם החלקים הם דינר אחד והמורה הוא כל הדינר

We ask what is the ratio of 12 to 9

ונבקש מה ערך י"ב אל ט‫'
כאלו אמ' נחלק י"ב על ט‫'

It is the same as it and its third, we add 4 pešuṭim to 12 pešuṭim, which is the dinar

והנה הוא כמהו ושלישיתו והנה נוסיף על י"ב פשו' שהוא הדינר ד' פשו‫'
כי ט' הוא הדינר אחד ועם שליש הדינר והוא י"ו ונוכל לעשות ערכים שנאמר ערך י"ב שהוא המורה אל ‫[29]אל ט' כערך כל הסך אל הדינר
על כן נכפול הקצוות שהוא י"ב על י"ב והם ק'מ'ד‫'
נחלק על ט' עלו י"ו והוא הדינר המחובר מג' הערכים

We divide the denominator by this number; the result is 2 dinar and 29

ונחלק המורה על זה המספר יהיו ב' דינ' וכ"ט
ר"ל מכל מטבע מהשלשה

We convert the dinar to parts of 143

נשיב הדינר חלקים מק'מ'ג‫'
ר"ל מהב' דינ' וכ"ט חלקים
והנה נכפול ש'י'ה' על ה' שהם הקצוות ויהיו אלף ות'ק'ע'ה‫'
ונחלק אותם על שבעה יהיו בדנר ר'כ'ה‫'
וכפי ערך ה' אל ז' יהיה הערך ר'כ'ה' אל ש'י'ה וכן תאמר בכלם

When we exchange this number of coin seven

וכאשר החלפנו זה המספר ממטבע שבעה
ר"ל כי לעולם נקח המורה במקום סך המטבע שנרצה להשיב הכל אליו והנה שביעית המורה מה שהוא ז' פעמים מ"ה כי השבעה ישובו ל"ה והם ר'כ'ה' ממטבע הוא שהוא דינ' אחד ופ"ב חלקים
וכן כשנרצה להשיב הב' דינ' וכ"ט חלקים ממטבע ט' אל מטבע ה' נמנה ה' פעמים ל"ה שהוא התשיעית והוא קע"א
וכן כשנרצה להשיב הכל למטבע ז' נקח בעבור ז' ש'י'ה‫'
ובעבור שנרצה לעשות מ"ה ז' נחשוב ז' פעמים ס"ג והיו ת'מ'ה' ממטבע ז'
וכן נחשוב ז' פעמים ל"ה יהיו ר'מ'ה' ועל זה הדרך תשיב הכל למטבע ט‫'

We want to know how many parts he takes of coin five

ונרצה לדעת כמה חלקים יקח ממטבע חמשה
ר"ל כמה חלקים יקח מזה המטבע שהוא מטבע ז' בעבור מה שיהיה לנו ממטבע חמשה כלו' כמה יהיה ממטבע ז‫'
או נעשה כן כשנרצה להשיב ב' דינ' וכ"ט של מטבע ז' למטבע ה' ונסיר מש'י'ה' שהיו מנין חלקיו שיש בו ז' פעמים מ"ה ב' שביעיות שהן צ' כי יתרון ז' על הב‫'
וכן כשנרצה להחזיר ט' ל"ה נסיר תשיעית ש'י'ה' שהם ד' פעמים ל"ה שהם ק"ם ביתרון ט' מ"ה והנשאר יהיה של י"ה
וכשתרצה לגרוע המטבע ולהשיב כנל לז' או לט' הוסף על חלקי האחד כיתרון האחד עליו
דמיון ‫[30]זה אם תרצה להשיב הכל למטבע ז' הוסף בעבור מטבע ה' ב' חמישיות שהם ק'נ'ו' ובעבור מטבע ט' גרע ממנו ב' תשיעיות שהם ע' ועל זה הדרך הכל והכל יוצא שוה

We think as if the 7 measures are carried 17 miles

נחשוב כי הז' מדות הולך כל י"ז מילין
ולכן לא נזכרם בערך א' אבל נעשה הערך מהמדות שלא השלים ומהסך שלא הרויח כלו כי כערך ז' אל י"ג כן ערך מה שיוצא לי"ט ובעבור שלא ידענו הריוח נכתוב תחתיו גלגל ונעשה הצורה כן והנה בזה הסדר היו הקצוות ז' וי"ט על כן נכפלם והיו ק'ל'ג' נחלקם על י"ג שהוא האמצעי הנודע יעלה י' שלמים ונשארו ג' חלקים מי"ג
ולפי שחסר תנאי המילין נעשה ערך אחר ולא נזכר מדות כלל אבל נאמר כערך י"א מילין אל ז' יהיה ערך מה שיקח אל הריוח הנזכר שהוא י' וג' על זה הדמיון נכפול י"א על י' עלו ק'י' נכפול י"א על ג' שהם חלקים והיו ל"ג חלקי י"ג והנה הנ"ו ב' שלמים נחברם ק'י' והיו ק'י'ב' ונשארו ז' חלקים מי"ג והנה נחלקם על י"ז שהוא האמצעי הנה נחלק העולה ק'י'ב' על י"ז עלו ו' פשו' ונשארו י' לחלק נשיבם לחלקים מי"ג ונחברם עם הז' שהם כמו כן חלקים מי"ג ויעלה ק'ל'ז' נשיב ק'ל'ז' לחלקים מי"ג (מי"ז) שנכפלם על י"ז ועלה ט ב ג ב נחלקם על ר'כ'א' שהוא כפל י"ג על י"ז והוא אחד שלם ועלה ק'ל'ה' (קל"ז) שהם חלקים מרכ"א והם ח' חלקים מי"ג עם חלק אחד מי"ז בחלק או אם תרצה הם י' חלקים מי"ז עם ז' חלקים מי"ג בחלק
או אם תרצה תחשוב י' פעמים רכ"א ולא תצטרך אלא לשום בראש ר'כ'ה' (רכ"א) גלגל שבעשותך כן העלית כל אות ממנו מדרגה אחת שהיא עשרה ותחבר עמו כפל הז' בי"ז שהוא ‫[31]ק'י'ט‫'

We multiply the first number

והנה נכפול המספר הראשון
רצה במספר ראשון התנאי ובמספר השני המעשה ר"ל מדת הספירה

Now we set the proportion diagram

ועתה נעשה דמיון הערכים
ויהיו קצוות בקשתם שהוא המספר הקטן ומעורב בתנאי שהוא הגדול שבד' המספרים הנערכים
ונאמר כי ערך הריוח המבוקש אל י"א כערך ק"כ אל ר"י
על כן נכפול האמצעיים שהם ק"כ וי"א ונחלק על ר"י שהוא הקצה האחרון הנודע והעולה יהיה הקצה הראשון הנעלם
או אם נרצה נעשה אלו האמצעיים קצוות שנאמר ערך ק"כ אל ר"י כערך המבוקש אל י"א והכל שוה

You can convert them into hours of the day

ותוכל להשיבם לשעות היום
ר"ל תוכל להשיב הז' תשיעיות לשעות היום בדרך הערכין ותכתוב כן כי כערך ז' תשיעיות אל ט' יש לשעור היום המבוקש מי"ב

We know that the ratio of 12 to 9 is the same as it plus its third

ידענו כי ערך י"ב אל ט' כמהו ושלישיתו
כלו' תשיעית יום הוא יותר מחלק י"ב מיום השלישית והוא שעה ושליש על כן נחשוב בעבור ז' תשיעיות ז' שעות וז' שלישי שעה

Since we have a third, we convert all to thirds

והנה בעבור שיש לנו שלישית נשיב הכל לדרך שלישית
כלומ' נעשה מכל הימים שלישיים והנה כערך י"ג אל מ"ז כן ערך מה שיקח מן הזהוב

We want to know how much each one has to work for the 13

ונבקש לדעת כמה חייב כל אחד שיעבוד בעבור י"ג וכו‫'
ונאמר כערך י"ג אל מ"[ז] שהוא הזהוב הנה ערך עבודתו אל כ' שלישיים
עלו ה' שלישיות נשארו כ"ה חלקים ממ"ז שהוא שלישית ששלישית יום הוא ד' שעות
אם כן הכ"ה חלקים הם כ"ה חלקים ממ"ז חלקים שבד' שעות היום

We multiply also 25 parts by four; the product is one hundred

גם נכפול כ"ה חלקים על ארבעה עלו מאה
כי אם יש לו כ"ה חלקים מד' שעות שבמ"ז הנה מכל שעה כ"ה חלקים ממ"ז בשעה יעלה לד' שעות ה' ‫[32]ה' חלקים ממ"ז שבשעה נחלקם על מ"ז שנחשבהו עתה שעה אחת ונשארו ו' חלקים ממ"ז בשעה
והנה נעשה הערך לשמעון
כי כערך י"ג אל מ"ז כן ערך עבודתו אל ט"ו שלישיות

We divide them by three

נחלקם על שלשה
כלומ' שנחזירם לשלמים

We multiply also 7 by 4

גם נכפול ז' על ד‫'
כי הז' הם חלקים ממ"ז שבו ד' שעות וכשנקח כן מכל שעה יהיו כ"ח ממ"ז בשעה

Make the diagram like this

תעשה הדמיון ככה
כי כערך ו' אל א' הוא ערך הנשאר אל ג' ושליש

Another example: he has 9 measures of must and he wants them to be cooked until the third part of it remains

דמיון אחר היו לו ט' מדות תירוש ורצה שיתבשלו עד שישאר השליש וכו‫'
ונשארו שנים והנה כערך ב' אל ו' כן ערך הנשאר אל ג‫'

Question: an amount of money, we sum its fifth

שאלה ממון חברנו חמישיתו וכו‫'
נעשה הערך כי כערך ק'מ'ג' על ש'ט'ו' כן ערך י' אל הממון והנה נרצה לידע הקצה האחד על כן נכפול האמצעיים זה על זה שהוא ש'ט'ו' על י' נחלקנו על הקצה הידוע

We do the opposite: An amount of money - we have subtracted from it

נעשה להפך ממון חסרנו ממנו וכו‫'
נעשה הערך ונאמר כי ערך י' שהוא הנשאר אל כל הממון כערך ק'ע'ב' אל ש'ט'ו‫'

Five remain

ישארו חמשה
והנה אם היה הנשאר מן האילן ה' לבד היה י"ב הוא כל הגובה
אך בעבור שהוא י' נעשה הערך ונאמר כי כערך ה' אל י"ב ערך י' אל כל האילן
ונכפול האמצעיים שהם י' על י"ב
או נשיב האמצעיים קצוות כשנאמר כן ערך אל כל האילן כערך ה' אל י"ב
ונכפול הקצוות שהן י' וי"ב והכל אחד

The Gentile sages divide the money according to the ratio of the share of each

וחכמי הגויים יחלקו זה הממון על דרך ערך ממון כל אחד
ר"ל כדרך חכמי החשבון

The wise men of Israel divide it

וחכמי ישראל מחלקים אותו וכו‫'
למטה יפרש זה

The arithmeticians

וחכמי החשבון
יבקשו ממון שיהיו בו אלו החלקים ויקחו ממנו ערך לזה הממון אם לא כמהו שאם היה כמהו הנה נמצא

The total is two and one-half of one-sixth

יהיה הכל שניים וחצי ששית
כי השלישית הוא רביע וחלק מי"ב
והשברים ‫[33]והנ השברים י"ג ובקש הכל כ"ה

We set the proportion at [60]

נעשה הערך ככה על דרך
ר"ל שנקח האחד ששים ונחבר אליו החלקים השברים

This is the proportion of the money that Reuven takes

וזה צורת ערך הממון שיקח ראובן
כלומ' שאם היה הממון קכ"ה הנה היה נוטל ששים שהוא כל האחד אך עתה שאינו רק ק"כ אין ספק כי פחות מס' יקח לפי חסרון ק"כ מן [.] ק'כ'ה' על כן נעריך ונאמר כי כערך ק"כ אל ק'כ'ה' יהיה ערך מה שיקח מס' או נאמר ערך ס' אל מה שיקח כערך ק'כ'ה' אל ק"כ ומכל מקום נכפול הקצוות שהם על ק"כ ועל זה הדרך צורת כל אחד כי אלו היה ק'כ'ה' היה שמעון נוטל עתה יחסר מזה כפי גרעון ק'כ'ה' מק'כ'ה' ונעשה צורתו ככה וצורת חלק לו

In a shorter way Shimon takes a half of Reuven's share

ובדרך קצרה יקח לעולם שמעון חצי חלק ראובן
כמו שהיה אלו היו ק'כ'ה' על כן לעולם אחר שנדע חלק ראובן על דרך הערך אין צריך להעריך האחרים

According to the procedure of the sages of Israel

ועל דרך חכמי ישראל וכו‫'
איפשר שאמ' כן לפי מה ששנינו זה אומר כלה שלי וזה אומר חציה שלי (בבלי, בבא מציעא א ד"ב ע"א, משנה) וכו‫'

You have already took your share of the thirty

וכבר לקחת חלקת מהשלישים
כלו' באותם מ' שהיית תובע בל' היינו ד' חולקים ועל כן לקחנו כל אחד רביע ונשאר מהם י' שאתה תובע והנה בהם ג' חולקים על כן תקח שלושים

Which all four of us have claimed

שארבעתנו ערערנו עליהם
כי הגדולים מערערים בכל חלקי הקטנים כי בכלל חצי השליש והרביע ולא בהפך

When determining the moon and also when determining 5 planets

כי בתיקון לבנה בתיקון ה' משרתים
אך לא בתיקון חמה

There is a row that is called the row of ratio

טור יקרא טור הערך
טור הערך טור אחד שבו מספרים רבים על הסדר זה למעלה מזה שכנגד כל מספר מהם ימצא ‫[34]ימצא מספר אחד בטור אחד שבו מספרים שהם בסדר זה למעלה מזה
ואותו טור הבא אחר טור הערך יקרא טור חמישי או שביעי
ונראה איזה מספר יש בטור הערך ונביט מה ערך יש לו אל ס' אם שליש או רביע וכפי זה נקח מטור החמישי או השביעי ואם היה בו ס' נקח כל הכתו' בטור החמישי

Example: you have 40 fractions exceeding over the degrees and in the row of the ratio there is 15

דמיון יש עמך חלקים יתרים על המעלות מ' ובטור הערך ט"ו
לא הוצרך להראות לקיחת הערך מן המעלות כי נקל הוא
אך הוצרך להראות בחלקים וכל שכן כשלא ימצא להם ערך

They are 22 and one-half that are 30 seconds

והנם כ"ב וחצי שהם ל' שניים
כי לא נכתוב בלוחות חצי

We multiply 3 by 20; they are 60

נכפול ג' על כ' יהיו ששים
וכן נוכל להפך ולומר כמה ערך כ' אל ס' שליש כן נקח שליש אחד והוא ראשון אחד

Since we have add two

ובעבור שהוספנו שנים
ר"ל בחשבוננו שמנינו אותם יותר מן הראוי

Always see if there are any fractions added to the degrees of the determined center

ולעולם ראה אם היו חלקים נוספים על מעלות המוצק המתוקן
טור אחד יש לפני טור הערך שבו מספרים רבים זה למעלה מזה כל מספר שבו כנגד מספר שבטור הערך וממנו יכנסו ‫[35]לטור הערך ויקרא המוצק המתוקן
כגון שבטור המוצק כ' וכנגדו בטור הערך ט"ו ולמטה בטור המוצק כ"א וכנגדו בטור הערך י"ו וכן על הסדר הולך ומוסיף
והנה אם היו יותר מל' חשבם במעלה אחת והכנס בטור הערך למטה

If you find the determined quotient between 4 constellations

ואם נמצאת המנה המתוק' שהוא ב' ד' מזלות
שאם היה פחות מד' או יותר מח' עשה כדרך שהראיתיך במעלות המוצק שאם אין לך לא תחוש אך מד' ועד ח' דקדק באלו החלקים ליקח ערך
כגון שהיו לך ל' חלקים נוספים על ד' מעלות
והנה אם לא היו הל' היה נכנס בט"ו בטור הערך
ואם היה לנו מעלה אחת יותר היה נכנס בי"ו
כי בעבור כל מעלה יוסיף אחד
עכשיו שיש לנו חצי מעלה נוסיפנו עם הכתוב במעלת הד' ונראה מה ערך ט"ו וחצי אל ס' ונעשה בדרך הכפל כפי צרכנו

Chapter Seven

השער השביעי

The first way is roots

הדרך האחד שרשים וכו‫'
Meaning: every number is required due to being a roots, or due to being a square, or required due to neither of those two. ר"ל כל חשבון יבוקש מצד שהוא שורש או מצד שהוא מרובע או ‫[36] או לא יבוקש מטעם אחד מאלו השנים

There are numbers that have no true root at all

ויש חשבון שאין לו שורש אמת כלל
Meaning: we do not know its true and exact root. ר"ל שלא ידענו שרשו באמת ובדקדוק

One is a root and a square

והיה האחד שרש מרובע
Because, one [multiplied] by one [is one]. כי אחד על אחד

Check if the scales of the square

הסתכל אם לא היו מאזני המרובע וכו‫'
Meaning: if you find a number and you wish to know if it is a square or not: כלומ' אם תמצא מספר אחד ותרצה לדעת האם הוא מרובע אם לא
Check if it is all cast out by nines, or how much remains. הסתכל אם יהיה הכל ט'ט' או כמה ישאר
Look at the remainder from the nines in the root and multiply it by itself. וראה בשורש הנשאר מט' וכפלהו על עצמו
If the remainder from the nines after the multiplication is the same as the remainder from the square, it can be a square. ואם יהיה הנשאר מט' אחר הכפל כנשאר מן המרובע אפשר להיותו מרובע
Because when the root is multiplied, the scales are multiplied, and the remainder from their product remains in the square. כי בהכפל השורש נכפלו המאזנים והנשאר מכפלם ישאר במרובע
If it is not found so, you know for sure that it is not square. ואם לא ימצא כן תדע באמת שאינו מרובע
Example: if someone tells you: 121 is a square. המשל בזה אם יאמר לך אדם ק'כ'א' הוא מרובע
Check its scales; they are 4.
\scriptstyle{\color{blue}{121_9\equiv4}}
הסתכל במאזניו והנם ד‫'
You find the same in the product of the scales of its root, which is 11.
\scriptstyle{\color{blue}{\left(\sqrt{121}_9\right)^2=\left(11_9\right)^2\equiv4}}
ככה תמצא בכפל מאזני שרשו שהוא י"א
Therefore, his statement is correct. על כן נאותו דבריו
But, if he says that 122 is a square, deny it. אך אם אמר כי ק'כ'ב' הוא מרובע הכחישהו

Other scales

מאזנים אחרים
Examined only by the knowledge of the remainder from the scales of the square and there is no need to look at the root יבחנו מידיעת הנשאר על מאזני המרובע בלבד ולא יצטרך להסתכל בשרש
If the remainder is 2, or 3, or 5, or 6, or 8, it is not a square. שאם ישאר כגב' או ג' או ה' או ו' או ח' אינו מרובע
For, the scales of the square are always derived from the scales of the root, which are from 1 to 8. כי לעולם יצאו מאזני המרובע ממאזני השורש שהם מא' עד ח‫'
The product of one of them [by itself] never produces in the square any of the mentioned numbers, which are 2, 3, 5, 6, 8. והנה מכפל אחד מהם לא יולד לעולם במרובע אחד מהמספרים ‫[37]הנזכרים שהם ב'ג'ה'ו'ח‫'
The result of the product is only 1, or 4, or 9, or 7. רק היוצא מן הכפל א' או ד' או ט' או ז‫'
Therefore, if you find that the scales are one of these, it may be a square. על כן אם תמצא המאזנים אחד מאלו אפשר היותו מרובע
Examine all of them and you will find that it is so. עיין בכולם אחד ותמצא כן
He said: "seven is also among them". אמר גם שבעה עמהם
Meaning: even though it is not a square. כלו' א'ע'פ' שאיננו מרובע
Know that 1 or 4 or 7 each results from one of two numbers, but 9 can result from three and here is a table for you to know this: ודע כל אחד מא' או ד' או ז' יצאו מאחד משני אותיות והט' תוכל לצאת משלשה והנה לך לוח לדעת זה
8 1 1
7 2 4
5 4 7
96 3 9
ח א א
ז ב ד
ה ד ז
וט ג ט
Other scales מאזנים אחרים
If the units of our number are 2, or 3, or 7, or 8, know that the number is not a square. אם היה הנשאר מאחדים על מספרנו ב' או ג' ז' או ח' תדע כי אין המספר מרובע
Because the units of the square are always generated from the units [of the root] that are one of nine digits. [The units] of their product [by themselves] are not 2, nor 3, nor 7, not 8; only 1, or 4, or 9, or of the round numbers that are 5 and 6, since they are found in the squares. כי לעולם לא יולדו הפרטים על כלל המרובע אלא מתוספת אחדים על כלל ואותו התוספת יהיה אחת מט' אותיות והנם מכפלם לא ישאר ב' ולא ג' ז' וח' רק א' או ד' או ט' או מן המתגלגלים שהם ה' וו' כי ימצאו במרובעים
The same way for the tens, which are as units of the hundreds. ועל זה הדרך בנותר מעשרות שהם כאחדים על מאות
If you find one [as units] in the required number, know that there is either 1 or 9 in the root. אם מצאת במספר המבוקש שהנוסף בו אחד דע כי יש בשרש א' או ט‫'
Because 1 is always generated from the product of one of them. כי לעולם מכ מכפל אחד מאלו יולד א‫'
4 is generated from 2 or 8 in the root. ויצא ד' מב' שהוא בשרש או מח‫'
6 is generated in the square from the product of 6 or 4. ויתחדש ו' במרובע מהכפל ו' או ד‫'
9 is generated from the product of 3 or 7. וט' יפול מכפל ג' או ז‫'
5 is generated from the product of 5. וה' יצא מכפל ה‫'
As our lord, our teacher, "May his Rock protect him and grant him life" said regarding that: [38]לשון אדננו מורנו יצ"ו על זה
If you have a square and [its units are] 1, know that there is either 1 or 9 in the root. אם יש בידך מרובע ויש בתוספת הכללים א' דע שיש בשורש א' או ט‫'
If you wish to know which of the two, know the scales of the number, then know the scales of the root. [If the scales of the number are equal to the scales of the root], know that there is 9 in the root. ואם תרצה לידע אחד משניהם דע מאזני המספר ואחר דע מאזני השורש כי אם תקחהו עם א' ויהיו מאזני המספר שוה כשתקחהו עם ט' ושוה למאזני המספר דע שיש בשרש ט'ט‫'
End of quote. ע"ד לשונו
9 1 1
8 2 4
5 5
6 4 6
[7] 3 9
ט א א
ח ב ד
ה ה
ו ד ו
[ז] ג ט

Every rank that is non-even

כל מעלה שאינה זוג
As hundreds, tens of thousands, thousands of thousands. כמו מאות רבבות אלפים אלפים
Their squares are according to the squares of the first rank and by their number. הנה מרובעיהם על דרך מרובעי המעלה הראשונה ובמספרם
For, the squares of the hundreds are 100, 400, 900. כי מרובעי המאות ק' ת' ת'ת'ק‫'
The squares of the tens of thousands are ten thousand, forty thousand, 90 thousand. ומרובעי הרבואות עשרת אלפים וארבעים אלף וצ' אלף
And so on this way. ועל זה הדרך הכל

The analogous squares

ולעולם יהיו המרובעים הנמשלים וכו‫'
Meaning: in the square of any rank that is non-even, there is always only one number, as it is in the first rank. ר"ל לעולם במרובע כל מעלה שהיא בלתי זוג לא ימצא רק מספר אחד על דרך שהוא במעלה הראשונה
But, in the squares of the even ranks, there are always two numbers. ומרובעי המעלות בעלות הזוג לעולם ימצא בהם ב' מספרים
As in the thousands: one thousand and 600. כמו באלפים אלף ות"ר
And so on. וכן כולם

From the analogous squares you can know all those that precede them or succeed them

ומהנמשלים תוכל לדעת כל שהם לפניהם או אחריהם
Meaning: if you know the perfect squares and their ranks, you know their roots. ר"ל שאם ידעת מרובעי אמת ומדרגות ותדע שרשם
Because, since you know the squares of the hundreds: 100, [400] and 900; the root of 100 is 10, and the root of 400 is 20; then the number of squares between 100 and 400 is the same as the numbers from 10 to 20; and the same for the means between four hundred and nine hundred. כי אחר שידעת כי מרובעי המאות ק' ות'ת'ק' והנה שורש ק' י' ושרש ת' כ' אם כן מספר המרובעים שבין ק' ות' כמספרים שהם מי' עד כ' ובין ק' ות' יפולו וכן מהאמצעיים שבין ארבעה מאות לתשע מאות
The analogous are the ranks after the tens, for the non-even [ranks] are analogous to the first [rank] and the even ranks [are analogous] to the second [rank]. הנמשלים יקראו המדרגות הבאות אחר העשרות כי אשר אינם בעלי זוג נמשלו לראשונה והמדרגות הזוגיות לשנית

Know that the units that are in the first rank

דע כי ההווה במעלה הראשונה מהאחדים וכו‫'
Meaning: as 1 is [the root of] 1 in the first rank, so is 10, which is the root of 100.
\scriptstyle{\color{blue}{\sqrt{1}=1\quad\sqrt{100}=10}}
ר"ל כגון א' שהוא א' במעלה הראשונה כן י' הוא שורש ק‫'
Also, as in the first [rank] the root of 4 is 2 and the root of 9 is 3, so in the ranks of hundreds, the root of 400 is [20] and the root of 900 is 30.
\scriptstyle{\color{blue}{\sqrt{4}=2\quad\sqrt{9}=3}}
\scriptstyle{\color{blue}{\sqrt{400}=20\quad\sqrt{900}=30}}
וכמו שבראשונה שרש ד' הוא ב' ‫[39] ושרש ט' הוא ג' כן במעלת המאות שורש ת' הוא (כ') ושרש ת'ת'ק' ל‫'
The roots of the squares in the fifth rank, which is the tens of thousands, that is analogous to the first [rank], are found in the rank of hundreds: because the root of 10 thousand is one hundred and the root of 40 thousand is 200.
\scriptstyle{\color{blue}{\sqrt{10000}=100\quad\sqrt{40000}=200}}
ושרשי מרובעי המדרגה החמישית שהיא רבבות הנמשלת לראשונה ימצאו במדרגת המאות כי שרש י' אלפים הוא מאה ושרש מ' אלפים הוא ר‫'
The roots [of the squares] in the seventh rank, which is two ranks up from the fifth, that is similar to it, since it is odd, are found in the rank that follows the hundreds, which is the thousands: because the root of a thousand of a thousand is a thousand and the root of 4 thousand of thousands is two thousand. ושרשי המדרגה השביעית שהיא דולגת מהחמישית שתי מדרגות הדומה אליה בהיותה נפרדת ימצאו במדרגה הבאה אחר המאות שהיא אלפים כי שרש אלף אלפים אלף ושרש ד' אלפי אלפים
And so for all of them. וככה בכולם
The units that are the roots of [the squares] in the second rank: והאחדים שהם במעלה השנית בשרש
As 16, whose root is 4: in the fourth rank that is analogous to it, the root of the square one thousand and 600 is the digit 4 in the tens.
\scriptstyle{\color{blue}{\sqrt{1600}=40\quad\sqrt{16}=4}}
כגון י"ו ששרשם ד' כן במדרגה הרביעית הדומה לה במרובע אלף ות"ר יהיה שרשו אות ד' בעשרות
The root of the square two thousand and 500 that is analogous to 25, is 50, which is analogous to 5.
\scriptstyle{\color{blue}{\sqrt{2500}=50\quad\sqrt{25}=5}}
ובמרובע אלפים ות"ק הדומה לכ"ה יהיה השרש נ' שהוא כמו ה‫'
The roots of the squares in the sixth rank that is analogous to the second rank, are hundreds. ובמרובעו המדרגה הששית הנמשלת למדרגה השנית יהיה שרשם מאות
As the square 160 thousand that is analogous to 16, whose root is 400 that is analogous to 4, which is the root of 16.
\scriptstyle{\color{blue}{\sqrt{160000}=400\quad\sqrt{16}=4}}
כגון מרובע ק"ס אלפים הדומה לי"ו ששרשו ת' הדומה לד' שהוא שרש י"ו
Say the same for all of them. וכן תאמר בכלם
As our lord, our teacher, "May his Rock protect him and grant him life" said: לשון מורנו רבינו יצ"ו
If you have a known square and you wish to find another square using it: אם יש לך [...] מרובע ידוע ותרצה לדעת ממנו מרובע אחר
If it follows it:
\scriptstyle{\color{OliveGreen}{a^2+b}}
אם הוא אחריו
Double the root of the former. כפול השורש הראשון
Know how much is the distance of the number, whose square you wish to know, from it. ודע כמה מרחק המספר שתרצה לדעת מרובעו ממנו
וכפול הכפל ההוא במספר המרחק עוד תוסיף עליו מרובע מה שעלה בחלוק והוסף הכל על השרש הראשון ויצא המבוקש
If the number you wish to find precedes the known number:
\scriptstyle{\color{OliveGreen}{a^2-b}}
ואם המספר שתרצה לדעת הוא לפני המספר הידוע
Double the root of the known square. כפול שרש המרובע הידוע
ועוד תכה אותו במרחק מה שיש בו בין מספר אשר תרצה לדעת מרובעו ובינו ומה שיצא תגרע ממנו מרובע מה שעלה בחלוק והנשאר תגרענו ממרובע המספר הידוע
ואם יש לך מרובע ידוע ותרצה לדעת ממספר אחר כמה הוא קרוב אל מרובע אם ‫[40]אם המספר ההוא הוא א אחרי המספר הידוע דע כמה המרחק וחלק אותו על כפל שורש המרובע הידוע והשאר בידך מה שיצא במרובע החלוק וחבר הכפל ותוספת מרובע החלוק עם המרובע הידוע ויצא המבוקש
או אם המספר אשר בידך הוא לפני המרובע הידוע ראה כמה מרחקו ממספר הידוע והמרחק ההוא חלקהו על כפל שרש המרובע הידוע ותן לו מהחלוקה כדי שנוכל לגרוע ממנו מרובע מה שעלה בחלוק ולא ישאר כי אם פחות מכפל שורש המרובע ומה שיצא בכ בכפילת החלוק אחר שתגרע ממנו מרובע החלוק חסר אותו מהמרובע הנמשל ויהיה המבוקש
ע"כ וכל זה שוה עם הכתוב בספר אלא שהספר יצוה לגרוע כל כפל החלוק מהמרובע הנמשל ולהוסיף על הנשאר מרובע החלוק ולגרוע הנשאר מהמרובע העתיד והכל שוה
אלא שמלמדנו כמות תוספת החלוקה והכונה בתוספת לגרוע כל המרחק עד שנגיע אל המרובע שעבר
ודע כי כל [ב]כל אחד משני הדרכים לא נמצא רק מרובע שעבר הקרוב למספרנו ובדרך הראשון נמצאנו בין שהיה מספרנו יותר קרוב ממרובע שעבר או שהיה יותר קרוב ממרובע שאחריו והדרך השני לא יועילו רק בהיות מספרנו בלתי קרוב אל מרובע שעבר יהיו ק"נ שהוא שרש ו' ומרובע כ"ב אלף ות"ק וממנו נדע מהנשאר מרובע הקרוב על כן נחלק על כפל שרשו ונתן לו א' ו שהוא שם ונוסיפנו על מרובע הראשון שהיה לנו והיו כ"ב אלפים ותת"א עם מרובע א' שעלה בחילוק . נתן לו יותר מה שנוכל . שנתן לו ט' שהם ה' אלפים

We cannot give it 5

לא נוכל לתת לו ה‫'
ר"ל נסיר ממנו אלף ות"ר שהוא מרובע מ' ונוסיפנו על המספר יהיו ל"ג אלפים ות"ר ועתה יהיה לנו ת"ם ‫[41] ר"ל שנעשה מרובע קרוב ונחלק על כפלו מה שנשאר לנו שהוא אלפים ות' נתן לז' שהם ו' אלפים וק"ס
נחסר עוד מרובע ז' שעלה בחילוק ר"ל ונוסיפנו על מה שהיה לנו ויהיו ו' אלפים ור"ט
נחבר זה אל ל"ג אלף ות"ר שהיה לנו ועם הכל עלה קצ"ט אלפים ות"ר
נשארו קצ"א נחסרנו ממאתים אלף ישארו קצ"ט אלפים ותת"ט והדבר יצא שוה
ולידע השורש נוסיף ז' שעלה בחלוק על השרש שהוא ת"ם היה תמ"ז והוא השרש

We give it all we can

נתנו לו כל מה שיכולנו
נתנו לו כל מה שיכולנו והנה המ' אלף עלה בחלוק כ"ה בצמצום והנה נתן לו יותר חלק אחד שנחברהו מן השש מאות אלף נוכל ליקח מרובע מה שעלה בחלוק והיו כ"ו וכן נחסר כ"ו משרש ומרובע הנמשל שהוא ת"ת והנה שרש מספרנו תשע"ד נחלק המספר הנשאר שהוא אלף אלפים על ד' אלפים
והנה לא נתן לו רק רל"ו שהם תת"קמ"ד אלפים ונשארו נ"ו אלפים נקח מהם מרובע מה שיעלה בחלוק שהוא נ"ה אלפים ותרצ"ו וזהו המרובע ונשאר ש"ר ואם ד' אלפי אלפים תחסרנו מאלף אלפים שאר המבוקש שהזכרנו
ונחבר רל"ו שעלה בחלוק עם שרש ראשון שהוא אלפים והוא השרש המבוקש
וזה גם כן העולה מחשבון הספר אלא שמחלק זה חלוקת רבות חלוק אחר חלוק ערך מרובע אל מרובע מרובע אותו הערך העולה הוא מרובע
והמבחן שאם תחלק השרש הגדול על השרש יצא שרש ערך
דמיון חלקנו ס"ד על י"ו עלה ד' וזה הערך הוא מרובע ושרשו הוא היוצא מערך ד' אל ח' שהוא ב' והנה הוא כפלו וב' שביעיות שביעיות וזהו מרובע
ואם נחזירנו לשביעיות שביעית ותחבר עמהם הב' היו ק' ושרשם י' שביעיות שהוא אחד ש' שלם וד' שביעיות כי שרש הנשברים גדול ממרובע
בקשנו לדעת מרובע מספר ידוע
כגון שנרצה לידע מרובע ממרובע כ"ה ‫[42]כ"ה שהוא ידוע למספר ה' שהוא ידוע נחלק י' על ה' ועלה שנים ומרובעם ד' נכפול ד' על כ"ה ועלה ק' שהוא מרובע ד' ועל זה הדרך בכלם

If we sum three squares, we triple them

ואם חברנו שלשה מרובעים ונכפלם ג' פעמים
ר"ל אם נחבר ג' מרובעים ונכפלם המחובר על ג' ונשמור זה העולה ונקח מרובע היתרון שבין הראשון לשני ומרובע היתרון שבין השני לשלישי ומרובע היתרון שבין הראשון לשלישי ותחבר אלה הג' מרובעים והמחובר חסרהו מהעולה תחלה והנשאר מהעולה הוא מרובע ושרשו המחובר מג' המרובעים הראשונים
ועל זה הדרך אם חברת ד' מספרים ותכפלם ד' פעמים או אם חברת ה' מספרים ותכפלם ה' פעמים
ואומר לך כלל שתוכל לדעת ממנו וכו‫'
לעולם חסר אחד מהמספר המחוברים וראה סך המחובר מא' עד סוף מספר הנשאר בדרך שאמר בשער החיבור וככה מספר היתרונים כגון שהיו המספרים ד' חסר אחד והיו ג' והמחוברים מא' עד ג"ו וכן היתרונים ו‫'
רק אם יהיה בו רביעית כלומ' אם נמצא במרובע רביעית ידענו כי בשרש היה חצי ממנו יצא אם היה בו ששית ששית מששית יצא וכן בשאר
ואם היה בו חצי שמינית שהוא חלוק מי"ו הנה מהרביעית יצא
וכן שניים שהם כמו רביעית יצאו מראשונים שהם חצי ורביעים יצאו משניים אבל שלישיים וחמשיים ושביעיים ושמניים אין להם שורש אמת
הסתכל אם היה מרובע רביעית דע כי בשרש חצי
כגון שהיו לך י"ב שלמים ורביעית הנה בשרש היה חצי נשיב הכל לרביעיות היו מ"ט ושרשם ז' חצאים שהם ג' וחצי והנה כאשר נכפול ג' וחצי על עצמם יצא לך י"ב ורביעית
תכפול מ' על מ' ראשונים שהם שתי שלישית מעלה יהיו אלף ות"ר

If we convert this number to thirds

ואם עשינו מזה המספר שלישיות
ר"ל בעבור שהזכרנו שלישיות נשיב הו' ראשונים שנעשה מכל ראשון שהוא ס"ג שלישיות [43]יהיה עם הב' שלישיות עשרים וכבר אמרנו שהם כ"ו ראשונים ומ' שניים הם תשיעית אחת מס'
שוב וחשוב כי הם ראשונים כי שרש שניים הוא מראשונים יהיו אלף ות"ר שניים שכל ע' הם ראשון אחר נכפול מ' על ס' ונחלק העולה על ע' כי כערך מ' אל ע' יהיה ערך העולה מס' על כן נכפול הקצוות שהם מ' על ס' ונחלק על ע' שהוא האמצעי ומה שיצא יהיה ערכו מס' יעלו ל"ד ראשונים וישארו ב' שהוא שניים יעלו ז' שהם ראשונים שניים וישאר לנו מהשלישיים י' שהם שביעית אחת מע' נעשה ממנו ששים והם רביעיים
נכפלנו עוד ויהיו ג' אלפים ות"ר חמישיים נחלקם על ע' יעלו כ"א רביעיים
ונעשה חלקנו תשעים ר"ל נעשה אחד מצ' חלקים
כפלנוהו על עצמו והם ת'ת'ק' נחלקם על צ' ועלה י' חלקים ראשונים והם המרובע ושרשם ל' ראשונים אם אמת כי המרובע חלק אחד ומ' שניים ר"ל הוא נכון שהוא מרובע כי חלק מס' ומ' שניים הוא ששית הששית מס' כי הששית הוא וששית י' הוא ראשון אחד ומ' שניים אם כן השורש הוא י' כי מכפל ששית יצא ששית הששית ומרובע י' ראשונים הוא ק' שניים שהוא ראשון אחד ומ' שניים

As for the numbers that are divisible by sixty

והנה במספר שיש לו ערך אל ששים
ר"ל א'ע'פ' שקצת המספרים שלא יאותו במקום אחד להיות מרובעים ובכאן לפי שיש להם ערך אל ס' הם מרובעים כמו ט"ו כי הוא רביעית ס' ושרשו ל' ראשונים שהם חצי אך לא יתכן זה בכל המספרים כי י' שהוא ששית אינם מרובע כל שכן המספרים שאין להם ערך כלל אל ס' שאינם מרובע כגון י"א גד יד יט נחלקם על כפל השרש שעבר שהוא ששה
כי לעולם כשנעלם ממנו שרש מרובע אחד כגון שלא נדע שרש ק' על דרך משל נבקש מרובע שעבר שהוא פ"א ששרשו ט' ונביט מה המרחק שבינו לבין ק' ‫[44]ק' והוא י"ט נחלקם על כפל השרש שעבר שהוא י"ח ונוסיף עליו המרחק שבין ט' לי' ועלה אחד נוסיף האחד עש על שרש ה' ראשון והיה י' והוא שרש ק' וכן בכאן נחלק המרחק על ו' יהיו ב' ראשונים והנה השרש ג' שלמים וב' ראשונים שהם שלישית אחת נכפלם ועלה י"א שלמים ותשיעית
ואם תרצה השב הי"א לתשיעיות והם עם התשיעיות ק' ושרשם י' שלישיות שהם ג' שלמים ושליש
וזה שנניח השבר לפי שכל השאר נחלק ולא נקח ממנו מרובע החלוק כי לא יתכן והנה במרובע תוסף אם בשלמים נחלקים כל המרחק ונניח כדי מרובע החלוק ונוסיף הנשאר בשרש והכל שוה
ידענו כי יש בחשבון חומש החומש כי הכ"ד שניים ה' הם ב' חמישיות מראשון והנה חמישית לא יתכן היותו מרובע על כן הוא חומש החומש וכמה הוא חומש החומש שיש בכלל זה המרובע ב' חלקים וכ"ד שניים כי באמת חומש חומש היה בשורש שהוא י"ב וחומש הוא ב' ומק"כ ראשונים נעשה שניים שמן ק"כ וחמישיתם כ"ד והנה המרחק מהמרובע שהוא אחריו שהוא ט‫'
דע כי לעולם יהיה בין שנים מספרים ר"ל המרחק בין שני מרובעים הסדורים במספר שרשיהם על כן כשתדע מרובע אחד ולא השני לו חבר שרשיהם עם מרובע הנודע

Look at the number you want

והנה הסתכל המספר שתרצה
וכו' ר"ל אם תבקש לידע שרש אי זה מרובע שיהיה כגון שתרצה לידע מרובע י"ב שהוא בין ובין י"ו והנה הסתכל מרחקו ממרובע שעבר שהוא ט' אם היה בשרש ט' שהוא ג' והמספר נקרא אמצעי לפי שאם תחלק המרחק על אי זה משני המרובעים שתרצה תהיה חלוקתך שוה שאם תחלוק ג' על ו' שהוא כפל שרש שעבר יצא בחלוק חצי וכן אם תחלוק ד' שהוא המרחק שאחריו על כפל השרש שאחריו שהוא ח' יהיה חצי והדבר שוה

Extract any number that is less than the mean, as 11, from the preceding square number

[45]וכל מספר שיהיה פחות מהאמצעי כגון י"א הוציאהו ממספר המרובע שעבר
ר"ל שתקח המרחק שבין מספרך ובין המרובע שעבר וחלקהו על כפל שרשו ואם היה המרחק יותר משרש שעבר עשה חשבונך במרובע העתיד
ואם חשבונך היה במאות ובאלפים זה השרש יספיק לך כי לרבויו לא יוכר בו הטעות והחסרון ויותר יוכר בו אם נקחהו מהקטן כי החסרון והשגגה הולך ורב עד כי גדל מאד רק אם היה המספר קטן אתה צריך למספר שני לפי שלא לקחת ממנו מרובע החלוק
ופעם נקח השורש בקטן מהגדול ויצא מדוייק כמו שעתיד לבאר לפי שטענת הגדול יתמעט כל אשר ירד ויחלק ויבלע מאד
ואם רצית לדעת שרש עשרים אלף כפול זה השרש על עשרה לפי שהששרש גם כן יכפול ויעלה למדרגה אחרת כי שרש המאות עשרות ושרש הרבבות מאות והנה שביעית מל"ד
וזה בקירוב כי עדיין ישארו ב' שניים שלא לקחנו שביעיתם יהיו ת'ק'י'ד' ועשיריתם ר"פ וזה בקירוב
נעשה מהנשארים שהם ק'י'ט' ראשונים
נחלקם על ר'פ'ב' שהוא כפל ק'מ'א' עלו כ"ה חלקים ראשונים וישארו צ' חלקים והנה לא נוכל לחלקם על ר'פ'ב' נשיבם שניים והם ה' מב' נחלקם על ר'פ'ב' שהם שרשנו עלו י"ט שניים וישארו מ"ב שלא יתחלקו ואלו ראשונים וי"ט שניים נוספים על שרשנו שהוא ק'מ'א' ואם רצה לדקדקו עוד ישיב המ"ב לשלישיים ויחלקם על ר'פ'ב‫'
ודע כי כל שברים שתחלק על שלמים יעלה אותו המין מן השבר וכשתחלק מין שברים פחות על מין שבר יותר גדול נחסר מספר הגדול ממספר הפחות והנשאר הוא העולה החלוק
נחלק כל מה שאמרנו מן השלמים והשנים על מאה כי כמו שאמרנו כשבקשנו שרש שניים משרש ‫[46]משרש מאתים שלקחנו עשירית שרש מאתים לפי שהוא כפלו י' פעמים כן נאמר עכשו כשנוציא שרש שניים משרש עשרים אלף שהוא כפלו מאה פעם שנקח אחד ממאה שבו הנה מן המאה קח אחד שלם ונקח בעבור המ"ב חמישיות ז' שהן כ"ד מס' לפי שערכם אל מאה כן והאחד שנשאר מק'מ'א' נעשנו ס' ראשונים ועם הכ"ה היה פ"ה והנה בעבור הפ' תקח ד' חמישיות מס' ובעבור הה' שהוא רביעית חמישית ק' נקח רביעית חמישית ס' שהוא ג' והרי לנו נ"א ובעבור הי"ט שהוא פחות אחד מחמישית מאה לקח חמישית ס' פחות א' והוא י"א
ואם תכפול כל חשבון שהוא כפל מרובע נראה שכך הוא סדר הדבר אם תרצה לידע שרש חשבון שהוא כפל מרובע כפול שרש חציו על זה ושרש ר"ל שרש ב' השבר
כי כל חשבון שתכפול על שרש מאחד יהיה מרובע אותו הנכפל נכפל אותו חשבון על עצמו מדמיוני מרובע השרש הראשון המיוחד ר"ל שכפי מספר כפל החשבון נחשוב כך פעמים המרובע הראשון
המשל בזה כפלנו ב' שהוא שרש ד' על ג' והוא ו' הנה כפל ג' ט' נכפול ט' על מרובע ראשון שהוא ד' והוא ל"ו שהוא מרובע ו' ואם נכפול ה' על ב' שהוא י' הנה מרובע ו נכפל ה' שהוא כ"ה כפול על ד‫'
רצינו לדעת כמה שרש י"ח הנה כפלנו שרש המרובע שעבר שהוא ג' על זה המספר שהוא א'נ"ד כ"א י"א שוה המספר שהוא י"ח כפלו ר"ל ממרובע ג' שהוא יעלה ד' שלמים י"ד ראשונים ל"ג שניים ל"ג שלישיים
ואם כפלנו זה המספר שהוא שרש י"ח יהיה זה הנשנה שרש ע"כ כי לעולם כפל שרש מרובע אם יהיה מרובעם כפל מרובע ראשון כמו שרמזנו למעלה מן חציו הוא שרש רביעית מרובע ראשון

If we take the square of 7 thousand and 200

ואם נקח מרובע ז' אלפים ור‫'
ר"ל אם נקח זה המספר מקום מרובע ונבקש לידע שרשו נעשה על הדרך הנזכר שנקח שרש חציו שהוא ס' ‫[47]ונכפלהו על א'נ"ד נ"א י"א יהיה שרש ז' אלפים ור' פ"ד נ"א י"א וזהו שרש שנים בעצמו אלא שהעלינו כל מספר למדרגה עליונה ממדרגתו שהוא מס' לס' עד ששבו השלישיים שניים והשניים ראשונים והראשונים שלמים

Because we convert them to minutes, consider these as integers

כי השיבונו אותם בדרך ראשונים והנה חשוב אלה שיהיו שלמים
וזה רצה באמרו כי השיבונו אותם בדרך ראשונים והנה חשוב אלה שיהיו שלמים ר"ל שאם היה לנו זה השורש שהוא פ"ד נ"א י"א ולא היה לנו שרש ב' נוריד זה השרש מס' לס' ונתיכהו כדרך שהרכבנוהו ויגיע לנו שורש ב‫'
ואם תכפול זה המספר על עצמו ר"ל המבחן על זה השרש שנכפלהו על עצמו ונשיב הכל אם נרצה למדרגה שהוא שלישיים ונכפלם על עצמם והם ששיים ונחלקם על ס' עד שנשיבם לשניים וראשונים ומעלות וישאר בכל אחד מה שלא יתחלק על הדרך שהורינו בסוף שער חמישי תמצא בסוף שלא ישאר אפי' שני אחד וכל שכן ראשון כל זה אמר להראות דיוק זה השרש

We go back to extract the root of two

נשוב להוציא שורש שנים
ר"ל בדרך אחרת
ויספוק לנו השרש הראשון ר"ל לא נצטרך להוציא שרש ב' מד' או מעשרים אלף כי יספיק לנו להדריכנו אל האמת השרש הראשון במה שנעשה בו כמו שמבאר והולך ובעבור שיש לנו ששיות כי הנ' הם ה' ששיות וכו‫'
נשיבם הכל מערך ו' והיו י"ז וכן נשיב הנ"ה לששיות שנכפלם על ו' ועלה ק"נ ועתה יכשר לחלקם על הי"ו עלו מ"ט שלישיים ונשארו א' שלא יתחלקו

If we calculate even more precisely by taking the square of 49

ואלו היינו מדקדקים עוד מדרך מרובע המ"ט
ר"ל שנקח מרובעם ונחלקם על כפל השרש שהיה לנו שהוא ב' מ"ט מ"ב כ"ב ונחשוב כי הכל בנ' ובעבור שהנ' הם ד' ששיות נשים הכל ששיות והיו י"ז ונשיב אצל המ"ט והקי לנו ת'ק'כ'ט' שלישיים נעשה מהם מרובע ויהיו ששיים נחלקם ונגיעם עד רביעיים ונשיבם מערך ששיות ‫[48]ששיות ונחלקם על י"ז שהיה לנו נתן לו כ"ז רביעיים כ"ז חמישיים נחסרם משרש שלנו וישאר א'כ"ד נ"א י' ל"ט ל"ד
ואנחנו דקדקנוהו יותר ולקחנוהו משרש ב' אלפי אלפים ויצא מדוייק בתכלית הדיוק א'כ"ד נ"א י' ז' מ"ז כי לא ישאר אפילו רביעי ולא חמשים רק ב' ושרש נ' המוצא ממנו זד טו ד' לח נה ושרש ה' אלפים עד מב כג לא כט
ונשיב הכל מערך שלשה והיו י"ט וכן נשיב ק'ה'ק' לשלישיות שהם ש' ועלו ט"ו נשיבם שניים
נראה שהוא שלישיים יהיו שלש מאות
נראה זה טעות כי השניים הנשארים הם ט"ו וכשנשיבם שלישיים יעלו ת'ת'ק' וכשנחלקם על י"ט יעלו מז שלישיים מעשרה חלקים ישארו ט' מ"ד י"ג וכשנדקדקהו ונעשה מרובע מה שעלה בחילוק ונחלק על כפלם השרש יעלה בחלוק שלישי אחד נחסרהו מי"ג וישאר השורש כ"ט מ"ד י"ב
וכשנכפול זה החשבון על עשרה וכו' כי מה שהוא במעלה הראשונה אחדים יהיה באלפים עשרות

We divide the root of 18

חלקנוהו שרש י"ח
ר"ל אם נרצה לדעת שרש י"ח משרש כבר ידענוהו משרש כשכפלנוהו ושרשו אחד וחצי ככה שרש י"ח הוא כפל שרש ח' וחצי הכפל שהוא ג' פעמים שורש ב‫'
נקח מרובע החילוק שנשיב הכ"ב ראשונים למתכונה הל' שהם שניים יעלו ת'ת'ד' שין ומרובעם אלף אלפים ות"ר שהם שלשים אלף שע"ה שלישיים נחלקם על כפל השורש שהוא תק"ה ת'ק'כ'ה' ראשונים יעלה כ"ח שניים בקרוב כי שלישיים על ראשונים יצאו שניים כמו שהקדמנו נחסרם מן השרש הראשון שהוא ד'כ'כ'ל' הנה נשליך הל' שהם שניים ונחסר הכ"ח שניים הנשארים מראשון אחד שנקח וישאר השרש השני ד'כ'א' ל"ה
As the ratio of the versed sine to the entire diameter so is the ratio of the [sum of] the square of the versed sine with the square of half the chord to the square of the diameter and so is the ratio of the square of versed sine to the square of half the chord. לעולם כערך החץ אל כל האלכסון יהיה ערך מרובע החץ עם מרובע חצי המיתר ממרובע האלכסון וככה ערך מרובע החץ אל המרובע חצי היתר
The reason is that if you make a circle and you draw a chord [49]והטעם שאם תעשה עיגול ותוציא ממנו יתר בנקודה ידועה מהאלכסון ותעשה אלכסון מתחלת האלכסון שהוא ראש החץ אל קצה היתר ותמשיך קו אחד מקצה היתר עד סוף הקוטר תמצא שמרובע הקוטר הוא כנגד שני הקוים שהוא הכאת שני הזויות ומרובע שנים שניהם הוא ברבוע האלכסון ומה שיחסר האחד ממרובע האלכסון ישלים חברו אם כן אם היה אלכסון החץ וחצי המיתר שלישיות שני הקוים כגון שהונח בשלישית האלכסון יהיה אם כן מרובעו החץ וחצי המיתר שלישית רבוע כל הא' האלכסון כי מרובע קטרם שקול בשניהם וזה הצורה לדמיון לעולם מרובע מה שנשאר מן החץ על הנקודה וכו‫'
והטעם שאם תוציא קו אחד מקצה המיתר עד הנקודה שהוא חצי האלכסון תראה שהוא קוטר חצי המיתר ומה שאחרי החץ מהאלכסון עד הנקודה ולכן מרובען כרבוע שניהם יהיה מרובע חצי המיתר שלשת כפלי מרובע החץ
שכן הקוטר כפלי החץ כי הוא רביעיתו ונמצא החץ ד' חלקים ומרובעו ו' ראשונים ומ' שניים שהוא תשיעית אחת והוא אחד מל' מנ' ונ' הנה מרובע חצי היתר הנשאר מג' שלישית שהוא ג' י"ג כ‫'

If you multiply the requested diameter by 22

אם כפל האלכסון שתראה על כ"ב
ר"ל מאי זה אלכסון שתדע הערך לידע הקו הסובב כגון שהקוטר עשרה תעריך ותאמר כערך י' אל ז' יהיה ערך העגול אל כ"ב ונכפול הקצוות ונחלק על ז' והנה הנוסף אל הג' שלמים
ר"ל שאם היה הנוסף ז' חלקים מע' וחצי יהיה הנוסף על הג' שלמים ח' ר"ל שאם היה הנוסף כ"ד ל"ה אך אינו כן כי הוא נתן ראיה כי ראוי להיות יותר וכיצד נחשוב נעשה הערך ככה בעבור ד' אל ק'מ'א' יהיה זה מס' ונכפול ב' על ס' שהם הקצוות ונחלק על ק'מ'א' והעולה הוא כך חלקים מס' והנשאר גם כן נשוב לכפול על ס' ונחלק על ק'מ'א' כי ‫[50]כי התוספת ח"ל ולעשות ערך נעשה מהכל ראשונים ר"ל ה'ג' ח"ל והם ק'פ'ח' וחצי ובעבור החצי נשיב הכל לשניים ונעשה האחד מק"כ ויהיה הכל ש'ע'ז' וכן נעשה האלכסון ק"כ ונעריך ונאמר כערך האלכסון אל ק"כ יהיה ערך קו העגול מש'ע'ז‫'

If we set the diameter as 10, the square of the chord is as one-third

אם שמנו האלכסון י' יהיה מרובע היתר כשלישית
ר"ל כשנוציא יתר בשלישית הקוטר ונרבע אותו יותר עם השלישית יהיה כמספר הקו הסובב כי לפי זה מרובע חצי המיתר כ"ב וב' תשיעיות ושרשם ד' וב' שלישיות בקרוב נמצא כל המיתר ט' ושליש נכפלם על שליש האלכסון שהוא ג' ושליש יעלה ל"ז ותשיעית ויותר מעט כי בקרוב מנינו כל המיתר ונמצא שהוא כשעור הקו הסובב וזו הצורה

Likewise, if you make the square between the upper third and the lower third

וככה אם עשית מרובע בשלישית העליונה ובשלישית השפלה
ר"ל שנוציא שני יתרים אחד למעלה בשלישית ואחד למטה בשליש הקוטר גם כן יהיו שבריו כמספר הקו כי אין חלוק בין מרובע החץ שהיא שליש האלכסון עם היתר ובין מרובע היתר ההוא למטה בשלישית האלכסון כזה
וכל מספר שהוא לפני עשרה
כל זה הוא ספור מעלות עשרה
שאם תוציא משולש שוה השוקים בתוך העיגול ותשים תושבתו במיתר ששלישית אם יהיה הקוטר העובר באמצעו עשרה יהיה רבוע המשולש בקו הסובב כי רבוע כל משולש הוא הכאת הקו האמצעי מחציו על כלו כי משולש הוא חצי מרובע תראה זה אם תעשה בתושבתו שארכו כאורך המשולש ואין הפרש בין שתכה שליש האלכסון על כל היתר או שתכה שני שלישיו על חציו
ואם היה האלכסון פחות מי' בערך מה שיחסר מעשרה יגרע מדעת המשולש שבשלישית מהיות כקו הסובב ואם היה האלכסון יותר לפי ערך מספרו מעשרה יהיה ערך גודל מספר המשולש על הקו הסובב
[51]המשל בזה אם תעשה אלכסון ט"ו ותוציא יתר בשלישית יהיה

רבוע כל האלכסון רכ"ה ושלישיתו ע"ה וזהו מרובע חצי היתר ומרובע החץ נחסר ממנו השליש שהוא מרובע החץ וישאר נ' ויהיה שרש ז' שלמים ומשהו נכה אותו בשני שלישי האלכסון הוא שנים ושביעית אחת אם כן יהיה הקו המקיף מ"ז ויותר מעט וערכו אל ע' שהוא תשבורת המשולש כערך י' אל ט"ו

והמשל בפחות מי' כגון שהיה האלכסון שבעה יהיה מרובע כל האלכסון מ"ט ושלישיתו י"ו כ' והוא כולל מרובע החץ וחצי היתר נוציא מהם מרובע החץ והוא ה' ושלישית ותשיעית שהוא כ"ו מ' נחסר אותו מי"ו כ' ישאר י"א פחות תשיעית ושרשו ג' י"ח ככה זה המספר בשני שלישי האלכסון שהוא ד' מ' ויהיה ט"ו כ"ד והוא תשבורת המשולש אל כ"ב שהוא הקו המקיף כערך ז' אל ז‫'
ואם תעשה זה דקדוק רב תמצא בפי' שהנוסף על השלשה הוא פחות משביעית
וכאשר נחפש הקו הסובב לדעתי לפי ערך המשולש שבשלישית ימצא מסכים לדברי ארשמידס
וממעלות העשרה כי בהיות קו העיגול עשרה יהיה האלכסון שרש י'
אם ידעת האלכסון כפול מרובעו כגון שהאלכסון י' ומרובעו ה' נכפול על י"א וכו' כלל אחר טוב לדעת השברים מהקו הסובב כפול חצי הקוטר על חצי העגול וככה הם השברים ויצא הדבר שוה
לעולם כערך י"א אל י"ד יחסרו שברי העגול ממרובע האלכסון נמצא מרובע יתר על העיגול שביעית חצי שביעית שהוא פחות מרביע ורבותי שאמרו רביע נמשכו אחר כללם שאמרו כל שיש ברחבו טפחיים וכו‫'
ודע והנה הנמשלים שהם מי' ולמעלה ‫[52]ראוי שנקח המדרגות מהם
בקשנו לכפול מאתים על ש' והנה הנמשלים ב' וג' שהם במקום ת'ש' כפלנו זה על זה והיו ו'
וכן המדרגות המבוקשות המקובצות משניהם ו' בחשבון האמת תחלק המדרגה הרביעית היא עשרת אלפים וכשנכפול מאות במאות לא יצטרך לחשוב אלא ד' מדרגות ונשמע מהמדרגה הרביעית עשרת אלפים
תם ונשלם תהלה לאל עולם

פרוש ספר המספר של ראב"ע Genève, Bibliothèque de Genève, MS héb. 10/2 (IMHM: f 2320), ff. 39r-65r (14th-15th century)

Ms. heb. 10

נראה שחסר מעט בהתחלה בדף 58ב: "לשון מורינו ורבינו יצ"ו. אם יש לך אות(?) מרובע ידוע ...". דף 65א, שהוא ככל הנראה סוף הפרוש, בכתיבה אחרת, נראה שחסר בין דפים 64 ו-65. ‬ בדף 65ב השיר הקצר הידוע "שאל רופא שאל אל שואליך". בדף 1ב חתימת בעלים: BARTOLOMEO ROBERTI=] ROBERTI]. ‬ אלוני. נ. וקופפר. א., רשימת תצלומי כתבי-היד העבריים במכון. חלק ב (ירושלים תשכ"ד) מס. 13-15.

Senebier, J. Catalogue raisonne des manuscrits conserves dans la Bibliotheque de la Ville et Republique de Geneve (Geneva 1779).
  1. 39r
  2. 39v
  3. 40r
  4. 40v
  5. 41r
  6. 41v
  7. marg.
  8. 42r
  9. 42v
  10. 43r
  11. 43v
  12. 44r
  13. 44v
  14. 45r
  15. 45r
  16. 46r
  17. 46ב
  18. 47א
  19. 47v
  20. 48r-49r: illegible
  21. 49v
  22. 50א
  23. 50v
  24. 51r
  25. 51v
  26. 52r
  27. 52v
  28. 53r
  29. 53v
  30. 54r
  31. 54v
  32. 55r
  33. 55v
  34. 56r
  35. 56v
  36. 57r
  37. 57v
  38. 58r
  39. 58v
  40. 59r
  41. 59v
  42. 60r
  43. 60v
  44. 61r
  45. 61v
  46. 62r
  47. 62v
  48. 63r
  49. 63v
  50. 64r
  51. 64v
  52. 65r