Difference between revisions of "ספר ציפרא"

From mispar
Jump to: navigation, search
(Checking Methods - MS Paris158, 198v)
(Chapter Two: Addition)
Line 1,890: Line 1,890:
 
|}
 
|}
 
|-
 
|-
!<span style=color:green>MS Paris158, 198v</span>
 
 
|
 
|
|-
+
|style="text-align:right;"|&#x202B;<ref>MS Paris158, 198v</ref>ציור זה בגלחת ונקרא {{#annot:term|154|89Mu}}אדירין{{#annotend:89Mu}}
|
 
|style="text-align:right;"|ציור זה בגלחת ונקרא {{#annot:term|154|89Mu}}אדירין{{#annotend:89Mu}}
 
 
|-
 
|-
 
|
 
|
Line 1,990: Line 1,987:
 
|-
 
|-
 
|Now, know that I shall write you two checking method [lit. scales]:
 
|Now, know that I shall write you two checking method [lit. scales]:
|style="text-align:right;"|<ref>MS Paris158, 198v</ref>ועתה תדע שאכתוב לך שני {{#annot:term|354,1451|LdXM}}משקלים{{#annotend:LdXM}}
+
|style="text-align:right;"|&#x202B;<ref>MS Paris158, 198v</ref>ועתה תדע שאכתוב לך שני {{#annot:term|354,1451|LdXM}}משקלים{{#annotend:LdXM}}
 
|-
 
|-
 
|
 
|

Revision as of 08:41, 27 November 2022

Contents


Prologue

[MS Paris, Séminaire Israélite de France (École Rabbinique) 158/1 (IMHM 4102) f. 197r, lines 1-16]
This is a book on mathematics [called] Ṭeshifra. זה ספר חכמת התשבורת [הנקרא] טשיפרא
Its cause: I myself, already from youth, my soul desired to acquire wisdom and to seek for arithmetic, if only I will find them in a book engraved by a pen of a skilled writer. For the reason that this is an external science, which is not found before us in Israel and the very least that is available is gathered inside the house in utmost discretion, my thoughts therefore aroused me to collect the sayings from any one that has them […] for recollection. סיבתו אני את לבי גם מנעורי גרסה נפשי לדעת חכמה ובקש חשבון ומי יתן ואמצאם בספר ויחקו בעט סופר מהיר[1] ולסבה שזאת היא חכמת החיצוניות לא נמצאת לפנינו בישראל והמיעוט שבמיעוט הנמצא נאסף אל תוך הבית בחדרי חדרים לכן העירוני רעיוני ללקט האמרים מיד כל אשר ימצא אתו ולכל[...] לזכרון
Before I start, I ask all its readers not to condemn me and say: what is it with you? Go study havayot d'Abbaye ve-Rabba! God forbid […]. Since I did not undertake it for any cause or purpose, but sharpening the mind and obtaining arithmetic by accident and learning and by the wittiness of Abbaye ve-Rabba primarily. On that said those who speak in parables: come to Ḥeshbon [Numbers 21, 27]. As is written in Maimonides, chapter five of the introduction to Tractate Avot: וקודם שאתחיל אבקש מיד כל רואיו לבל יכרעני לכף חובה ולומר מה לך פה כלך בהוייות דאביי ורבא חלילה וחס [לי'] לזרעא דאבא כי לא לקחתי זאת לשום עיקר ותכלית רק לחדד השכל ולבא בחשבון במקרה ושנייה ובחידוד דאביי ורבא בעצם וראשונה ועל זאת אמרו המושלים באו חשבון[2] כמו שכתוב הרמבם ז"ל פרק חמישי מה[קדמת] ה פרקי אבות ‫[3] וז"ל
What has no benefit in it for that purpose – as the arithmetic problems, the Book of Conics, the numerous techniques for questions on geometry, the measuring of weights, and many like those – the intention in them is to sharpen the mind and train the rational faculty through methods of proof, until a person acquires the knowledge of demonstrative reasoning from other, and this will be his way whereby he will reach the knowledge of the truth of His existence, The Exalted. ומה שאין בו תועלת לו בתכלית ההוא כשאלות החשבון וספר החר[וט]ים והתחבולות הרבות משאלות אל ההנד[ס]ה ומשיכת המשקלים והרבה כיוצא בא[ילו] יהיה הכוונה בהם לחדד השכל ולהרגיל כח השכלי בדרכי המופת עד שיגיע לו לאדם קניין ידיעת ההיקש המופתי מזולתו ויהיה לו זה הדרך שיגיע בה לידעת אמיתות מציאתו ית' עכל‫'
So, for my part it will not be inaccessible. גם מצדי לא יבצר

Introduction

With good luck [4]בטוב גדא
I shall start this אתחיל דא
Sefer Ṣifra ספר ציפרא
To know and explain the book of number that has 9 chapters. לידע ולמפרש ספר המספר שיש בו ט' שערים
First I shall explain the teachings that the one who calculates should know, so that he can know all the calculations [practice]. ואפרש תחלה הקבלות אשר צריך לידע המחשב הוא המפתח ויכול אח"כ לידע כל החשבונו‫'

The Positional Decimal System

The numerals
Know that you do not have any number [= numeral] smaller than one and you do not have any number [= numeral] greater than nine. נידע כי אין לך חשבון קטן מן א' שהוא אחאחד

ואין לך חשבון שהוא גדול מן ט‫'

By these nine numerals from א to ט [the nine first Hebrew letters] all numbers in the world [are formed] infinitely. How?: ובאילו ט' אותיו' מא' ועד ט' יש בו כל החשבונות שבעולם עד אין מספר
The written ranks [= decimal places]
  • Units: the first rank is called the rank of units, for as the digit is named so is its numerical value, meaning: 1 is one; 2 is two; and so on until 9, which is nine.
כיצד מעלה ראשונה היא נקראת מעלת היחידים כי כאשר יקראו האות כך מניינם פי' א' אחד ב' שנים וכן עד ט' שהיא תשע
  • Tens:
Zero – placeholder digit: when you calculate ten you should write two ranks - 1 in the second rank
וכשתחשוב עשרה אז צריך אתה לכתוב ב' מעלות א' במעלה שנייה
and before it a numeral, which is a zero [lit. wheel], like this 0, that has no substance but is a place holder and a remnant of a thing like a wheel, [like stubble] before the wind [Psalms 83, 14].
ולפניו ציפרא שהוא גלגל כזה 0 שאין בו ממש אלא שומר המעלות וזכר לדב' כגלגל לפני רוח[5]
  • א‎0 is 10.
הוא י‫'
א ‫0
  • אא is 11.
הוא י"א
א א
For the first א of the units is in the first rank and the second א is of the tens, hence 11.
כי הא' הראשונה מן היחידים שהיא במעלה ראשונה וא' שנייה היא מן העשיריו' הרי י"א
  • בא is 12.
הרי י"ב
א ב
  • גא is 13.
הרי י"ג
א ג
  • and so on until טא which is 19.
שהוא י"ט
א ט
וככה עד
  • ב‎0 is twenty.
הוא עשרים
ב ‫0
  • אב is twenty-one.
אחד ועשרים
ב א
  • בב is twenty-two.
שנים ועשרים
ב ב
  • and so on until twenty-nine, which is טב.
ב ט
וככה עד תשע ועשרי' שהוא
  • Hundreds: the third rank is the rank of the hundreds, like this:
ושלישי הוא מעלות המאות כזה
  • א‎00 which is 100.
שהוא ק‫’
א ‫0 0
  • ב‎00 which is 200.
הוא ר‫’
ב ‫0 0
  • ג‎00 which is 300.
הוא ש‫’
ג ‫0 0
  • and so on until 9 hundred, which is ט‎00.
ט ‫0 0
וככה עד ט' מאות שהוא
  • אאא is 111.
הוא קי"א
א א א
  • א‎0א is 101.
הוא ק"א
א 0 א
  • Thousands: the fourth rank is the rank of thousands.
ומעלה הרביעי' היא מעלת האלפי‫'
  • א‎000 is one thousand.
הוא אלף
א ‫0 0 0
  • ב‎000 is two thousand.
הוא ב' אלפי‫'
ב ‫0 0 0
  • and so on until 9 thousand, which is ט‎000.
וככה עד ט' אלפים שהוא 000"ט
  • Tens of thousands: the fifth rank is the rank of tens of thousands.
ומעלה החמישית היא מעלת הרבבות שהוא י' אלפי‫'
  • Hundreds of thousands: the sixth rank is the rank of hundreds of thousands.
וששה מעלה הוא מאה אלפי‫'
  • Thousands of thousands: the seventh rank is the rank of thousands of thousands [= millions].
ושביעי' אלף אלפים
And so you can write endlessly. וככה עד אין מספר תוכל לכתוב
Every rank is ten times the preceding rank. וכל מעלה היא עשרה פעמי' יותר מן מעלה שלפניה
  • Example: if one asks you: how much is 3020?
כמה הן
ג 0 ב 0
ואם ישאלך השואל
Note that the zero has no numerical value but is a place holder, so the number is three thousand and twenty.
תשיב אל לבך כי הגלגל אין לו מניין רק שומר המעלות והנה החשבון עשרים וג' אלפים
Thus, I have explained to you the number and the meaning of the writing. והנה ביארתי לך מניין וענין הכתובי‫'
1 2 3 4 5 6 7 8 9 0 10 20 30
‫0ט ‫0א 0 ט ח ז ו ה ד ג ב א

Chapter One: Multiplication of Units - Shortcuts

שער הכפל הקטן
  • \scriptstyle{\color{OliveGreen}{x,y<10\quad x\sdot y=\left[10\sdot\left[\left(x+y\right)-10\right]\right]+\left[\left[x-\left[\left(x+y\right)-10\right]\right]\sdot\left[y-\left[\left(x+y\right)-10\right]\right]\right]}}
If you wish to know how much is the result of 9 times 8, or 5 times 9, or 6 times 9 and so on for all that is less than ten, I will teach you: ואם תחפוץ לידע כמה עולה ט' פעמים ח' או ה'פ'ז' או ו' פעמי' ט' [וכן כל כיוצא בזה שכל אחד פחות מעשרה]‫[6] אשכילך
  • If you wish to know how much is 9 times 9
\scriptstyle9\times9
אם תחפוץ לידע כמה ט’ פעמי' ט‫’
Write like this:
אז כתוב כזה
9
9
ט
ט
Think by how much it exceeds over ten, it is 8. \scriptstyle{\color{blue}{\left(9+9\right)-10=8}}
ואח"כ חשוב כמה יותר על עשרה ח‫'
Write [it] next to the upper 9 to the left, like this:
ואת' ח' כתוב אצל הט' העליונה ‫[7]בצד שמאלית כזה
8 9
  9
ח ט
  ט
Then, think by how much the upper 9 exceeds over the 8, you will find only 1. \scriptstyle{\color{blue}{9-8=1}}
ואח"כ חשוב כמה ט' העליונה יותר על ח' ותמצא רק אחד
Write this 1 next to the bottom 9:
‫[אותו א’ כתוב בצד ט’ התחתונה‫]‫[8]
8 9
  9
  1
ח ט
  ט
  א
Then, think by how much the bottom 9 exceeds over the 8, it is 1. \scriptstyle{\color{blue}{9-8=1}}
וכמה ט' התחתונה יותר על הח' ותמצא רק אחד
Write this 1 also next to the bottom 9, like this:
‫[כתוב אותה א’ ג”כ בצד ט’ תחתונה כזה‫]‫[9]
8 9
  9
1 1
ח ט
  ט
א א
Think how much is 1 times 1, it is 1. \scriptstyle{\color{blue}{1\times1=1}}
ותחשוב א'פ'א' היינו אחד
Write 1 before the 8, like this:
כתוב א' לפני הח' כזה
8 1
  9
1 1
ח א
  ט
א א
Erase the bottom and the upper 9, so they are eighty-one.
‫[ומחוק הט' למטה ולמעלה]‫[10] ויהיה אחד ושמונים
[Illustration of the procedure:]
9 \scriptstyle\xrightarrow{{\color{red}{\left(9+9\right)-10}}={\color{blue}{8}}} 89 \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{9-8}}={\color{blue}{1}}\\\scriptstyle{\color{red}{9-8}}={\color{blue}{1}}\end{cases}} 89 \scriptstyle\xrightarrow{{\color{red}{1\sdot1}}={\color{blue}{1}}} 81
9 9  9  9
11 11
  • Also if you want to know how much is 9 times 8
\scriptstyle9\times8
וכן אם תרצה לידע כמה ט' פעמים ח‫'
Write like this:
כתוב כזה
9
8
ט
ח
Think by how much 9+8 exceeds over ten, it is 7. \scriptstyle{\color{blue}{\left(9+8\right)-10=7}}
וחשוב כמה ח'ט' יותר על עשרה דהיינו ז‫'
Write the 7 next to the 9, like this:
כתוב הז' אצל הט' כזה
7 9
  8
ז ט
  ח
Think by how much the 9 exceeds over the 7, it is 2. \scriptstyle{\color{blue}{9-7=2}}
וחשוב כמה ט' עודף על ז' דהיינו ב‫'
By how much the 8 exceeds over the 7, [it is] 1. \scriptstyle{\color{blue}{8-7=1}}
וכמה הח' עודף על ז' א‫'
Write like this:
‫[וכתוב כזה]‫[11]
7 9
  8
1 2
ז ט
  ח
א ב
Multiply 1 by 2, it is 2. \scriptstyle{\color{blue}{1\times2=2}}
תכפול א' על ב' היינו ב‫'
Write this 2 before the 7, like this:
אות' ב' כתוב קודם הז' כזה
7 2
  8
1 2
ז ב
  ח
א ב
We find that 9 times 8 is 72.
נמצא ט' פעמי' ח' יהיה ע"ב
[Illustration of the procedure:]
9 \scriptstyle\xrightarrow{{\color{red}{\left(9+8\right)-10}}={\color{blue}{7}}} 79 \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{9-7}}={\color{blue}{2}}\\\scriptstyle{\color{red}{8-7}}={\color{blue}{1}}\end{cases}} 79 \scriptstyle\xrightarrow{{\color{red}{1\sdot2}}={\color{blue}{2}}} 72
8 8  8  8
12 12
  • Example: if you wish to know how much is 6 times 6
\scriptstyle6\times6
[12]דומיון אם תחפוץ לידע כמה ו' פעם ו‫'
Write the 6 beneath the 6, like this:
אז כתו' הו' תחת הו' כזה
6
6
ו
ו
Say: by how much the two 6 exceed over 10, it is 2. \scriptstyle{\color{blue}{\left(6+6\right)-10=2}}
ואז תאמר כמה השני ו' למעלה מי' זהו ב‫'
Write this 2 after the 6, like this:
ואותו ב' תכתו' לאחר הו' כזה
2 6
  6
ב ו
  ו
Then, say: by how much the 6 exceeds over 2, it is 4. \scriptstyle{\color{blue}{6-2=4}}
ואז תאמ' כמה הו' יתיר על הב' זהו ד‫'
The second 6 also exceeds over 2 by 4. \scriptstyle{\color{blue}{6-2=4}}
והו' השנייה נמי למעל' מב' זהו ד‫'
Multiply 4 times 4, it is 16, meaning sixteen. \scriptstyle{\color{blue}{4\times4=16}}
ואז תכפול ד' פעמי' ד' זהו ו"א פי' י"ו
Add the 1 to the 2, because the 2 is in the second rank, it is 3. \scriptstyle{\color{blue}{2+1=3}}
ואז תכתוב שים הא' על הב' כי הב' מעלה שניי' ויהיה ג‫'
There is also 6, write the 6 before the 3, like this:
ועוד הוה ו' ואות' ו' תכתו' לפני הג' כזה
3 6
  6
ג ו
  ו
We find that 6 times 6 is 36.
נמצא שו' פעמ' ו' עולה ו"ג פי' ל"ו
[Illustration of the procedure:]
6 \scriptstyle\xrightarrow{{\color{red}{\left(6+6\right)-10}}={\color{blue}{2}}} 26 \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{6-2}}={\color{blue}{4}}\\\scriptstyle{\color{red}{6-2}}={\color{blue}{4}}\end{cases}} [26] \scriptstyle\xrightarrow{{\color{red}{20+\left(4\sdot4\right)}}={\color{blue}{36}}} 36
6 6  [6]  6
[44]
Always do as this. וכן עשה לעולם‫[13]
Multiply always the excess of this by the excess of this and write the result before the excess [of the sum of the multipliers over ten], then you will become wise in all that you do. וכן לעולם תכפול המותר מזה ומזה והעולה כתו' קודם העודף עליו ואז תשכיל בכל אשר תעשה
  • \scriptstyle{\color{OliveGreen}{x,y<10\quad x\sdot y=\left[10\sdot\left[\left(x+y\right)-10\right]\right]+\left[\left(10-y\right)\sdot\left(10-x\right)\right]}}
Another example that I translated from a Latin book [14]דמיון אחר שהעתקתי מספר גלחות
Sum together the two numerals, subtract a ten, then write the small number. חברם יחד הב' אותיות והשליך עשרה והמניין הקטון כתוב
Multiply together the differences of each from ten and write [the product] before the small number that you have. ואח"כ תכפול יחד החשבון שיש מכל אחד עד עשרה וכתוב זה לפני המנין הקטן שבידך
If this product is of two ranks, add the second rank to the number that you have. ואם בא לידך מהכפל הזה ב' מעלות אז תחבר המעלה שנייה אל המניין שבידך
As these calculations that are written in front of you, from which you will become wiser: כגון אילו החשבונות החרו[ת]ים לפניך ממנו תשכיל ותחכם עוד
\scriptstyle{\color{blue}{8\times9}} \scriptstyle{\color{blue}{7\times8}} \scriptstyle{\color{blue}{6\times7}}
8 2 7 3 6 4
9 1 8 2 7 3
72 56 42
8 2 7 3 6 4
9 1 8 2 7 3
72 56 42
  • \scriptstyle{\color{OliveGreen}{x<y<10\quad x\sdot y=\left(x\sdot10\right)-\left[x\sdot\left(10-y\right)\right]}}
Or in this way: write zero 0 before the smaller of the two numerals. או כלך לדרך זו כתוב לפני המניין קטון שבשני אותיות גלגל כזה 0
  • Example: if you wish to know [how much is] 7 times 8.
\scriptstyle7\times8
כגון את"ל ז'פ'ח‫'
Write like this: 70
כתוב כזה 0ז
Subtract from it the product of the difference of the greater numeral from ten by the smaller numeral.
וקח ממנו מה שבא מן הכפל שתכפול המניין מאות הגדול עד עשרה עם האות הקטן
As what is infront of you: say 7 times 2 are 14.
Subtract 14 from 70, the remainder is 56.
\scriptstyle{\color{blue}{7\times8=\left(7\sdot10\right)-\left[7\sdot\left(10-8\right)\right]=70-\left(7\sdot2\right)=70-14=56}}
כגון מה שלפניך אמור ז'פ'ב' הם ד"א

ותקח ד"א מן 0"ז ונשאר ו"ה

  • Such as these:
וכגון אילו‫[15]
\scriptstyle{\color{blue}{8\times8}} \scriptstyle{\color{blue}{6\times7}} \scriptstyle{\color{blue}{4\times9}} \scriptstyle{\color{blue}{5\times8}}
8 0 6 0 4 0 5 0
8 2 7 3 9 1 8 2
64 42 36 40
ח ‫0 ‫ו 0 ד ‫0 ‫ה 0
ח ב ז ג ט א ח ב
דו בד וג ‫0ד
  • \scriptstyle{\color{OliveGreen}{x+y<10\quad x\sdot y=10+\left[\left(x-1\right)\sdot\left(y-1\right)\right]-\left[11\left(x+y\right)\right]}}
If you want to know and calculate how much is 3 times 3, or 4 times 4, et cetera, which even their sum does not reach ten, I will teach you how to do so: ואם תרצה לחשוב כמה ג' פעמי' ג' ד'פ'ד' וכן כל כיוצא בזה שאפילו צירופו אינו מגיע לעשרה אשכילך לעשות
Lend to it as much as needed so that it will be one more than ten. שתלוה לו פ כמה שצריך שיהיה בכל פעם א' יותר מי‫'
When your calculation is complete, subtract what you have lent to it and the required remains. וככלות חשבונך קח [מה שהלוית לו]‫[16] וישאר מתכונ‫'
  • Example: 4 times 4.
\scriptstyle4\times4
דמיון ד'פ'ד‫'
Like this:
כזה
4
4
ד
ד
Lend to it 3, so that it becomes 11.
\scriptstyle{\color{blue}{4+4+\left[11-\left(4+4\right)\right]=4+4+3=11}}
והנה תלוה לו ג' שיעלה י"א
Subtract ten, 1 remains in your hand.
\scriptstyle{\color{blue}{11-10=1}}
והשלך עשרה וישאר בידך א‫'
Write it like this:
ורשום כזה
1 4
  4
א ד
  ד
Think by how much the first 4 exceeds over the 1, that is to say 3.
\scriptstyle{\color{blue}{4-1=3}}
ואח"כ חשוב כמה ד' הראשו' יותר על הא' הוי אומר ג‫'
So, the second 4 also exceeds by 3.
\scriptstyle{\color{blue}{4-1=3}}
וכן ד' השנייה ג"כ יותר ג‫'
1 4
  4
3 3
א ד
  ד
ג ג
Multiply 3 by 3, it is 9.
\scriptstyle{\color{blue}{3\times3=9}}
כפול ג' על ג' הרי ט‫'
Write the 9 before the 1, like this:
כתוב הט' לפני הא' כזה
1 9
  4
א ט
  ד
Subtract 3 that you have lent to it and 16 remain, which are sixteen.
\scriptstyle{\color{blue}{19-3=16}}
והנה קח ג' שהלוית וישאר ו'א' [והם י"ו‫]‫[17]
You will find that your calculation is correct.
ותמצא חשבונך מכוון
1 6
  4
א ו
  ד
[Illustration of the procedure:]
4 \scriptstyle\xrightarrow{{\color{red}{\left[4+4+\left[11-\left(4+4\right)\right]\right]-10}}={\color{blue}{1}}} 14 \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{4-1}}={\color{blue}{3}}\\\scriptstyle{\color{red}{4-1}}={\color{blue}{3}}\end{cases}} 14 \scriptstyle\xrightarrow{{\color{red}{3\sdot3}}={\color{blue}{9}}} 19 \scriptstyle\xrightarrow{{\color{red}{9-\left[11-\left(4+4\right)\right]}}={\color{blue}{6}}} 16
4 4  4  4  4
33
  • \scriptstyle{\color{OliveGreen}{x+y<10\quad x\sdot y=\left[\left(10-y\right)\sdot\left(10-x\right)\right]-\left[10\sdot\left[10-\left(x+y\right)\right]\right]}}
Another property: if you want to know how much is 3 times 3, or 4 times 4, et cetera, which even their sum does not reach ten, I will teach: עניין אחר אם תרצה לידע כמה ג"פ"ג או ד"פ"ד וכן כל כיוצא בזה שאפי' צירופו אינו מגיע לעשרה אשכילך
  • I will teach you an example: if you want to multiply 4 times 4.
\scriptstyle4\times4
דומיון אם תרצה לחשוב ד'פ'ד‫’
Write it like this:
אז תכתוב אותו כזה
4
4
ד
ד
Think by how much the first 4 is less than 10, it is 6.
\scriptstyle{\color{blue}{10-4=6}}
וחשוב כמה ד' ראשונה פחות מי' ויהיה ו‫'
Think also by how much the second [4] is less than 10, you find it is also 6.
\scriptstyle{\color{blue}{10-4=6}}
וחשוב גם השנייה כמה השנייה פחות מי' ותמצא ג"כ ו‫'
Multiply 6 by 6, the result is 36.
\scriptstyle{\color{blue}{6\times6=36}}
ואז תכפול ו' על ו' ויעלה בידך ו'ג‫'
Think by how much the two 4 are less than ten, it is 2.
\scriptstyle{\color{blue}{10-\left(4+4\right)=2}}
אז חשוב כמה השני ד' פחותי' מעשר' ויהיה ב‫'
Subtract 2 in the second rank from 3, you are left with 16
השלך ב' ממעלה שנייה מהג' וישאר לך ו'א‫'
We find that 4 times 4 is 16.
\scriptstyle{\color{blue}{4\times4=16}}
נמצא ד'פ'ד' הוא ו'א‫'
[Illustration of the procedure:]
4 \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{10-4}}={\color{blue}{6}}\\\scriptstyle{\color{red}{10-4}}={\color{blue}{6}}\end{cases}} [4] \scriptstyle\xrightarrow{{\color{red}{6\sdot6}}={\color{blue}{36}}} [36] \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{10-\left(4+4\right)=2}}\\\scriptstyle{\color{red}{3-2}}={\color{blue}{1}}\end{cases}} 16
4  [4]  [4]
[66] [66]
The same for all; note well
וכן כולם וא"ק
  • \scriptstyle{\color{OliveGreen}{x+y<10\quad x\sdot y=\left[\left(10-y\right)\sdot\left(10-x\right)\right]+\left[10\sdot\left(x+y\right)\right]-\left(10\sdot10\right)}}
If the numbers that you want to multiply one by the other are less than 10, when you sum them together: [18]ואם יהיה המספר אשר תרצה לכפול זע"ז פחות מי' כשתצרף שני המספרים יחד
  • Example: if you want to multiply 4 by 3.
\scriptstyle4\times3
דימיון אם בקשת לכפול ד' על ג‫'
Take the difference of each from 10, i.e. from 4 to 10, it is 6 and from 3 to 10, it is 7
6 times 7 is 42. \scriptstyle{\color{blue}{\left(10-4\right)\times\left(10-3\right)=6\times7=42}}
אז תקח המרחק מן י' מכל אחד דהיינו מד' עד י' ו' ומג' עד י' ז‫'

ופ"ז ב"ד

Write this 42 for remembrance.
אותו ב"ד כתו' לזכרון

[בד]

Sum 4 and 3 together, it is 7. \scriptstyle{\color{blue}{4+3=7}}
ואח"כ צרוף ד' ג' יחד ויהיה ז‫'
Write this 7 next to 42 to the left, like this:
אות ז' כתוב לצד שמאל אצל ב"ד כזה

[בדז]

Subtract 10 from [the sum of] the numerals on the left, 12 remains, which is the number that you want to know. \scriptstyle{\color{blue}{\left(7+4\right)-10=1}}
\scriptstyle{\color{blue}{4\times3=12}}
ואח"כ השלך י' מצד אותיות של שמאל וישאר ב'א' היינו החשבון אשר בקשת לידע
[Illustration of the procedure:]
\scriptstyle\xrightarrow{{\color{red}{\left(10-4\right)\sdot\left(10-3\right)=6\sdot7}}={\color{blue}{42}}} 42 \scriptstyle\xrightarrow{{\color{red}{4+3}}={\color{blue}{7}}} 742 \scriptstyle\xrightarrow{{\color{red}{\left(7+4\right)-10}}={\color{blue}{1}}} 12
Deduce from this.
וכפי זה תקיש
I wrote this even though it is an axiom for the calculation that you wanted, in order to inform you that in this way [...]
והנה כתבתי זה אף כי הוא מושכל ראשון החשבון אשר בקשת להודיעך שאין בדרך הזה [...]‫[19]
I have found another method for the multiplication of units in another book: [20]דרך אחרת לכפל קטן בספר אחר מצאתי
  • \scriptstyle{\color{OliveGreen}{x,y<10\quad x\sdot y=\left[\left(10-y\right)\sdot\left(10-x\right)\right]+\left[10\sdot\left[\left(x+y\right)-10\right]\right]}}
Or in this way: take the difference from 10 of each [of the units] that you want to multiply, multiply the two differences by each other and write the result for remembrance. או כלך בדרך זו

קח המרחק עד י’ מן כל אחד ואחד שתרצה לכפול יחד וחשוב אותו ב’ מרחקים זה על זה ומה שיעלה בידך כתוב לזכרון

Then, sum [the multipliers] together according to the chapter of addition, subtract 10 from the result, and write [the remainder] below to the left of what you have already wrote. אחר כך צורפם יחד בשער החיבור והעולה בידך קח מה שלמטה מן י’ וי’ השלך מידך וכתוב אותו למטה בצד שמאל למה שכתבת כבר
Your calculation will be correct. ויהיה חשבונך מכוון
  • Example: you wish to multiply 7 times 9.
\scriptstyle7\times9
דמיון הנה רצונך לכפול ז’ פעמים ט‫’
Take the difference from 7 to 10, i.e. 3, and the difference from 9 to 10, i.e. 1, and say: 3 times 1 are 3.
\scriptstyle{\color{blue}{\left(10-7\right)\times\left(10-9\right)=3\times1=3}}
קח המרחק מן הז' עד י' דהיינו ג' והמרחק מן ט’ עד י’ דהיינו א’ ואמור ג’ פעמים א’ היינו ג‫’
Write this 3 for remembrance as this:
אותו ג’ כתוב לזכרון כזה

ג

  • Then, add 7 to 9, the result is 16, meaning sixteen, subtract the 10 and take the 6.
\scriptstyle{\color{blue}{\left(7+9\right)-10=16-10=6}}
אחר כך חבור ז' על ט' ויעלה ו"א פי' י"ו השלך הי’ והו’ קח בידך
Write it to the left, next to the remaining 3, so it will be sixty three, like this:
\scriptstyle{\color{blue}{7\times9=63}}
וכתוב אותה בצד שמאל אצל הג’ הנשארת ויהיה כזה

גו
ששי' ושלש

[Illustration of the procedure:]
\scriptstyle\xrightarrow{{\color{red}{\left(10-7\right)\sdot\left(10-9\right)=3\sdot1}}={\color{blue}{3}}} 3 \scriptstyle\xrightarrow{{\color{red}{\left(7+9\right)-10=16-10}}={\color{blue}{6}}} 63
Look carefully.
ועיין
  • Another example: you wish to multiply 6 times 8.
\scriptstyle6\times8
דמיון אחר הנה רצונך לכפול ו’ פעמים ח‫’
Take the difference from 6 to 10, i.e. 4, and the difference from 8 [to 10], i.e. 2, and say: 2 times 4 are 8.
\scriptstyle{\color{blue}{\left(10-6\right)\times\left(10-8\right)=4\times2=8}}
קח המרחק מן ו’ עד י’ דהיינו ד’ והמרחק מן ח’ היינו ב’ ואמור ב’ פעמים ד’ היינו ח‫’
Write this 8 for remembrance as this:
אותו ח' כתוב לזכרון

[ח]

Then, add 6 to 8, the result is 14, subtract 10 and take 4.
\scriptstyle{\color{blue}{\left(6+8\right)-10=14-10=4}}
אחר כך חבור ו' על ח' ויעלה י”ד השלך י' וקח ד' בידך
Write 4 to the left, next to the 8 that you have already wrote, the result is 48, i.e. 8 times 6.
\scriptstyle{\color{blue}{6\times8=48}}
וכתוב ד' בצד שמאל אל ח' אשר כתבת כבר ויעלה מ”ח היינו חשבון ח'פ'ו‫'

[חד]

[Illustration of the procedure:]
\scriptstyle\xrightarrow{{\color{red}{\left(10-6\right)\sdot\left(10-8\right)=4\sdot2}}={\color{blue}{8}}} [8] \scriptstyle\xrightarrow{{\color{red}{\left(6+8\right)-10=14-10}}={\color{blue}{4}}} [48]
Look carefully.
עיין ודוק‫[21]
  • Another example: if you want to know 5 times 6.
\scriptstyle5\times6
[22]דמיון אחר אם תרצה לידע הפ"ו
Take the difference from 5 to 10, it is 5.
\scriptstyle{\color{blue}{\left(10-5\right){\color{red}{\times\left(10-6\right)}}=5{\color{red}{\times4=20}}}}
קח המרחק מן ה' עד י' ויהיה ה‫'
Sum 5 and 6 together, it is 1[1], subtract ten and you are left with 1.
\scriptstyle{\color{blue}{\left(5+6\right)-10=1{\color{red}{1}}-10=1}}
צרפם יחד הה’ והו’ ויהיה א' השלך עשרה ונשאר לך א‫'
Add it to the [2] and it is 3, so we find it 30. Note well.
\scriptstyle{\color{blue}{5\times6=30}}
צרפם 0"ב ויהיה ג' נמצא ל' ודוק‫[23]
[Illustration of the procedure:]
\scriptstyle\xrightarrow{{\color{red}{\left(10-5\right)\sdot\left(10-6\right)=5\sdot4}}={\color{blue}{20}}} [20] \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{\left(5+6\right)-10=1}}\\\scriptstyle{\color{red}{2+1}}={\color{blue}{3}}\end{cases}} [30]
Multiplication Table
  • multiplication table of 1 to 9
I will write to you a precise table of multiplication of units, in order that you will be able to observe easily all that you want without any calculation, from 1 times 1 to 9 times 9. Note well. והנה ארשום לך לוח מתוקנת על שער הכפל קטן כדי שתוכל לראות בקלות כל מה שתרצה בלא שום חשבון מן א' פעמי' א' עד ט' פעמים ט' ודו"ק
  • half multiplication table [MS Oxford 440, 115r; Oxford 60, 175r]
I made a half table in order to find every number, since you do not need that much. והחצי לוח עשיתי למצוא כל חשבון ואינך צריך הרבה כל כך
The chapter on the multiplication of units is completed. סליק שער כפל קטן
You shall become wise in all that you do. ואז תשכיל כל אשר תעשה

Chapter Two: Addition

[24]שער החיבור
  • If you wish to sum three thousand three hundred and seventy-two with three thousand three hundred ninety-two.
\scriptstyle3372+3392
אם תרצה לחבר שנים ושבעים וג' מאות וג' אלפים עם שנים ותשעים וג' מאות וג' אלפי‫'
Write as follows:
תכתוב כך
3 3 7 2
3 3 9 2
ג ג ז ב
ג ג ט ב
Add the bottom 2 to the upper 2 and it is 4.
\scriptstyle{\color{blue}{2+2=4}}
תחבר ב' התחתונה על ב' העליונה ויהיה ד‫'
3 3 7 2
3 3 9 2
      4
ג ג ז ב
ג ג ט ב
      ד
Add the bottom 9 to the upper 7 and it is 16.
\scriptstyle{\color{blue}{9+7=16}}
Write the 6 in the second rank, after the 4 that you wrote, like this:
תחבר ט' התחתונה עם הז' ויהיה ו"א הו' תכתוב במעלה השנייה אחר הד' [שכתבת כזה‫]‫[25]
6 4
ו ד
Add the remaining 1 to the threes that follow it in the third rank, like this:
והא' [הנשארת]‫[26] תחבר לג'ג' הראשונה שהם זו למעלה מזו כזה במעלה השלישית
3
3
ג
ג
So, the total is 7 in the third rank, like this:
\scriptstyle{\color{blue}{1+3+3=7}}:
ויהיה הכל ז' במעלה השלישי' כזה
7 6 4
ז ו ד
Then, add the two last threes in the fourth rank, their sum is 6.
\scriptstyle{\color{blue}{3+3=6}}
Write this 6 in the fourth rank, after 764 that you wrote, like this:
ואח"כ תחבר הג'ג' האחרוני' [במעלה הרביעי']‫[27] [ויהיה חבורם]‫[28] ו' [אות' ו' כתוב במעלה הרביעי' אחר דוז שכתבת]‫[29] ויהיה כזה
6 7 6 4
ו ז ו ד
The procedure is complete and the sum is six thousand seven hundred and sixty-four, i.e. as follows:
‫[ותשלם המלאכה ויהיה חבורו ארבע וששי' ז' מאות ו' אלפי' דהיינו כזה]‫[30]
6 7 6 4
ו ז ו ד
[Illustration of the procedure:]
3372 \scriptstyle\xrightarrow{{\color{red}{2+2}}={\color{blue}{4}}} [3372] \scriptstyle\xrightarrow{{\color{red}{7+9}}={\color{green}{1}}{\color{blue}{6}}} [3372] \scriptstyle\xrightarrow{{\color{red}{{\color{green}{1}}+3+3}}={\color{blue}{7}}} [3372] \scriptstyle\xrightarrow{{\color{red}{3+3}}={\color{blue}{6}}} [3372]
3392 [3392] [3392] [3392] [3392]
   4    64   764 6764
The highest rank of the sum exceeds the addend by one rank to the left at most, sometimes it does not exceed [its ranks] at all. לעולם לא תמצא הטור מן החיבור אשר בעליונה עוברת על המחובר רק מעלה לשמאל לכל היותר ולפעמים לא תעבור כלל ול"ד
MS Paris 1088, 7v
Here follows a chapter on addition, to add every thing and to establish its methods הילך שער חיבור לחבר כל דבר [..] ולישב על אופניו
Such as, if you wish to sum some numbers together. כגון אם תרצה לחבר כמה חשבונות יחד
Now, I sum one number and according to this you shall apply for others: ועתה אחבר חשבון אחד ומהם תבין אחר
Write numeral by numeral [lit. letter by letter], but not as is written in the multiplication chapter, but write as I will demonstrate, with God's help. ותכתו' אות תחת אות ולא תכתו' כאשר כותבין בשער כפל אלא תכתו' כזה שאראך בע"ה
  • Example: we want to sum 3372 with 9892.
\scriptstyle3372+9892
דומיון בקשנו לחבר ע"ב וג' מאות וג' אלפי' עם צ"ב וח' מאות וט' אלפים
Here is how you write it and its diagram is as follows:
הילך היאך תכתוב אותו וצורתו כזה
3 3 7 2
9 8 9 2
ג ג ז ב
ט ח ט ב
נחבר ב' תחתונ' עם ב' עליונ' הרי ד' אות' ד' נכתוב נגד ב' תחתונ‫'
נחבר כמו כן ט' תחתונ' עם ז' עליונ' ויעלה ו"א נכתוב ו' תחת הט‫'
ונוסיף א' על אות שבשיט' עליונ' הסמוכ' לה ושם יש ג' ונוסיף א' עליה ויהיה כאילו נכתו' ד' במקום ג‫'
ונחבר ד' עליונ' עם ח' תחתונ' ויעלה ב"א נכתו' ב' למטה תחת הח‫'
ונוסיף א' על אות הסמוך לד' עליונ' ושם יש ג' ונוסיף א' עליה ויהא ד‫'
נחבר ד' עליונ' על ט' שלמטה ויעלה ג"א נכתוב ג' למט' תחת הט' וא' נכתוב לאחריה ויהיה כזה
  3 3 7 2
  9 8 9 2
1 3 2 6 4
  ג ג ז ב
  ט ח ט ב
א ג ב ו ד
זה הכלל לא ימוש מפיך כשמותר הא' משיט' ראשונ' אני מוסיף אות' על שיט' שלאחריה

כי הא' הנותרת לי היא כמו כן מן העשיריות נגד שיט' ראשונ' לכך אני מוסיף אות' תדיר עליה
נמצא החיבור שחברנו לעיל הוא עולה ס"ד ומאתים וי"ג אלפים ודוק

[Illustration of the procedure:]
3372 \scriptstyle\xrightarrow{{\color{red}{2+2}}={\color{blue}{4}}} 3372 \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{7+9}}={\color{green}{1}}{\color{blue}{6}}\\\scriptstyle{\color{red}{3+}}{\color{green}{1}}={\color{blue}{4}}\end{cases}} 3472 \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{4+8}}={\color{green}{1}}{\color{blue}{2}}\\\scriptstyle{\color{red}{3+}}{\color{green}{1}}={\color{blue}{4}}\end{cases}} 4472 \scriptstyle\xrightarrow{{\color{red}{4+9}}={\color{blue}{13}}}  3372
9892 9892 9892 9892  9892
   4   64 264 13264
[31]ציור זה בגלחת ונקרא אדירין
\scriptstyle{\color{blue}{78312+87547}} \scriptstyle{\color{blue}{68975+87496}} \scriptstyle{\color{blue}{37064+52056}}
  7 8 3 1 2
  8 7 5 4 7
  6 8 9 7 5
  8 7 4 9 6
3 7 0 6 4
5 2 0 5 6
1 6 5 8 5 9
1 5 6 4 7 1
8 9 1 2 0
  ז ח ג א ב
  ח ז ה ד ז
  ו ח ט ז ה
  ח ז ד ט ו
ג ז 0 ו ד
ה ב 0 ה ו
א ו ה ח ה ט
א ה ו ד ז א
ח ט א ב 0

Checking Methods

Now, know that I shall write you two checking method [lit. scales]: [32]ועתה תדע שאכתוב לך שני משקלים
1) Casting out 9 by 9:
The first: cast out the nines as many as you can from the two upper lines and take what remains that is less that 9 as the weights of the scales.
הא' השלך ט"ט כל כמה שתוכל מב' שיטות עליונות ומה שנשמר לך למטה מט' קח בידך לאבני המשקל
Then, cast out the nines in the bottom line also, and if the scales of what remains is as the first scales, know that your calculation is correct.
ואח"כ השלך ג"כ השיטה התחתונה בט"ט ומה שנשאר לך אם משקלו כאבן הראשון דע שכוינת חשבונך
2) Subtraction
The second scale is that one subtracts the two upper lines from the bottom line, and if all is gone as required no more and no less, then your calculation is correct.
משקל השני יקח השני שיטות העליונות מהשיטה התחתונה אם יצא במבוקש בלי חסרון ויתרון אז חשבונך מכוון
Examine and you will find [that it is true]. ודוק ותמצא

Chapter Three: Subtraction

שער החיסור
If you want to subtract and deduct a number from a number, here is how you do that: אם תרצה לחסור ולנכות חשבון מן חשבון הילך איך תעשה
Write the number from which you wish to subtract and deduct above, according to its ranks, and write the number you subtract from it beneath, according to its ranks. תכתוב החשבון שאתה רוצה לנכות ולחסר ממנו אותו חשבון כתוב למעלה כפי מעלותיו והחשבון שאתה מנכה הימנו כתוב למטה כפי מעלותיו
Then subtract it from the number above. ואחר כך תנכה מן החשבון שלמעלה
Now, I shall write you an example to teach you: ועתה אכתוב לך הדמיון להשכילך
  • We wish to subtract 9 hundred and ninety-nine from one thousand
\scriptstyle1000-999
הנה בקשנו לחסור ט' מאות ותשעים ותשע מאלף
Here is how you write it:
הילך היאך תכתוב אותו כזה
1 0 0 0
  9 9 9
א 0 0 0
  ט ט ט
We find that the 1 that is in the upper line, in the fourth rank, is ten for the 9 that is third in the bottom line.
נמצא הא' שבשיטה העליונה במעלה רביעי' עולה עשרה לגבי ט' שלישית שבתחתונה
Now, we subtract 9 from this ten; you are left with 1.
עתה נחסר מאותו עשרה ט' וישאר לך א'
Write the 1 in the place of the third zero corresponding to the 9 that you have subtracted and erase the 9, like this:
אותו א' כתוב במקום גלגל השלישי נגד הט' שחסרת ואותו ט' מחוק כזה
1 0 0
  9 9
א 0 0
  ט ט
Now, the 1 in the third rank of the upper line is also ten for the 9 in the bottom line.
ועכשיו כמו כן הא' שבמעלה שלישית שבשיטה העליונה עולה עשרה לגבי ט' שבשיטה תחתונה
We subtract the second 9; 1 remains.
נחסר ט' שנייה ונשאר א'
Write the 1 in the place of the second zero and erase the second 9; erase also the upper 1 that is in the third rank, from which we subtracted. It will be as follows:
ואותו א' כתוב במקום הגלגל השני ותמחוק ט' שנייה שחסרנו וגם תמחוק הא' העליונה שבמעלה שלישית שחסרנו ממנו ויהיה כזה
1 0
  9
א 0
  ט
Again, we subtract 9 that is beneath the zero from 1 that is above in the second rank, since it is also ten for the nine as above.
שוב נחסר ט' תחת הגלגל מן א' שלמעלה במעלה השנייה כי גם היא עולה עשרה לגבי ט' כדלעיל
So, when we subtract 9 from 10, 1 remains.
והנה כשנחסר ט' מן י' וישאר א'
Write the 1 in the place of the zero and erase the upper 1 that is in the second rank; erase also the 9.
אותו א' כתוב במקום הגלגל ומחק הא' העליונה אשר במעלה שנייה וגם הט' מחק
Then only one remains.
ואז נשאר רק א‫'
We find that when we subtract 999 from one thousand, 1 remains.
נמצא כשחסרנו ט' מאות וצ"ט מאלף נשאר א‫'
1000 \scriptstyle\xrightarrow{{\color{red}{10-9}}={\color{blue}{1}}} 100 \scriptstyle\xrightarrow{{\color{red}{10-9}}={\color{blue}{1}}} 10 \scriptstyle\xrightarrow{{\color{red}{10-9}}={\color{blue}{1}}} 1
999 99 9
  • Another example: if we wish to subtract 321 from 654.
\scriptstyle654-321
דמיון אחר אם בקשנו לחסור אב"ג מן דה"ו
Write as follows:
כתוב כזה
6 5 4
3 2 1
ו ה ד
ג ב א
We subtract the bottom 3 from the corresponding upper 6; 3 remain.
נחסר ג' התחתונה מן ו' העליונה שכנגדה וישאר ג'
Erase the 6 and write the remaining 3 instead; erase also the 3 that is left beneath.
מחק הו' וכתוב במקומה הג' שנשאר ומחק גם כן הג' שנשאר שלמטה
It is like this:
ויהיה כזה
3 5 4
  2 1
ג ה ד
  ב א
Again, we subtract the bottom 2 from the corresponding upper 5; 3 remain.
שוב נחסר ב' התחתונה מן ה' עליונה שכנגדה וישאר ג'
Write the 3 instead of the 5 and erase the bottom 3 as well as the upper 5.
אותו ג' כתוב במקום הה' ומחק הב' שלמטה וגם ה' שלמעלה
It is like this:
ויהיה כזה
3 3 4
    1
ג ג ד
    א
Again, we subtract the bottom 1 from the corresponding upper 4; 3 remain.
שוב נחסר א' התחתונה מן ד' עליונה שכנגדה וישאר ג'
Erase the upper 4 as well as the bottom 1 and write 3 instead of the upper 4.
ומחוק ד' שלמעלה וגם א' שלמטה וכתוב ג' במקום ד' שלמעלה
It is like this:
ויהיה כזה
3 3 3
ג ג ג
We find that when we subtract 321 from 654, only 333 remains.
נמצא כשחסרנו אב"ג מן דה"ו לא נשאר כי אם ג'ג'ג‫'
654 \scriptstyle\xrightarrow{{\color{red}{6-3}}={\color{blue}{3}}} 354 \scriptstyle\xrightarrow{{\color{red}{5-2}}={\color{blue}{3}}} 334 \scriptstyle\xrightarrow{{\color{red}{4-1}}={\color{blue}{3}}} 333
321 21   1
  • If the digit of the subtrahend is larger than the digit of the subtracted in the corresponding rank
וכאשר תמצא שהאות העליון אשר בקשנו לחסר ממנו פחות מן האות התחתון שתרצ' לחסר
  • \scriptstyle956-867
כגון אם תרצ' לחסר ז ו ח מן ו ה ט כזה
9 5 6
8 6 7
ט ה ו
ח ו ז
היאך תחסור מרובה ממועט כזה ז' מן ו' לא תוכל וכן ו' מן ה' בדרך זה תעשה: טול א' מן ה' אשר אצל ו' ומחוק הה' וכתוב ד' אותו א' כמה עולה לחבירו עם הו' י"ו כי היא במעלה שנייה מן הו' הרי י"ו חסר ז' אשר בטור השפל מן י"ו וישאר ט‫'

אחר כך צריך לחסר ו' מן ד' עשר ג"כ כמו שצויתיך מחוק א' מן ט' ויהיה במעלה שלפניו י"ד וחסר ממנו ו' וישאר ח' ול"ד זה שייך לשער הכפל קטון

956 \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{16-7}}={\color{blue}{9}}\\\scriptstyle{\color{red}{5-1}}={\color{green}{4}}\end{cases}} [949] \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{14-6}}={\color{blue}{8}}\\\scriptstyle{\color{red}{9-1}}={\color{green}{8}}\end{cases}} [889] \scriptstyle\xrightarrow{{\color{red}{8-8}}={\color{blue}{0}}} [89]
867 [86 ] [8  ]
[MS Oxford 60, 153r-v]
אשכילך היאך תעשה כי לא תוכל לחסר ז' מן ו' וכן ו' מה' בדרך זה תעשה: בתחילה חסר ח' תחתונה מט' עליונ' וישאר א' מחוק הט' וכתוב א' במקומ' גם ח' תחתונ' מחוק ויהיה כזה
1 5 6
  6 7
א ה ו
  ו ז
עתה צריכין אנו לחסר ו' תחתונ' מה' עליונ' ולא יכולנ' לכן לך לך אל הא' אשר לשמאל ה' עליונ' וצרפ' יחד א' וה' ויהיה ט"ו ונחסור הו' ממנו וישאר ט' מחוק הא' העליונ' גם ה' העליונ' וכתוב במקומם ט' גם ו' תחתונ' תמחוק וישאר כזה
9 6
  7
ט ו
  ז
שוב צריכין אנו לחסר ז' תחתונ' מו' ולא יכולנ' עתה לך לך וקח אחד מן הט' שבצד הו' בשיט' עליונ' וצרפ' יחד הו' גם הא' והיא עשרה אצל הו' ויהיה י"ו ועתה חסר ז' מן י"ו וישאר ט' מחק ו' ט' עליונ' וכתוב ט' ח' במקומם כאשר ציויתיך ומחוק ג"כ הז' התחתונ' ויהיה כזה
8 9
ח ט
956 \scriptstyle\xrightarrow{{\color{red}{9-8}}={\color{blue}{1}}} 156 \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{15-6}}={\color{blue}{9}}\\\scriptstyle{\color{red}{1-1=0}}\end{cases}} 96 \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{16-7}}={\color{blue}{9}}\\\scriptstyle{\color{red}{9-1}}={\color{blue}{8}}\end{cases}} 89
867 67 7
ותשלם המלאכה עיין היטב

Checking Methods

  • Addition
  • \scriptstyle333+321=654
ואם תרצה לידע אם אמת חשבת אז תחבר בשער החיבור אב"ג עם גג"ג אז תמצא דה"ו אז החיסור מכוון
  • \scriptstyle867+89=956
[MS Oxford 60, 153v]
ואם תרצ' לידע אם אמת חשבת אז חבר בשער החיבור ז ו ח עם ט ח הנשארי' ואם תמצא ו ה ט אז כיוונת
The checking method of addition is subtraction and the checking method of subtraction is addition זה הכלל שער החיסור מאזני צדק לשער החיבור ושער החיבור מאזני צדק לשער החיסור

Chapter Four: Multiplication

שער הכפל
  • If you wish to multiply 1234 by 4321.
\scriptstyle1234\times4321
אם תרצה לכפול רל"ד ואלף על ד' אלפים ושכ"א
הילך צורתו כאשר תכתבנו חשבון האחד בצד השני ומכוון אות ראשון בחשבון התחתון תחת אות האחרון שבחשבון העליון כזה
      4 3 2 1
1 2 3 4      
      ד ג ב א
א ב ג ד      
וכפול א' תחתונה על ד' עליונה פי' חשוב א' פעמים ד' זה ד' אות ד' כתוב נגד א' התחתונה ומחוק א' תחתונה כזה
4     4 3 2 1
  2 3 4      
ד     ד ג ב א
  ב ג ד      
עוד כפול ב' תחתונה על ד' עליונה ויעלה ח' אותו ח' כתוב נגד ב' התחתונה ומחק ב' התחתונה כזה
4 8   4 3 2 1
    3 4      
ד ח   ד ג ב א
    ג ד      
עוד נכפל ג' תחתונה על ד' עליונה ויעלה ב"א פי' י"ב עתה כתוב ב' נגד ג' תחתונה וא' על ח' אחריה ויעלה ט' כי הוא מעלה אחת שהיא עשרה אחר ב' שלפניה ומחוק ג' תחתונה כזה
4 9 2 4 3 2 1
      4      
ד ט ב ד ג ב א
      ד      
עוד נכפל ד' תחתונה על ד' עליונה ויעלה ו"א פי' י"ו עתה נכתב ו' נגד ד' תחתונה במקום ד' עליונה כי עתה חשבנו ד' עליונה בכל חלקים וכתוב א' על ב' שלאחריה ויהיה ג' כזה
4 9 3 6 3 2 1
ד ט ג ו ג ב א
[Illustration of the procedure:]
   4321 \scriptstyle\xrightarrow{{\color{red}{4\times1}}={\color{blue}{4}}} 4  4321 \scriptstyle\xrightarrow{{\color{red}{4\times2}}={\color{blue}{8}}} 484321 \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{4\times3}}={\color{green}{1}}{\color{blue}{2}}\\\scriptstyle{\color{red}{8+}}{\color{green}{1}}={\color{blue}{9}}\end{cases}} 4924321
1234    234      34       4   
\scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{4\times4}}={\color{green}{1}}{\color{blue}{6}}\\\scriptstyle{\color{red}{2+}}{\color{green}{1}}={\color{blue}{3}}\end{cases}} 4936321
ועתה נמשך ד"ג ב"א מעלה לאחורית תחת ג' עליונה כדי לחשוב ג' עליונה כדי לחשוב ג' גם בכל תוצאותיה ד"גב"א כזה
4 9 3 6 3 2 1
  1 2 3 4    
ד ט ג ו ג ב א
  א ב ג ד    
כפול א' תחתונה על ג' עליונה פי' ג' פעמים א' זהו ג' ושים אותו ג' על ט' שעל א' התחתונה ויעל ב"א פי' י"ב עתה כתוב ב' במקום ט' א' שהיא עשרה שים אותו במעלה שנייה דהיינו ד' ועשה ד' אחרונה ה' ומחוק א' תחתונה כזה
5 2 3 6 3 2 1
    2 3 4    
ה ב ג ו ג ב א
    ב ג ד    
עוד כפול ב' תחתונה על ג' עליונה ויעלה ב' פעמים ג' דהיינו ו' ושים אותו ו' על ג' שעליה ויהיה ט' ומחוק ב' תחתונה כזה
5 2 9 6 3 2 1
      3 4    
ה ב ט ו ג ב א
      ג ד    
עוד כפול ג' תחתונה על ג' עליונה ג' פעמים יעלה ט' ושים אותו ט' על ו' שעליה ויעלה ה"א ה' כתוב במקום ו' א' כתוב במעלה שנייה דהיינו אל ט' שלאחריה ויהיה עשרה אך אין ראוי לכתוב עשרה כי אין כותבין בחשבונות הציפרא עשרה רק ט' לכן כתוב גלגל כזה במקום ט' וכת' א' במעלה שלאחריה דהיינו אל ב‫'
5 3 0 5 3 2 1
        4    
ה ג 0 ה ג ב א
        ד    
ועתה יהיה ג' מחוק ג' תחתונה כזה עוד כפול ד' תחתונה על ג' עליונה ויעלה ב"א עתה כתב ב' במקום ג' עליונה כי חשבונו גם כן ג' בכל חילוקה א' כתוב במעלה שנייה אל ה' ויהיה ו' ומחוק ד' תחתונה כזה
5 3 0 6 2 2 1
ה ג 0 ו ב ב א
[Illustration of the procedure:]
4936321 \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{3\times1}}={\color{green}{3}}\\\scriptstyle{\color{red}{9+}}{\color{green}{3}}={\color{green}{1}}{\color{blue}{2}}\\\scriptstyle{\color{red}{4+}}{\color{green}{1}}={\color{blue}{5}}\end{cases}} 5236321 \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{3\times2}}={\color{green}{6}}\\\scriptstyle{\color{red}{3+}}{\color{green}{6}}={\color{blue}{9}}\end{cases}} 5296321 \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{3\times3}}={\color{green}{9}}\\\scriptstyle{\color{red}{6+}}{\color{green}{9}}={\color{green}{1}}{\color{blue}{5}}\\\scriptstyle{\color{red}{9+}}{\color{green}{1}}={\color{green}{1}}{\color{blue}{0}}\\\scriptstyle{\color{red}{2+}}{\color{green}{1}}={\color{blue}{3}}\end{cases}} 5305321
1234     234      34       4  
\scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{3\times4}}={\color{green}{1}}{\color{blue}{2}}\\\scriptstyle{\color{red}{5+}}{\color{green}{1}}={\color{blue}{6}}\end{cases}} 5306221
ועתה נמשך ד"ג ב"א מעלה אחת לאחורית תחת ב' עליונה כזה
5 3 0 6 2 2 1
    1 2 3 4  
ה ג 0 ו ב ב א
    א ב ג ד  
עוד כפול א' תחתונה על ב' עליונ' א' פעמים ב' דהיינו ב' כתוב אותו ב' נגד א' תחתונה במקום גלגל ומחוק א' תחתונה כזה
5 3 2 6 2 2 1
      2 3 4  
ה ג ב ו ב ב א
      ב ג ד  
שוב כפול תחתונה על ב' עליונה ב' פעמים ב' היינו ד' אותו ד' כתוב למעלה נגד ב' תחתונה דהיינו אל ו' הרי י' כתוב במקום ו' גלגל ואחר הגלגל תוסיף א' היינו אל ב' ויהיה כזה
5 3 3 0 2 2 1
        3 4  
ה ג ג 0 ב ב א
        ג ד  
שוב כפול ג' תחתונה על ב' עליונה ג' פעמים ב' היינו ו' אותה ו' כתו' נגד ג' תחתונה דהיינו אל ב' עליונה ויהיה ח' ומחוק ג' תחתונה כזה
5 3 3 0 8 2 1
          4  
ה ג ג 0 ח ב א
          ד  
שוב כפול ד' תחתונה על ב' עליונה ד' פעמים ב' ויעלה ח' כתוב ח' במקום ב' עליונה כי חשבנו ב' בכל חילוקיה ומחוק ד' תחתונה כזה
5 3 3 0 8 8 1
ה ג ג 0 ח ח א
[Illustration of the procedure:]
5306221 \scriptstyle\xrightarrow{{\color{red}{2\times1=}}{\color{blue}{2}}} 5326221 \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{2\times2}}={\color{green}{4}}\\\scriptstyle{\color{red}{6+}}{\color{green}{4}}={\color{green}{1}}{\color{blue}{0}}\\\scriptstyle{\color{red}{2+}}{\color{green}{1}}={\color{blue}{3}}\end{cases}} 5330221 \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{2\times3}}={\color{green}{6}}\\\scriptstyle{\color{red}{2+}}{\color{green}{6}}={\color{blue}{8}}\end{cases}} 5330821
  1234     234      34       4
\scriptstyle\xrightarrow{\scriptstyle{\color{red}{2\times4}}={\color{blue}{8}}} 5330881
ועתה נמשך דגב"א מעלה לאחורית כדי לכפול אותו על א' ראשונה ויהיה כזה
5 3 3 0 8 8 1
      1 2 3 4
ה ג ג 0 ח ח א
      א ב ג ד
כפול א' תחתונה על א' עליונה א' פעמים א' זה א' אותו א' כתוב נגד א' תחתונה במקום גלגל ומחק א' תחתונה כזה
5 3 3 1 8 8 1
        2 3 4
ה ג ג א ח ח א
        ב ג ד
שוב כפול ב' תחתונה על א' עליונה ב' פעמים א' היינו ב' אותו ב' כתוב על התחתונה דהיינו אל ח' ויהיה עשרה כתוב במקום ח' גלגל אחר גלגל תוסיף א' על א' ויהיה ב' ומחוק ב' תחתונה כזה
5 3 3 2 0 8 1
          3 4
ה ג ג ב 0 ח א
          ג ד
שוב כפול ג' תחתונה על א' עליונה ג' פעמים א' זה ג' אותו ג' כתוב נגד ג' תחתונה דהיינו אל ח' הרי י"א מחוק ח' וכתוב במקומה א' ואחריה במקום גלגל א' ומחוק ג' תחתונה כזה
5 3 3 2 1 1 1
            4
ה ג ג ב א א א
            ד
שוב כפול ד' תחתונה אל א' עליונה ד' פעמים א' היינו ד' אותו ד' כתוב במקום א' שכנגדה אבל לא תצרף אותו א' עם ד' כמו שצויתיך כבר כי על אותו א' כפלנו עכשיו דגב"א ולא היתה א' רק לסימן לכן לא חיידיא לצירוף ומחוק ד' תחתונה כזה
5 3 3 2 1 1 4
ה ג ג ב א א ד
נמצא כי א"בג"ד פעמים דגב"א עולה בחשבון דא"אב"ג ג"ה היינו י"ד ומאה וגם ב' אלפים גם ל' אלפים וגם מאה אלפים וגם ה' מאות רבבות וד"ל
[Illustration of the procedure:]
5330881 \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{1\times1}}={\color{green}{1}}\\\scriptstyle{\color{red}{0+}}{\color{green}{1}}={\color{blue}{1}}\end{cases}} 5331881 \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{1\times2}}={\color{green}{2}}\\\scriptstyle{\color{red}{8+}}{\color{green}{2}}={\color{green}{1}}{\color{blue}{0}}\\\scriptstyle{\color{red}{1+}}{\color{green}{1}}={\color{blue}{2}}\end{cases}} 5332081 \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{1\times3}}={\color{green}{3}}\\\scriptstyle{\color{red}{8+}}{\color{green}{3}}={\color{blue}{11}}\end{cases}} 5332111
   1234     234      34       4
\scriptstyle\xrightarrow{\scriptstyle{\color{red}{1\times4}}={\color{blue}{4}}} 5332114
  • Another example: we wish to multiply 209 by 3030.
\scriptstyle209\times3030
דמיון אחר הנה בקשנו לכפול ט' ומאתים על ג' אלפים ושלשים
הילך היאך תכתוב צורתו כזה
    3 0 3 0
2 0 9      
    ג 0 ג 0
ב 0 ט      
כפול ב' תחתונה על ג' עליונה ב' פעמים ג' היינו ו' אותו ו' כתוב נגד ב' תחתונה ומחוק ב' תחתונה וגם הגלגל שלפני ב' מחוק וכתוב גלגל לפניו כזה כי נכפול גלגל ג' פעמים ויהיה גלגל
6 0 3 0 3 0
    9      
ו 0 ג 0 ג 0
    ט      
שוב כפול ט' על ג' שעליה ט' פעמים ג' היינו ז"ב אותו ז' כתוב למעלה במקום ג' אחרונה ויהיה ז' במקום וגם ב' כתוב במקום גלגל ומחק ט' תחתונה כזה
6 2 7 0 3 0
ו ב ז 0 ג 0
[Illustration of the procedure:]
  3030 \scriptstyle\xrightarrow{{\color{red}{3\times2}}={\color{blue}{6}}} 603030 \scriptstyle\xrightarrow{{\color{red}{3\times9}}={\color{blue}{27}}} 627030
209      9   
ועתה משוך 0ט"ב לאחוריו ב' מעלות כדי שתהא ט' תחתונה שהיא אות ראשונה שבשיטה תחתונה נגד ג' עליונה כזה
6 2 7 0 3 0
    2 0 9  
ו ב ז 0 ג 0
    ב 0 ט  
ואת"ל למה לא כתבנו ט0"ב תחת גלגל עליון ודאי עשינו כך אבל מ"מ לא עלה יותר מגלגל כי כאשר תמצא אותיות כתובים ואת' צריך לצרף עמהם גלגל אין צירופין עמהם ול"ד כמו שפי' לקמן
כפול ב' תחתונה על ג' עליונה ב' פעמים ג' היינו ו' אותו ו' כתוב נגד ב' תחתונה דהיינו אל ז' ויהיה י"ג מחוק ז' וכתוב במקומה ג' ואחריה תוסיף א' על ב' כי הוא עשרה כמו שכתבתי לעיל ויהיה ג"כ ג' ומחוק ב' תחתונה וגם גלגל שלפניה
Zero cannot replace a non-zero digit in the upper line (the result line) in this erasing and shifting procedure -as this will decrease the numerical value of the rank, and there is no need for the zero as a place holder, since the current non-zero digit is already holding the place ואין אתה צריך לצייר אותו הגלגל למעלה כמו שעשית כבר כי בלאו הכי יש גלגל כנגדו וכ"ש אם היה אות נגד הגלגל שלא היינו מוחקים האות לצייר שם גלגל שאם היינו מוחק' האות כדי לצייר שם גלגל אז היינו ממעטים החשבון ואם לעשות כדי להרחיק המעלה זה אינו כי בלאו הכי האות מרחיק המעלה

כללא דמילתא לעולם אין אנו מציירין גלגל התחתון למעלה אלא אם אין כנגדו שום דבר

Zero does not need to replace a zero in the upper line as it is only a place holder, and the rank is already held by the current zero אבל אם יש שום גלגל או אות נגד אותו גלגל התחתון אז אין אנו צריכין לצייר שום גלגל כי ציורו אינו אלא שומר המעלה כמו שכתבתי לעיל כי הגלגל מודיע שאות אחריו עולה מעלה אחת יותר ממה שהיית עושה אם לא היית שם שום ציור גלגל
ועתה נחזור לחשבון דלעיל כמו שפרטתי אז יהיה כזה
6 3 3 0 3 0
        9  
ו ג ג 0 ג 0
        ט  
שוב כפול ט' תחתונה על ג' עליונה ט' פעמים ג' היינו ז"ב כתוב במקום ג' עליונה ז' ואחריה במקום גלגל כתוב ב' ומחק ט' תחתונה כזה וגם ג' עליונה מחק
6 3 3 2 7 0
ו ג ג ב ז 0
תמצא שמאתים וט' פעמים ג' אלפים ול' יש ס"ג רבבות וג' אלפים ומאתים ושבעים
[Illustration of the procedure:]
627030 \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{3\times2}}={\color{green}{6}}\\\scriptstyle{\color{red}{7+}}{\color{green}{6}}={\color{green}{1}}{\color{blue}{3}}\\\scriptstyle{\color{red}{2+}}{\color{green}{1}}={\color{blue}{3}}\end{cases}} 633030 \scriptstyle\xrightarrow{{\color{red}{3\times9}}={\color{blue}{27}}} 633270
  209      9
הנה אראך בדרך אחר לכפול
  • If you wish to know how much are 15 times 1080.
\scriptstyle15\times1080
אם תרצה לידע כמה ט"ו פעמים תתר"ף
עשה טור ראשון מתתר"ף ושים תחתיו ט"ו ה' תחת הא' וא' לשמאלו כזה
  1 0 8 0
1 5      
  א 0 ח 0
א ה      
אז תכפול הא' על כל הטור העליון ואחר כך ה' על כל הטור העליון וכה תאמר א' פעם א' הרי א' שים א' כנגד א' השפל מן הכפלות כל כך גבוה שיהא הוא למעלה מן התתר"ף מכוון כנגד הא' התחתונ' ויהיה צורת' כזה
1        
  1 0 8 0
1 5      
א        
  א 0 ח 0
א ה      
ואחר כך כפול א' פעמי' גלגל הרי גלגל שים אותו גלגל לפני הא' אשר כתבתי למעלה מן התתר"ף מכוונ' נגד הא' בשיט' ראשונ' ויהיה כזה
1 0      
  1 0 8 0
1 5      
א 0      
  א 0 ח 0
א ה      
ואחר כך כפול א' פעמי' ח' יעלה ח' כתוב ח' לפני ה0' שכתבת בשיט' עליונ' מכוונת נגד הציפר' שבשיט' אמצעי' ויהיה כזה
1 0 8    
  1 0 8 0
1 5      
א 0 ח    
  א 0 ח 0
א ה      
ואחר כך כפול א' פעם 0' ויעלה 0' שימהו לפני הח' אשר כתבת בשיט' עליונ' מכוון נגד 0' שבשיט' אמצעי' גם תמחוק הא' כי נכפל על כל התתר"ף ויהיה כזה דמיונו
1 0 8 0  
  1 0 8 0
  5      
א 0 ח 0  
  א 0 ח 0
  ה      
והנה כפלת הא' על כל התתר"ף
[Illustration of the procedure:]
\scriptstyle\xrightarrow{{\color{red}{1\times1}}={\color{blue}{1}}} 1     \scriptstyle\xrightarrow{{\color{red}{1\times0}}={\color{blue}{0}}} 10    \scriptstyle\xrightarrow{{\color{red}{1\times8}}={\color{blue}{8}}} 108   \scriptstyle\xrightarrow{{\color{red}{1\times0}}={\color{blue}{0}}} 1080
1080  1080  1080  1080  1080
15    15    15    15    15   
ואחר כך כפול הה' על כל התתרף ותתחיל לכופלו כנגדו ממש למעלה כאשר התחלת לכפול הא' כנגד א' כן תכפול הה' ועלה כך ה' פעמים א' היינו ה' שים אות ה' נגד הא' למעלה הימנו דהיינו במקום גלגל כזה
1 5 8 0  
  1 0 8 0
  5      
א ה ח 0  
  א 0 ח 0
  ה      
ואחר כך אמור ה' פעמים 0' אם לא היה נכתב מאומה על הגלגל היית נותן שם גלגל עכשיו שרשום עליו ח' לא תעשה מהגלגל כלום כי אוחז מקומו ואחר כך אמור ה' פעמים ח' יעלה ארבעים ולא תשימהו במקום הגלגל כי תצטרך לגלגל אלא כתוב ד' על הח' לשמאל אז תמצא ד"ח זה על זה תמחוק שניהם ותכתוב במקומו ב' ועל הה' אשר כתבת לשמאל כתוב א' הרי ו' כזה
1 6 2 0  
  1 0 8 0
  5      
א ו ב 0  
  א 0 ח 0
  ה      
ואחר כך אמור ה' פעמים גלגל היינו גלגל שים גלגל על גלגל ויהא דמיונו כזה
1 6 2 0 0
א ו ב 0 0
[Illustration of the procedure:]
1080  \scriptstyle\xrightarrow{{\color{red}{5\times1}}={\color{blue}{5}}} 1580  \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{5\times0}}={\color{green}{0}}\\\scriptstyle{\color{red}{8+}}{\color{green}{0}}={\color{blue}{8}}\\\end{cases}} 1580  \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{5\times8}}={\color{green}{4}}{\color{blue}{0}}\\\scriptstyle{\color{red}{8+}}{\color{green}{4}}={\color{green}{1}}{\color{blue}{2}}\\\scriptstyle{\color{red}{5+}}{\color{green}{1}}={\color{blue}{6}}\\\end{cases}} 1620 \scriptstyle\xrightarrow{{\color{red}{5\times0}}={\color{blue}{0}}} 16200
1080  1080  1080  1080
15    15    15    15   
תבין שלא נשלם הטור העליון נגד הטור השפל עד אשר תכפול כל האותיות מן הכפולות על כל החשבון ולמבין די ודו"ק

Checking Methods

ואם לבך מפקפק לומר מאן יאמר שכך הוא הילך מאזני צדק היאך תשקול ותבחין אם טעות אם לאו
  • Casting out 9 by 9
בראשונה קח חשבון שבשיטה העליונה אשר בקשת לכפול והשלך אותו ט"ט והמותר קח בידך
ואם לא תמצא אפילו פעם אחת ט' אז תקח הכל
ואחר כך קח החשבון התחתון והשלך גם כן בט"ט
ומה שנשאר בידך קח נא והשלך אותו בשער הכפל על מה שנשאר לך בשיטה עליונה אחר שהשלכת ממנו ט"ט ומה שיעלה בידך השלך אותו ג"כ בט"ט ומה שנשאר שלא הגיע לכלל ט' קח נא בידך
ואחר כך קח החשבון היוצא לך כבר כשכפלת הב' חשבונות יחד והשלך ג"כ אותו בט"ט
ומה שנשאר בידך אם הוא מכוון כנגד מה שנשאר לך כבר ידוע תדע שאמת חשבת ואם לאו בודאי טעית
  • \scriptstyle209\times3030
ועתה שקול חשבון דלעיל למען יבין המבין ויוסיף לקח הדמיון היה 0"ג0"ג פעמים ט0"ב
\scriptstyle{\color{blue}{3+0+3+0=3+3=6\equiv_96}}
בתחילה נחבר ב' פעמים ג' היינו ו' ואין כאן אפילו פעם אחת ט‫'
\scriptstyle{\color{blue}{2+0+9=2+9=11\equiv_92}}
ואחר כך חבר חשבון התחתון דהיינו ט0"ב חיבור ט"ב היינו י"א השלך ט' וישאר ב‫'
\scriptstyle{\color{blue}{6\times2=12\equiv_93}}
כפול ב' על ו' ב' פעמים ו' היינו י"ב השלך ט' וישאר ג' וזה יהיה לך לזכרון
\scriptstyle{\color{blue}{6\times2=12\longrightarrow1+2=3}}
זה הכלל ראה בכפל מה שנשאר לך כגון עתה הוצרכת לכפול ב' פעמים ו' ויהיה י"ב כתוב י"ב בציפור ויהיה ב"א היינו יתיר על ט' ג' וכן לעולם
ואחר כך ראה מה שיעלה בידך כשכפלתה 0"ג0"ג על ט0"ב דהיינו 0'ז'ב'ג'ג'ו' חבור אותו יחד ויהיה כ"א השלך אותו ט"ט וישאר ג' כמו שנשאר לך כבר ואם כן החשבון מכוון
\scriptstyle{\color{blue}{3030\times209=633270\longrightarrow6+3+3+2+7+0=21\equiv_93}}

Chapter Five: Gelosia

שער הכפל בסולם
ציור נקרא סולם ויפה לשער הכפל גדול
The number of cells corresponds to the number of ranks of the multiplicands וכמה שתרצה לכפול חשבון על חשבון כן עשה מניין הבתים
  • Number with three ranks by number with three ranks - three cells horizontally by three cells vertically
אם תכפול חשבון בן ג' מעלות על ג' מעלות כמו כן תצייר שליבות הסולם ג' בתים לארכה ולרחבה
  • Number with three ranks by number with two ranks - three cells horizontally by two cells vertically
ואם תכפל סך בן ג' אותיות על ב' אותיות עשה ג' בתים לרחבה וב' בתים לארכה
וכן להיפך מלמעלה למטה אחד המרבה ואחד הממעיט ובלבד שיכווין לבו כל אות במקומו לפי הציור
  • \scriptstyle321\times654
דמיון אם תרצה לידע כמה כ"א וג' מאות פעמים נ"ד וגם ת"ר שרשימתו א'ב'ג' ד'ה'ו‫'
Ṣifra - Gelosia - 1.png
ציפרא - כפל בסולם - א.png
The multiplier is written in the top line and the multiplicand in the rightmost column רשום למעלה על הבתים כאשר תראה בסולם שרשמתי והנכפול כתוב בצדו זה תחת זה כמצוייר
first line
\scriptstyle{\color{blue}{4\times1}}
ובראשונה חשוב כמה ד' פעמים א' ויעלה ד' וכתוב אות בחצי הבית ראשון שמכוון תחת הא' וגם נגד הד‫'
Every cell is divided to two: the upper part is for the units of the interim product and the bottom part is for the tens כי כל בית נחלק מחציתו העליון אחדים והתחתוני' עשיריים
\scriptstyle{\color{blue}{4\times2}}
ואחר כך חשוב כמה ד' פעמים ב' ויעלה ח' רשומיהו בחצי בית העליון שתחת ב‫'
\scriptstyle{\color{blue}{4\times3}}
ואחר כך חשוב כמה ד' פעמים ג' ויעלה ב"א רשומיהו באותו בית שתחת הג' וכתוב ב' בחצי' בית העליון וא' בחצי השניי‫'
ומעתה מחוק הד' כי היא נחשבת בכל חילוקים
second line
\scriptstyle{\color{blue}{5\times1}}
מעתה תצטרך לחשוב ה' פעמים א' ויעלה ה' רשומיהו בבית שבצד הה' מכוון תחת הא‫'
\scriptstyle{\color{blue}{5\times2}}
ואחר כך חשוב ה' פעמים ב' ויעלה 0"א רשומיהו בחצי בית התחתון בבית חמישי
\scriptstyle{\color{blue}{5\times3}}
ואחר כך חשוב ה' פעמים ג' ויעלה ה"א רשומיהו בבית ששי ה' בחצי העליון א' בחצי תחתון
ומעתה מחוק ה‫'
third line
\scriptstyle{\color{blue}{6\times1}}
והנה חשוב ו' פעמים א' ויעלה ו' רשומיהו בצדו מכוון בטור שתחת הא‫'
\scriptstyle{\color{blue}{6\times2}}
ו' פעמים ב' כ"א רשומיהו בבית השמיני
\scriptstyle{\color{blue}{6\times3}}
ו' פעמים ג' היינו ח"א רשומיהו בבית האחרון
והנה כפלנו כולה
ואשכילך כמה יעלה סכום שלה קח אות ראשון שבבית ראשון שהיא ד' וכתביהו במקום מיוחד
ואחר כך חשוב בשליבה שנייה בכל השיפוע מאות ח' עד אות ה' וצירוף אות הה' עם הח' ויעלה ג'א' הג' כתוב בצד הד' הנרשמת כבר כזה ד ג
וגם הא' שהיא עשרה צרוף לשליבה שתחתיו וחבריהו אל הב' בתחילת שליבה שלישית ויעלה ג' וחבור אחר כך גם הו' שבסוף השיפוע ויהיה ט' רשומיהו אצל ד"ג כזה ד ג ט
ואחר כך חשוב וצרוף אותיות שבשליבה רביעי' מראש ועד סוף ויעלה ט' כתוב ט' אצל דג"ט כזה ד ג ט ט
והנה חשוב אותיות שבשליבה חמישית בשיפוע ויעלה צירופו עשרה
The tens in the sum of the interim products are added to the subsequent sum of interim products וכבר אמרתי שלעולם העשירי מצטרף לשליבה שתחתיו ואין רושמין אותה בצד המיוחדין
If there are no units left in the sum - zero should be written in order to hold the rank אבל תצטרך להשיב גלגל במקום העשרה לשמור המעלה הואיל ולא נשאר אפילו אחד לשמור המורה המעלה
והנה כשתצטרף העשרה לא' שבשליבה אחרונה יעלה ב' וכתביהו בצד ד'ג'ט'ט' המיוחדים ויהיה כזה ד ג ט ט 0 ב
זה מכוון חשבון של כפולת אב"ג על דה"ו
The checking method of the result is the same method as in the previous chapter on multiplication ומאזנים שלו כמו שכתבתי לעיל בשער הכפל הגדול
  • \scriptstyle464\times464
ד'ו'ד' פעמים ד'ו'ד' עולה חשבונו ו'ט'ב'ה'א'ב' ודוק
Ṣifra - Gelosia - 2.png
ציפרא - כפל בסולם - ב.png
סליק שער הכפל

Multiplication - Check

MS Mantova f. 69r

כשתרצה לידע משקל אם אתא שפיר כשיש לפניך הכפל
  • \scriptstyle464\times464=215296
כגו' א דוד פעם דוד כגו' ו'ט'ב'ה'א'ב' או כל כפלים אם הן שפיר או לאו
\scriptstyle{\color{blue}{\scriptstyle\begin{cases}\scriptstyle4+6+4=14\equiv_95\\\scriptstyle4+6+4=14\equiv_95\end{cases}\scriptstyle\longrightarrow5\times5=25\equiv_97}}
אז קח לפניך דוד במניין נמצא י"ד ואמ' כמה הוא יותר מט' נמצא ה' ותשליך הט' ממך ואמ' כמה ה' פעמי' ה' נמצא כ"ה ותשליך ממך כל הט' שבתוך כ"ה ויתר לך ז'
\scriptstyle{\color{blue}{215296\equiv_97}}
אז תשליך נמי ו'ט'ב'ה'א'ב' בט' אז ישאר לך ז' וכן תעשה לכל הכפולים שבעולם ודו"ק

Chapter Six: Division

שער החילוק
Dividing a large number into a few smaller numbers והוא טוב לחלק חשבון גדול לכמה חשבונות קטנים
ועתה ידוע תדע שאין כותבין בשער זה כמו בשער הכפל אות ראשונה משורה תחתונה נגד אות אחרונה משורה עליונה אלא כותבין שורה עליונה כפי מעלותיה ושורה תחתונה כמו כן כפי מעלותיה ויכוון אות אחרונה שבשורה תחתונה נגד אות אחרונה שבשורה עליונה
  • The digit in the highest rank of the dividend is smaller than the digit of the highest rank of the divisor - shifting the divisor to the lower rank to the right
ואם אות אחרונה שבשורה תחתונה יותר מאות אחרונה שבשורה עליונה אז יסיג שורה תחתונה מעלה אחת לאחוריה אלא א"כ דאותו שורה תחתונה יש בה יותר מאות אחת
  • The digit in the highest rank of the dividend is the same as the digit of the highest rank of the divisor and the divisor consists of one digit only - no need to shift the divisor to the lower rank to the right
אבל אם עלו שוות לא יסוג לאחריה אלא אם כן דאותו שורה יש בה יותר מאות אחת
  • Shifting the divisor to the lower rank to the right and dividing the dividend by it
וכשיש בה יותר מאות אחת יסיג כל השורה מעלה אחת לאחוריה ואז יכול לחלק אותיות עליונה על אותיות תחתונות
  • The place of the result of division
והחילוק שחילקו יכתוב נגד מעלה ראשונה שבשורה תחתונה הן אם אותו מעלה אות או גלגל
All the digits of the divisor should be subtracted from the dividend the same number of times as the digit in the highest rank is subtracted וכשתחלוק ב' אותיו' פי' שהיו בשורה תחתונה ב' אותיות אז אין חילוק של שתיהם רק מנין אחד יהיה ג' אותיות או ד' וכן עד סוף כל הדורות וכל כך כמה פעמים שחלקת האות האחרונה מן החשבון כן תקח כל שאר אותיות ול"ד
Examples
ועתה אכתוב דמיונים למען יבין המבין ותן לחכם ויחכם עוד ויוסיף לקח
  • \scriptstyle218\div7
ועתה אתחיל בחילוק קטן אם ישאל השואל כמה פעמים ז' יש במאתים וי"ח
הילך היאך תעשה כתוב המאתים וי"ח כזה
2 1 8
ב א ח
והז' היה מן הדין לכתוב תחת הב' כדי לחלק הב' לז' ז' פי' למנה כמה פעמים ז' יש בב' אלא שאין הב' מגיע לחילוק של ז' לכן נסוג הז' לאחור כדי שתהא הב' במעלה שנייה לה ותעלה לנגדה עשרים ואחת כזה
2 1 8
  7  
ב א ח
  ז  
ואותו עשרים ואחת תחלוק לז'ז' פי' מנה כמה פעמים ז' יש באחת ועשרים ונמצא שיש בהם ג' פעמים ז' אותו ג' כתוב למעלה על הא' שבשורה עליונה נגד ז' שבשורה התחתונה כזה
  3  
2 1 8
  7  
  ג  
ב א ח
  ז  
ואחר כך מחוק הא"ב שמצאת בהם ג' פעמי' ז' ואחר כך סוג הז' מעלה אחת לאחוריה ויהיה תחת הח' כזה
3  
  8
  7
ג  
  ח
  ז
ומנה כמה פעמי' ז' יש בח' ולא מצאת בה רק פעם אחת ז' ועוד יש א' יותר אז כתוב א' נגד הז' על הח' כזה והאחד העודפת כתוב במקום הח' כזה
3 1
  1
  7
ג א
  א
  ז
[Illustration of the procedure:]
\scriptstyle\xrightarrow{{\color{red}{21\div7}}={\color{blue}{3}}} 3 \scriptstyle\longrightarrow 3  \scriptstyle\xrightarrow{{\color{red}{8\div7}}={\color{blue}{1}}+\frac{{\color{blue}{1}}}{7}} 31
218 218 8 1
7  7  7  7
נמצא ברי"ח יש ל"א פעמים ז' וישאר אחת וכן לעולם ועיין
  • Word problem: I have 10127 pazan(?) and I want to know how many zehuvim are they, if each [zahuv] is 15 pazan
\scriptstyle10127\div15
דמיון אחר הנה יש לי עשרת אלפים פצין ומאה ועשרים ושבע פצין ואבקש לידע כמה זהובי' יש בתוכם שכל אחד יש ט"ו פצין
והנה רשומיהו כזה
1 0 1 2 7
א 0 א ב ז
והנה רשום תחת זה הז'ב'א'0'א' החשבון ה'א' ואם תכתבהו תחת הסופיים כמחוייב נמצא א' תחת א' ולא ישאר לך דבר וא"כ מאין תקח ה'פעמים א' כי כמה פעמים שתקח אות אחת כמו כן תקח חבירתה כמו שכתבתי לעיל וא"כ סוג ה'א' אחור וכתו' א' תחת גלגל וכתו' ה' תחת א' שלפני גלגל ויהיה כזה
1 0 1 2 7
  1 5    
א 0 א ב ז
  א ה    
והנה צריכין אנו לשער באם נקח הא' מהאותיות שעליו שגם יעדיף למצא הה' בעודף בחשבון הזה ואם תרצה לומר ליקח ט' פעמים מן י' א"כ לא ישאר רק אחד ותבא א' במקום גלגל ויהיה א"א ומעתה לא תוכל ליקח ט' פעמים ה' מן א"א וכן אם תקח ח' פעמים א' לא ישאר רק ב' ולא תוכל ליקח ח' פעמים ה' מן ב"א וכן אם תיקח ז' לא ישאר רק ג' ולא תוכל ליקח ז' פעמים ה' מן ג"א אלא קח ו' וישאר ד' כתוב ו' על הא' ויהיה כזה
  6    
4 1 2 7
  5    
  ו    
ד א ב ז
  ה    
ואז תוכל ליקח ו' פעמים ה' מן א"ד וישאר לך מן הד' שהיא א' עשרה ואם כן כתוב א' במקום הד' ומחק ה' ויהיה כזה
  6    
1 1 2 7
  ו    
א א ב ז
[Illustration of the procedure:]
\scriptstyle\xrightarrow{{\color{red}{10-\left({\color{blue}{6}}\sdot1\right)}}={\color{blue}{4}}} 6   \scriptstyle\xrightarrow{{\color{red}{40-\left(6\sdot5\right)}}={\color{blue}{1}}{\color{red}{0}}}  6  
10127 4127 1127
15   5  
ואחר כך בקשנו ליקח הא' מן החשבון הזה י' פעמים לא תוכל ליקח כמו שפירשתי וגם זה הכלל נקוט בידך לעולם לא תוכל ליקח י' רק ט' או ח' או ז' ולמטה לכן עשה כך כתוב ה'א' תחת ב'א' כזה
  6    
1 1 2 7
  1 5  
  ו    
א א ב ז
  א ה  
וקח ז' פעמים וישאר ד' שעודף י"א על ז' ד' וכתוב ז' למעלה נגד הה' תחתונה ומחק הא' תחתונה ומחק ג"כ הא'א' עליונה וכתב תחתיהן ד' כזה
6 7  
4 2 7
  5  
ו ז  
ד ב ז
  ה  
והנה קח ז' פעמים ה' מן ד' שבצידה דהיינו ל"ה וישאר ה' כי הד' היא במעלה שנייה מן הה' עולה ארבעים ועתה קח ממנה ל"ה וישאר ה' צרוף הה' אל הב' שלפניה ויהיה ז' כזה
6 7  
  7 7
  1 5
ו ז  
  ז ז
  א ה
[Illustration of the procedure:]
 6   \scriptstyle\xrightarrow{{\color{red}{11-\left({\color{blue}{7}}\sdot1\right)}}={\color{blue}{4}}} 67 \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{40-\left(7\sdot5\right)}}={\color{green}{5}}\\\scriptstyle{\color{red}{2+}}{\color{green}{5}}={\color{blue}{7}}\end{cases}} 67 
1127 427 77
15  5
וקח ה' פעמים א' מן ז' כי ז' פעמים לא נוכל ליקח כמו שפי' לעיל שאז לא נוכל ליקח ז' פעמים או ו' פעמים ה' ודו"ק לכן קח ה' פעמי' וכתוב למעלה ה' בצד הז' נגד ה' תחתונה ויעדיף ב' אותו ב' כתוב במקום ז' כזה
6 7 5
  2 7
    5
ו ז ה
  ב ז
    ה
והנה קח ה' פעמי' ה' מן ז"ב וישאר ב' שאינו מגיע לחשבון הא' וצורתו כזה
6 7 5
    2
ו ז ה
    ב
נמצא מכוון שעשרת אלפים ומאה וכ"ז פצין עולה ה' זהו' וגם ת"ר זהו' ושני פצין
[Illustration of the procedure:]
67  \scriptstyle\xrightarrow{{\color{red}{7-\left({\color{blue}{5}}\sdot1\right)}}={\color{blue}{2}}} 675 \scriptstyle\xrightarrow{{\color{red}{27-\left(5\sdot5\right)}}={\color{blue}{2}}} 675
77 27   2
15   5  15

Checking Methods

ואם לבך מגמגם כפול העודף האחרון על ה'א' ויצא לך חשבון הראשון ששאלת
The checking method of division is multiplication and the checking method of multiplication is division וזהו מאזני צדק על שער החילוק נמצא כפל מברר החילוק והחילוק מברר הכפל
  • \scriptstyle10127\div15→ Check: \scriptstyle15\times\left(675+\frac{2}{15}\right)
דמיון למאזנים כתוב ה'א' וכתוב תחתיו ה'ז'ו' הנשאר באחרונה חוץ מן הב' שלא הגיע לחשבון ט"ו אל תצטרף עמהן עד סופו חיבורו לאות ראשונה כזה
    1 5
6 7 5  
    א ה
ו ז ה  
כפול ו' על א' יעלה ו' כפול ז' על א' יעלה ז' כפול ה' על א' ויעלה ה' כזה
6 7 5 5
ו ז ה ה
והנה כתוב ה'ז'ו' תחת ה' של ה'א' כזה
6 7 5 5
  6 7 5
ו ז ה ה
  ו ז ה
כפול ו' על ה' ויעלה ל' חבור על ז' שעליו כמו שצויתיך בשער הכפול אם כן צריך אתה ליתן הג' אל הו' ויהיה ט' כזה
9 7 5 5
    7 5
ט ז ה ה
    ז ה
ואחר כך כפול ז' על ה' ויעלה ה"ג ועליו ה' דהיינו 0"ד עשה גלגל במקום ה' ותן ד' לז' ויהיה א"א כתוב במקום ז"א ותן א' על הט' ויהיה י' אז צריך אתה לעשות גלגל במקום הט' ואחריו א' כזה
1 0 1 0 5
        5
א 0 א 0 ה
        ה
ואחר כך כפול ה' על ה' ויעלה ה"ב כתוב ה' במקום ה' העליונה ואל תצטרף ה' ראשונה עליה כמו שצויתיך בשער הכפל ואחר כך כתוב ב' במקום גלגל כזה
1 0 1 2 5
א 0 א ב ה
והנה חבר ב' שלא הגיע לכלל ט"ו אל הה' הראשונה ויהיה ז' ואז יהיה החשבון כזה
1 0 1 2 7
א 0 א ב ז
והיינו כיון השאלה
[Illustration of the procedure:]
  15 \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{1\times6}}={\color{blue}{6}}\\\scriptstyle{\color{red}{1\times7}}={\color{blue}{7}}\\\scriptstyle{\color{red}{1\times5}}={\color{blue}{5}}\end{cases}} 6755 \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{5\times6}}={\color{green}{3}}{\color{blue}{0}}\\\scriptstyle{\color{red}{6+}}{\color{green}{3}}={\color{blue}{9}}\end{cases}} 9755 \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{5\times7}}={\color{green}{35}}\\\scriptstyle{\color{red}{5+}}{\color{green}{35}}={\color{green}{4}}{\color{blue}{0}}\\\scriptstyle{\color{red}{7+}}{\color{green}{4}}={\color{green}{1}}{\color{blue}{1}}\\\scriptstyle{\color{red}{9+}}{\color{green}{1}}={\color{blue}{10}}\end{cases}} 10105
675 675   75     5
\scriptstyle\xrightarrow{\scriptstyle{\color{red}{5\times5}}={\color{blue}{25}}} 10125 \scriptstyle\xrightarrow{\scriptstyle{\color{red}{5+2}}={\color{blue}{7}}} 10127
סליק שער החילוק
  • \scriptstyle568\times568→ Check: \scriptstyle322624\div568
[MS Paris1088, 5r-v]
ועוד אראה לך דומיון חושבתי מן חו"ה פעמי' חו"ה הכי
3 2 2 6 2 4
ג ב ב ו ב ד
ורציתי לחלק אם חושבתי שפיר וכה תעשה תכתוב לפניך החשבון שעולה ממנה ותכתוב תחתיו חו"ה וצורתו כזה
3 2 2 6 2 4
  5 6 8    
ג ב ב ו ב ד
  ה ו ח    
כי לא אתה יכול לחלק ה' מן ג' כי ג' לא מגיע אפי' פעם אחת לה' לפיכך סוג הה' לאחרי' ואז תאמר כמה פעמים ה' בב"ג זהו ה' פעמים אע"ג שיש לי לקח עוד פעם אחת ה' אלא מטעם זה אני לקח נוטל אות' ה' פעמים ולא יותר כי אם אני נוטל ו' פעמי' אז לא היה נשאר מן הב"ג אלא ב' ואז לא היה יכול לקח הו' מן חו"ה נמי ו' פעמי' מן ב"ב פי' מן כ"ב והדין בזה השער כי כמה פעמי' שתחלק האות ראשו' אז אתה עושה לכל האותיות לפי זה אני נוטל ה' פעמי' ואז נשאר ז' ואז אני יכול לנטול גם הו' ה' פעמים ואות' ה' תכתוב למעלה על הו' נגד הח' התחתונ' ונמחוק הב"ג ותכתוב במקומ' הז' וצורתו כזה
    5    
7 2 6 2 4
  6 8    
    ה    
ז ב ו ב ד
  ו ח    
ושוב תחלוק הו' מן חו"ה נמי ה' פעמים מן ב"ז ואז נשאר לך ב"ד ותמחוק הז' ותכתוב במקו' ד' וצורתו כזה
    5    
4 2 6 2 4
    8    
    ה    
ד ב ו ב ד
    ח    
ואז תחלוק הח' נמי ה' פעמי' מן ו'ב"ד פי' כ"ו ד' מאות אז תקח מאה מן הד' מאו' ועוד נשאר ג' מאות ואז קח מן המאה הח' פעם ה' וזהו 0"ד פי' מ' ועוד נשאר 0"ו ואותו ו' תשים על הב' ויהיה ח' וצורתו כזה
    5    
3 8 6 2 4
    ה    
ג ח ו ב ד
[Illustration of the procedure:]
\scriptstyle\xrightarrow{{\color{red}{32-\left({\color{blue}{5}}\sdot5\right)}}={\color{blue}{7}}}   5   \scriptstyle\xrightarrow{{\color{red}{72-\left(5\sdot6\right)}}={\color{blue}{42}}}   5   \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{400-100}}={\color{blue}{3}}{\color{red}{00}}\\\scriptstyle{\color{red}{100-\left(5\sdot8\right)}}={\color{green}{6}}{\color{red}{0}}\\\scriptstyle{\color{red}{2+}}{\color{green}{6}}={\color{blue}{8}}\end{cases}}   5  
322624 72624 42624 38624
568  68     8  
נמשוך חו"ה לאחריה תחת הב' וצורתו כזה
    5    
3 8 6 2 4
  5 6 8  
    ה    
ג ח ו ב ד
  ה ו ח  
ואז תאמר כמה פעמי' ה' בח"ג ויעלה ו' ועוד נשאר ח' ותמחוק הג' שאחר הח' והו' העולה מן הח"ג תכתו' על הב' בשור' עליונ' נגד הח' שלמטה וצורתו כזה
  5 6  
8 6 2 4
  6 8  
  ה ו  
ח ו ב ד
  ו ח  
ואז תקח הו' נמי ו' פעמי' מן ו"ח פי' מן פ"ו ועשה הכי תקח ה"ג פי' ה"ל מן ה"ח ואז נשאר נ' וקח הו' שלפני הח' ושים במקומ' גלגל כי ו' פעמי' ו' זהו ו"ג וצורתו כזה
  5 6  
5 0 2 4
    8  
  ה ו  
ה 0 ב ד
    ח  
ותמחוק הו' של חו"ה כמו שציירתי ושוב קח הח' נמי ו' פעמים מן ה' מאות ואז שוב עשה הכי קח מאה מן הה' מאות ועוד נשאר ד' מאות וקח מן המאה ח' פעמי' ו' וזהו ח"ד פי' מ"ח ואז קח מן המאה נ' ואז נשאר נ' ואות' נ' תכתו' במקו' הגלגל שלפני הד' ועוד יש ב' יותר שאני צריך אלא מ"ח ואני לקחתי נ' ואות' ב' תשים על הב' של אחר הד' הראשונ' ונמחוק הח' מן חו"ה וצורתו כזה
  5 6  
4 5 4 4
  ה ו  
ד ה ד ד
[Illustration of the procedure:]
  5   \scriptstyle\xrightarrow{{\color{red}{38-\left({\color{blue}{6}}\sdot5\right)}}={\color{blue}{8}}}  56 \scriptstyle\xrightarrow{{\color{red}{86-\left(6\sdot6\right)}}={\color{blue}{50}}}  56  \scriptstyle\xrightarrow{\begin{cases}\scriptstyle{\color{red}{500-100}}={\color{blue}{4}}{\color{red}{00}}\\\scriptstyle{\color{red}{100-}}{\color{green}{50}}={\color{blue}{5}}{\color{red}{0}}\\\scriptstyle{\color{green}{50-}}{\color{red}{\left(6\sdot8\right)}}={\color{green}{2}}{\color{red}{0}}\\\scriptstyle{\color{red}{2+}}{\color{green}{2}}={\color{blue}{4}}\end{cases}}  56 
38624 8624 5024 4544
568  68    8
נמשוך חו"ה לאחריה תח הח' תחת הד' והו' תחת הד' השניי' והה' תחת הה' וצורתו כזה
  5 6  
4 5 4 4
  5 6 8
  ה ו  
ד ה ד ד
  ה ו ח
ואז תאמר כמה פעמי' ה' בה"ד פי' מ"ה ויעלה ח' פעמי' ואות' ח' תכתו' למעלה על הד' נגד ח' התחתונ' ועוד נשאר ה' ותמחוק הד' שאחר הה' ותמחוק הה' של חו"ה וצורתו כזה
5 6 8
5 4 4
  6 8
ה ו ח
ה ד ד
  ו ח
ושוב נחלק הו' נמי ח' פעמים מן ד"ה פי' מן נ"ה וע ועשה הכי קח מן הנ' ח' פעמי' ו' ועוד נשאר ב' כי ח' פעמי' ו' זהו ח"ד פי' מ"ח ועוד נשאר ב' ואות' ב' תשים על הד' שלפני הה' והוה ו' וצור ונמחק ו' של חו"ה והה' אחר הד' וצורת' כזה
5 6 8
  6 4
    8
ה ו ח
  ו ד
    ח
ואז תאמר ח' פעמי' ח' וזהו ד"ו פי' ס"ד

סליק דומיון של שער החילוק

נמצא כשחלקתי חו"ה מן ד'ב'ו'ב'ב'ג' אז לא נשאר מאומה
וכן בכל מקום אשר אתה מחשב דבר השוה כגו' ח'ו'ה' פעמי' ח'ו'ה' או דו"ד פעמי' דו"ד וכשתחלק ממנ' אות' שחשבת ולא נשאר לך מאומה אז החשבון אמת ודו"ק ותמצא
ועוד אראה לך דומיון שאינ' חשבון שוה כגו' א"ב פעמי' ה"ד
ואז אתה לא עושה כדרך זה קח חד מן הפרטות הא"ב או הה"ד ותחלק מן החשבון ואז עולה הפרט השיני ודו"ק
[Illustration of the procedure:]
 56  \scriptstyle\xrightarrow{{\color{red}{45-\left({\color{blue}{8}}\sdot5\right)}}={\color{blue}{5}}} 568 \scriptstyle\xrightarrow{{\color{red}{54-\left(8\sdot6\right)}}={\color{blue}{6}}} 568 \scriptstyle\xrightarrow{{\color{red}{64-\left(8\sdot8\right)}}={\color{blue}{0}}} 568
4544 544 64
568 68   8
  • \scriptstyle45\times21→ Check: \scriptstyle945\div45
[MS Paris1088, 6r]
דומיון חשבנו ה"ד פעמים א"ב ועולה ממנ' כזה
9 4 5
ט ד ה
ואז נחלק אם חשבנו אמת אז קח הכלל העולה ותכתוב תחתיו חד פרט ותאמר כמה פעם זה הפרט בזה הכלל אז עולה הפרט השני' והילך צורתו אשר תכתביהו הכלל ותחתיו הד פרט איזה שתרצה ועת' נרא' קח הכלל ה' ד' ט' ותכתוב תחתיו הפרט ה"ד וצורתו כזה
9 4 5
4 5  
ט ד ה
ד ה  
ותאמר כמה פעמים ד' בט' נמצא ב' פעמי' ולא יותר אות' ב' תכתוב על הד' נגד הה' שלמט' ותמחוק הט' ותכתוב במקומ' א' ואז קח ותמחוק ד' תחתונ' וצורת' כזה
  2  
1 4 5
  5  
  ב  
א ד ה
  ה  
ואז קח הה' נמי ב' פעמי' מן ד"א ונשאר הד' ונמחוק הא' והה' שלמט' וצורתו כזה
2  
4 5
ב  
ד ה
[Illustration of the procedure:]
\scriptstyle\xrightarrow{{\color{red}{9-\left({\color{blue}{2}}\sdot4\right)}}={\color{blue}{1}}} 2 \scriptstyle\xrightarrow{{\color{red}{14-\left(2\sdot5\right)}}={\color{blue}{4}}} 2 
945 145 45
45  5
ואז תמשוך הה"ד מעלה אחת לאחריה הה' תחת הה' והד' תחת הד' וצורתו כזה
2  
4 5
4 5
ב  
ד ה
ד ה
ואז תאמר כמה פעמי' ד' בד' נמצא רק א' ואות' א' תכתו' על השני ה' קודם הב' וצורתו כזה ונמחק השני ד' כזה
2 1
  5
  5
ב א
  ה
  ה
ואז תאמר תקח הה' נמי א' פעם אז לא נשאר לך מאומה נמצא כשחלקתי חד פרט אז עולה הפרט השיני וכן תמצא בכל פעם אשר אתה מחלק
[Illustration of the procedure:]
2  \scriptstyle\xrightarrow{{\color{red}{4-\left({\color{blue}{1}}\sdot4\right)}}={\color{blue}{0}}} 21 \scriptstyle\xrightarrow{{\color{red}{5-\left(1\sdot5\right)}}={\color{blue}{0}}} 21
45 5
45 5
  • \scriptstyle218\div7→ Check: \scriptstyle\left(31+\frac{1}{7}\right)\times7
[MS Paris1088, 6r]
והילך שער טוב לראות אם חלקתי אמת וטוב מאד מאד ואראה לך דומיון רציתי לחלק כמה פעם ז' בב' מאות וי"ח כאשר נחלק כבר בתחילת שער החילוק והוה עולה [א"ג] ונשאר א' ואז ראה אם חלקתי אמת
קח הז' שחלקתי ושים אותה תחת הג' [‫כזה‫]
3 1
7  
ג א
ז  
ותאמר כמה ז' פעמים ג' זהו כ"א א"ב פי' כ"א
2 1 1
    7
ב א א
    ז
ואז קח הז' ושים אות' תחת הא' ותאמ' ז' פעמי' א' זהו ז' ואות' ז' תכתו' קודם הא"ב שעולין מן ג' פעמי' ז' כזה
2 1 7
ב א ז
ואז קח הא' שלא חלקת לז' ושים עתה על ה ז' שעולה השת' מן א"ג פעם ז' ויהיה ויהיה ח' וצורתו כזה
2 1 8
ב א ח
נמצא כשלקחתי הח'א'ב' וחלקתי ממנ' כמה פעמי' ז' ועולה א"ג ונשאר א' ואז לקחתי הא"ג וזרקתי ג' ל[...] הז' וחשבתי כמה פ' ז' פעמים א"ג ועולה ממנ' זא"ב ואז לקחתי הא' שנשאר כבר וזרקתי על זה הז' והוה ח' כמו נמצא ח'א'ב' כמו בראשון
[Illustration of the procedure:]
31 \scriptstyle\xrightarrow{{\color{red}{3\sdot7}}={\color{blue}{21}}} 211 \scriptstyle\xrightarrow{{\color{red}{1\sdot7}}={\color{blue}{7}}} 217 \scriptstyle\xrightarrow{{\color{red}{7+1}}={\color{blue}{8}}} 218
7   7  

Chapter Seven: Proportions

שער עירוכין
This respectable chapter is called the chapter on proportion, which according to the general opinion is needed in order to count, to calculate, to make wise, to educate, to know and understand a thing from a thing, to evaluate a thing after thing, and to comprehend its foundation and its nature. שער הנכבד ונקרא שער הערך אשר לכולי עלמא צריך למנות ולחשוב ולחכם ולהשכיל לדעת ולהבין דבר מתוך דבר ולהעריך דבר אחר דבר ולעמוד על יסודו ועל בוריו
If you buy a large amount of goods for a high price and you need to estimate a small amount of goods according to this price, meaning how much should cost the small amount of goods you bought according to this price? כיצד אם לקחת מקח גדול בדמים מרובים ואת צריך להעריך מקח קטן לפי אותה דמים פי' כמה מגיע לפי אותה הדמים למקח הקטן שקנית
Or vice versa, you buy a small amount of goods for a low price and you want to estimate a large amount of goods accordingly. או להיפך שקנית מקח קטן בדמים מועטי' ואתה רוצה להעריך אחריו מקח גדול
Here is how you calculate, count, and evaluate: הילך היאך תחשוב ותמנה ותעריך
Write the large amount of goods and write the price of the large amount of goods beneath the large amount of goods. Then, write the small amount of goods beneath the price. תכתו' המקח גדול וסכו דמים מן הגדול המקח תכתוב תחת המקח גדול ואח"כ תכתוב המקח הקטן תחת הסכום
Multiply the price of the large amount of goods you wrote above, below the large amount of goods, by the small amount of goods. Take the product and divide it, according to the chapter of division, by the large amount of goods; what you receive is the price of the small amount of goods. ותכפול דמי המקח הגדול אשר כתבת למעלה אחר המקח הגדול תכפול אותו על מניין מקח קטן והעולה קח בידך ותחלוק אותו בשער החילוק על המקח הגדול ומה שיעלה בידך כל כך ערך המקח הקטן

\scriptstyle{\color{OliveGreen}{\frac{\left(price\ of\ large\ amount\ of\ goods\right)\times\left(small\ amount\ of\ goods\right)}{large\ amount\ of\ goods}}}

If you are left with fractions that are less than the divisor, say: I have fractions left of which a certain amount is one unit of the required. ואם יותר לך חלקים שלא יעלו לחלק המבוקש אז תאמר עוד נשאר לי חלקים כך וכך שסכום כך וכך עולה לחלק אחד של המבוקש
Or vice versa, you want to evaluate [the price of] a large amount of goods according to [the price of] a smaller amount of the goods: write the small amount of goods above, then write the known price of this amount of goods and write the large amount of goods below, beneath the price of the small amount of goods. ואם להיפך שאתה רוצה להעריך חשבון מקח גדול אחר חשבון מקח קטן אז תכתוב חשבון הקטן למעלה ואח"כ תכתוב דמים הידועים לאותו מקח והחשבון הגדול תכתוב למטה נ תחת דמיו של חשבון הקטן
Multiply the large amount of goods by the known price of the small amount of goods, and divide the product, according to the chapter of division, by the small amount of goods above as above. ותכפול חשבון הקטן הגדול על דמים הידועי' של מקח הקטן והעולה תחלק בשער החילוק על מקח הקטן ‫[33]שלמעלה כדלעיל

\scriptstyle{\color{OliveGreen}{\frac{\left(price\ of\ small\ amount\ of\ goods\right)\times\left(large\ amount\ of\ goods\right)}{small\ amount\ of\ goods}}}

This is rule [of the calculation procedure]: וזה הכלל
First, write the amount of goods you know. Then, write its price, and after it the amount of goods, [whose price] you wish to know and evaluate. המקח אשר ידעת תכתוב תחילה ואח"כ תכתוב דמיו ואח"כ המקח אשר בקשת לידע להעריך
Multiply, then divide as I have instructed you. ותכפול ואח"כ תעריך כמו שציויתיך

Word Problems

Now I will write for you two or three examples, so you may understand and become wise. ועתה אכתוב לך ב' או ג' דמיונות כדי שתוכל להבין ולהשכיל

Pricing Problems - Find the Price

  • A man who asks you: I bought 70 cubits of cloth for 40 dinar, how much will 55 cubits cost?
\scriptstyle\frac{70}{40}=\frac{55}{X}
איש אשר ישאלך הנה קניתי ע' אמות בגד עבור מ' דינרים כמה מגיע לנ"ה אמות
First, write 70 cubits, then the price of the bargain, and then the 55 cubits, whose price you wish to know, as this:
אז תכתוב תחילה הע' אמות ואח"כ דמי הע' אמות ואח"כ הנ"ה אמות אשר בקשת לידע ערכיהן כזה
70
40
55
‫0ז
‫0ד
הה
Rule of Three: Multiply 55 by 40 and the result is 2200, as this:
ותכפול נ"ה על מ' פי' תמנה ותחשוב כמה עולה נ"ה פעמי' מ' והעולה הוא ב' אלפי' וב' מאות כזה
2 2 0 0
ב ב ‫0 ‫0
Then, divide 2200 by 70, meaning, divide according to the chapter of division: how many times 70 is in it? The division is 31 times 70 and 30 smaller parts of which 70 are a whole unit, i.e. a dinar.
ואח"כ תחלק ב' אלפי' לע'ע' פי' חלוק בשער החילוק כמה פעמי' ע' יש בהן והחילוק הוא ל"א פעמי' ע' ול' חלקי' קטני' שע' הם חלק אחד דהיינו דינר
We find the question that you were asked: when 70 cubits were bought for 40 dinar, how much will 55 cubits cost? [is solved by:] 31 dinar and 30 parts of which 70 are one dinar.
\scriptstyle{\color{blue}{X=\frac{55\sdot40}{70}=\frac{2200}{70}=31+\frac{30}{70}}}
נמצא השאלה ששואל לך כשקוני' ע' אמו' עבור מ' דינרי' כמה מגיע לנ"ה ע' אמות השב לו מגיע לו ל"א דינרי' ועוד ל' חלקי' שע' מהם עושה חלק שלם דהוא דינר
Check: If you think: where it is proven and where we are told it is so? Lest the ratio is not as you had calculated.
ואם תעלה על דעתך מאן מוכח ומאן לימא לן דכך הוא שמא הערך אינו כמו שחשבת
Think about the 15 cubits that exceed the 55, for from 55 to 70 there are 15.
\scriptstyle{\color{blue}{70-55=15}}
אז צא וחשוב הט"ו אמות העודפי' על הנ"ה כי מנ"ה עד ע' יש ט"ו
Evaluate: how much will 15 cubits cost, when 70 cubits are bought for 40 dinar?
\scriptstyle{\color{blue}{\frac{70}{40}=\frac{15}{y}}}
ותעריך כמה מגיע לט"ו אמות כשע' באות עבור מ' דינרי‫'
Here is how you do it:
והילך היאך תע תעשה
Write 70 cubits, then 15 cubits, as this:
תכתוב הע' אמות למעלה ואח"כ למטה הימנו המ' דינרי' ואח"כ הט"ו אמו' כזה
70
40
15
‫0ז
‫0ד
הא
Rule of Three: Multiply 15 by 40, meaning: think how much is 15 times 40? The result is 600
ותכפול הט"ו על המ' פי' חשוב כמה עולה ט"ו פעמי' מ' ועולה ו' מאות
Divide 600 to 70, meaning: count how many times 70 is in 600? The result is eight times 70 and 40 parts remain, of which 70 are a whole unit, meaning one dinar.
ואח"כ תחלוק ו' מאות לע' ע' פי' תמנה כמה פעמי' ע' ישנו בו' מאות ויעלה שמנה פעמי' ע' ועוד ישארו מ' חלקי' שע' מהן עושי' חלק שלם פי' דינר אחד
We find that when you buy 70 cubits for 40 dinar, 15 cubits are cost 8 dinar and 40 parts of which 70 are one dinar.
\scriptstyle{\color{blue}{y=\frac{15\sdot40}{70}=\frac{600}{70}=8+\frac{40}{70}}}
נמצא כשקנית ע' אמות עבור מ' דנרים מגיע לט"ו אמו' ח' א' דנרים ומ' חלקי' שע' מהם עושי' חלק שלם דינר
Above we calculated that 55 cost 31 dinar and 30 parts of which 70 are one dinar.
ולמעלה חשבנו שמגיע לנ"ה אמות ל"א דינרי' ול' חלקי' שע' מהן עושי' חלק שלם פי' דינר אחד
Now sum the prices together: 31 dinar and 8 dinar are 39 dinar.
עתה חבר הערך יחד ל"א דינרי' וח' דינרי' הרי ל"ט דינרים
Sum the 40 parts that remain for the 15 cubits with the 30 parts that remain for the 55, they are 70, i.e. a whole dinar.
ומ' חלקי' הנותרי' בט"ו ול' חלקי' הנותרי' בנ"ה צרפם יחד ויהיו ע' דהיינו דינר שלם
Add this dinar to the 39 and they are 40.
תן אותו דינר עם הל"ט ויהיו ארבעי‫'
We find that 55 cubits and 15 cubits cost 40 dinar.
נמצא שנ"ה אמות וט"ו אמות באות עבור מ' דינרי‫'
\scriptstyle{\color{blue}{\left(31\frac{30}{70}\right)+\left(8+\frac{40}{70}\right)=\left(31+8\right)+\left(\frac{30}{70}+\frac{40}{70}\right)=39+\frac{70}{70}=39+1=40}}
Sum 55 and 15, it is 70.
\scriptstyle{\color{blue}{55+15=70}}
צרוף נ"ה וט"ו ויהיה ע‫'
We find that now you know and understand that you calculated rightly and correctly.
נמצא שעכשיו אתה יודע ומבין שחשבת כדין וכשורה וד"ל
  • Another example: If a person asks you: I bought 100 barrels for 90 liṭra, how much will one barrel cost?
\scriptstyle\frac{100}{90}=\frac{1}{X}
[34]ערך אחר אם ישאלך אדם הנה קניתי ק' חבית בעד צ' ליטרין כמה מגיע לחבית אחת
First, write 100 barrels, then their price, i.e. 90 liṭra and beneath the 90 liṭra write one barrel, like this:
אז תכתוב תחילה הק' חבית ואח"כ דמיהן דהיינו הצ' ליטרין ותחת הצ' ליטרין תכתוב החבית האחד כזה
100
90
1
‫00א
‫0ט
א
Rule of Three: Multiply the bottom 1 by 90 that is above it, 1 times 90, the result is 90.
ותכפול א' התחתונה על הצ' שלמעלה הימנו א' פעמי' צ' יעלה תשעים
Then, divide the 90 by 100, meaning: how many times 100 is in 90? You will not get even one time 100. On the contrary, you are missing ten and this is the price of one barrel: 90 parts of which 100 are one liṭra.
\scriptstyle{\color{blue}{X=\frac{1\sdot90}{100}=\frac{90}{100}}}
ואח"כ תחלק אותה צ' לק"ק פי' מנה כמה פעמי' ק' יש בצ' ולא תשיג ידך אפי' פעם אחת ק' אדרבה חסר לך י' וזה הערך המגיע לחבית א' צ' חלקי' שק' מהן עולין לטרא
This our teacher R. Wiesel found in another book, in these words.
זה מצא מהר"ר וייזיל בספר אחר וכך לשונו
In my opinion there is no need for this premise, as a person does not think of dividing 90 parts of which 100 are a whole unit.
ולפי דעתי שאין צריך לטעם זה כי אין מחשבתו של אדם לחילוק צ' חלקי' שק' מהן חלק אחד
The premise that is more appropriate, in my opinion, in the Gentile calculations also, is as I will write below concerning the question "100 barrels for 90 liṭra, how much will one [barrel] cost?"
וזה הטעם ראוי יותר בעיני גם חשבונ' של גוים נמי כזה שאכתוב הנה שאלת ק' חבית בעד ק' חבית בעד צ' ליטרי' כמה מגיע לאחד
Write like this:
כתוב כזה
100
90
1
‫00א
‫0ט
א
Think in your mind: how many pešuṭim there are in 90 liṭra, if in one liṭra there are 20 pešuṭim?
חשוב בדעתך כמה פשי' יש בצ' ליטרי' אם הין אחד כ' פשי‫'
Rule of Three: Multiply 20 times 90, the result is 1800, as this:
חשוב ב' פעמי' ב' ויעלה ח' מאות ואלף כזה
1 8 0 0
א ח ‫0 ‫0
Think according to the chapter of division: how many times 100 is in 1800? You will find 18 times exactly and so is the price: 18 pešuṭim for one barrel.
\scriptstyle{\color{blue}{X=\frac{1\sdot\left(90\sdot20\right)}{100}=\frac{1800}{100}=18}}
חשוב בשער החילוק כמה פעמי' מאה יש בח' מאות ואלף ותמצא י"ח פעמי' מכוון כך היא החשבון י"ח פשי' לאחד
And if you have small parts remaining, say: such and such parts, of which so and so are a whole unit, meaning one pašuṭ. Note well.
ואם ישארו לך חלקי' בקטני' אמור כך וכך חלקי' שכך וכך עלו לחלק שלם פי' לטרא ודו"ק
We wish to evaluate: ערך אחר הנה בקשנו להעריך
  • If a person asks: I bought 19 cubits of cloth for 13 dinar, how much will 13 cubits cost?
\scriptstyle\frac{19}{13}=\frac{13}{X}
אם ישאל אדם קניתי י"ט אמות בגד עבור י"ג דינרי' כמה מגיע לי"ג אמות
Evaluate as follows:
אז תעריך כך
First, write 19 cubits, then their price, i.e. 13 dinar, then 13 cubits, like this:
כתוב תחילה י"ט אמות ואח"כ דמיו דהיינו י"ג דינרי' ואח"כ י"ג אמות כזה
19
13
13
טא
גא
גא
Rule of Three: Multiply 13 above by 13 below, meaning: calculate how much is 13 times 13, you will find that the result is 169, as this:
ותכפול י"ג של מעלה על י"ג שלמטה פי' מנה כמה עולה י"ג פעמי' ותמצא שיעלה קס"ט כזה
1 6 9
א ו ט
Then, divide 169 by 19, meaning: how many times 100 is in 1800? You will find that there are 8 times 19 in it and 17 parts remain, of which 19 are a whole unit.
ואז תחלק קס"ט לי"ט י"ט פי' מנה כמה פעמי' י"ט בקס"ט ותמצא שיש בו שיש בו ח' פעמי' י"ט ונשארו י"ז חלקי' שי"ט מהן עולה חלק אחד
This is the price of 13 cubits: when 19 cubits are bought for 13 dinar, 13 cubits cost 8 dinar and 17 parts, of which 19 are a whole unit, i.e. one dinar.
\scriptstyle{\color{blue}{X=\frac{13\sdot13}{19}=\frac{169}{19}=8+\frac{17}{19}}}
וזה הערך המגיע לי"ג אמות כשקוני' י"ט אמות עבור י"ג דינרי' ח' דנרים וי"ז חלקי' קטני' שי"ז מהן עולין חלק אחד דהיינו דינר אחד
Likewise, if you wish to evaluate a large amount of merchandise through a small amount of merchandise, I will teach how: וכן אם תרצה להעריך מקח גדול אחד ממקח קטן אשכילך היאך תעשה
  • I bought 21 cubits of cloth for 43 dinar, how much will 65 cubits cost?
\scriptstyle\frac{21}{43}=\frac{65}{X}
אם ישאל השואל הנה קניתי כ"א אמות בגד עבור מ"ג דינרי' כמה מגיע לס"ה אמות
First, write 21 cubits, then 43 dinar, then 65 cubits that you wish to evaluate, like this:
כתוב בתחילה הכ"א אמות ואח"כ המ"ג דינרי' ואח"כ הס"ה אמות ‫[35]אשר בקשת לחשוב כזה
small amount of merchandise 21
price 43
large amount of merchandise 65
מקח קטן אב
מעות גד
מקח גדול הו
Rule of Three: Multiply 65 by 43, meaning how much is 43 times 65, the result is 2795.
ותכפול ה"ו על ג"ד פי' כמה עולה ג"ד פעמי' ה"ו ויעלה הטז"ב הטז"ב
Then, divide 2795 according to the chapter of division: how many times 21 is [in it]? You find that there are 133 times 21 in it and 2 parts remain, of which 21 are a whole unit, i.e. one dinar.
ואח"כ חלוק הטז"ב בשער החילוק כמה פעמי' שיש בהן א"ב ותמצא ג'ג'א' פעמי' ועוד נשארו ב' חלקי' קטני' שא"ב מהן עושי' חלק אחד דהיינו דינר
We find that if you bought 21 cubits for 43 dinar, 65 cubits cost 133 dinar and 2 parts, of which 21 are one dinar.
\scriptstyle{\color{blue}{X=\frac{65\sdot43}{21}=\frac{2795}{21}=133+\frac{2}{21}}}
נמצא אם קנית א"ב אמות עבור ג"ד דנרי' מגיע לה"ו אמות ג'ג'א' דינרי' וב' חלקי' שא"ב מהן דינר
Check: If you wish to know if you calculated correctly or not.
ואם תרצה לידע אם אמת חשבת אם לאו
See by how much 65 exceeds 21, i.e. by 44.
\scriptstyle{\color{blue}{65-21=44}}
הבט וראה כמה ה"ו עולה יותר מא"ב דהיינו ד"ד
Rule of Three: [Multiply] 44 by 43, according to the chapter of division, meaning: 43 times 44, i.e. 1892.
השליכהו בשער הכפל על ג"ד פי' ג"ד פעמי' ד"ד דהיינו בטח"א
Then, divide it, according to the chapter of division: how many times 21 is in it? We find 90 times and 2 small parts remain, of which 21 is a whole unit.
\scriptstyle{\color{blue}{\frac{44\sdot43}{21}=\frac{1892}{21}=90+\frac{2}{21}}}
ואח"כ חלקיהו בשער החילוק כמה פעמי' יש בהן א"ב ותמצא 0"ט פעמי' ועוד נשארו ב' חלקי' קטני' שא"ב מהן חלק אחד שלם
Add 90 and 2 small parts to 43, i.e. the dinar for the 21 cubits, and it is 133 and 2 small parts, like this:
\scriptstyle{\color{blue}{43+\left(90+\frac{2}{21}\right)=133+\frac{2}{21}}}
חבר 0"ט וב' חלקי' קטני' על ג"ד דהיינו הדינרי' השייכי' לא"ב זהו ויהיה גג"א וב' חלקי' קטני' כזה
133
2
43
90
גגא
ב
גד
‫0ט
So, the calculation is correct. Note well.
והיינו כוונת החשבון ולמבין די

Boiling Problem

A question that is derived from this chapter on proportion:
שאלה היוצא משער הערך הזה
  • You have 50 se'ah [1 se'ah = ca. 22 liter], and you say: when I boil them on fire, while boiling 7 se'ah evaporate each day, if 5 se'ah overflowed, and we reduce the heat accordingly, how much will be evaporated from the remaining 45 se'ah each day?
\scriptstyle\frac{50}{7}=\frac{50-5}{X}
\scriptstyle\frac{50}{7}=\frac{45}{X}
הנה לפניך נ' סאין מים ואם אתה ש' אבשל אות' על האור מתבשלין ונחסרי' בכל יום ז' סאין ועתה שואלי' ועתה אם נשכפו ה' סאין ואנו ממעטי' האור לפי זה כמה יחסרו המ"ה סאין הנותרי' ביום אחד
Here is how you do it:
הילך היאך תעשה
First, write 50 se'ah, then write 7 se'ah that evaporate each day and beneath the 7 se'ah write the remaining 45 se'ah, like this:
תכתוב תחילה הנ' סאין ואח"כ תכתוב הז' סאין הנחסרי' ביום אחד ותחת הז' סאין תכתוב המ"ה סאין הנשארי' כזה
50
7
45
‫0ה
ז
הד
Rule of Three: Multiply what is beneath by 7 that is above it, meaning, calculate: how much is 45 times 7? The result is 315.
ותכפול מ"ה שלמטה על ז' שלמעלה הימנה פי' חשוב כמה עולה מ"ה פעמי' ז' ויעלה שט"ו
Divide it by 50, meaning, calculate: how many times 50 there are in 315? You find in it 6 times 50 and 15 parts remain, of which 50 is a whole unit.
\scriptstyle{\color{blue}{X=\frac{45\sdot7}{50}=\frac{315}{50}=6+\frac{15}{50}}}
תחלוק אות' שט"ו לנ' פי' כמה פעמי' יש בשט"ו ותמצא בו ו' פעמי' נ' ועוד נשארו ט"ו חלקי' קטני' שנ' מהן חלק אחד שלם
We find that when 50 se'ah are reduced by 7 se'ah each day, 45 se'ah are reduced by 6 se'ah and 15 parts, of which 50 are a whole se'ah.
נמצא כשנ' סאין יחסרו ז' סאין ביום אחד מ"ה סאין יחסרו ו' סאין וט"ו חלקי' קטני' שנ' מהן סיאה שלם
Another question:
שאלה אחרת
  • If one asks: there are 91 se'ah of water, when boiling on fire 9 se'ah evaporate each day, if we add to them 11 se'ah more, so there are now 102 se'ah and we increase the heat accordingly - since, if we would not increase the heat, the water would not evaporate according to this calculation, as the heat is not dominant much when the water is plentiful as when the water is low, hence when adding water, one should increase the heat, and if the water is reduced, one should reduce the heat - back to the question asked: how much will be evaporated from the 102 se'ah each day?
\scriptstyle\frac{91}{9}=\frac{91+11}{X}
\scriptstyle\frac{91}{9}=\frac{102}{X}
אם ישאל השואל הנה יש צ"א סאין מים ואם מתבשלין על האור יחסרו ביום אחד ט' סאין ואם נוסיף עליהם עוד י"א סאין שיהיה הכל ק"ב סאי' ואנו מרבין את האש לפי זה שאם לא היינו מרבי' את האש אז לא היו המים מתמעטי' וחסירי' לפי החשבון הזה כי האור אינו שולט כל כך כשהמים הרבה כמו שאם היו המים מועטי' לפיכך כשמרבי' המים אז ‫[36]צריכי' להרבות האש או אם מתמעטי' אז צריכי' למעט האש

נחזור לשאלה ששאלנו כמה יחסרו ק"ב סאין ביו' אחד כשצ"א חסירי' ט' סאין

Here is how you do it:
הילך היאך תעשה
First, write 91 se'ah, then write 9 se'ah, then 102 beneath, like this:
תכתוב תחילה הצ"א ואח"כ הט' ואח"כ הק"ב כזה
91
9
102
אט
ט
ב0א
Rule of Three: Multiply 102 beneath by 9 above, meaning: how much is 9 times 102? The result is 918.
ותכפול ק"ב שלמט' על ט' שלמעלה פי' כמה עולה ט' פעמי' ק"ב ויעלה תתקי"ח
Divide 918 by 91, meaning: how many times 91 there are in 918? There are 10 times 91 and 8 small parts, of which 91 is a whole unit.
\scriptstyle{\color{blue}{X=\frac{102\sdot9}{91}=\frac{918}{91}=10+\frac{8}{91}}}
תחלוק תתקי"ח לצ"א פי' כמה פעמי' צ"א יש בתתקי"ח והיינו י' פעמי' צ"א וח' חלקי' קטנים שצ"א מהן חלק שלם
We find that when 91 [se'ah] are reduced by 9 se'ah each day, 102 [se'ah] are reduced by 10 se'ah and 8 parts, of which 91 are a whole [unit].
נמצא כשצ"א חסירי' ביום אחד ט' סאין יחסרו ק"ב י' סאין וח' חלקי' שצ"א מהן עולי' חקל שלם
The checking procedure is as written above regarding the cloth. והמאזנים על זה כמו שכתבתי לעיל עם הבג‫'
This is the rule: the [boiling] water problems are similar to the cloth [pricing] problems, therefore their checking procedure and solving method are similar. זה הכלל זה השאלות עם המים אות באות כמו השאלו' עם הבגד לכן יש להם מאזני צדק אחד וחשבון אחד ול"ד

Find a Quantity Problems - Whole from Parts

Many sciences and problems are derived from this chapter that cannot be counted. והרבה חכמות ושאלות יוצאין משער זה אשר לא יוכל הסופר לכתוב
Now, I will explain a few of them with God's help. ועתה אפרש קצת ממנה בע"ה
I start by saying: ‫[ובזה אתחיל ואומר]‫[37]
Tree
  • 1) You have a tree - a half of it is [ingrained] in the ground, a third of it is in the water, and 5 cubits of it are up above the water, how much is the length of the whole tree?
\scriptstyle\frac{1}{2}X+\frac{1}{3}X+5=X
א הנה לך אילן שחציו בארץ ושלישיתו במים ומעל המים הוא ה' אמות

כמה ארכו של כל האילן

Here is how you do and understand the matter:
הילך היאך תעשה ותבין העניין
Common denominator: think, which is the smallest number that is divisible into 2 parts and 3 parts? It is 6.
חשוב כל כך איזה חשבון הקרוב שיכולין לחלק לשני חלקי' ולג' חלקי' זה ו‫'
Subtract a half from 6; 3 remains. Subtract also a third; 1 remains.
\scriptstyle{\color{blue}{6-\left(\frac{1}{2}\sdot6\right)-\left(\frac{1}{3}\sdot6\right)=3-\left(\frac{1}{3}\sdot6\right)=1}}
הסר מן ו' החציה וישאר ג' הסר ג"כ השלישי וישאר א‫'
Write the 1 first; after it, to the left, write 6; and beneath the 1 write 5 cubits, like this:
אותה א' תכתוב תחילה ואחריה בצד שמאלית אצל הא' תכתוב ו' ותחת הא' תכתוב ה' אמות כזה
6 1
  5
ו א
  ה
Rule of Three: Multiply the 5 beneath the 1 by 6 that is next to the 1 on the top row, meaning: count how much is 5 times 6. The result is 30.
ותכפול ה' שתחת הא' על ו' שעומד אחר הא' בשיטה עליונה פי' מנה כמה עולה ה' פעמי' ו' והעולה הוא ל‫'
Divide the 30 by 1, meaning: count how many times 1 there are in 30. It is a thing known to all that there are 30 times 1 in 30. Thus, this is the length of the tree, about which you ask: if [its half] is [ingrained] in the ground, its third is in the water, and 5 cubits [of it] are up above the water, and you ask how much is its length? Its length is 30 cubits, as this diagram:
\scriptstyle{\color{blue}{X=\frac{5\sdot6}{1}=\frac{30}{1}=30}}
אות' ל' תחלק לא'א' פי' מנה כמה פעמי' א' יש בל' ודבר ידוע הוא לכל שיש בל' ל' פעמי' א' וזהו אורך האילן אשר שאלת אם תצא בארץ ושלישו עומד במים ומעל המים הוא ה' אמות וששאלת כמה ארכו הנה ארכו ל' אמות והדמיון כך כזה
3 0
ג ‫0
Check: If you fear that is not so, take a lance, whose length is 30 cubits.
ואם אתה ירא שאינו כך אז קח רומח שארכו ל' אמו‫'
Subtract its half from it; it is 15.
הסר ממנו חציו זהו ט"ו
Then, subtract a third from it; it is ten.
אח"כ הסר ממנו השליש זהו עשרה
[Ten] and 15 are 25.
וט"ו הרי כ"ה
We find that the remainder is but 5 cubits.
\scriptstyle{\color{blue}{30-\left(\frac{1}{2}\sdot30\right)-\left(\frac{1}{3}\sdot30\right)=30-15-10=30-25=5}}
נמצא שאין נשאר כ"א ה' אמות
Another example, in order that the reader will be well taught in it and understand its virtues and profit, and it is the question asked: דומיון אחר למען ירוץ הקורא בו ויבין מעלתו וטובו והוא שאלה ששואלין
Lance
  • A lance is standing one third, a quarter, and one fifth [embedded] in the ground, and its length above the ground is 7 cubits, how much is the length of the whole lance?
\scriptstyle\frac{1}{3}X+\frac{1}{4}X+\frac{1}{5}X+7=X
הנה לך רומח שעומד השליש והרביעי' והחומש בארץ ולמעלה מן הארץ ארכו ז' אמות

כמה ארכו של כל הרומח

Common denominator: think of a number that has a third, a quarter and a fifth; it is 60, which is divisible by 3, 4 and 5.
אז חשוב איזה חשבון שיש בו [38]שליש ורביע וחומש וזהו ס' שיכולי' לחלק לג' ולד' ולה‫'
Subtract from a third from 60; it is 20.
\scriptstyle{\color{blue}{\frac{1}{3}\sdot60=20}}
והסר מס' שליש וזהו כ‫'
Subtract also a quarter; it is 15.
\scriptstyle{\color{blue}{\frac{1}{4}\sdot60=15}}
הסר כמו כן הרביע הוא ט"ו
Subtract also a fifth; it is 12.
\scriptstyle{\color{blue}{\frac{1}{5}\sdot60=12}}
והסיר ג"כ החומש זהו י"ב
The total is 47.
\scriptstyle{\color{blue}{20+15+12=47}}
ס"ה מ"ז
You are left with 13 from the 60.
\scriptstyle{\color{blue}{60-47=13}}
עוד נשאר לך מס' י"ג
First, write the remaining 13. After the 13, slightly far from it, write the 60 and beneath the 13 write 7 cubits of the lance above the ground, like this:
אז תכתוב תחלה י"ג שנשארו ואחר הי"ג בצדו רחוק מעט תכתוב הס' ותחת הי"ג תכתוב ז' אמות שהרומח עומד למעלה מן הארץ ויהיה כך
60 13
  7
‫0ו גא
  ז
Rule of Three: Multiply 7 below by 60 on the top row, meaning: count how much is 7 times 60. The result is 420.
תכפול ז' שלמטה על 0"ו שבשיטה עליונה פי' חשוב ומנה כמה עולה ז"פ 0"ו ויעלה ת"ך
Divide the 420 by 13, meaning: count how many 13 there are in 420. You find that there are 32 times 13 in it and 4 remains that cannot become 13, which are 4 parts of 13 in a whole unit.
\scriptstyle{\color{blue}{X=\frac{7\sdot60}{13}=\frac{420}{13}=32+\frac{4}{13}}}
תחלק ת"ך לי"ג י"ג פי' חשוב ומנה כמה י"ג יש בת"ך ותמצא שיש בו ל"ב פעמי' י"ג ועוד נשארו ד' שלא יכולנו לעשות מהם י"ג והם ד' מי"ג בשלם
We find that the required lance, whose third, quarter, and fifth are [embedded] in the ground, and its [length] above the ground is 7 cubits, and you ask how much is the length of the whole lance? - its length is 32 cubits and 4 parts, of which 13 is a whole unit.
נמצא שהרומח ששאלת כשהשליש והרביע והחומש בארץ ולמעלה מן הארץ אכרו ז' אמות ושאלת כמה אורך של כל הרומח ארכו ל"ב אמות וד' חלקי' שי"ג מהן חלק שלם
Wall
  • 2) Another question: a wall whose base is buried 5 cubits in the ground, and it is a half, one third, and a seventh up above the ground, how much is the height of the whole wall?
\scriptstyle\frac{1}{2}X+\frac{1}{3}X+\frac{1}{7}X+5=X
ב שאלה אחרת הנה חומה שיסודה שקוע' בקרקע ה' אמו' ולמעלה מן הארץ היא גבוה החציה והשלישי והשביעי‫'

כמה גובהה של כל החומה

Common denominator: think, which is the number that can be easily divided by 2, 3 and 7.
אז חשוב איזה חשבון שיכולין לחלקו לב' ולג' ולז' בקל לפי רגע
Here is a way how you can find this number that is divisible by 2, 3 and 7: count 7 times 3, the result is 21.
והנה לך דרך היאך תמצא אותו חשבון המתחלק לב' ולג' ולז' תמנה זפ"ג כמה כ"א
21 times two are 42. Thus, 42 is divisible by two, three and seven.
\scriptstyle{\color{blue}{2\sdot3\sdot7=2\sdot21=42}}
כ"א פעמי' שנים כמה הם מ"ב הרי שמ"ב מתחלקי' לשנים ולשבעה ולשלשה
Or, by this way and all is the same: 2 times 3 are 6; 6 times 6 are 36; and you already have a 6, so sum 6 with 36, it is 42.
\scriptstyle{\color{blue}{2\sdot3\sdot7=\left(6\sdot6\right)+6=36+6=42}}
‫[או כלך לדרך זו והכל אחד ב' פעמים ג' הרי ו' ו' פעמים ו' הרי ל"ו וכבר היו לך ו' צרוף ו' עם ל"ו הרי מ"ב הוא‫]
Or, by this way and all is the same: calculate 2 times 3; it is 6. 6 times 7 is 42.
\scriptstyle{\color{blue}{2\sdot3\sdot7=6\sdot7=42}}
או נלך לדרך זו והכל אחד חשוב בפ"ג הרי ו' ו'פ"ז הרי מ"ב
We find that 42 is divisible by seven, [three, and two].
נמצא שמ"ב הוא דבר המתחלק הוא לשביעיו' או לתשיעיות ולעשיריו‫'
Finding the least common multiple: likewise, when you are asked for a thing that is divisible by seven, nine, ten, or any thing else that is divisible, always multiply this divisor by the other.
‫[וכן לעולם כשישאלך דבר המתחלק לשביעי ולתשיעי ולעשירי‫] או לכל דבר המתחלק אז תכפול אותו חלק על האחד
For instance, if one asks for a thing that is divisible by ten and nine: multiply 10 by 9, meaning: count how much is 10 times 9.
\scriptstyle{\color{blue}{10\sdot9}}
כגון אם שאל דבר המתחלק לעשיריו' ולתשיעיו' אז תכפול י' על ט' פי' מנה כמה עולה י' פעמי'‫'
If you are asked for a thing that is divisible by five and four, or hundreds, or thousands; or any thing that is divisible, multiply one by the other, or any thing that one wants it to be divisible by such and such, multiply one by the other.
ואם ישאלך דבר המתחלק לחמישיות ולרביעיו' או למאות ולאלפי' או לכל דבר המתחלק תכפול זה על זה או לכל דבר שישאל השואל שמתחלק כך וכך תכפול זה על זה
If one asks for a thing divisible by 3, 4, and 5: multiply 3 by 4, then multiply the result by 5; or vice versa, multiply 5 by 4 first, then multiply the result by 3.
\scriptstyle{\color{blue}{3\sdot4\sdot5}}
ואם ישאל השואל דבר המתחלק לג' ד' וה' אז תכפול ג' על ד' והעולה שיעלה תכפול על ה' או איפכא תכפול תחילה ה' על ד' והעולה שיעלה בידך תכפול על ג‫'
Returning to our question above: the wall that is a half, one third, and a seventh up above the ground and its base is buried 5 cubits in the ground, how much is the height of the whole wall?
ועתה נחזור לשאילתינו דלעיל החומה אשר היא חצייה ושליש ושביעי' גבוה על הקרקע ויסודה שקועה בקרקע ה' אמות כמה גובהה של כל החומה
We find that we aske for a thing that is divisible by 2, 3 and 7: 2 times 3 is 6 and 6 times 7 is 42. We find that 42 is a number divisible by 2, 3 and 7.
\scriptstyle{\color{blue}{2\sdot3\sdot7=6\sdot7=42}}
נמצא ששאלנו על דבר המתחלק ‫[39]לב' ולג' ולז' ב"פ ג' היינו ו' ופ"ז היינו מ"ב

נמצא שמ"ב הוא חשבון המתחלק לב' ולג' ולז‫'

Now, we subtract from 42 a half; it is 21.
\scriptstyle{\color{blue}{\frac{1}{2}\sdot42=21}}
ועתה נסיר החציה ממ"ב והוא כ"א
We subtract also a third from 42; it is 14.
\scriptstyle{\color{blue}{\frac{1}{3}\sdot42=14}}
נסיר כמו כן השליש ממ"ב זהו יהיה מ"ב י"ד
We subtract also a seventh from 42; it is 6.
\scriptstyle{\color{blue}{\frac{1}{7}\sdot42=6}}
נסיר כמו כן השביעי' ממ"ב זהו יהיה ו‫'
The total is 41.
\scriptstyle{\color{blue}{21+14+6=41}}
ס"ה מ"א
1 remains from the 42.
\scriptstyle{\color{blue}{42-41=1}}
עוד נשאר ממ"ב א‫'
We find that if we would have asked for the height of a wall whose base is buried one cubit in the ground and its half, its third and its seventh are above the ground, the height of the whole wall would have been 42 cubits.
נמצא אם היינו שואלי' גובה החמה שיסודה שקוע אמה אחת וחצי ושלישי' ושביעי' למעלה למעלה מן הקרקע אז יהיה ש גובהה של כל החומה מ"ב אמות
Now, we need to learn and evaluate how much it is for 5 cubits, meaning when it is buried 5 cubits in the ground.
אבל עכשיו צריכין אנו ללמוד ולהעריך כמה מגיע לה' אמו' פי' שיהיה שקוע ה' אמות בקרקע
Do the ratio as follows:
וכן נעשה הערך
First, write one cubit, then, slightly far from it, we write 42 cubits, and beneath the one cubit we write the 5 cubits we have asked for, like this:
נכתוב תחיל' האמה האחת ואח"כ רחוק ממנו מעט נכתוב מ"ב אמות ותחת האמה האח' נכתוב הה' אמות ששאלנו ויהיה כך
42 1
  5
בד א
  ה
Rule of Three: We multiply 5 by 42, meaning: we count how much is 5 times 42. The result is 210.
נכפול ה' על מ"ב פי' נמנה כמה עולה ה' פעמי' מ"ב והעולה הוא ר"י
We divide 210 by 1, meaning: count how many 1 there are in 210. We find that there are 210 times 1 in it and this is the height we asked for. Like this:
\scriptstyle{\color{blue}{X=\frac{5\sdot42}{1}=\frac{210}{1}=210}}
נחלק ר"י לא'א' פי' נמנה כמה פעמי' א' יש בר"י ונמצא בו ר"י פעמים א' והנה גובה החומה ששאלנו והדמיון כך
2 1 0
ב א ‫0
Here you have another short way how you can know the height of the whole wall, when it is buried 5 cubits in the ground, and its half, its third, and its seventh are up above the ground:
וזה לך דרך אחר בקוצר היאך תוכל לידע כמה גובהה של כל החומה כשהיא משוקעת בארץ ה' אמות ולמעלה מן הקרקע היא גבוה החציה ושליש ושביעי‫'
Take 2 times 5, it is 10; 10 times 3, it is 30; 30 times 7, it is 210.
תקח ב' פעמי' ה' הרי י' י' פעמי' ג' הרי ל' פעמי' ז' הרי ר"י
Or, 2 times 5, it is 10; 10 times 3, it is 30; 30 times 7, it is 210.
\scriptstyle{\color{blue}{X=2\sdot5\sdot3\sdot7=10\sdot3\sdot7=30\sdot7=210}}
או נלך לדרך זו ב' פעמי' ה' הרי י' יפ"ג ג' הרי ל' לפ"ז הרי ר"י

Joint Purchase Problems - If You Give Me

  • 3) Another question: there is a fish to sell, and 3 people want to buy it.
One of them said to his friends: I will give all that I have and each of you will give a half of his and the fish is paid.
The second said: I will give all that I have and each of you will give one third.
The third said: I will give all that I have and each of you [will give] a quarter.
Now it is asked: for how much is the fish being sold and how much does each of them have?
ג הא לך שאלה אם אדם אחד אומר לך הנה יש כאן דג אחד למכור והנה ג' פעמי' בני אדם רוצים לקנותו

ואחד מהן אמר לחבירו אתן כל אשר לי וכל אחד מכם יתן החציה ממה שלו ואז יהיה הדג פרוע
והשני אמר אתן כל אשר לי וכל אחד מכם יתן השליש
והשלישי אמר אתן כל אשר לי וכל אחד מכם הרביעי‫'
ועתה שואלי' בכמה רוצי' ליתן הדג או כמה יש לכל אחד ואחד

\scriptstyle\begin{cases}\scriptstyle a+\frac{1}{2}\sdot\left(b+c\right)=17\\\scriptstyle b+\frac{1}{3}\sdot\left(a+c\right)=17\\\scriptstyle c+\frac{1}{4}\sdot\left(a+b\right)=17\\\end{cases}
Answer: they want to pay 17 pešuṭim for the fish.
תשובה הדג רוצי' ליתן עבור י"ז פשי‫'
The first has 5 pešuṭim [\scriptstyle{\color{blue}{a=5}}].
והראשון יש לו ה' פשי‫'
The second has 11 pešuṭim [\scriptstyle{\color{blue}{b=11}}].
והשני י"א פשי‫'
The third has 13 pešuṭim [\scriptstyle{\color{blue}{c=13}}]
והשלישי יש לו י"ג פשי‫'
This is for integers.
זהו בשלימי‫'
But, for fractions: such as if one asks when the fish is bought for 8 pešuṭim, or for 9 pešuṭim , or for 30 pešuṭim , or for 1 pašuṭ, or for whichever amount of money he wish to ask, and for that amount asked:
One said: I will give all that I have and you will give a half of yours.
The second said: I will give all that I have and you will give one third of yours.
The third said: I will give all that I have and you will give a quarter of yours.
How much does each of them have, given that this is the amount?
אבל השברי' כגון אם ישאל השואל כשהדג נקנה עבור ח' פשי' או ט' פשי' או י"ח פשי' או ל' פשי' או מ' פשי' או איזה סכום שירצה לשאול

[40]ולאותו סכום ששואל אמר האחד אתן כא"ל ואתם תנו שליש שלכם
והשלישי אמר אתן כא"ל ואתם תנו הד' שלכם
כמה יהיה לכל אחד ואחד ויהיה הסכום שוה

Here I will write you two or three examples, so you can understand everything such as that:
והנה אכתוב לך ב' או ג' דמיונות כדי שתוכל להבין כל כיוצא בזה
  • If the fish is bought for 8 pešuṭim and the first says as above and so does the second and the third
אם הדג נקנה עבור ח"פ ואמר הראשון אתן כא"ל ואתם תנו החציה שלכם והשני אמר תנו הג' שלכם והשלישי אמר תנו הרביעי
\scriptstyle{\color{OliveGreen}{\begin{cases}\scriptstyle A+\frac{1}{2}\sdot\left(B+C\right)=8\\\scriptstyle B+\frac{1}{3}\sdot\left(A+C\right)=8\\\scriptstyle C+\frac{1}{4}\sdot\left(A+B\right)=8\\\end{cases}}}
The first should have 2 pešuṭim and six parts, of which 17 are a whole unit.
\scriptstyle{\color{blue}{A=2+\frac{6}{17}}}
צריך שיהא לראשון ב"פ וששה חלקי' שי"ז מהן עושי' חלק שלם
The second should have 5 pešuṭim and 3 parts, of which 17 are a whole unit.
\scriptstyle{\color{blue}{B=5+\frac{3}{17}}}
ולשני ה"פ וג' חלקי' שי"ז מהן עושי' חלק שלם
The third should have 6 pešuṭim and 2 parts, of which 17 are a whole unit.
\scriptstyle{\color{blue}{C=6+\frac{2}{17}}}
‫[ולשלישי ו' פשיטי' וב' חלקים שי"ז עושין חלק שלם‫]
Now, I will show you the way, by which you will see that it is so:
ועתה אראה לך הדרך שתמצא שכן הוא
Rule of Three: if it were with integers, the first would have had 5 pešuṭim, as I explained above. Now that it is with fractions and the fish is bought for 8 pešuṭim:
\scriptstyle{\color{blue}{5:17=8:A}}
הנה אם היה בשלימי' אז היה לראשון ה"פ כמו שפירשתי לעיל

ועתה שהוא בשברי' ועתה כשהדג נקנה בח' פשי‫'

You should multiply, according to the chapter of multiplication, 8 times 5; it is 40.
אתה צריך להטותו בשער הכפל חפ"ה זהו מ‫'
Then, you should divide it, according to the chapter of division: how many times 17 there are in 40? There are 2 times and six remains, which is less than 17 that is a whole unit.
ואח"כ צריך אתה להטותו בשער החילוק ולחלק כמה פעמי' י"ז יש במ' והנה יש ב"פ וששה עודפי' שלא הגיע לששה לי"ז שהן חלק שלם
We find that the first has 2 pešuṭim and six parts, of which 17 are a whole unit.
\scriptstyle{\color{blue}{A=\frac{8\sdot5}{17}=\frac{40}{17}=2+\frac{6}{17}}}
נמצא שיש לראשון ב"פ וששה חלקי' שי"ז מהן חלק שלם
Now, we will explain how much does the second have:
ועתה נפרש כמה שיש לשיני
Rule of Three: if it were with [integers], he would have had 11 pešuṭim. Now that it is with fractions, say as you have said for the first:
אם היה בשליש' כמה היו לו י"א

עתה שהוא בשברי' אז תאמר לו כמו שאמרת לראשון

For the first you have said: "8 times 5". So, for the second say: 8 times 11; the result is 88.
פי' לראשון אמרת ח' פ"ה כן תאמר לשני ח"פ י"א והעולה פ"ח
Then, divide 88 by 17, meaning: how many times 17 there are in 88? There are 5 times 17 in it and 3 remains.
ואח"כ תחלוק פ"ח לי"ז י"ז פי' כמה פעמי' י"ז יש בפ"ח ו והנה יש בו ה' פעמי' י"ז וג' עודפי‫'
We find that the second has 2 pešuṭim and 3 parts, of which 17 are a whole unit.
\scriptstyle{\color{blue}{B=\frac{8\sdot11}{17}=\frac{88}{17}=5+\frac{3}{17}}}
ג' נמצא שיש לשני ה"פ וג' חלקי' עודפי' שי"ז מהן עולין חלק שלם
Do the same for the third:
וכן תעשה לשלישי
Rule of Three: say: if it were with integers, he would have had 13 pešuṭim. Now that it is in fractions, say: 8 times 13 is 104.
ותאמר אם היה בשלימי' היו לו י"ג פשי‫'

ועכשיו שהוא בשברי' אז תאמר לו ח' פעמי' י"ג הרי ק"ד

Then, [divide] 104 by 17, [meaning]: how many times 17 there are in 104? You find that there are 6 times 17 in it and 2 remains.
ואח"כ [תחלק] ק"ד לי"ז י"ז [פי'] כמה פעמי' י"ז יש בק"ד ותמצא בו ו' פעמי' שי"ז [ב'] מהן עודפי‫'
We find that the third has 6 pešuṭim and 2 parts, of which 17 are a whole unit.
\scriptstyle{\color{blue}{C=\frac{8\sdot13}{17}=\frac{104}{17}=6+\frac{2}{17}}}
נמצא שיש לשלישי ו"פ וב' חלקי' שי"ז מהן חלק שלם
  • If the question concerns a fish that is bought for 30 pešuṭim.
ואם השאלה מדג הנקנה בל' פשי‫'
\scriptstyle{\color{OliveGreen}{\begin{cases}\scriptstyle A+\frac{1}{2}\sdot\left(B+C\right)=30\\\scriptstyle B+\frac{1}{3}\sdot\left(A+C\right)=30\\\scriptstyle C+\frac{1}{4}\sdot\left(A+B\right)=30\\\end{cases}}}
Say: 30 times [5] for the first, and write the result. Then divide it by 17, as I instructed you.
\scriptstyle{\color{OliveGreen}{A=\frac{30\sdot5}{17}}}
אז תאמר לראשון ל' פעמי' והעולה כתוב ואח"כ תחלקיהו כמו שציויתיך
Likewise for the second and for the third as above.
וכן לשני וכן לשלשי כדלעיל
Now, that I wrote above that the first has 5 pešuṭim, the second 11 and the third 13 in integers, I shall show you the way by which you find that the total is indeed so, that all have 29.
ועתה כתבת לעיל שיש לראשון ה' ולשני י"א ולשלישי י"ג בשלימי' הנה אראך הדרך שתמצא ‫[41]שהכלל כך הוא של כולם יש כ"ט
\scriptstyle\begin{cases}\scriptstyle X+\frac{1}{2}\sdot\left(Y+Z\right)=a\\\scriptstyle Y+\frac{1}{3}\sdot\left(X+Z\right)=a\\\scriptstyle Z+\frac{1}{4}\sdot\left(X+Y\right)=a\\\end{cases}
\scriptstyle{\color{blue}{5+11+13=29}}
Take three numbers such that when you subtract from them a half, a third, and a quarter, you are left with 3; they are: 4, 4 and a half, 6.
קח ג' חשבונות כשתסיר מהן החציי' והשליש והרשביעי' וישאר בידך ג' ואילו הן ד'ד' וחצי ו‫'
Subtract the quarter from 4; [3 remains].
\scriptstyle{\color{blue}{4-\left(\frac{1}{4}\sdot4\right)=3}}
תסיר הרביע מן הד' [וישאר ג‫']
The third from 4 and a half; [3 remains].
\scriptstyle{\color{blue}{\left(4+\frac{1}{2}\right)-\left[\frac{1}{3}\sdot\left(4+\frac{1}{2}\right)\right]=3}}
והשליש מן ד' וחצי [וישאר ג‫']
The half from 6; 3 remains from each.
\scriptstyle{\color{blue}{6-\left(\frac{1}{2}\sdot6\right)=3}}
והחצי מן ו' וישאר ג' מכל ג' אחד ואחד
This is the denominator, those of straying spirit shall come to understanding [Isaiah 29, 24]
וזה המורה תועי רוח בינה[42]
Now, since this denominator [contains parts that are not] integers, for 4 and a half is not an integer:
ועתה יען כי אין במור' שלימי' כי ד' וחצי אינו שלם
Double 4; it is 8.
\scriptstyle{\color{blue}{2\sdot4=8}}
כפול ד' ויהיה ח‫'
Double 4 and a half; it is 9.
\scriptstyle{\color{blue}{2\sdot\left(4+\frac{1}{2}\right)=9}}
כפול ד' וחצי ויהיה ט‫'
Double 6; it is 12.
\scriptstyle{\color{blue}{2\sdot6=12}}
כפול י"ב ו' ויהיה י"ב
The total is 29.
\scriptstyle{\color{blue}{8+9+12=29}}
ס"ה כ"ט
Yet, we do not know how much is the share of each. Now I shall teach you:
ועדיין אין אנו יודעין כמה מגיע לכל אחד לחלקו ועתה אשכילך
Subtract 2 times 12 from 29; 5 remains and it is the share of the first.
\scriptstyle{\color{blue}{X=29-\left(2\sdot12\right)=5}}
הסיר ב' פעמי' י"ב מכ"ט וישאר ה' והוא חלק של ראשון
Subtract 2 times 9; 11 remains and it is the share of the second.
\scriptstyle{\color{blue}{Y=29-\left(2\sdot9\right)=11}}
וכן הסר ב' פעמי' ט' מכ"ט וישאר י"א והוא של שני
Subtract 2 times 8; 13 remains and it is the share of the third.
\scriptstyle{\color{blue}{Z=29-\left(2\sdot8\right)=13}}
וכן הסר בפ"ח מכ"ט וישאר י"ג והוא חלק של שלישי
We find that when the first gives all he has and each of [the others] gives a half, the total is 17.
\scriptstyle{\color{blue}{a=X+\frac{1}{2}\sdot\left(Y+Z\right)=17}}
נמצא כשהראשון אומר אתן כא"ל וכ"א"מ יתן החציה יהיה ס"ה י"ז
We find that the fish is bought for 17 pešuṭim and so on. Note well.
נמצא שהדג נקנה בי"ז פשי' וכן כולם ודוק
Likewise if the buyers are four, or five and so on endlessly, who wish to buy the fish: take the number of them, i.e. if the buyers are three, take a number such that when you subtract a third, a quarter, and a half, 3 remains; if the buyers are four, take a number such that when you subtract a half, a third, a quarter, and a fifth, 4 remains; and so on.
וכן אם הקוני' ד' או ה' עד אין סוף הרוצה לקנות דג קח מניין השוה בכולם פי' או קונין ג' אז קח המניין כשתסיר השליש והרביע וחציי' וישאר ג' כמו שפירשנו או אם הקוני' ד' קח המניין כשתסיר החציי' והשליש והרביעי' והחמישי' וישאר ד' וכן ה' קח המניין כשתסיר חצי של רביעי' חמישי' ששית ונשאר ה' וכן כולם
When the number is not an integer, multiply it so it becomes an integer, then as you did with the integer - if the buyers are three, subtract [the multiple] two times; and if they are four, subtract the multiple three times; and so on.
וכשאין המניין בשלימים תכפול אות' שיהא החשבון שלם ואח"כ כעשית החשבון שלם אם הקוני' ג' תסיר ב' פעמי' ואם ד' תסיר ג' פעמי' הכפיל וכן לעולם
MS P1088, margin:
  • If the buyers are four and the fourth says: I will give all that I have and you will give only a fifth.
ואם הקוני' ד' והרביעי אומ' אתן כא"ל וכל אחד יתן רק החומש
\scriptstyle\begin{cases}\scriptstyle X+\frac{1}{2}\sdot\left(Y+U+V\right)=a\\\scriptstyle Y+\frac{1}{3}\sdot\left(X+U+V\right)=a\\\scriptstyle U+\frac{1}{4}\sdot\left(X+Y+V\right)=a\\\scriptstyle V+\frac{1}{5}\sdot\left(X+Y+U\right)=a\\\end{cases}
Take four numbers:
אז קח ד' מנינים
Subtract its half from it and 4 remains; it is 8.
\scriptstyle{\color{blue}{8-\left(\frac{1}{2}\sdot8\right)=4}}
אחר תסיר ממנו חצי וישאר ד' וזהו ח‫'
Subtract its third and 4 remains; it is 6.
\scriptstyle{\color{blue}{6-\left(\frac{1}{3}\sdot6\right)=4}}
ואחר תסיר ממנו שליש וישאר ד' זהו ו‫'
Subtract its quarter and 4 remains; it is 5 and a third.
\scriptstyle{\color{blue}{\left(5+\frac{1}{3}\right)-\left[\frac{1}{4}\sdot\left(5+\frac{1}{3}\right)\right]=4}}
ואחר תסיר ממנו רביעי וישאר ד' זהו ה' ושלישי
Subtract its fifth and 4 remains; it is 5.
\scriptstyle{\color{blue}{5-\left(\frac{1}{5}\sdot5\right)=4}}
ואחר תסיר ממנו החומש וישאר ד' זהו ה‫'
One should take these numbers three times and then the third will become an integer:
וצריך לקח' זה החשבונות ג' פעמים ואז יהא השליש שלם
Now, take 3 times 8; it is 24.
\scriptstyle{\color{blue}{3\sdot8=24}}
ועתה קח ח' ג' פעמי' זהו ד"ב
Take 3 times 6; it is 18.
\scriptstyle{\color{blue}{3\sdot6=18}}
קח ו' ג"פ זהו ח"א
Take 3 times 5 and a third; it is 16.
\scriptstyle{\color{blue}{3\sdot\left(5+\frac{1}{3}\right)=16}}
קח ה' ושלי' ג"פ זהו ו"א
Take 3 times 5; it is 15.
\scriptstyle{\color{blue}{3\sdot5=15}}
קח ה' ג"פ זהו ה"א
The total sum is 73.
\scriptstyle{\color{blue}{24+18+16+15=73}}
סך הכל ג"ז
Now, subtract 3 times 24 from 73; 1 remains. We find that Reuven [has] 1.
\scriptstyle{\color{blue}{X=73-\left(3\sdot24\right)=1}}
ועתה הסר ג"פ ד"ב מג"ז וישאר א' נמצא ש[......] ראובן א‫'
Subtract 3 times 18 from 73; 19 remains. It is Shimon's amount.
\scriptstyle{\color{blue}{Y=73-\left(3\sdot18\right)=19}}
והסר ג"פ ח"א מג"ז וישאר ט"א זה סך שמעון
Subtract 3 times 16 from 73; 25 remains. It is Levi's amount.
\scriptstyle{\color{blue}{U=73-\left(3\sdot16\right)=25}}
והסר ו"א ג"פ מג"ז וישאר ה"ב זהו סך לוי
Subtract 3 times 15 from 73; 28 remains. It is Yehuda's amount.
\scriptstyle{\color{blue}{V=73-\left(3\sdot15\right)=28}}
והסר ה"א ג"פ מג"ז וישאר ח"ב זהו סך יודא
The total sum is 73 and the fish was bought for 37.
הכל ג"ז והדג נקנה בעד ז"ג
Examine and you will find [that it is true]
ודוק ותמצא
  • 4) Question: three people - Reuven, Shimon, and Levi – are going to the market to buy something.
Reuven said: I will give all that I have and each of you will give one third of what is in his pocket.
Shimon said: I will give all that I have and each of you will give a sixth of what is in his pocket.
Levi said: I will give all that I have and each of you will give a ninth of what is in his pocket
ד הנה ג' אנשים הולכי' על השוק ראובן שמעון ולוי לקנות דבר

והנה ראובן אמר אתן כל אשר לי וכל אחד מכם יתן הג' שבכיסו
ושמעון אמר אתן כא"ל וכא"מ יתן השישי' שבכיסו
ולוי אמר אתן כא"ל וכא"מ יתן התשיעי' שבכיסו

\scriptstyle\begin{cases}\scriptstyle X+\frac{1}{3}\sdot\left(Y+Z\right)=a\\\scriptstyle Y+\frac{1}{6}\sdot\left(X+Z\right)=a\\\scriptstyle Z+\frac{1}{9}\sdot\left(X+Y\right)=a\\\end{cases}
Now I shall teach you the way:
ועתה אשכילך הדרך
You have three people: Reuven, Shimon, and Levi. Reuven asks a third, Shimon a sixth, and Levi a ninth.
הנה יש לך ג' אנשי' ראובן שמעון ולוי ראובן שואל שליש ושמעון ששית ולוי תשיעי' נגדו
Write three numerals for their demands, as follows:
כתוב ג' אותיו' לפי שאילת' כזה
9 6 3
ט ו ג
Take the least number, such that when you subtract a third from it, 3 remains for the members of the problem; it is 4 and a half.
\scriptstyle{\color{blue}{\left(4+\frac{1}{2}\right)-\left[\frac{1}{3}\sdot\left(4+\frac{1}{2}\right)\right]=3}}
וקח חשבון המועט תקח ממנו השלישי' וישאר ג' נגד בני החיד' זהו ד' וחצי
Write the 4 and a half beneath the 3, like this:
וכותבו תחת הג' הד' וחצי כזה
9 6 3
    4
    half
ט ו ג
    ד
    וחצי
Take the least number, such that when you subtract a sixth from it, 3 remains for the members of the problem; it is 3 3-fifths.
\scriptstyle{\color{blue}{\left(3+\frac{3}{5}\right)-\left[\frac{1}{6}\sdot\left(3+\frac{3}{5}\right)\right]=3}}
וקח חשבון המועט שתקח ממנו הששית ‫[43]וישאר ג' כנגד בני החידה וזהו ג' וג' חומשיהו
Write it beneath the 6, like this:
ותכתבהו תחת הו' כזה
9 6 3
  3 4
  half
ט ו ג
  ג ד
  ג"ה וחצי
Take the least number, such that when you subtract a ninth from it, 3 remains for the members of the problem; it is 3 and 3-eighths.
\scriptstyle{\color{blue}{\left(3+\frac{3}{8}\right)-\left[\frac{1}{9}\sdot\left(3+\frac{3}{8}\right)\right]=3}}
ותקח חשבון המועט שכשתיקח התשיעי' וישאר ג' כנגד בני החידה זהו ג' וג' שמניות
Write it also beneath the 9, like this:
ותכתבהו ג"כ תחת הט' כזה
9 6 3
3 3 4
half
ט ו ג
ג ג ד
ג"ח ג"ה וחצי
Now, take the least number in which you find an integer for these fractions.
ועתה קח חשבון המועט שתמצא בו חשבון שלם נגד אותן חלקי' שברים שיש לך
Such as a half, a fifth, and an eighth: take a number in which you find a half that is an integer; it is 2.
כגון חצי חמישי' שמיני' עתה קח חשבון שתמצא בו חצי שלם זהו ב‫'
Take the least number in which you find a fifth that is an integer; it is 5.
וקח חשבון שתמצא חמישי' שלם זהו ה‫'
Take the least number in which you find an eighth that is an integer; it is 8.
וג"כ קח חשבון המועט שתמצא בו שמיני' שלם זהו ח‫'
Multiply 2 by 5; it is ten, like this:
\scriptstyle{\color{blue}{2\sdot5=10}}
תכפול ב' על ה' ויהיה עשרה כזה
1 0
א ‫0
You find that both are integers in it: a half that is an integer and a fifth that is an integer.
בזה תמצא שניהם חצי שלם וחמישי' שלם
Now, multiply and say: 10 times 4, which is a half of 8; it is 40, like this:
\scriptstyle{\color{blue}{10\sdot\left(\frac{1}{2}\sdot8\right)=10\sdot4=40}}
עתה תכפול ותאמר יפ"ד דהיינו חצי ח' זהו מ' כזה
4 0
ד ‫0
You find in it a half that is an integer, a fifth that is an integer, and an eighth that is an integer.
בזה תמצא חצי שלם חמישי' שלם שמיני' שלם
Check: to [multiply] 8 by ten, since the fraction is 3-eighths; then the product were like this:
\scriptstyle{\color{blue}{10\sdot\sdot8=80}}
ובדו' לפכול ה' עם העשר' נגד חלקי שברי' דהן ג' שמי' ואז היה עולה כזה
8 0
ח ‫0
But, you would find more than you need, for in 40 you will find the calculation as in 80.
Least common multiple: LCM(2,5,8) = 40
אך היית מצוא יותר מצרכך כי כמה תמצא חשבון כמו ב"פ
Always take the least number, If you grasped many, you did not grasp anything; if you grasped few, you grasped something [Talmud, Sukkah, 5a].
ולעולם קח חשבון המועט תפשת מרובה לא תפשת תספת מועט תפסת[44]
Now multiply what is written beneath each by 40:
ועתה כפול המ' על שכתוב תחת כל אחד
You find 4 and a half beneath Reuven. Multiply 40 by 4 and a half; the result is like this:
\scriptstyle{\color{blue}{40\sdot\left(4+\frac{1}{2}\right)=180}}
הנה מצאת תחת ראובן ד' וחצי כפול 0'ד' על ד' וחצי ויעלה כזה
1 8 0
א ח ‫0
Multiply what is written beneath Levi, i.e. 3 and 3-fifths, by 40; the result is like this:
\scriptstyle{\color{blue}{40\sdot\left(3+\frac{3}{5}\right)=144}}
וכפול 0"ד על שכתוב תחת שמעון דהיינו ג' וג' חומשי' ויעלה כזה
1 4 4
א ד ד
Multiply what is written beneath Shimon, i.e. 3 and 3-eighths, by 40; it is like this:
\scriptstyle{\color{blue}{40\sdot\left(3+\frac{3}{8}\right)=135}}
וכפול 0'ד' על שכתוב תחת לוי דהיינו ג' וג' שמיניו' ויעלה כזה
1 3 5
א ג ה
Sum up these three numbers; the sum is as follows:
\scriptstyle{\color{blue}{180+144+135=459}}
עת' חבר אילו ג' חשבונות יחד ויעלה כזה
4 5 9
ד ה ט
This is the denominator of the problem.
וזהו המורה את החידה
Double 180; the result is 360. Subtract it from the denominator of the problem, which is 459; you are left with 99, and so is Reuven's money.
\scriptstyle{\color{blue}{X=459-\left(2\sdot180\right)=459-360=99}}
כפול 0ח"א ב' פעמי' ויעלה 0ו"ג ונכיהו מן המורה את החידה שהוא טה"ד ויוותר לך ט"ט כך מעות יש לראובן
Then, double 144, which is the double of Shimon; the result is 288. Subtract it from the denominator; you are left with 171, and so is Shimon's money.
\scriptstyle{\color{blue}{Y=459-\left(2\sdot144\right)=459-288=171}}
ואח"כ כפול ב"פ דד"א והוא הייה כפול לשמעון ויעלה חח"ב נכיהו מן המורה ויוותר לך אז"א כך מעות יש לשמעון
Then, double 135, which is the double of Levi; the result is 270. Subtract it from the denominator; you are left with 189, and so is Levi's money.
\scriptstyle{\color{blue}{Z=459-\left(2\sdot135\right)=459-270=189}}
ואח"כ כפול ב"פ הג"א שהוא כפול לוי ויעלה 0ז"ב נכיהו מן המורה ויוותר לך טח"א כך מעות יש ללוי
Now you have found it all: Reuven has 99, Shimon has 171, Levi has 189.
עתה מצאת הכל לראובן ט'ט' ולשמעון אז"א וללוי טח"א
The one who understands will understand.
והמבין יבין

Find a Quantity Problems - Whole from Parts

Tree
  • 5) Question: a tree - its third, its fifth, and its ninth are planted in the soil and 10 cubits remain up above the ground, how long is it?
\scriptstyle\frac{1}{3}X+\frac{1}{5}X+\frac{1}{9}X+10=X
ה אילן התקוע בארץ שלישיתו חמישיתו ותשיעיתו ונותר למעלה מן הארץ י' אמות כמה היתת תחילתו
Here is the diagram that you arrange. Write like that according to the fractions you asked for:
והא לך דמות אשר תעריך כתוב כזה דהיינו נגד החלקי' ששאלת
Now, put your mind to find the least number, in which the fractions you asked for are found: a third that is an integer, a fifth that is an integer, and a ninth that is an integer.
עתה שים דעתך ‫[45]למצא חשבון המועט שנמצא בו החלקי' ששאלת שליש שלם חמישי' שלם תשיעי' שלם
Say as follows: 3 times 5 is 15; 9 times 15 is 135.
\scriptstyle{\color{blue}{3\sdot5\sdot9=15\sdot9=135}}
וכה תאמר ג"פ ה' היינו ה"א ט' פעמי' ה"א יעלה הג"א
But, you do not need that much, as you find them in 45, which is a third of 135.
Least common multiple: LCM(3,5,9) = 45
ואינך צריך כ"כ כי תמצאנה בה"ד שהו שליש מן הג"א
Take the least and not the greater.
קח המועט ולא המרובה
Subtract all the fractions you asked for, i.e. a third, a fifth, and a ninth, from 45.
תחסור מן ה"ד כל החלקי' ששאלת דהיינו שלישי' חמישית תשיעי‫'
A third of 45 is 15; a fifth is 9; a ninth is 5; subtract all of them from the denominator, which is 45; 16 remains.
שליש ה"ד ה"א חמישי' ט' תשיעי' ה' תסרם מן המורה שהיה ה"ד ונותר ו"א
\scriptstyle{\color{blue}{45-\left(\frac{1}{3}\sdot45\right)-\left(\frac{1}{5}\sdot45\right)-\left(\frac{1}{9}\sdot45\right)=45-15-9-5=16}}
Rule of Three: Now, multiply the cubits that remain above the ground, which are 10, by the denominator that is 45; the result is 450.
עתה כפול האמות הנותרי' למעלה מן הארץ והם 0"א על המורה שהיה ה"ד ויעלה 0ה"ד
Divide it by the remaining 16, according to the chapter of division, meaning how many times 16 there are in 450; the result is 28 and 2 parts of 16 of the whole.
\scriptstyle{\color{blue}{X=\frac{10\sdot45}{16}=\frac{450}{16}=28+\frac{2}{16}}}
עתה [חלוק ממנו]‫[46] ו"א הנותרי' [בשער החילוק פי' כמה פעמים יש ו"א ב0'ה'ד'] ויעלה החילוק ח"ב וב' חלקי' שו"א מהן עושי' חלק שלם
So, the whole tree is 28 cubits and 2 parts of 16 of the whole.
וכן כל האילן ח"ב אמו' וב' חלקי' שו"א מהן עושין חלק שלם
Lance
  • 6) Question: a lance - one sticks a half of the whole lance in the ground, then another comes and raises a third of the whole lance, another one comes and sticks a quarter of the whole lance, and one more comes and raises a sixth of the whole lance. After lowering the high and raising the low, 11 cubits remain above the ground. How many cubits are the length of the whole lance?
\scriptstyle\frac{1}{2}-\frac{1}{3}X+\frac{1}{4}X-\frac{1}{6}X+11=X
ו' הנה רומח לפניך ובא אחד ותוקעו בארץ חציו של כל הרומח ובא אחד והגביה שלישיתו של כל הרומח ובא אחד ותוקעו רביעיתו של כל הרומח ובא אחד והגביה שישיתו של כל הרומח ולאחר מן הארץ הגבהה וזה הגביה הנמוך נותר למעלה מן הארץ א'א' אמות כמה אמות ארכו של כל הרומח
Here is the way:
וזה לך הדרך
Write for the parts that you asked - 2 for the half, 3 for the third, 4 for the quarter, and 6 for the 6.
כתוב נגד החלקי' ששאלת נגד החצי ב' נגד השליש ג' נגד רביעי' ד' נגד הששית ו‫'
Write the remaining 11 cubits above, like this:
וכתוב עליו א'א' אמות הנותרי' כזה
Take the least number in which you find them, i.e. 12 and this is the denominator.
וקח החשבון המועט שתמצא בו אילו שלם דהיינו ב"א וזה המורה
Subtract a half from 12; 6 remains.
הסיר מב"א החציה וישאר ו‫'
Add one-third of 12 to 6, i.e. 4; it is 10.
הוסיף השליש מב"א על הו' [דהיינו ד'] ויהיה 0"א
Subtract one-quarter of 12, i.e. 3, take it from 10; 7 remains.
הסיר הרביע מב"א [דהיינו ג'] מ0"א וישאר ז‫'
Add one-sixth of 12, i.e. 2, to 7; it is 9.
הוסיף הששית [של]‫[47] ב"א [דהיינו ב'] על ז' ויהיה ט‫'
\scriptstyle{\color{blue}{12-\left(\frac{1}{2}\sdot12\right)+\left(\frac{1}{3}\sdot12\right)-\left(\frac{1}{4}\sdot12\right)+\left(\frac{1}{6}\sdot12\right)=6+4-3+2=10-3+2=7+2=9}}
Write the 9 on another side, And your eyes shall see your Teacher [Isaiah 20, 30].
אות' [ט'] כתוב בצד אחר ויהיו עיניך רואות את פני מוריך[48] שהוא ב"א
Rule of Three: Multiply it by the 11 that remain above the ground; the result is this:
וכפול עליו הא"א הנותרי' למעלה מן הארץ ויעלה כזה
1 3 2
א ג ב
Divide it according to the chapter of division by what remains from the denominator after you have subtracted and added all the parts, which is 9. How many times 9 there are in 135? 14 times and 6 are left that do not reach 9.
תחלוק ממנו [בשער החילוק] מה שנותר לך מן המורה שלאחר שחסרת והוסף כל החלקי' זהו ט' כמה פעמים ט' יש בבג"א זהו ד"א פעמי' ונותרי' ו' שאינ' מגיעי' לכלל ט‫'
So, the length of the lance is 14 cubits and 6 parts of 9 of a whole cubit.
\scriptstyle{\color{blue}{X=\frac{11\sdot12}{9}=\frac{132}{9}=14+\frac{6}{9}}}
וכן אורך הרומח ד"א אמו' ו' חלקי' שט' מהן עולין חלק שלם דהיינו אמה
This is the rule - when you say: add to it one-third, or one-fifth, or one-quarter, or as much as you want and it is so and so, how much was it originally?
\scriptstyle{\color{OliveGreen}{X+\frac{1}{a}X=b}}
זה הכלל כשתאמר שים שליש עליו או חומש או רביע או כל מה שתרצה ויהיה כך וכך כמה היה בתחילה
I will show you the way to proceed: אראה לך הדרך אשר תלך בה
Always subtract from the specified number a fraction [whose denominator is smaller by one than] what you intended to add to the unknown number.
\scriptstyle{\color{OliveGreen}{X=b-\left(\frac{1}{a+1}\sdot b\right)}}
[49]לעולם הסר מן החשבון המפורשי' חלק אחד יותר מחשבון הנעלם שדעתך לצרף עליו
  • For instance, if you say: add to it one-third and it becomes 5, how much was the specific number originally?
\scriptstyle{\color{blue}{X+\frac{1}{3}X=5}}
כגון אם תאמר עשה שליש עליו ויהיה ה' זהו המפורש כמה היה בתחילה
Subtract a quarter from the specified 5, [whose denominator is smaller by one than] what you intended to add to it, since you intended to add a third and this is a quarter. Subtract a quarter from 5; the remainder is the required.
\scriptstyle{\color{blue}{X=5-\left(\frac{1}{3+1}\sdot5\right)=5-\left(\frac{1}{4}\sdot5\right)}}
אז הסר מן החשבון הה' המפורש רביעי' זהו חלק אחד יותר ממה שבדעתך לצרף עליו כי היה בדעת' לצרף שליש וזהו רבי' תסי' מן [ה'] הרבי' אז הנשא' הוא המבוקש
When you add to it a third the result is 5.
וכשתעשה עליו שליש יהיה ה‫'
  • Or, if you say: add to it one-seventh and it becomes 3, [how much was] the specific number [originally]?
\scriptstyle{\color{blue}{X+\frac{1}{7}X=3}}
או אם תאמר עשה שביעי' עליו ויהיה ג' זהו ג' המפורש
Subtract an eighth from the specified 3; what remains is the original number.
\scriptstyle{\color{blue}{X=3-\left(\frac{1}{7+1}\sdot3\right)=3-\left(\frac{1}{8}\sdot3\right)}}
אז הסר מג' המפור' שמי' ומה שנשאר הוא הסכום מה שהיה בתחילה
When you want to know if you have calculated correctly: add the seventh to the remainder and it will be 3.
ואת"ל אם אמת חשבת צרוף שביעי' על הנשאר ויהיה ג‫'
And so on do as I showed you. וכן לעולם כשאר אב הראיתיך
But, if you wish to say: subtract one-third and so and so remains, or subtract as much as you want and so and so remains, how much was it originally?
\scriptstyle{\color{OliveGreen}{X-\frac{1}{a}X=b}}
אבל אם ת"ל כשתקח שליש ממנו וישאר כך וכך או תיקח ממנו כל מה שתרצה וישאר כך וכך כמה שהיה בתחילה
Divide the remaining number by a [denominator] smaller by one than that of the fraction you subtract, then add the fraction to the remainder, and you will find how much it was originally.
\scriptstyle{\color{OliveGreen}{X=b+\left(\frac{1}{a-1}\sdot b\right)}}
אז תחלק חלק חשבון הנשאר לחלק אחת פחות ממה שחסרת ממנו וחלק אחד מן החלקי' צרוף עם זה הנשאר ותמצא כמה שהיה בתחילה

Shared Work Problems - Filling/Draining a Vessel

Well
  • 7) Question: Here is a well whose water is flowing into it through 3 pipes and draining out of it through 2 pipes.
Through one of the 3 pipes, from which the water flows into it, the well is filled in a sixth of a day, if the water does not drain out from it.
Through the second pipe, from which [the water] flows into it, the well is filled in a fifth of a day, if the water does not drain out from it.
Through the third pipe, from which [the water] flows into it, the well is filled in a quarter of a day.
The two pipes that are draining the well: through one of them, the well is drained in a half of a day, if the water does not flow into it; through the second pipe, the well is drained in a third of a day.
When the filling pipes are filling the well with water and the draining pipes are draining it all at once, how long will it take the well to be filled?
\scriptstyle6X+5X+4X-2X-3X=1
ז' שאלה הנה לך בור שמימיו נכנסי' בו בג' קני' ויוצאי' ממנו דרך ב' קני‫'

ומהאח' מג' קנים שמימיו נכנסי' בו היה הבור מתמלא מששית היום אם לא היו יוצאין מן הבור מים כלל
ומן הקנה השני שנכנס בו היה הבור מתמלא אם לא יוצאין ממנו בחמישי' היום
ומן הקנה השלישי' שנכנס בו היה הבור מתמלא ממנו ברביעי' היום
וב' קני' המריקי' הבור מן האחד נתרוקן הבור כשאין נכנסי' בו שום מים בחצי היום
ומקנה שני נתרוקן הבור בשליש היום
וכשאילו הקני' מכניסי' מים ממלאי' את הבור יחד וב' קני' המריקי' מריקי' יחד בכמה הבור מתמלא כך כשאילו מריקי' ואילו ממלאין

Answer: it is filled in a tenth of a day.
תשובה בעשירי' היום מתמלא
I will teach you the way how:
ואשכילך הדרך כיצד
The first pipe that fills the well in a sixth of a day can fill six wells in one day.
קנה האחד שממלא הבור בששי' היום יכול למלא ששה בורות ביו' אחד
The second [pipe] that fills [the well] in a fifth of a day can fill five wells in one day.
והשני שממלא הבור בחמישי' היום יכול למלא חמשה בורות ביום אחד
The third [pipe] that fills [the well] in a quarter of a day can fill four wells in one day.
והשלישי שמתמלא הבור ברביעי' היום יכול למלא ד' בורו' ביום אחד
Hence, these three pipes would have filled 15 wells in one day, had the two pipes not drained.
\scriptstyle{\color{blue}{6+5+4=15}}
הרי ט"ו בורות שג' קני' הללו ממלאי' ביום אחד אם ‫[50]לא היו אלו ב' קני' מריקי‫'
How long will it take them to drain:
ובכמה הן מריקי‫'
The first [pipe] that drains [the well] in half a day drains two [wells] in one day.
האחד המריק' בחצי היום ממריקי' ב' ליום אחד
The second [pipe] that drains [the well] in a third of a day drains three [wells] in one day.
והשני שממריקי' בשלישי' היום ממריק ג' ליום אחד
Hence, these two pipes drain 5 wells in one day.
\scriptstyle{\color{blue}{2+3=5}}
הרי ה' בורות שאילו ב' קני' ממריקי' ביום אחד
Still, ten wells remain that the three are filling in one day, when the two are draining.
\scriptstyle{\color{blue}{X=\frac{1}{15-5}=\frac{1}{10}}}
ועדיין נשארו י' בורות שהג' ממלאי' ביום אחד כשהב' מריקי‫'
We find that the well is filled in one-tenth of a day.
נמצא שהבור מתמלא בעשירי' היום
By this you will be able to understand everything like that and so on.
ובזה תוכל להבין כל כזה וכיוצא בזה
Barrel
  • 8) For instance, if one asks: there is a barrel with three taps. When flowing from it through one tap, it is drained in one day. Through the second tap, it is drained in a half of a day. Through the third tap, it [is drained] in a third of a day. If all of the [taps] are dripping together, how long will it take the barrel to be drained?
\scriptstyle X+2X+3X=1
כגון ח' אם ישאל השואל יש כאן חבית של ג' ברזות שהוא זב ממנו דרך ברזא האחד זב היא ביום שלם ודרך ברזא השני' זב היא בחצי היום ודרך ברזא השלישי היא בשליש יום וכשהן זבין כולן כאחד בכמה החבית יוצא
Answer: it is drained in a sixth of a day.
תשובה שבשישי' היום יוצא
The tap, from which it flows in a whole day, drains one barrel in one day.
היאך הברזא שהוא זב ממנו ביום שלם מריק' חבית אחת ביום אחד
The second [tap], from which it flows in half a day, drains two barrels in one day.
והשני שהוא זב בחצי יום מריקה ב' חביות ביום אחד
The third [tap], from which it flows in a third of a day, drains three barrels in one day.
והשלישי שהוא מריקה בשליש היום מריק' ג' חביות [ביום אחד‫]
When they are drain together, they drain six barrels in one day.
\scriptstyle{\color{blue}{1+2+3=6}}
ס"ה כשמריקי' יחד מריקי' ו' חביות ביום אחד
We find that it is drained in a sixth of a day
\scriptstyle{\color{blue}{X=\frac{1}{6}}}
נמצא שמתרוקן בשישית היום
  • 9) Question: If one asks: In a barrel there are three taps. When one is dripping alone, it drains it in one hour. The second drains it in 2 hours. The third drains it in 3 hours. If all of the [taps] are dripping together, how long will it take them to drain [the barrel]?
\scriptstyle6X+3X+2X=12
ט' אם ישאל השואל הנה בחבית ג' ברזות האחד כשזב לבדו מריקו בשעה והשני לבד ממריקו בב' שעו' והשלישי מריקו בג' שעות וכשיזובו כולם כאחד בכמה מריק‫'
I will give you an example of a barrel containing 12 hin that is drained in half an hour plus 11 parts of half an hour.
אבקש לך דמיונות [בחבית המחזיק]‫[51] י"ב הינין שממורק בחצי שעה ובחלק א"א שבחצי שעה
Do as follows:
וכה תעשה
Say first: how much does the tap that drains in one hour drain in half an hour? 6 hin.
אמור בתחילה הברזא שממריק בשעה כמה ממריק בחצי שעה ו' הינין
How much does [the tap] that drains in 2 hours drain in half an hour? 3 hin.
והממריק בב' שעות כמה ממריק בחצי שעה ג' ה הינין
[The tap] that drains in 3 hours, drains 3 hin in half an hour.
והממריק בג' שעות ממריק בחצי שעה ב' הינין
We find that the three taps that drain in 1, 2, 3 [hours], drain 11 hin of the barrel containing 12 hin in half an hour.
\scriptstyle{\color{blue}{6+3+2=11}}
נמצא שג' ברזות המריקי' א' ב' ג' מריקי' בחבית המחזיק י"ב הינין בחצי י"א היני‫'
How much is left? One more hin. We find that this hin is drained in one part of 11 of half an hour.
\scriptstyle{\color{blue}{X=\frac{12}{11}=1+\frac{1}{11}}}
כמה נשאר עוד הין נמצא שאותו הין שאותו ממריק בחלק י"א שבחצי שעה
Note well and you will understand. ודוק ותבין
Fountain
  • 10) Another question: four rivers are flowing towards a fountain. The first fills it in a day, the second in two days, the third in 3 days, and fourth in 4 days. If all are flowing together, how long will it take [the fountain] to be filled.
\scriptstyle X+\frac{1}{2}X+\frac{1}{3}X+\frac{1}{4}X=1
י' ועוד שאלו ד' נהרות רצים אל מעיין אחד

הראשון ממלאו ביום אחד והב' בב' והג' בג' והד' בד' ואם רצו כולם ביחד בכמה מתמלא

Do according to this way:
עשה על דרך זה
Say: where are half, a third, and a quarter are found? [by reduction as above] in 12: a half is 6, a third is 4, a quarter is 3. Sum them together; it is 25 and this is the denominator.
אמור אחד חצי שליש רביע ‫[52]אנה ימצאון [ר"ל על דרך המועט כדלעיל דהיינו] בי"ב האחד ה י"ב חצי ו' שליש ד' רביע ג' צרפם יחד הרי כ"ה וזה המורה
We find that in 12 days they fill 25 fountains:
נמצא בי"ב ימי' ימלאו כ"ה מענייות
The first [river] fills 12 fountains in 12 days.
כיצד הראשון ממלאו' בי"ב ימים י"ב מענייות
The second [river fills] 6 fountains in 12 days.
השני בי"ב ימי' ו' מעיינות
The third [river fills] 4 fountains in 12 days.
השלישי בי"ב ימי' ד' מעיינות
The fourth [river fills] 3 fountains in 12 days.
הרביעי' בי"ב ימי' ג' מעיינות
\scriptstyle{\color{blue}{12+\left(\frac{1}{2}\sdot12\right)+\left(\frac{1}{3}\sdot12\right)+\left(\frac{1}{4}\sdot12\right)=12+6+4+3=25}}
Rule of Three: so, [if] 25 fountains [are filled] in 12 days, how long will it take [to fill] one fountain?
א"כ כ"ה מעיינות בי"ב ימי' מעיין אחד בכמה
Then, multiply 1 by 12; the result is 12. Divide it [by 25], according to the chapter of division, [meaning how many times 25 is in 12]; we find that one fountain is filled in 12 parts of which 25 is a whole day.
\scriptstyle{\color{blue}{X=\frac{1\sdot12}{25}=\frac{12}{25}}}
אז כפול א' בי"ב ויעלה י"ב חלקי' בשער החילוק [בכ"ה פי' כמה פעמים כ"ה יש בי"ב כנ"ל אש'] נמצא שמעיין האחד מתמלא בי"ב חלקי' שכ"ה מהן יום שלם
To know how much water flows through the first river: multiply 12 by 1; the result is 12. Divide it by 25, [according to the chapter of division]; we find that the water is 12 parts of 25.
\scriptstyle{\color{blue}{\frac{1\sdot12}{25}=\frac{12}{25}}}
לידע כמה חלק מים של כל נהרות לראשון כפול י"ב בא' ויעלה י"ב חלקי' [בשער החילוק] בכ"ה נמצא שמימיו י"ב חלקי' מכ"ה
For the second [rever]: multiply 6 by 1; the result is 6. Divide it by 25, [according to the chapter of division]; it is 6 parts of 25.
\scriptstyle{\color{blue}{\frac{1\sdot6}{25}=\frac{6}{25}}}
כפול ו' לשנים בא' ויעלה ו' חלקי' [בשער החילוק] בכ"ה הרי ו' חלקי' מכ"ה
For the third [river]: multiply 4 by 1.
\scriptstyle{\color{blue}{\frac{1\sdot4}{25}}}
לשלישי כפול ד' בא‫'
For the fourth [river]: [multiply] 3 by 1.
\scriptstyle{\color{blue}{\frac{1\sdot3}{25}}}
לרביעי ג' בא‫'
Note well and you will understand.
ודוק ותבין

Multiple Quantities Problems - Selling Eggs

  • 11) Pose a riddle: three women are selling eggs. One has 10 eggs, the second has 30, and the third has 50. Each of them gives a certain amount of eggs for one ḥalish and they earns the same amount of money
\scriptstyle10X=30Y=50Z
י"א חוד חידה ג' נשי' מוכרות ביצי' לאחת יש י' ביצים לשנית יש ל' ולשלישי' נ' וכל אחת תתן ביצה בחליש אחד כמו חבירת' ויפדו מעות שוות
Answer: each one will give 7 [eggs] for one ḥalish and what remains on the seventh - she will give one egg for 3 ḥalish
תשובה כל אחת תתן ז' בחליש וכל מה שנותר על השביעיות תתן ביצה אחת בעד ג' חלישים
\scriptstyle{\color{OliveGreen}{\begin{cases}\scriptstyle1+\left[3\sdot\left[10-\left(1\sdot7\right)\right]\right]=1+\left[3\sdot\left(10-7\right)\right]=1+\left(3\sdot3\right)\\\scriptstyle4+\left[3\sdot\left[30-\left(4\sdot7\right)\right]\right]=4+\left[3\sdot\left(30-28\right)\right]=4+\left(3\sdot2\right)\\\scriptstyle7+\left[3\sdot\left[50-\left(7\sdot7\right)\right]\right]=7+\left[3\sdot\left(50-49\right)\right]=7+\left(3\sdot1\right)\end{cases}}}
  • If they are four [women]. The fourth has 70 - the calculation is the same.
ואם היית' ארבע לרביעי' לה ע' ביצים והחשבון כמו כן

Proportional Division - Inheritance

  • 12) Question: an inheritance was given to three brothers.
The first took as much as he wanted, and so did the second and the third.
Then the second and the third returned to first and complained against him: you took more than you deserved, therefore you should share with us equally.
He answered: do not judge me, I will give each of you the same amount as he has, be it is much or less; and so he did.
Later the first and the third returned to the second and he answered them the same as the first.
Afterwards the first and the second returned to the third and he too said the same as the previous.
Now the division between them became equal.
How much did each of them took at the beginning and how much is the whole amount of the money?
י"ב שאלה אם נפלה ירושה לפני ג' אחים

הראשון לקח כל מה שירצה וכן השני וכן השלישי
ואח"כ חוזרים השני והשלישי על הראשון וטוענים אותו נטלת מן הראוי לך לכן תחלק עמנו שוה בשוה
והוא אמר אל תדונו עמי אתן לכל אחד מכם כמו שיש לו כבר הן רב הן מעט וכן עשה
ואח"כ חוזר הראשון והשלישי על השני והוא משיב ג"כ להם כמו הראשון
ואח"כ חזרו הראשון והשני על השלישי והוא אומר ג"כ כמו הראשוני‫'
ואז יהיה החולקה שוה ביניהם
חוד כמה לקח כל אחד בתחילה או כמה סך המעות ביחד

Answer: the total is 24; the first took 13; the second 7; and the third 4.
\scriptstyle{\color{blue}{a_1+a_2+a_3=24}}
תשובה הכל היה כ"ד הראשו' לקח י"ג והשני ז' והשלישי ד‫'
Here is the instruction of the problem:
והילך המורה את החידה
If they are only three, take for the last 3 plus one more; it is 4.
\scriptstyle{\color{blue}{a_3=3+1=4}}
אם הם רק ג' אז קח לאחרון ג' ואחד יותר הרי זהו ד‫'
For the middle take twice as much as the last, which is 8, but subtract one; it is 7.
\scriptstyle{\color{blue}{a_2=\left(2\sdot a_3\right)-1=\left(2\sdot4\right)-1=8-1=7}}
ולאמצעי קח כפלים כמו לאחרון וזהו ח' רק אחת תסיר ויהיה ז‫'
For the first take twice as much as the middle, which is 14, and subtract one; it is 13.
\scriptstyle{\color{blue}{a_1=\left(2\sdot a_2\right)-1=\left(2\sdot7\right)-1=14-1=13}}
ולראשון קח כפלים כמו לאמצעי דהיינו י"ד רק אחת תסיר ויהו ויהיה י"ג
And so on, as many as they are, take for the last the number they are plus one more, then double the required and subtract 1.
וכן לעולם כמה הן אז קח לאחרון כמניין כולם וא' יותר ואח"כ כפול המבוקש ותסיר אחת
  • If they were four [brothers].
וכן אם הם ד‫'
Take for the last 4 plus one more; it is 5.
\scriptstyle{\color{blue}{a_4=4+1=5}}
קח לאחרון ד' וא' יותר וזהו ה‫'
For the third ten and subtract one; it is 9.
\scriptstyle{\color{blue}{a_3=\left(2\sdot a_4\right)-1=\left(2\sdot5\right)-1=10-1=9}}
ולשלישי י' ואחד תסיר זהו ט‫'
For the second 18 and subtract one; it is 17.
\scriptstyle{\color{blue}{a_2=\left(2\sdot a_3\right)-1=\left(2\sdot9\right)-1=18-1=17}}
לשני י"ח ואחד תסיר זהו י"ז
For the first 34 and subtract one; it is 33.
\scriptstyle{\color{blue}{a_1=\left(2\sdot a_2\right)-1=\left(2\sdot17\right)-1=34-1=33}}
לראשון ל"ד ואחד תסיר זהו ל"ג
Consider well him that is before thee [Proverbs 23, 1].
בין תבין את אשר לפניך[53]

Payment Problem - Digging a Hole

13) A worker was hired to dig a hole with a length of 17 cubits and a width of 7 cubits for 33 zehuvim, but the worker dug [a hole with a width of] 3 cubits and a length of 17 cubits. How much should be his payment?
\scriptstyle\frac{7\sdot17}{33}=\frac{3\sdot17}{X}
[54]יג[55] שוכר את הפועל לחפור בור ארוכה י"ז אמות ברוחב ז' אמות בעד ל"ג זהו' והפועל חפר ג' אמו' במשך י"ז

כמה שכרו

Answer: first, multiply 7 times 17 according to the chapter on multiplication; the result is 119.
\scriptstyle{\color{blue}{\frac{7\sdot17}{119}}}
תשובה כפול בתחילה בשער הכפל ז"פ י"ז ויעלה טא"א
We find that he hires the worker to dig 119 cubits breadthwise for 33 zehuvim.
נמצא ששכר את הפועל לחפור קי"ט אמו' ברוחב אמה בעד ל"ג זהו‫'
The worker digs 3 cubits lengthwise. So, multiply 3 by 17; the result is 51.
\scriptstyle{\color{blue}{\frac{3\sdot17}{51}}}
והפועל חפר ג' אמות במשך י"ז כפול ג' בי"ז ויעלה א"ה
We find that he digs only 51 cubits, but he has to dig 119 cubits.
נמצא שלא חפר רק נ"א אמות והיה לו לחפור קי"ט אמות
Then, write 119 cubits and beneath it write 51, like this:
\scriptstyle\frac{119}{33}=\frac{51}{X}
ואח"כ כתוב קי"ט אמו' ולמטה הימנו כתוב נ"א אמו' כזה
1 1 9
  3 3
  5 1
א א ט
  ג ג
  ה א
Rule of Three: multiply 51 by 33 according to the chapter on multiplication; the result is [1]683.
וכפול בשער הכפל א"ה על ג'ג' ויעלה תרפ"ג
Divide 1683 by 119, meaning how many times 119 is in [1]683; you find 14 times 119 and 17 parts, of which 119 is a whole.
\scriptstyle{\color{blue}{X=\frac{33\sdot51}{119}=\frac{1683}{119}=14+\frac{17}{119}}}
‫[חלוק ג"חו"א] לקי"ט פי' כמה פעמי' קי"ט איתא בתרפ"ג ותמצא י"ד פעמי' קי"ט דהיינו טא"א וי"ז חלקי' שלא הגיעו לקי"ט שהוא חלק שלם
We find that the payment of the worker is 14 zehuvim and 17 parts, of which 119 is a whole zahuv.
נמצא שכר הפועל י"ד זהו' וי"ז החלקי' שקי"ט מהן חלק זהוב שלם

Find a Quantity Problem - Stolen Purse

14) A man gave his purse with some money to his friend for safekeeping and it was stolen. Both the depositor and the keeper do not know how much money was in the purse. The depositor remembers that when he counted the money by two 1 remained, by three 1 remained, by four 1 remained, by five 1 remained, by six 1 remained, and by seven nothing remained.
\scriptstyle2a_1+1=3a_2+1=4a_3+1=5a_4+1=6a_5+1=7a_6
יד אדם הפקיד לחבירו כיסו מלא מעות ונגנב בפשיעה והמפקיד והנפקד אינם יודעי' כמה היו המעות אשר בו אלא המפקיד זוכר כשמנה המעות בב"ב נשאר א' בג"ג נשאר א' בד'ד' נשאר א' בה"ה נשאר א' בו'ו' נשאר א' בז' יצא מכוון [והנה חוד כמה היו המעות הללו]
Answer: the coins are 301 or 721.
תשובה מ המעות ההם א' וג' מאות וסימנך וא"ש יצא מחשבון או תשכ"א היו המעט
I will teach you how to solve it:
והנה אשכילך הדרך היאך תעשה
For every number in the question write the least you find, meaning: you ask for a number that is counted by 2 and 1 remains - write 2 for it; you ask for a number counted by 3 - write 3 for it; you ask for a number counted by 4 - write 4 for it; you ask for a number counted by 5 - write 5; you ask for a number counted by 6 - write 6.
כתוב כנגד כל מניין השאלה מספר המעוט שתצא בו השאלה פי' שאלת מניין הנמנה בב'ב' וישאר א' נגד [.] זה כתוב ב' ושאלת מניין הנמנה ג'ג' נגד זה כתוב ג' וששאלת מניין הנמנה ד'ד' נגד זה כתוב ד' וששאלת מניין הנמנה ה'ה' נגד זה כתוב ה' ושאלת מנין הנמנה ו'ו' נגד זה כתוב ו‫'
Then, multiply 2 by 3; the result is 6.
ואח"כ כפול ב' על ג' ויעלה ו‫'
Multiply 6 by 4; the result is 24.
כפול ו' על ד' ויעלה ד'ב‫'
Multiply 24 by 5; the result is 120.
כפול ד'ב' על ה' ויעלה 0ב"א
Multiply 120 by 6; the result is 720, meaning 7 hundred and twenty and this is a number divisible by 2, 3, 4, 5, and 6.
כפול 0ב"א על ו' ויעלה 0ב"ז פי' עשרי' וז' מאות זהו מספר המתחלק לב' ולג' ולד' ולה' ולו‫'
You add to it one more, so it becomes 721, and when you divide it by 2, 3, 4, 5, or 6, the remainder is 1 for each [of these] numbers; divide it by 7 and [there is no remainder].
ובהוסיפך עוד אחד שיהיה א"ב אז כשתחלקהו לבגדה"ו ישאר בכל המניין אחת וכשתחלקהו לז'ז' יצא [.] מכוון
\scriptstyle{\color{blue}{\left(2\sdot3\sdot4\sdot5\sdot6\right)+1=\left(6\sdot4\sdot5\sdot6\right)+1=\left(24\sdot5\sdot6\right)+1=\left(120\sdot6\right)+1=720+1=721}}
  • If the number is divided by 2, 3, 4, 5, 6, 7, 8 so that the remainder is 1 and by 9 [there is no remainder].
וכן אם ישאל השואל מספר המתחלק לבגדהוז"ח וישאר א' ובט' יצא מכוון
\scriptstyle2a_1+1=3a_2+1=4a_3+1=5a_4+1=6a_5+1=7a_6+1=8a_7+1=9a_8
Multiply 7 by 8; the result is 56.
אזי כפול ז"ח ויעלה ו"ה
Multiply 56 by 720; the result is divisible by 2, 3, 4, 5, 6, 7, and 8.
ואח"כ כפול ו"ה על 0ב"ז והעולה הוא המתחלק לבגדהוז"ח
When you add one to it, 1 remains for each [of these] numbers and by 9 [there is no remainder].
\scriptstyle{\color{blue}{\left[720\sdot\left(7\sdot8\right)\right]+1=\left(720\sdot56\right)+1}}
[56]ובהוסיפך אחת עליו ישאר א' בכל המניין וב' יוצא מכוון
  • If one asks for a number, such that the remainder from all the numbers [2-6] is 3, add 3 to the product after you multiply all [these] numbers.
\scriptstyle2a_1+3=3a_2+3=4a_3+3=5a_4+3=6a_5+3=7a_6
\scriptstyle{\color{blue}{\left(2\sdot3\sdot4\sdot5\sdot6\right)+3}}
ואם ישאלך מניין הנותרי' ג' בכל המנייני' אזי תוסיף ג' על העולה אחר כופלך מספרי' המועטי‫'
  • Likewise, if you are asked [for a number], such that the remainder is 4, add 4 and so on this way.
\scriptstyle2a_1+4=3a_2+4=4a_3+4=5a_4+4=6a_5+4=7a_6
\scriptstyle{\color{OliveGreen}{\left(2\sdot3\sdot4\sdot5\sdot6\right)+4}}
וכן אם ישאלך [מניין הנותר] ד' אזי תוסיף ד' וכן לעולם

Find a Quantity Problem - How Much Problem - Amount of Money

  • 15) Question: we add to an amount of money its half, its third, its quarter, its fifth, and its sixth, and the total is 40. How much was the original amount of money?
\scriptstyle X+\frac{1}{2}X+\frac{1}{3}X+\frac{1}{4}X+\frac{1}{5}X+\frac{1}{6}X=40
ט"ו שאלה ממון הוספנו עליו מחציתו שלישיתו רביעיתו חמישיתו שישיתו והכל הוא מ‫'

כמה היה הממון

First, I will tell you what is in my heart: take the least number divisible into halves, thirds, quarters, fifths, and sixths; it is 60, meaning sixty.
בתחילה אשכילך את אשר בלבבי קח מספר המועט המתחלק לחצאין לשליש ולרביע ולחומשי' ולששין וזהו 0"ו פי' ששים
Add all the parts you are asked for to sixty: the half, which is 30; the third, which is twenty; the quarter, which is 15; the fifth, [which is] 12; and the sixth, [which is] 10. Sum them together; it is 87. Add 87 to sixty; the result is 147.
ותוסיף על ששים כל החלקי' ששאלת החצי הוא ל' והשליש הוא עשרי' והרביעי הוא ט"ו והחמשי' י"ב והששית י' וצרפם הכל יחד ויהיה פ"ז חבור פ"ז עם ששים ויעלה קמ"ז
\scriptstyle{\color{blue}{\begin{align}&\scriptstyle60+\left(\frac{1}{2}\sdot60\right)+\left(\frac{1}{3}\sdot60\right)+\left(\frac{1}{4}\sdot60\right)+\left(\frac{1}{5}\sdot60\right)+\left(\frac{1}{6}\sdot60\right)\\&\scriptstyle=60+30+20+15+12+10=60+87=147\\\end{align}}}
Rule of Three: We find that if you were asked for an amount of money, such that you add to it its half, its third, its quarter, its fifth, and its sixth, and the total is 147, how much is the original amount of money? We would answer that the original amount is sixty. Now that it is only 1, how much is the original amount?
\scriptstyle{\color{blue}{147:60=40:X}}
נמצא אם היו שואלי' אותך ממון שהוספת עליו מחציתו שלישיתו ורביעיתו חמשיתו ששיתו ובין הכל קמ"ז כמה תחילת הממון היינו משיבי' תחילתו ששים ועתה שהוא בין הכל רק א' כמה היה תחילתו
Write 147 on the top line, a little far from it write the sixty, and below the 60 write the 40 we are asking for, like this:
אז כתוב אותן קמ"ז בטור העליון ורחוק ממנו קצת כתוב הששים ותחת הס' כתוב המ' שאנו שואלי' ויהיה כך
60 147
40  
‫0ו זדא
‫0ד  
Multiply 40 by 60 above it; the result is 2400, meaning 24 hundreds.
כפול 0"ד ב 0"ו שעליהם ויעלה 00ד"ב פי' כ"ד מאות
See how many times 147 is in 24 hundreds; you find that there are 16 times 147 in it and 48 remain that do not add up to 147.
\scriptstyle{\color{blue}{X=\frac{40\sdot60}{147}=\frac{2400}{147}=16+\frac{48}{147}}}
תחלק כמה פעמי' זד"א בכ"ד מאות ותמצא שיש בו י"ו פעמי' זד"א ונותר מ"ח חלקי' (חלקי') קטני' שאינן מגיעי' לזד"א
We find that the original amount of money was 16 integers and 48 parts, of which 147 is a whole unit.
נמצא שתחילת הממון י"ו שלמי' ומ"ח חלקי' שזד"א עושי' חלק שלם
Check: if you want to check if your calculation is correct, multiply 147 by 16, meaning how much is 16 times 147; the result is 2352, meaning 2 thousand, 3 hundred and 52.
ואם תחפוץ לשקול אם חשבונך מכוון אז כפול זד"א על י"ו פי' כמה י"ו פעמי' זד"א ויעלה בהג"ב פי' ב' אלפי' וג' מאות ונ"ב
Add to it the 48 remaining above that is less than 147; it is 2400, meaning 24 hundreds.
\scriptstyle{\color{blue}{\left(147\sdot16\right)+48=2352+48=2400}}
חבר עמהם מ"ח הנותרי' למעלה שלא עלו לזד"א ויהיה 00ד"ב פי' כ"ד מאות
Add to it its half, its third, its quarter, its fifth, and its sixth. Sum all with the 24 hundred.
תוסיף עליהם החציה השלישי' והרביעי' החמישי' והששי' וחבור הכל עם הכ"ד מאות
\scriptstyle{\color{blue}{2400+\left(\frac{1}{2}\sdot2400\right)+\left(\frac{1}{3}\sdot2400\right)+\left(\frac{1}{4}\sdot2400\right)+\left(\frac{1}{5}\sdot2400\right)+\left(\frac{1}{6}\sdot2400\right)}}
Then, multiply 40, meaning 40 times, by 147.
\scriptstyle{\color{blue}{40\sdot147}}
ואח"כ כפול 0"ד פי' מ' פעמי' בזד"א
If you find that what you get after you multiply 40 by 147 is the same as the number you find when you add half, third, quarter, fifth, and sixth to 24 hundreds, then your calculation is correct, otherwise you are wrong.
ואם תמצא מכוון מה שיעלה לך אחר שתכפול מ' בקמ"ז כמו החשבון שמצאת ‫[57]בהוסיפך אבגדה"ו על כ"ד מאות אז חשבונך מכוון ואם לאו ודאי

טעית

The one who [understands] will understand.
והבמין יבין

Divide a Quantity - Loans Repayment

  • 16) If you are asked: Reuven and Shimon lent two loans:
Reuven lent 37 zehuvim with an interest of one pašuṭ for each zahuv every week for 55 weeks.
Shimon lent to the same borrower 23 zehuvim for 33 weeks.
Then, came the borrower and said to them: I will give both of you [1]3 zehuvim together and you will compromise.
\scriptstyle\frac{1}{37\sdot55}X+\frac{1}{23\sdot33}X=13
י"ו אם ישאלך השואל הנה ראובן שמעון הלוי' שני חובות ראובן הלויה ל"ז זהו' ועלה על כל זהב פשי' לשבוע ועמדו נ"ה שבועו' ושמעו' הלוה לאותו חייב כ"ג זהו' ועמדו ל"ג זהו' ואח"כ בא הבעל חוב ואמ' להן אתן לכם ג' זהו' מן הכל ואתם התפשרו יחד
I will teach you the way by which you find how much should Reuven receive and how much should Shimon receive from the 13 zehuvim of the interest.
ואשכילך הדרך אשר תמצא בו כמה מגיע לראובן וכמה מגיע לשמעון מן הי"ג זהו' כאשר קבלתי מרבי‫'
Multiply Reuven's interest, which is 37, by 55; the result is 2035 pešiṭim, meaning 2 thousand and 35 and this is the interest due to Reuven by law.
\scriptstyle{\color{blue}{37\sdot55=2035}}
חשבון כמה רבותו של ראובן שהוא ל"ז על נ"ה ויעלה הג0"ב פשי' פי' ב' אלפי' ול"ה זה היה ריבית שהיה שייך מדינה לראובן
Then, multiply Shimon's 23 zehuvim by 33 weeks; the result is 759 due to Shimon.
\scriptstyle{\color{blue}{23\sdot33=759}}
ואח"כ כפול הכ"ג זהו' של שמעון בל"ג שבועות ויעלה טהג"ז שהיה ראוי לשמעון
Add 759 to 2035; the result is 2[7]94 and this is the denominator.
\scriptstyle{\color{blue}{2035+759=2794}}
ואח"כ חבר טה"ז עם הג0"ב ויעלה דט0"ב וזהו המורה את החידה
Multiply the 13 zehuvim by 2035, which is the interest due to Reuven; the result is 26455.
אח"כ כפול הי"ג זהו' על הג0"ב שהיה רבי' שהיה שייך לשמעון לראובן ויעלה ההדו"ב
Divide it by the denominator, which is 2794, meaning how many times 2794 is in 26455; you find it is 9 times in it and 1309 remains that is less than 2794.
\scriptstyle{\color{blue}{\frac{13\sdot2035}{2794}=\frac{26455}{2794}=9+\frac{1309}{2794}}}
אח"כ נכהו מן המורה שהוא דטז"ב פי' כמה פעמי' דטז"ב ב' ההדו"ב ותמצא שיש בו ט' פעמי' ונותרי' ט' וג' מאות ואלף שלא יעלו למניין דטז"ב
We find that Reuven's share of the 13 zehuvim is 9 zehuvim and 1309 parts that are less than 2794.
נמצא של ראובן שייך מן הי"ג זהו' ט' זהו' ואלף וש"ט חלקי' שלא הגיעו לכלל דטז"ב
If you want to know how much is due to Shimon by the same way we used regarding to Reuven, multiply 13 by 759, which is Shimon's interest; the result is 9867.
ואם תרצה לידע כמה מגיע לשמעון על הדרך שאמרנו על ראובן אז כפול י"ג בטה"ז שהוא רביתו של שמעון ויעלה זוח"ט
Divide it by the denominator, which is 2794, meaning how many times 2794 is in 9867; you find it is 3 times in it and 1485 parts remain, of which 2794 is a whole unit, i.e. one zahuv.
\scriptstyle{\color{blue}{\frac{13\sdot759}{2794}=\frac{9867}{2794}=3+\frac{1485}{2794}}}
נכיהו מן המורה שהוא דטז"ב פי' כמה פעמי' דטז"ב בזוח"ט ותמצא שיש בו ג' פעמי' ונותרי' אלף ותפ"ה חלקי' שדטז"ב מהן עושין חלק שלם דהיינו זהב
We find that Shimon's share is 3 zehuvim and 1485 parts, of which 2794 is one zahuv.
נמצא ששייך לשמעון ג' זהו' והחד"א חלקי' שדטז"ב מהן זהב שלם
Check: Add 1485 to Reuven's remaining 1309; the result is 2794.
\scriptstyle{\color{blue}{1309+1485=2794}}
חבר החד"א עם אלף וש"ט הנותרי' בראובן ויעלה דטז"ב
If you want to know the number more closely divide the 13 zehuvim into pešiṭim, then multiply them by the 26455 of Reuven's interest, or by 2794 of Shimon's interest, so 2794 is divided into parts of a pašuṭ.
ואם תחפוץ לידע חשבון בצימצום אז חלק הי"ג זהו' לפשיטי' ‫[58]ואח"כ כפול בהן ההדו"ב ריביתו של ראובן או דטז"ב רביתו של שמעון ואז יתחלק דטז"ב לחלקי' פשוט‫'
Note well.
ודוק

Multiple Quantities - Weights

  • 17) If one asks you how do you find four weights weighing together 40, or 5 weights weighing together 121, so that you can weigh with them the heavy as well as the light up to 40. How much will each of them weigh by itself?
י"ז אם ישאלך אדם איך תמצא ארבע משקולות שמשקל כולן רק ארבעי' ואת' תוכל לשקול בהן הן רב הן מעט עד ארבעי' כמה משקל כל אחד בפני עצמו

או אם ה' משקל שמשקלם קכ"א ואתה תוכל לשקול בהן הן רב הן מעט כמה משקל כל אחד בפני עצמו

\scriptstyle\begin{cases}\scriptstyle\sum_{i=1}^4 a_i =40\ \quad \sum_{i=1}^5 a_i =121\\\scriptstyle a_i=3^{i-1}\\\scriptstyle a_i:a_{i+1}=a_{i+1}:a_{i+2}\end{cases}
Do as follows:
כה תעשה
If you want to sum up weights: the first weighs one liṭra; the second weighs 3 liṭra; the third weighs 9 liṭra, the fifth 81 liṭra; the fourth 27 liṭra.
אם תחפוץ להוסיף משקלות הראשון משקלו לטרא השני משקלו ג' לטרין השלישי משקלו ט' לטרי' החמשי פ"א ליטרין הרביעי כ"ז לטרין
Do as follows: first write 1, which is the weight of the first, like this:
\scriptstyle{\color{blue}{a_1=1}}
וככה תעשה כתוב בתחילה א' משקלו של משקל הראשון ואח"כ כתוב כך
1
1
א
א
Sum them together; it is 2. Add another 1 to it; it is 3 and this is the second weight.
\scriptstyle{\color{blue}{a_2=\left(1+1\right)+1=2+1=3}}
חברם יחד ויהיה ב' תוסיף עוד א' עליה ויהיה ג' זהו משקל השני
Then, write like this:
אח"כ כתוב כך
1
1
3
3
א
א
ג
ג
Sum them together; it is 8. Add another one; it is 9 and this is the third weight.
\scriptstyle{\color{blue}{a_3=\left(1+1\right)+\left(3+3\right)+1=8+1=9}}
חברם יחד ויהיה ח' תוסיף עוד אחת ויהיה ט' זהו משקל השלישי
Then, write like this:
אח"כ כתוב כך
1
1
3
3
9
9
א
א
ג
ג
ט
ט
Sum them together; it is 26. Add another one; it is 27 and this is the fourth weight.
\scriptstyle{\color{blue}{a_4=\left(1+1\right)+\left(3+3\right)+\left(9+9\right)+1=26+1=27}}
חברם יחד ויהיה כ"ו תוסיף עוד אחת ויהיה כ"ז זהו משקל רביעי
Then, write like this:
אח"כ כתוב כך
1
1
3
3
9
9
27
27
א
א
ג
ג
ט
ט
זב
זב
Sum them together; it is 88. Add another one; it is 81 and this is the fifth weight.
חברם יחד ויהיה פ' תוסיף עוד אחת ויהיה פ"א זהו משקל חמישי
\scriptstyle{\color{blue}{a_5=\left(1+1\right)+\left(3+3\right)+\left(9+9\right)+\left(27+27\right)+1=80+1=81}}
The total is 121.
\scriptstyle{\color{blue}{a_1+a_2+a_3+a_4+a_5=1+3+9+27+81=121}}
ס"ה קכ"א
You can keep adding this way.
ועל דרך זה תוכל להוסיף
Or, we use this way: for the first weight take one; for the second 3 times 1; for the third 3 times 3; for the fourth 3 times 9; for the fifth 3 times 27 and so on - your sign is 3, meaning 3 times the first weight.
או נלך אצל דרך זה למשקל הראשו' קח את אחת לשנים גפ"א לשלישי' ג'פג' לרביעי' גפ"ט לחמישי' ג"פ כ"ז וכן לעולם וסימניך ושלישי' על כולו פי' ג"פ משקל הראשון
\scriptstyle{\color{blue}{\begin{cases}\scriptstyle a_1 =1\\\scriptstyle a_2=3\sdot a_1=3\sdot1=3\\\scriptstyle a_3=3\sdot a_2=3\sdot3=9\\\scriptstyle a_4=3\sdot a_3=3\sdot9=27\\\scriptstyle a_5=3\sdot a_4=3\sdot27=81\\\scriptstyle a_i=3\sdot a_{i-1}\end{cases}}}

Divide a Quantity - Money

  • 18) If you want to divide 5 pešiṭim to one third and one quarter so that nothing remains
\scriptstyle\frac{1}{3}X+\frac{1}{4}X=5
י"ח אם תרצה לחלק ה"פ לשליש ולרביע ולא ישאר מהן כלום
First, say: where are a third and a quarter found? In 12: the third is 4 and the quarter is 3. Sum them together; it is 7 and this is the denominator.
\scriptstyle{\color{blue}{\left(\frac{1}{3}\sdot12\right)+\left(\frac{1}{4}\sdot12\right)=4+3=7}}
אמור תחילה שליש ורביע בכמה ימצאון בי"ב השליש הוא ד' הרביע הוא ג' חברם יחד הרי ז' וזהו המורה
Rule of Three: if you want to know how much is due to the one who has the third, which is 4, multiply 4 by 5 pešiṭim; the result is 20. Divide it by 7; you find 2 times 7 in it and an excess of 6 parts, of which 7 is a whole unit. So, he has 2 whole pešiṭim and 6 parts of which 7 is a whole unit.
\scriptstyle{\color{blue}{\frac{1}{3}X=\frac{4\sdot5}{7}=\frac{20}{7}=2+\frac{6}{7}}}
ואם תרצה לידע בכמה מגיע לזה שיש לו השליש שהוא ד' כפול ד' בה' פשי' ויעלה כ' תחלק בז' ותמצא בו ב' פ"ז ועודף ו' חלקי' שז' מהן חלק שלם הרי שיש לזה ב' פשי' שלימי' וו' שברי' שז' מהן חלק שלם
For the one who has a quarter: multiply 3 by 5; the result is 15. Divide it by 6; the result is 2 pešiṭim and one part of which 7 is a whole pešuṭ.
\scriptstyle{\color{blue}{\frac{1}{4}X=\frac{3\sdot5}{7}=\frac{15}{7}=2+\frac{1}{7}}}
ומי שיש לו הרביעי כפול ג' בה' ויעלה ט"ו תחלק ממנו ו' ויעלה ב' פשי' וחלק אחד שז' פשי' שלם
Thus, the 5 pešuṭim are divided into a third and a quarter with no remainder.
הרי שנחלקו ה' [פשוטים] ‫[59]לג' ולד' ולא נשאר מהן כלום
  • Likewise, if you have 12 and you wish to divide them to a third, a half, and a quarter, so that nothing remains
\scriptstyle\frac{1}{2}X+\frac{1}{3}X+\frac{1}{4}X=12
וכן אם בידך י"ב פשי' ותרצה לחלקם לחצאין לשליש ולרביעי ולא ישאר כלום
Say: where are a half, a third and a quarter found? In 12: the half is 6, the third is 4 and the quarter is 3. Sum them together; it is 13 and this is the denominator.
\scriptstyle{\color{blue}{\left(\frac{1}{2}\sdot12\right)+\left(\frac{1}{3}\sdot12\right)+\left(\frac{1}{4}\sdot12\right)=6+4+3=13}}
אמור חצי שליש ורביע אָנה ימצאון בי"ב החצי ו' השליש ד' הרביע ג' צרוף יחד הרי י"ג וזהו המורה
Rule of Three: multiply 6, which is the half, by 12; the result is 72. Divide it, meaning how many times 13 is in it; you find 5 times and 7 parts of which 13 is a whole unit.
\scriptstyle{\color{blue}{\frac{1}{2}X=\frac{6\sdot12}{13}=\frac{72}{13}=5+\frac{7}{13}}}
אח"כ כפול ו' שהוא החציה בי"ב וע ויעלה ע"ב תחלק כמה פעמי' יש בו י"ג ותמצא ה' פעמי' וז' שברי' שי"ג מהן פשי' שלם
Multiply the third, which is 4, by 12; the result is 48. Divide it by 13; you find 3 and 9 parts of 13.
\scriptstyle{\color{blue}{\frac{1}{3}X=\frac{4\sdot12}{13}=\frac{48}{13}=3+\frac{9}{13}}}
אח"כ כפול השליש שהוא ד' בי"ב ויעלה מ"ח תחלק ממנו י"ג תמצא ג' וט' שברי' מי"ג
Multiply 3 by 12; the result is 36. Divide it by 13; you find 2 and 10 parts of 13.
\scriptstyle{\color{blue}{\frac{1}{4}X=\frac{3\sdot12}{13}=\frac{36}{13}=2+\frac{10}{13}}}
וכן כפול ג' בי"ב ויעלה ל"ו חלק מהן י"ג ותמצא ב' וי' שברי' מי"ג
And so on.
וכן לעולם

Find a Quantity Problem - Whole from Parts - Fish

  • 19) You have a fish whose body weighs 10 liṭra and its tail and head weigh a third, a quarter, a fifth, and a sixth of its whole. How much is the weight of the whole [fish]?
\scriptstyle\frac{1}{3}X+\frac{1}{4}X+\frac{1}{5}X+\frac{1}{6}X+10=X
י"ט הרי יש לפניך דג שמשקל גופו י' י' לטראות ומשקל זנבו ראשו שלישיתו רבי' חמי' ששי' כמה כל משקלו
Answer: find a number divisible by 3, 4, 5, and 6; it is 60.
תשובה מנה מספר המתחלק לגדה"ו וזהו ס‫'
When you subtract 3, 4, 5, and 6 from 60, i.e. its third, quarter, fifth, and sixth; you sum them together; the result is 57 and the remainder is 3; and this is the denominator.
וכשתסיר מס' גדה"ו פי' השליש והרבי' והחומש והשישי' ותצרפם יחד ויעלה נ"ז ועודף ג' זהו המורה
\scriptstyle{\color{blue}{60-\left[\left(\frac{1}{3}\sdot60\right)+\left(\frac{1}{4}\sdot60\right)+\left(\frac{1}{5}\sdot60\right)+\left(\frac{1}{6}\sdot60\right)\right]=60-57=3}}
Multiply 10 by 60; the result is 600.
כפול י' בס' ויעלה ת"ר
Divide it by 3; you find in it two hundred times 3.
תחלק ממנו ג' ותמצא בו ר' פעמי' ג‫'
So, the weight of the whole fish you asked about is two hundred liṭra.
\scriptstyle{\color{blue}{X=\frac{10\sdot60}{3}=\frac{600}{3}=200}}
וכן כל משקלו של דג ששאלנו מאתם

Multiple Quantities - Selling Cloth

  • 20) Question: a man gave his three sons [30] cubits of cloth to sell. One sold one cubit for 4 zehuvim, the second for 5 zehuvim, and the third for 6 zehuvim. All of them earned the same amount of money.
How much money did each of them get from the sale and how many cubits did each of them sell?
כ' שאלה אדם נתן לג' בניו [ל'] אמות בגד למכור והאחד מכר האמה עבור ד' זהו' והשני עבור ה' והג' עבור ו' זהו' וכולם מביאי' מעות שוות זה כזה

חוד כמה מעות להג' מן המקח וכמה אמות מכר כל אחד

\scriptstyle\begin{cases}\scriptstyle X+Y+Z=30\\\scriptstyle4X=5Y=6Z\end{cases}
Answer: first I will show you how much does the one who gives one cubit for 4 zehuvim have:
תשובה בתחילה אראך כמה שהיה לזה שנתן אמה עבור ד' זהו‫'
First, say: in [which number] there are a quarter, a fifth, and a sixth?
אמור תחילה ב רביעי' חמישי' ששית אנה ימצאון
In 60: the quarter is 15; the fifth is 12; the sixth is 10. Sum them together; it is 37 and this is the denominator.
\scriptstyle{\color{blue}{\left(\frac{1}{4}\sdot60\right)+\left(\frac{1}{5}\sdot60\right)+\left(\frac{1}{6}\sdot60\right)=15+12+10=37}}
בס' רביעי' ט"ו חמישי' י"ב ששות י' חברם יחד ויהיה ל"ז זהו המורה
Then, mulitply 15, which is the quarter, by 30, which is the measure of the cloth; you find it is 450.
ואח"כ כפול הט"ו שהוא הרביעי' בל' כמדת הבגד ותמצא ת"נ
Divide it by 37; you find in it 12 times 37 and six parts of 37.
\scriptstyle{\color{blue}{X=\frac{15\sdot30}{37}=\frac{450}{37}=12+\frac{6}{37}}}
תחלק ת"ן לל"ז ותמצא בו י"ב פעמי' ל"ז וששה חלקי' של"ז אמה שלימה נמצא שהיה לזה שנתן אמה עבור ד' זהו' י"ב אמות וששה חלקי' של"ז מהן אמה שלימה
If you wish to know how much money does the one who gives one cubit for 4 zehuvim have:
ואם תחפוץ לידע כמה מעות גבהו לזה שנתן אמה עבור ד' זהובי‫'
He has 12 cubits and six parts of 37 of a cubit.
[60]י"ב אמות היו לו וששה חלקים של"ז מהן אמה שלימה
12 times 4 is 48; and for the 6 parts do as follows:
הרי י"ב ד"פ י"ב עולה מ"ח ומן הו' חלקי' הנותרי' עשה כך
Divide each gold coin into 7 tapuḥim and say: if these were 6 parts of 37, i.e. the price of one cubit of cloth, then their price were 28 tapuḥim. Now that they are only 6, for how much are they?
חלוק כל זהב בז' תפוחי' ותאמר כך אילו היו הו' חלקי' ל"ז [דהיינו דמיהם של בגד אמה] אז היה דמיהן כ"ח תפוחי' עתה שהם רק ו' כמה הם
Multply 6 by 28; the result is 168.
אז כפול בכ"ח [ויעלה ח'ו'א'‫]
Divide it by 37; you find in it 4 times 37 and twenty parts of 37 of a whole tapuaḥ.
וחלוק אותו לל"ז ותמצא בו ד' פעמי' ל"ז [ועשרים חלקים] של"ז עושי' תפוח שלם
We find that he charge 48 zehuvim, 4 tapuḥim and twenty parts of 37 of a whole tapuaḥ.
נמצא שזה גבה מ"ח תפוחי' זהובי' וד' תפוחי' ועשרי' חלקי' של"ז תפוח שלם
{\color{blue}{\begin{align}\scriptstyle4X &\scriptstyle=4\sdot\left(12+\frac{6}{37}\right)=\left(4\sdot12\right)+\left(4\sdot\frac{6}{37}\right)=48+\frac{\frac{28\sdot6}{37}}{7}=48+\frac{\frac{168}{37}}{7}=48+\frac{4+\frac{20}{37}}{7}\\&\scriptstyle=48+\frac{4}{7}+\frac{\frac{20}{37}}{7}\\\end{align}}}
To know how many cubits does the one who gives one cubit for 5 zehuvim sell do as follows:
לדעת כמה אמו' מכר זה שנתן אמה עבור ה' זהו' עשה כך
Multiply the fifth of a sixth, meaning 12, by the number of the cubits of the cloth, which is 30; the result is 360.
כפול החומש משישית דהיינו י"ב במניין אמו' הבגד שהם ל' [ויעלה 0'ו'ג'‫]
Divide it by 37, which is the denominator; you find in it 9 cubits and 27 parts of 37 of a whole cubit.
\scriptstyle{\color{blue}{Y=\frac{12\sdot30}{37}=\frac{360}{37}=9+\frac{27}{37}}}
ותחלק ממנו ל"ז [שהוא] המורה ותמצא בו ט' אמות וכ"ז חלקי' של"ז מהן עושי' אמה שלמה
If you want to know how much money he charges for the 9 cubits, meaning 45 zehuvim, and 27 parts:
ואם תחפוץ לידע כמה מעות גבה ט' אמות היינו מ"ה זהו' וכ"ז חלקי‫'
If they were 37, they would have been sold for 35 tapuḥim, considering each zehuv as 7 tapuḥim as above. Now that they are only 27, multiply 27 by 35; the result is 945. Divide it by 37; you find 25 tapuḥim and 20 parts of which 37 are a whole tapuḥ.
אילו היה ל"ז היו נמכרי' בעד ל"ה תפיוחי' כשתעריך כל זהו' בעד ז' תפוחי' כדלעיל עכשיו שהוא רק כ"ז [כמה כפול כ"ז] בל"ה [ויעלה הד"ט] ותחלק ממנו ל"ז ותמצא כ"ה תפוחי' וך' חלקי' של"ז עושין תפוח שלם
Convert 21 tapuḥim into 3 zehuvim and add them to 45; it is 48 and you are left with 4 tapuḥim and 20 parts of which 37 are a whole tapuḥ.
עשה מכ"א [.] תפוחי' ג' זהו' וחברם יחד עם מ"ה ויהיה מ"ח ויוותרו לך ד' תפוחי' וך' חלקי' של"ז תפוח שלם
{\color{blue}{\begin{align}\scriptstyle5Y &\scriptstyle=5\sdot\left(9+\frac{27}{37}\right)=\left(5\sdot9\right)+\left(5\sdot\frac{27}{37}\right)=45+\frac{\frac{35\sdot27}{37}}{7}=45+\frac{\frac{945}{37}}{7}=45+\frac{25+\frac{20}{37}}{7}\\&\scriptstyle=45+\frac{21+4+\frac{20}{37}}{7}=45+3+\frac{4}{7}+\frac{\frac{20}{37}}{7}=48+\frac{4}{7}+\frac{\frac{20}{37}}{7}\\\end{align}}}
We find that the money of the first is the same as the [money] of the second.
נמצא שמעו' הראשונות כשיני
To know the amount of money and cubits of the one who sells a cubit for 30 zehuvim: multiply a sixth of 60 by 30, which is the number of the cubits; the result is 300. Divide the result by 37; you find 8 cubits and 4 parts of which 37 are one unit.
\scriptstyle{\color{blue}{Z=\frac{10\sdot30}{37}=\frac{300}{37}=8+\frac{4}{37}}}
לדעת המעו' ואמו[ת]‫[61] המוכר אמה עבור ל' זהו' כפול חלק ששי' מס' בל' מניין האמות [דהיינו ל' ויעלה 0'0'ג'] ומן העולה תחלוק ל"ז ותמצא ח' אמות וד' חלקי' של"ז עושי' חלק שלם
To know how much is his money: 8 times 6 zehuvim are 48. As for the 4 remaining parts: if they were 37, they would have been sold for 42 tapuḥim. Now that they are only 4, multiply 4 by 42; the result is 168. Divide the result by 37 zehuvim; you find 4 tapuḥim and 20 parts of which 37 is a whole tapuḥ.
ולדעת כמה מעותיו ח' פעמי' ו' זהו' היינו מ"ח ד' חלקי' הנותרי' אילו היה ל"ז היו נמכרי' במ"ב תפוחי' עתה שהם רק ד' בכמה כפול ד' במ"ב [ויעלה חו"א] ומן העולה תחלק [ל"ז] זהו' ותמצא ד' תפוחי' וך' חלקי' של"ז תפוח שלם
{\color{blue}{\begin{align}\scriptstyle6Z &\scriptstyle=6\sdot\left(8+\frac{4}{37}\right)=\left(6\sdot8\right)+\left(6\sdot\frac{4}{37}\right)=48+\frac{\frac{42\sdot4}{37}}{7}=48+\frac{\frac{168}{37}}{7}\\&\scriptstyle=48+\frac{4+\frac{20}{37}}{7}=48+\frac{4}{7}+\frac{\frac{20}{37}}{7}\\\end{align}}}
We find that there is no [difference] between them regarding the amount of money.
נמצא שאין בין זה לזה [במנין]‫[62] המעות
The first sold 12 cubit plus 6 parts; the second sold 9 cubits and 27 parts; the third sold 8 cubits and 4 parts.
והראשון מכר י"ב אמו' יותר ו' חלקי' ושני מכר ט' אמו' וכ"ז חלקי' והשלישי מכר ח' אמו' וד' חלקי‫'
וזהו סימנם

Partnership Problems - for the Same Time - Three Partners

  • 21) Question: three friends want to donate together as a group 40 liṭra zehuvim. The first has gold that worth 3 zehuvim per liṭra, the second [has gold that] worth 5 zehuvim [per liṭra], and the third has gold that worth 8 zehuvim per liṭra. How many liter does each of them has equally?
\scriptstyle\frac{1}{3}X+\frac{1}{5}X+\frac{1}{8}X=40
כ"א ועוד שאלה ג' חבירי' רצו לתת בחבורה מ' לטרי' זהו' לראשון יש לו זהב ששוה הלטרי' ג' זהו' לשני ששוה ה' זהו' ולשלישי יש לו זהב ששוה הלטר' ח' זהו‫'

כמה יש כל אחד לטרי' שוה בשוה

Answer: find a number divisible by 3, 5, and 8: multiply 3 by 5; it is 15. Multiply 8 by 15; the result is 120.
\scriptstyle{\color{blue}{3\sdot5\sdot8=15\sdot8=120}}
תשובה עשה מספ' המתחלק לגה"ח כיצד כפול ג' על ה' הרי ט"ו כפול ח' על ט"ו ויעלה ק"כ
Take from 120 its third, it fifth, and its eighth, and add them up; it is 79 and this is the denominator.
\scriptstyle{\color{blue}{\left(\frac{1}{3}\sdot120\right)+\left(\frac{1}{5}\sdot120\right)+\left(\frac{1}{8}\sdot120\right)=79}}
הסר מק"כ ה השליש והחומש [שמינית] וחבר יחד ויהיה ע"ט וזה המור‫'
To know how many liṭra the one [whose gold] is worth 3 zehuvim should contribute: take a third of 120; it is 40. Multiply 40 by 40, which is the number of the liṭra and divide the result by 79.
\scriptstyle{\color{blue}{\frac{1}{3}X=\frac{\left(\frac{1}{3}\sdot120\right)\sdot40}{79}=\frac{40\sdot40}{79}}}
לדעת כמה לטרי' צריך לשום זה שזה שוה ג' זהו' קח השליש מק"כ ‫[63]וזהו מ' כפול מ' על מ' מניין הליטרין ומן העולה תחלק ע"ט
The same for all of them:
וכן לכולם
For the second: multiply the fifth of 120 by 40.
\scriptstyle{\color{blue}{\frac{1}{5}X=\frac{\left(\frac{1}{5}\sdot120\right)\sdot40}{79}}}
לשני כפול החומש מק"ך במ‫'
For the third: multiply the [eighth] of 120 by 40.
\scriptstyle{\color{blue}{\frac{1}{8}X=\frac{\left(\frac{1}{8}\sdot120\right)\sdot40}{79}}}
לשלישי' כפול מק"כ
I have already elaborated on this matter.
כמה כבר הארכתי בעניין זה

Multiple Quantities

Four Coins
  • 22) Question: you have four coins that are worth 40 pešuṭim: the first is equal to a half and a sixth of the second. What is left from the second equals two-thirds of the third. The third is equal to a third, a quarter, and a sixth of the first. The fourth is equal to four-fifths of the [third]. How much does each [of the coins] worth?
כב הרי שיש לפניך ד' מטבעות ששוים מ' פשי‫'

הראשונה שוה החצי והשתות מן השנייה
והנשאר מן השני הוא ב' שלישי מן השלישי‫'
והשלישי' שוה שליש ורביע ושתות מן הראשונ‫'
והרביעי' שוה ד' חומשי' מן הב‫'
לדעת כמה שוה כל אחת מחברת' בקיצור

\scriptstyle\begin{cases}\scriptstyle\sum_{i=1}^4 a_i =40\\\scriptstyle a_1=\left(\frac{1}{2}+\frac{1}{6}\right)\sdot a_2\\\scriptstyle a_2-\left[\left(\frac{1}{2}+\frac{1}{6}\right)\sdot a_2\right]=a_2-a_1=\frac{2}{3}a_3\\\scriptstyle a_3=\left(\frac{1}{3}+\frac{1}{4}+\frac{1}{6}\right)\sdot a_1\\\scriptstyle a_4=\frac{4}{5}\sdot{\color{red}{a_3}}\end{cases}
Do as follows:
עשה כך
For the first that is equal to a half and a sixth of the second: in which number there are a whole half and a whole sixth? In six: the half is 3 and the sixth is 1. So it is 4 of 6, as if it is said: the first is 2-thirds of the second.
\scriptstyle{\color{blue}{\left(\frac{1}{2}\sdot6\right)+\left(\frac{1}{6}\sdot6\right)=3+1=4\longrightarrow a_1=\frac{2}{3}a_2}}
הראשונה ששוה החצי והשתו' מן השנייה באיזה מספר נמצאי' חצי ושתות שלמי' בששה החצי מהחצי ג' והשתות א' הרי ד' מן הוי' כאילו אמר הראשונ' ב' שליש מן השני
For the third that is equal to a third, a quarter, and a sixth of the first: in which number these fractions are found? In 12: the third is 4; the quarter is 3; the sixth is 2. Sum them together; it is 9, as if it is said: the third is 3-quarters of the first.
ושלישית‫[64] ששוה [שליש]‫[65] ורביע ושתות מן הראשון אילו החלקי' בכמה נמצאון בי"ב השליש ד' הרביע ג' השתות ב' כלול יחד הרי ט' הוי כאילו אמר השליש ג' רבי' מן הראשונה
\scriptstyle{\color{blue}{\left(\frac{1}{3}\sdot12\right)+\left(\frac{1}{4}\sdot12\right)+\left(\frac{1}{6}\sdot12\right)=4+3+2=9\longrightarrow a_3=\frac{9}{12}a_1=\frac{3}{4}a_1}}
For the fourth that is equal to 4-fifths of the [third]: there is no need for an explanation, because it is well explained.
\scriptstyle{\color{blue}{a_4=\frac{4}{5}{\color{red}{a_3}}}}
‫[והד']‫[66] ששוה ד' חומשי' מן (מן) השני אין צריך ביאור דהא מבואר היטב
To know how you find the fractions, understand the fractions we mentioned in the question: a half and a sixth - wherever you find a sixth, you find also a third; we also mentioned a quarter and a fifth. All these fractions are found in sixty. Hence, the second coin is 60.
\scriptstyle{\color{blue}{b_2=60}}
לדעת איך תמצאם החלקי' חלוקי' בפי' הבן איזה חלקי' הזכרנו בשאל' חצי ושתות ובכל מקום שתמצא שתות שליש גם תמצא גם הוזכרנו רביעי' וחומש וכל אילו החלקי' נמצא בששי' נמצאת מטבע שנייה ס‫'
The half and the sixth are 30 and 10. Add them together; it is 40 and this is the first coin.
\scriptstyle{\color{blue}{b_1=\left(\frac{1}{2}+\frac{1}{6}\right)\sdot b_2=\left(\frac{1}{2}\sdot60\right)+\left(\frac{1}{6}\sdot60\right)=30+10=40}}
החצי והשתות גם ל' וי' כללם יחד הרי מ' זו היא מטבע הראשונה
By how much 60 exceeds over 40? by 20 and this is what we said in the question "what is left from the second", which exceeds the first, "is two-thirds of the third". So, the third coin is 30, because when you take a third, a quarter, and a sixth of 40, you find the third.
כמה עודף ס' יותר על מ' כ' זהו' שאמרנו בשאלה והנשאר מן השני עודף על הראשון הוא שני שליש מן השלישי' כי מטבע [שלישי ל']‫[67] כשתסיר גד"ו פי' שליש רביעי' שישית ממ' תמצא שלישי
\scriptstyle{\color{blue}{\frac{2}{3}b_3=b_2-b_1=60-40=20\longrightarrow b_3=\left(\frac{1}{3}+\frac{1}{4}+\frac{1}{6}\right)\sdot b_1=\left(\frac{1}{3}+\frac{1}{4}+\frac{1}{6}\right)\sdot40=30}}
To know the fourth coin, divide [30] into 5 parts. We find 5 times 6. So, 4-fifths of 30 is 24.
\scriptstyle{\color{blue}{b_4=\frac{4}{5}\sdot b_3=\frac{4}{5}\sdot30=\frac{4}{5}\sdot5\sdot6=24}}
לדעת מטבע רביעי' תחלק לה' חלקי' נמצא ה' פעמי' ו' ד' חומשי' מל' הרי כ"ד
This is their order: 40, 60, 30, 24. Sum them together; it is 154 and this is the denominator.
\scriptstyle{\color{blue}{b_1+b_2+b_3+b_4=40+60+30+24=154}}
וזהו סדורן מ' ס' ל' כ"ד צרוף אותם יחד הרי קנ"ד זהו המורה את החידה
To know how much is the value of the first coin, multiply 40 by 40, which is the value of the coins and divide the result by 154. You find its diagram like this:
לדעת כמה מטבע ראשונה למלאו' מניין ארבעי' כפול מ' במ' שהוא מניין המעות ומן העולה תחלק קנ"ד ותמצא צורתו כך
Meaning 10 pešiṭim and sixty parts of which 154 are a whole pašuṭ and this is the value of the first coin.
\scriptstyle{\color{blue}{a_1=\frac{40\sdot40}{154}=10+\frac{60}{154}}}
פי' י' פשי' וששי' [חלקים] שקנ"ד פשי' שלם זהו סך מטבע ראשונ‫'
Multiply 60 by 40 and divide the result by 154. Its diagram is like this:
אח"כ כפול ס' במ' ומן העולה תחלק קנ"ד ויהיה צורתו כך
Meaning 15 pešiṭim and 90 parts of which 154 are a whole pašuṭ and this is the value of the second coin.
\scriptstyle{\color{blue}{a_2=\frac{60\sdot40}{154}=15+\frac{90}{154}}}
פי' ט"ו פשי' וצ' חלקי' שקנ"ד פשי' שלם זהו סך מטבע שנייה
Multiply 30 by 40 and divide the result by 154. Its diagram is like this:
אח"כ כפול ל' על מ' וחלקהו בקנ"ד ויהיה צורתו כך
Meaning 7 pešiṭim and 122 parts of which 154 are a whole pašuṭ and this is the value of the third coin.
\scriptstyle{\color{blue}{a_3=\frac{30\sdot40}{154}=7+\frac{122}{154}}}
פי' ז' פשי' קכ"ב חלקי' שקנ"ד פשי' שלם זהו סך מטבע ג‫'
Multiply 24 by 40 and divide the result by 154. Its diagram is like this:
אח"כ כפול כ"ד במ' ומן העולה תחלק קנ"ד וצורתו כך
Meaning 6 pešiṭim and 36 parts of which 154 are a whole pašuṭ.
\scriptstyle{\color{blue}{a_4=\frac{24\sdot40}{154}=6+\frac{36}{154}}}
פי' ו' פשי' ל"ו חלקי' שקנ"ד פשי' שלם
Sum 10, 15, 7, and 6 together; they are 38. Sum the parts beneath them together; they are 308, meaning 2 times 154, which is 2 pešuṭim.
צרוף יחד י' וט"ו וז' וו' הרי ל"ח‫[68][69]צרוף יחד החלקי' שתחתיהן ויעלו ח' וג' מאות דהיינו ב"פ קנ"ד וזהו ב' פשי' וד"ק
\scriptstyle{\color{blue}{\begin{align}\scriptstyle a_1+a_2+a_3+a_4&\scriptstyle=\left(10+\frac{60}{154}\right)+\left(15+\frac{90}{154}\right)+\left(7+\frac{122}{154}\right)+\left(6+\frac{36}{154}\right)\\&\scriptstyle=\left(10+15+7+6\right)+\left(\frac{60}{154}+\frac{90}{154}+\frac{122}{154}+\frac{36}{154}\right)\\&\scriptstyle=38+\frac{308}{154}=38+\frac{2\sdot154}{154}=38+2=40\\\end{align}}}
Sons
  • 23) Riddle: a rich man talking to his sons, divided his assets and said to one of his sons: take from my purse one zahuv first, and then take a tithe of the remaining.
To the second he said: take two zehuvim and a tithe of the remaining.
To the third he said: take three zehuvim and a tithe of the remaining.
And so on to all, first one zahuv more than the preceding should be taken, and then a tithe.
How much is the money and how many are the sons, so that when they took according to their father's instruction each received as the other?
\scriptstyle1+\left[\frac{1}{10}\sdot\left(X-1\right)\right]=2+\frac{1}{10}\sdot\left[X-\left[\left[1+\left[\frac{1}{10}\sdot\left(X-1\right)\right]\right]+2\right]\right]
כ"ג חידה אדם עשיר המחלק נכסיו על פה ואומר לאחד מבניו טול מכיסי זהב בראש ואח"כ טול המעשר מן הנותרי‫'

לשני אמר טול אתה ב' זהו' ועישור נכסי' מן הנותרי‫'
לשלישי אמר טול אתה ג' זהו' ועישור נכסי' מן הנותרי‫'
וכן לכולם הוסיף ליקח זהב יותר בראש מן הקדמון ואח"כ עישור
חוד כמה המעו' כמה הבני' וכשנטלו כאשר ציום אביהם הגיע לזה כזה

Say: since the fraction here is a tenth, subtract 1 from ten; 9 remains. So, the number of sons is 9.
\scriptstyle{\color{blue}{10-1=9}}
תשובה אמור לפי שהחשבון השבור שבזה הוא עשירי תפחת א' מעשר' ישארו ט' הרי שט' היו הבני‫'
Then, say: 9 times 9; the result is 81. So, the number of zehuvim is 81.
\scriptstyle{\color{blue}{9\sdot9=81}}
אמור אחר זה ט'פ"ט ויעלה פ"א הרי שפ"א היו הזהובי‫'
Each received 9 zehuvim.
ולכל אחד הגיע ט' זהו‫'
Always take one less than [the denominator of] the fraction he told his sons to take and do as I instructed you.
וכן לעולם היאך שהיה ש השבור' שאמר לבניו ליקח קח אחת פחו' ועשה כמו שציויתיך

Motion Problem - Pursuit

  • 24) Question: a man is walking ten miles a day. His friend is walking one mile on the first day, two miles on the second day, and so on in each day he goes on walking one mile more. In how many days will he reach the one who walks 10 miles?
\scriptstyle10X=\sum_{i=1}^x i
כ"ד אדם שמהלך בכל יו' י' מילין וחבירו מהלך ביום ראשון מיל יום שני ב' מילין וכן בכל ימים מוסיף והולך מיל בכמה ימים מגיע למהלך י' מיל
Answer: sum 10 with 10, the result is 20. Subtract one and 19 remain, so he will reach his friend in 19 days.
\scriptstyle{\color{blue}{X=\left(10+10\right)-1=20-1=19}}
תשובה חבר י' עם י' ויהיה כ' הסר ממנו אחת וישאר י"ט הרי שבי"ט ימים מגיע [לחבירו‫]
Thus, always double the walk of the one who walks in a constant [velocity], then subtract 1 and this is [the number of] days within which he will reach him.
\scriptstyle n\sdot X=\sum_{i=1}^x i\longrightarrow X=2n-1
וכן לעולם תכפול מהלכו של המהלך קביעיתו והסר אחת ובאילו ימי' הגיעו
  • If the second is walking 1; 3; 5; 7.
\scriptstyle10X=\sum_{i=1}^x \left(2i-1\right)
ואם השני מהלך אגה"ז
Subtract 10 from the walk and he will reach him in 10 days.
תחוסר מן המהלך י' וישיגו בי' ימי‫'
  • If he [= the second] is walking 2; 4; 6; 8.
\scriptstyle10X=\sum_{i=1}^x 2i
ואם הוא מהלך בוד בדו"ח
He will reach him in 9 days.
ישיגו [בט'] ימים
Here you have a sign concerning the walker 1, 2, 3, so that you will always know by a shortcut how many miles he walked.
והא לך סימן לעולם על המהלך אב"ג שתדע בקיצור כמה מילין הלך

Ordering Problem - Stock of Coins

  • 25) If a man asks you: here is a stock of coins arranged in sequence: 1, 2, 3, 4, 5, 6.
\scriptstyle\sum_{i=1}^n i
כ"ה אז אם ישאלך אדם הנה צבור מעות מונחי' כאן וכולם הונחו על דרך אבגד"הו
See the last in the row, for instance, if the last in the row is 9:
תבין בסוף השיטה הזאת ח' כגון כגון אם סוף השיטה ט‫'
Take the middle of this row, which is five, and say: 5 times 9 is 45, so the sum of the coins is 45.
\scriptstyle{\color{blue}{\sum_{i=1}^9 i={\color{OliveGreen}{\left[\frac{1}{2}\sdot\left(9+1\right)\right]\sdot9}}=5\sdot9=45}}
אז קח אמצעי' אותה שיט' שהוא חמשה ואמור ה' פעמי' ט' הרי מ"ה וכך המעות מ"ה
  • If the last in the row is 10:
ואם סוף השיט' [י'‫]
Take one of the means of this row and say: 5 times 10 is 50. Add half the row, meaning 5; the total is 55.
אז קח אחת מאמצעי' השיטה ואמור ה"פ י' הרי נ' ותוסיף עוד חצי שיטה דהיינו [ה'] היינו הכל נ"ה
\scriptstyle{\color{blue}{\sum_{i=1}^{10} i=\left[\left(\frac{1}{2}\sdot10\right)\sdot10\right]+\left(\frac{1}{2}\sdot10\right)=\left(5\sdot10\right)+5=50+5=55}}
Apply this rule:
נקוט האי כללא בידך
When the last of the row is even, multiply the middle of the row by the [last] of the row and add [the middle] of the row.
\scriptstyle n=2m\longrightarrow\sum_{k=1}^n k=\left[\left(\frac{1}{2}\sdot n\right)\sdot n\right]+\frac{1}{2}n
כשסוף השיטה בזוגות אז כפול אמצע השיטה על שיטה שלימה ותוסיף חצי שיטה
When the last of the row is odd, such as 7, 9, 11, 13, 15, multiply the middle of the row by the [last] of the row and you do not need to add anything.
\scriptstyle n=2m+1\longrightarrow\sum_{k=1}^n k=\left[\frac{1}{2}\sdot\left(n+1\right)\right]\sdot n
ואם סוף השיטה בפרודות כגו' ז' ט' י"א י"ג ט"ו אז כפול אמצעי' השיטה על כל השיטה ואינך צריך להוסיף בדבר

Proportional Division - Three Men Sharing Food

  • 26) Riddle: two sat down to eat some bread. One had three loafs of bread and the second had two loafs of bread. A third came and ate with them. At the end of the meal, he went leaving five pešiṭim for the two. How should these two share the five pešiṭim?
\scriptstyle\left(2-\frac{5}{3}\right)X+\left(3-\frac{5}{3}\right)X=\frac{5}{3}
[70]כ"ו חידה שנים הסיבו לאכול לחם האחד יש לו ג' ככרות ולשני יש לו ב' ככרות ובא עוד שלישי ואכל עמהם ובגמר סעודה הלך לו והניח לפני השנים ה' פשי‫'

חוד איך יחלקו אילו השנים הה' פשי‫'

Know and understand how much of the bread is due to each: you should say: a whole loaf and two-thirds.
\scriptstyle{\color{blue}{\frac{5}{3}=1+\frac{2}{3}}}
דע והבן כמה שהגיע לכל אחד מן הלחמניות תצטרך לומר כיכר שלם ושני שלישי
How much did the owner of 2 loafs lose? only a third.
\scriptstyle{\color{blue}{2-\left(1+\frac{2}{3}\right)=\frac{1}{3}}}
כמה הפסיד בעל ב' ככרות רק שליש
How much did the owner of 3 loafs lose? a loaf and a third.
\scriptstyle{\color{blue}{3-\left(1+\frac{2}{3}\right)=1+\frac{1}{3}}}
וכמה הפסיד בעל ג' ככרות ככר ושליש
We find that he gave 5 pešiṭim for 5-thirds: one takes four pešiṭim and the other take one pašuṭ.
\scriptstyle{\color{blue}{\frac{5}{3}=\frac{1}{3}+\frac{4}{3}}}
נמצא שנתן עבור ה' שלישיות ה' פשי' זה נוטל ארבע פשי' וזה נוטל פשי‫'
The end.
סליק
MS München
This is not the language of the book, but the language of the late R. Weysil. אין זה לשון הספר רק לשון מהר"ר ווייזיל ז"ל
I have found this in another book. זה מצאתי בספר אחר
  • One thinks of any amount he wants up to 32 and adds to it a half of his thought for the first time.
יחשוב החושב איזה סכום שירצה עד ל"ב והנשאל יתן לו חצי מחשבתו פעם ראשון
ויאמר לו אם יש בו חצי
For instance: if he thought of 5, he adds 2 and a half to it, meaning 7 and a half.
\scriptstyle{\color{blue}{5+\left(\frac{1}{2}\sdot5\right)=5+\left(2+\frac{1}{2}\right)=7+\frac{1}{2}}}
כגון אם היה מחשבתו ה' ונתן זה לו ב' וחצי דהיינו ז' וחצי
וכך יאמר לו עשה החצי לאחד שלם ואותו פעם ראשון אשר היה בו מחצה יתן למשמרת
ואם לא היה בו חצי
כגון אם היה מחשבתו ד' דהיינו החצי ב' מה טוב ומה נעים
ואח"כ יאמר לו קח עוד חצי על חשבון אשר בידך וישאל לו אם יש בו מחצה אם לא כמו שכתבתי
וככה יתן לו החצי על החשבון אשר בידו חמשה פעמי‫'
וכל פעם אשר עלה בידו מחצה יתן למשמרת
ואח"כ ילך אל זה השורה וכל פעם אשר היה בו מחצה יקח לו אותו מספר אשר כתוב כאן וישלך אותו בל"ב ל"ב ומה שנשאר בידו הוא המספר אשר אשר חושב השואלו כגון אם היה בפעם שנית ובפעם רביעי' ובפעם חמישי' מחצה א"ב קח מה דכתי' אצל פעם שנית דהיינו אצבע והוא ד"א אל ואצל פעם רביעי' דהיינו ד"ב ואצל חמישית דהוא ו"א והשלך בל"ב ל"ב וישאר כ"ב דהיינו החשבון אצל קל"ב אשר חשב וכן לכל פעם
[71]וכן אם ירצה השואל יחשוב חשבון עד קכ"ח והנשאל אמור לו כמה אמור שציויתיך רק שבעה פעמי' יתן לו חצי החשבון ומתי שהיה בו מחצה יקח אחד מן השורה אשר אכתוב
כגון אם חושב השואל חשבון שבפעם ראשון ובפעם שלישי ובפעם חמישי ובפעם שביעי' היה בו מחצה דהיינו חשבונם לשורה ראשונה ג"ד ולשלישי ו"ח ולחמשי ח"ד ולשביעי ד"ו צרוף יחד ויהיה אד"ב השליכהו בל"ב ל"ב וישאר ז"א דהיינו החשבון הראשון אשר חשב השואל
Your sign:
סימניך
21 thumb 20-1
14 forefinger 4-10
20 middle finger 10-2-8
24 ring finger 10-4-10
16 little finger 4-10-2
א"ב גודל אך
ד"א אצבע יד
‫0"ב אמה חבי
ד"ב קמיצה ידי
ו"א זרת ביד

Multiple Quantities - Men, Women, Children

  • Ask a riddle: people came to eat. Among them, there were men, women, and children. All in all 20 [people]. The host came and said to them: every man should give me three pešiṭim, every woman – two pešiṭim, and every child – a half pašuṭ, and so they did. The total amount of money [paid by] all of them together was 20.
Ask: how many men, women, and children were there?
\scriptstyle\begin{cases}\scriptstyle3X+2Y+\frac{1}{2}Z=20\\\scriptstyle X+Y+Z=20\end{cases}
חוד חידה הנה באו הנה נפשות לאכול ויש ביניהם אנשים ונשים וטף וסך כולם עשרים ובא להן בעל אושפיזן ואמר להן תנו לי איש אחד מכם ג' פשי' ואשה ב' פשי' ותינוק חצי פשי' וכן עשו ויעלה הסך של מעות כולם עשרים פשי‫'

חוד כמה היו האנשים וכמה הנשים וכמה הטף

Answer: one man, five women, and 14 children.
תשוב איש אחד חמשה נשים י"ד תינוקות
\scriptstyle{\color{blue}{\begin{cases}\scriptstyle men=X=1\\\scriptstyle women=Y=5\\\scriptstyle children=Z=14\end{cases}}}
Note well.
ודוק
  • Another way: a hundred people came to a guesthouse and sat to eat together. Among them, there were men, women, and children. The host came and said to them: every man should give me ten pešiṭim, every woman – five pešiṭim, and every child – a half pašuṭ, and so they did. The total amount of money [paid by] all of them together was 100 pešiṭim.
Ask: how many men, women, and children were there?
\scriptstyle\begin{cases}\scriptstyle10X+5Y+\frac{1}{2}Z=100\\\scriptstyle X+Y+Z=100\end{cases}
דרך אחר הנה באו מאה נפשות למלון אחד וישבו יחד לאכול ויהיה ג"כ ביניהם [אנשים]‫[72] [ונשים]‫[73] וטף ובא ג"כ להן בעל אושפיזין ואמר להן תנו לי כל איש עשרה פשי' ואשה ה' פשי' ותינוק חצי פשי' וכן עשו ויעלה הסך של מעות מאה פשי‫'

חוד כמה אנשים וכמה הנשי' וכמה תינוקות

Answer: one man, nine women, and ninety children.
תשובה איש אחד ותשעה נשים ותשעים תינוקו‫'
\scriptstyle{\color{blue}{\begin{cases}\scriptstyle men=X=1\\\scriptstyle women=Y=9\\\scriptstyle children=Z=90\end{cases}}}
Double False Position
Question by R. Israel from Prague: שאלה מפי הר"ר ישראל מפראג ממון שהוספנו עלינו כמה שהיה בתחלה כגון אם הוא ג' תוסיף עליו ג' וגם מחציתו ורביעתו ויהיה הכל עשרים או ל' או מ' או כפי רצונך כמה שתרצה ותכתוב שני חשבונות שקרים ותחשוב מהם האמת כמה היה בתחילה

Find a Quantity Problem - How Much Problem - Money

  • An amount of money, we add to it as it was at first, and its half and its quarter and the total is 20
\scriptstyle X+X+\frac{1}{2}X+\frac{1}{4}X=20
והנה לך דימיון כגון ממון שהוספנו עליו כמו שהיה בתחילה ומחציתו ורביעתו ויהיה הכל עשרים
1) \scriptstyle{\color{blue}{4+4+\left(\frac{1}{2}\sdot4\right)+\left(\frac{1}{4}\sdot4\right)=4+4+2+1=11}}
אז חשוב אם היה בתחלה המעות ד' זהו' והוספנו עליו עוד ד' ועוד מחציתו שהוא ב' ורביעתו שהוא א' והנה הכל ביחד א'א'
\scriptstyle{\color{blue}{20-11=9}}
והנה הוא שקר כי היה ראוי להיות הכל 0"ב כי שאילתינו כשהוספנו עליו כמו שהיה בתחילה ומחציתו ורביעתו ויהיה הכל עשרים וזה אינו רק א'א' אז חשוב כמה הוא מן א'א' עד 0"ב ויהיה ט' אותו ט' כתוב תחת ד' שאמרנו שהיו המעות בתחילה כזה
4
9
ד
ט
2) \scriptstyle{\color{blue}{8+8+\left(\frac{1}{2}\sdot8\right)+\left(\frac{1}{4}\sdot8\right)=8+8+4+2=22}}
ואח"כ חשוב אם היו המעו' בתחילה ח' והוספנו עליו כפי שאילתינו עוד ח' ומחציתו שהוא ד' ורביעיתו שהוא ב' והנה הכל ביחד ב'ב'
\scriptstyle{\color{blue}{22-20=2}}
א"כ זהו ג"כ שקר כי הוא ראוי להיות הכל ביחד 0"ב כמו ששאלנו כי שאלנו כשהוספנו עליו כמו שהיה בתחילה ומחציתו ורביעתו ויהיה הכל 0"ב אז תנכה 0"ב מן החשבון כפי שאילתנו ויהיה יותר ב' אותו ב' כתוב תחת ח' שאמרנו שהיה המעות בתחילה וכתוב ח' בצד שמאל של ד' וגם ב' הנשאר מן החשבון כתוב בצד שמאל על ט' כזה
8 4
2 9
ח ד
ב ט
\scriptstyle{\color{blue}{x=\frac{\left(2\sdot4\right)+\left(9\sdot8\right)}{9+2}=\frac{8+72}{11}=\frac{80}{11}=7+\frac{3}{11}}}
והנה צרוף ט"ב ביחד כי הם נשארים מן החשבונות השקרים ויהיה א'א' וזה המורה אח"כ כפל ב' שתחת על ד' ויהיה ח' אותו ח' כתוב שלא תשכח ואח"כ כפול ט' שתחת ד' על ח' ויהיה ב"ז וקח ח' שכתבת כבר ושים אותו על ב' ויהיה עשרה כתוב גלגל במקום ב' ומחוק ד' וכתוב במקומה ח' ויהיה 0"ח פי' פ' ואח"כ חלוק בשער החילוק כמה פעמים א'א' יש בשמונים כי הוא המורה ותמצא בו ז' פעמים ועוד ג' חלקים שא'א' מהן חלק שלם פי' שלם זהב שלם וכך היא המעות בתחילה ששאלנו והמבין יבין
וזה החשבון דלעיל מכוון כששני חשבונות השקרים אחד פחות ואחד יותר אבל אם שני חשבונות שקרים כל אחד יותר על חשבון היוצא או שניהם חסרים אשכילך האיך תעשה אז תנכה החשבון המועט הנשאר מן חשבון המרובע ומה שישאר לך זהו המורה וכשכפלת שני חשבונות יחד אז תנכה גם כן חשבון המועט מן המרובה
  • I shall write you an example, for instance, if you have an amount of money, you add to it the same amount, and its half and its quarter and the total is 20
\scriptstyle X+X+\frac{1}{2}X+\frac{1}{4}X=20
והנה אכתוב לך דימיון כגון אם יש לך סך מעות וכפלת עליו סך שהיה כבר ומחציתו ורביעתו ויהיה בין הכל 0"ב
1) \scriptstyle{\color{blue}{8+8+\left(\frac{1}{2}\sdot8\right)+\left(\frac{1}{4}\sdot8\right)=8+8+4+2=22}}
אשכילך האיך תעשה אם תאמר שהיה סך מעות ח' זהו' והוספנו עליו עוד ח' ומחציתו שהוא ד' ורביעתו שהוא ב' ויהיה [ס]ך הכל ב'ב'
\scriptstyle{\color{blue}{22-20=2}}
וזה שקר כי היה ראוי להיות סך הכל 0"ב אז תנכה 0"ב וישאר ב' אותו ב' כתוב שלא [ת]שכח
2) \scriptstyle{\color{blue}{16+16+\left(\frac{1}{2}\sdot16\right)+\left(\frac{1}{4}\sdot16\right)=16+16+8+4=44}}
ואז תחשוב חשבון השני ותאמר אם היו סך המעות ו"א והוספנו עליו ו"א ומחציתו שהוא ח' ורביעיתו שהוא ד' ויהיה בין הכל ד"ד
\scriptstyle{\color{blue}{44-20=24}}
וזה שקר גמור כי היה ראוי להיות 0"ב אז תנכה 0"ב שהוא סך היוצא מן מעות מן ד"ד וישאר ד"ב
\scriptstyle{\color{blue}{x=\frac{\left(24\sdot8\right)+\left(2\sdot16\right)}{24-2}=\frac{192-32}{22}=\frac{160}{22}=7+\frac{6}{22}}}
ואח"כ ב' הנשאר מן חשבון הראשון מן ד"ב הנשאר מן חשבון השני וישאר ב"ב וזהו המורה ואז כפול ב' שתחת ח' על ו"א ויהיה ב"ג כתוב שלא תשכח ואח"כ כפול ד'ב' על ח' ויעלה ב'ט'א' אז תנכה החשבון הראשון אשר כפלת שהוא ב"ג מן החשבון השני שהוא ב'ט'א' כי הוא חשבון המועט וישאר 0'ו'א' אז חלוק בשער החילוק כמה פעמים ב'ב' יש בו כי הוא המורה ותמצא שיש בו ז' פעמים וגם ו' חלקים שב'ב' מהן חלק שלם דהיינו זהו' והמבין יבין סליק

Additional Word Problems

Mantova, Comunità Ebraica MS ebr. 8/16

Into how many parts you should divide a piece [of bread] so that [the parts] will be divisible by 3, 4, and 5 והנה אגלה לך שער השברים אם נשאל לך השואל על פת אחת לכמה חלקים שצריך אתה לשבר הפת שתמצא בה שלישית ורביעית וחמישית אז תכתוב כך השאלה
ה
ד
ג
ותאמ' ג' פעמים ד' ויעלה ב"א ותכפול פעם אחת הב"א תוך הה' אז יעל' לך ס"ו וזה חלוקים שתמצא שלישית ורביעית וחמישית דהא 0"ב שלישית מס"ו ורביעית ה"א וחמישית זהו ב"א סליק
12 barrels are bought for 6 zehuvim, how much are 9 barrels cost? והנה אגלה לך שער הערך וזהוא דמיונו אם נשאל לך השואל הנה לפניך ב"א חביות שנקנין עבור ו' זהובי' ט' חביות כמה הן עולין אז תכתו' כך השאלה
ט
ו
בא
ואז תאמר ו' פעמי' ט' ויעלה לך ד"ה אז תחלוק הב"א מד"ה ותאמר כמה א' בה' והא' הוי תוך הה' ה' פעמים אבל לא תוכל ליקח ה' פעמים דאל"כ לא תוכל ליקח הב' מן הד' ה' פעמים וכמה פעמים שתקח הא' מן הה' כך הרבה פעמים צריך אתה ליקח הב' מן הד' אלא לא תוכל ליקח הא' מן הה' אלא ד' פעמים ואז נשאר לך ד"א והד' תכתו' למעלה דה"ד הוי הזהו' ואז צריך ליקח הב' מן ד"א נמי ד' פעמי' אז נשאר לך ו' וזהו ג' גדולי' שעולי' י"ב על הזהוב אחד ונמצא לכשתקנה ב"א חביות עבור ו' זהובי' שט' חביות עולים ד' זהובי' וחצי כן תעשה לכל פעם
Two lent a loan of 34 zehuvim - one had a debt of 15 zehuvim and the other had a debt of 19 zehuvim and they charged an interest of 13 zehuvim, how much will each have of the interest? ועוד אפרש לך ערך אחר שנים שהלוו על חוב אחד ד"ג זהובי' ולאחד יש לו בחוב ה"א זהובי' ולשיני יש לו בחוב ט"א זהובי' ולקחו שנים לרבית ג"א זהובי' כמה יש לכל אחד בה ג"א זהובי' לפי הערך
והנה אפרש לך בקיצור איך תעשה שתמצא היושר אז תכתו' כל אחד לחוד וכך תכתו' הריבי' למעלה ואח"כ המעות שיש לו ב' בחוב ואח"כ הסך כולה וזה דומיונו שכתו' מבראי ותכפל המעות שלו תוך הריבית ותאמ' פ' א'פ'א' ואח"כ תאמ' א'פ'ה' שהוא ה' ואח"כ תכתו' עוד פעם אחת ה"א תחת הג' שלמעלה ויהיה כך דמיונו ותאמ' גפ"א שהוא ג' ותשים על הה' שלמעלה אז יהיה ח' ותאמ' עוד פ"א גפ"ה שהוא ה"א אז תמצא הט' א' אז תחליק הד"ג מן הט"א ותאמ' כמה יש ג' בתוך ט"א והוא הוי ביה ו'פ' אבל תוכל לקח ו' פ' כי אז אין נשאר לך אלא ה' א' ולא תוכל ליקח ו'פ'ד' מה"א אלא לא תוכל ליקח אל ה'פ' אז נשאר לך הד' והה' תכתו' למעלה כמו כן ותקח ה'פ'ד' מן ה'ד' אז תשאר לך ה"ב אז יהיה לזה בחלקו ה' זהוב' והב' גדולי' שעולים ד"ג על זהוב אחד ועשית' גם כן לצד השני ותמצא שיהיה לשני בחלקו ז' זהובי' וט' גדולי' שעולי' ד"ג על זהוב אחד סליק
  • Boiling Water Problem - you have 15 se'ah of water, if they are boiled on fire for one day, 7 se'ah are evaporated, if there are only 13 se'ah on fire, how much will be evaporated according to this ratio?
\scriptstyle\frac{15}{7}=\frac{13}{X}
הנה אפרש לך ערך אחר אם ישאל לך השואל כי הנה ה"א סאין מים לפניך ואם מתבשלין על האור יום אחד אז הוי מתמעטין ז' סאין הנה אם היו רק ג"א סאין על האש והאש הוי מממועט לפי זה הערך כמה הוי מתמעט מן הג"א סאין ביום אחד אז תכתו' כך השאלה כדכתי' מבדאי
\scriptstyle{\color{blue}{X=\frac{13\times7}{15}=\frac{91}{15}=6+\frac{1}{15}}} ותעשה כמו שפרשתי לעיל תכפול הג"א תוך הז' ותמצא א"ט אז תחלוק ה"א מן הא"ט ותמצא שהוי הג"א סאין מתמעט ביום אחד ו' סאין וחלק אחד שה"א עושין על סאה אחת סליק
השורש מערך שנים שהלוו על חוב ט' זהו' לאחד יש ה' זהו' ולאחד ד' זהו' ולקחו לרבית י"ג ונמצא דשייך לכל אחד ב' זהוב י"ג תשיעיו' לרבית ונמצא דשייך לזה שיש לו ה' זהו' ה'פ' י"ג תשיעיו' שהם וו' תשיעיו' וכשתחלוק ממנו ט' שהוא המור' פי' כל ט' תשיעיות הם רבי' זהוב וכך תעשה גם לשני סליק
והנה אפרש לך ערך מתוך ערך והנה אחד שלוה על חוב ט' זהובי' והם עומדים ד"א שבועות ואחד שלוה על חוב א"א זהובי' והם עומדי' ה"א שבועות ולקחו שניהם ליחד ריבית ז' זהובי' כמה יש לכל אחד בחלקו לפי הערך הנה אפרש לך בקיצור איך שתעשה שתמצ' האמת תכתו' לכל אחד לבדו כמה שהכתב מבדאי הריבי' לעי' ואח"כ המעות ואח"כ השובועו' ותשים צד אחד לפניך איזי שתרצה ותכפל המעות תוך השבועות ותאמ' ט'פ'א' שהוא ט' ואח"כ תאמ' טפ"ד ותמצא הוא אז תחבר וב"א ותעשה ג"כ לצד השיני ותמצא הוא אז תחבר אותם ליחד וב"א והוא ותמצא אט"ב וזה תרשום לפניך כי הוא המור' ואח"כ תכפול כל אחד ואחד וב"א והוא תוך הריבית וכשתכפול וב"א תוך הז' אז תמצא בח"ח ותחליק אט"ב הנזכרים לעיל מן בח"ח ותמצ' אט"ב תוך בח"ח ג"פ והג' הוא הזהו' שיהיו לו בחלקו וגם ט' נשאר לך מן החילק הוא הוי ט' גדולי' שעולי' אט"ב על אט"ב על אט"ב זהוב אחד ותעשה ג"כ לצד השני ותיכפול הוא תוך הז' ותמצא ה"ה א"א ותחליק ג"כ אט"ב מן ה"ה א"א ותמצא אטב תוך ה"א א"א ג"פ שהוא הזהו' שיהיו לו בחלקו וגם נשאר לך בח"ב שלא יכולים להשיג לכלל אט"ב שהוא גדולים שעולים אט"ב על זהו' אחד ונמצא שיהיו לזה בחלקו ג' זהו' ובח"ב גדולי' שעולי' אט"ב על זהוב אחד סליק דוק
ואם נשאל לך על זה העיגול כמה כי יאמר לך החץ וחצי היתור אותו אז תאמר כמה היתור חצי הוא הד' אמות אז תאמ' ד'פ'ד' והוא ו"א ותאמ' כמה אורך החץ והוא אמה אז תחלק האמ' מן הו"א ותאמר כמה א' בתוך ו"א והוא ו"א והוא ו"א פ' בתוכה אז תעשה אורך החץ שהוא א' על הו"א אז יהיה ז"א וקח הו"א אורכו העיגול וכן תעשה לכל פעם תכפול היתור תחלק החץ מן ה' הנכפל ודוק
הנה אפרש לך שאלה שנקר' הסולם אם נשאל לך על סולם אחד שהיא גבוה עשרה אמות ואם נישג הסולם למעלה ב' אמות כמה אמות השיג למטה מחומה כמה זה אז תעשה כך תאמ' כמה אורך הסול' אורכה עשרה ותאמ' י'פ'י' שהי' ק' ותאמ' כמה אורך החומה מן הארץ עד ראש הסולם והיא ח' אמות ותאמ' ח'פ'ח' והוא ד"ו ותחלק הח' מן ה0'0'א' ונשאר ו"ג ותעשה שורת בה'ו'ג' והשורת בהוג הוא ו' זה אורך הקרקע מן החומה עד הסולם. זליק
בזה הוכיח דלאכח מה שבריבוע מאה על אמה שהאלכסון שלו אמ' ותרי חומשין כי זה 0"א אמות על 0"א אמו' ודוק

Moscow, Russian State Library, Ms. Guenzburg 714/4

Question: here are many bulls one after another, meaning that every time I bought the first for a certain amount, I then bought the bull that follows it for double the first and likewise the third bull I bought also for double [the price] that I bought the one that preceded it and so the fourth bull and the fifth bull. [74]שאלה הנה שוורים הרבה בזה אחר זה ובענין זה בכל פעם כשקניתי הראשון בעד סך א' אז קניתי אותו שור של אחריו בעד כפל הראשון וכן השור השלישי קניתי ג"כ בעד כפל שקניתי אותו שלפניו וכן השור הד' וכן השור הה‫'
כגון הא' קניתיו בעד א' זהוב הב' בב' זהובי' הג' בד' וכן כולם והנה השאלה כמה כל המעות הללו בסך אחת
תשובה זאת ועוד אחרת דוגמא זה למצוא ולחשוב ולעמוד על בוריו תעשה בענין זה ואופן זה בתחלה תראה ותבין כמה הוא סך הראשון שקנית בו השור הראשון ואח"כ תראה ג"כ כמה הוא הסך האחרון ב' פעמים בשער הכפל גדול ותחסר ממנו בשער החיסור הסך הראשון שקנית בו השור הראשון ומה שישאר בידך כשחסרת ממנו הסך הא' הוא סכום כל המעות שקנית בהם כל השוורים
והנה לך הדמיון כגון הראשון קנית בעד א' זהוב והשני בעד ב' והשלישי בעד ד' והרביעי בעד ח' והה' בעד י"ו והו' בעד ל"ב והז' בעד ס"ד . והנה תראה אתה שהסך האחרון שקנית בו השור הז' היינו השור האחרון הוא ס"ד זהובים א"כ תחשוב בשער הכפול הגדול ב' פעמים ס"ד ויהיה ‫[75]ס"ד ויהיה קכ"ח אז תחסר מן קכ"ח הסך הראשון שקנית בו השור הא' שהוא א' זהוב וישאר בידך קכ"ז זה כל כך מעות קנית כל השוורים וכן כל פעם תחסר מן הסך האחרון סך הראשון אחרי אשר כפלת אותו ב' פעמים ולאו דוקא אם הסך הראשון א' שהוא הדין אם הסך הא' ב' או ג' או ד' או כמה שהוא בתחלה תחסר מן הסך האחרון כשכפלת אותו ב"פ ואל תשנה מעניין זה כי חשבון א' הוא ואמת
שאלה אם תרצה לידע ולחשוב חשבון מה שתרצה בעניין זה בכל פעם אותו חשבון שלאחריו הוא ד' פעמים כמו אותו חשבון שלפניו כגון א' ד' י"ו . ס"ד . ס"ד . רנ"ו . ותרצה לידע ולחשוב כמה הוא סך אחד . אשכילך בדרך זו הילך למען תצליח שתשכיל . והנה אראך הדרך אשר תלך בה בתחלה תראה ותבין ג"כ על הסך הראשון ועל הסך האחרון כמה הם אמנם אינו צריך לכפול סך האחרון כמו שהראיתיך לעיל . רק קח בידך כמו שתמצא אותו עתה ותחסר ממנו סך הראשון מן סך האחרון אז תוכל לחלק הנשאר בידך לג' חלקים שוים וזה קל להבין לכל בר משכיל אשר הערה את נפשו למלאכה היקרה הזאת . כי אמשול לך ‫[76]משל בדמיון קטן ואשכילך בו למען תבין ממנו ותראה בעיניך שתוכל לחלק הנשאר בידך לג' חלקים אחרי שחסרת ממנו הסך הראשון
והנה לך הדמיון כגון אם תרצה לידע ולחשוב בסך א' א' ד' י"ו ס"ד רנ"ו [...] תראה עתה שהסך האחרון הוא רנ"ו והסך הא' הוא א' ותרצה לחשוב כל הסכומין בסך אחד אז קח הסך האחרון היינו רנ"ו ותחסר ממנו הסך הראשון היינו א' וישאר לך רנ"ה ואח"כ תחלק בשער החלוק כמה יש ברנ"ה הג' כי תמצא שיצא החשבון לג' חלקים שוים ולא ישאר לך מהם כלום . אחר אשר חסרת ממנו הסך הראשון היינו א' . ואם אתה עושה כן תמצא שיש בו פ"ה פעמים ג' ברנ"ה והיינו השליש מן הרנ"ה כי פ"ה פעמים ג' היינו רנ"ה . אם כן תראה עתה שיצא החשבון בג' חלקים שוים אחרי שחסרת ממנו הסך הראשון אח"כ קח אותו השליש מן רנ"ה דהיינו פ"ה וחבר אותו אל רנ"ו כי כן היה הסך האחרון מתחלה קודם שחסרת ממנו הסך הראשון ותמצא אחר החיבור שיצא לך תר"ל (?) והיינו כל החשבון אשר חפצת לידע כי כשתחבר ביחד א' ד' י"ו ס"ד ס"ד רנ"ו יעלה לך תר"ל (?) . ותן לבך להבין ולא לשכוח בכל ‫[77]פעם לחסר החשבון הראשון מן סך האחרון ויצא אחר החיסור לג' חלקים שוים אח"כ תוכל ליקח החלק הג' היינו השליש ולחברו אל הסך האחרון כמו שהיה בתחלה ולאו דוקא אם הסך הראשון א' הוא הדין אם הסך הראשון ב' או ג' או ד' או ה' או כמה שתרצה . תוכל בכל פעם לחסר אותו מן הסך האחרון ויצא לך הסך בכל פעם אחר החיסור לג' חלקים שוים וחבור אותו השליש לסך האחרון כמו שהיה בתחלה וזהו חשבון ודוק תם
Give and Take Problems
  • A man went to the market; he doubled his money and spent 12 pešuṭim. He went to another market; he doubled what he had left and spent 12 pešuṭim. He went to yet another market; he doubled what he had left and spent 12 pešuṭim [...] He has nothing left. How much was the original amount of money he went with to the first market?
[78]אדם הלך לשוק וכפל מעותיו והוציא י"ב פשוטים ועוד הלך לשוק אחר וכפל הנשאר בידו והוציא י"ב פשוטים ועוד הלך לשוק אחר וכפל הנשאר בידו והוציא [י"ב פשוטים] [...] בידו כלום כמה היה הקרן שהוליך כמו בשוק הראשון
Do as follows:
עשה כך
For the first we should take a half from the 12 that he spent.
בעבור הראשון נצטרך להוציא החצי מן הי"ב שהוציא
For the second we take a quarter.
ובעבור השני נקח הרביעי
For the third we take an eighth, which is 1½ pešuṭim.
ובעבור השלישי נקח השמינית מי"ב שהוא פשוט וחצי
Subtract 1½ pešuṭim from 12; 10½ remain and this was original amount of money he went with to the first market.
\scriptstyle{\color{blue}{12-\left(\frac{1}{8}\sdot12\right)=12-\left(1+\frac{1}{2}\right)=10+\frac{1}{2}}}
הסר א' פשוט וחצי מי"ב ישארו י' וחצי וכן היה הקרן שהוליך לשוק הראשון
According to this way you can do even if he goes to several markets:
ועל זה הדרך תוכל לעשות ואם ילך לכמה שווקים
For the fourth market we subtract one part of 16 from the 12 that he spent each time.
כי בעבור השוק הרביעי נסיר מן הי"ב פ' שהיה מוציא בכל פעם חלק א' מי"ו
For the fifth we subtract one part of 32.
ובעבור החמישי נסיר חלק א' מל"ב
For the sixth we subtract one part of 64.
ובעבור השישי נסיר חלק א' מס"ד
As many markets you have, so you double what you have, then divide what he spent by the double and subtract the quotient from what he spent; and this is the required.
וכאשר תרבה השווקים כן תכפול מה שיש בידך ועל הכפול חלק מה שהוציא ומה שיעלה בחילוק הסר ממה שהוציא והוא המבוקש
  • A man went to the orchard to pick apples and he has to pick from them so that he will give the inner keeper of the orchard half the apples he collected and one more and to the second gatekeeper of the second gate he has to give half of the apples left in his hand and one more and so on he has [to give to all the gatekeepers] of the six gates of the orchard, that is, to give each gatekeeper a half and one more [...] apples no less and no more.
אדם א' הלך לפרדס א' ללקוט תפוחים ויש לו ללקוט מהם כל כך שיתן לשוער הפנימי ‫[79]של הפרדס חצי התפוחים שלקט וא' יותר ולשוער השני מן השער הב' יש לו ליתן החצי מן התפוחים שנשארו בידו וא' יותר וכן יש לו [...] לששה שערים שיש לפרדס דהיינו לתת לכל שוער החצי וא' יותר [...] תפוחים לא פחות ולא יותר עשה כך
Take number 5 that he must bring and add 1 to it; it is 6.
תפוש מספר הה' שהוא חייב להביא ותוסיף עליו א' הרי ו‫'
Double 6; it is 12 for one gate.
כפול ו' ויהא י"ב הרי שער א‫'
Add 1 to it; it is 13.
הוסיף עליו א' הרי י"ג
Double it; it is 26 for two gates.
כפול אותם ויהיו כ"ו הרי ב' שערים
Add 1 to it; it is 27.
תוסיף עליו א' ויהיו כ"ז
Double it; it is 54 for three gates.
כפול אותם ויהיו נ"ד הרי ג' שערים
Add 1 to it; it is 55.
תוסיף עליהם א' ויהיו נ"ה
Double it; it is 110 for four gates.
כפול אותם ויהיו ק"י הרי ד' שערים
Add 1 to it; it is 111.
תוסיף עליהם א' ויהיו קי"א
Double it; it is 222 for five gates.
כפול אותם ויהיו רכ"ב הרי ה' שערים
Add 1 to it; it is 223.
תוסיף עליהם א' ויהיו רכ"ג
Double it; it is 446 for six gates.
כפול אותם ויהיו תמ"ו הרי ו' שערים
So, he has to collect a total of 446 apples and 5 apples are left for him to bring no less and no more.
הרי שיש לו ללקט תמ"ו תפוחים בין הכל וישארו בידו ה' תפוחים להביא לא פיחות ולא יותר
ואם יש לו ללקט מהם כל כך שיתן לשוער הפנימי החצי ממה שלקט וא' יותר ולשוער הב' חצי הנשאר וב' יותר ולשוער הג' חצי הנשאר וג' יותר ‫[80]ולשוער הד' חצי הנשאר וד' יותר וד' תפוחים יש לו להביא לא פחות ולא יותר
Do as follows:
עשה כך
תפוח משער הד' שיש לו להביא הוסף עליהם ד' שיש לו להוסיף לשו[ער] [...] שער א‫'
Add 3 to it; it is 19.
הוסף [עליהם ג' וי]היו י"ט
Double it; it is 38 for two gates.
כפלם ויהיו ל"ח הרי ב' שערים
Add 2 to it; it is 40.
הוסף עליהם ב' ויהיו מ‫'
Double it; it is 80 for three gates.
כפלם ויהיו פ' הרי ג' שערים
Add 1 to it; it is 81.
הוסף עליהם א' יהיו פ"א
Double it; it is 162 for four gates.
כפלם ויהיו קס"ב הרי ד' שערים
So, he collected 162 apples and 4 apples were left for him.
והתפוחים שלקט היו קס"ב והנשארים בידו ד' תפוחים
Find a Quantity Problems - Whole from Parts
  • A lance is embedded one-third and one-quarter in the ground, and it is 80 cubits above the ground, how many cubits are the whole lance?
\scriptstyle\frac{1}{3}X+\frac{1}{4}X+80=X
חנית מעוכה בארץ שלישיתה ורביעיתה ולמעלה מן הארץ היא פ' אמה כמה אמות היא בין כולה
Do as follows:
עשה כך
Find a number that has a third and a quarter; it is 12.
תמצא מספר שיש לו שליש ורביע והוא י"ב
A third and aquarter of 12 are 7 and it is the [part] that is embedded in the ground.
\scriptstyle{\color{blue}{\left(\frac{1}{3}\sdot12\right)+\left(\frac{1}{4}\sdot12\right)=7}}
ושליש ורביע מי"ב הוא ז' והוא התחוב בארץ
5 remains above the ground.
ולמעלה מן הארץ נשאר ה‫'
So, say: if 5 equals 12, how much is 20 equal?
אם כך אמור כך אם ה' שווה י"ב כמה ישוה כ‫'
Multiply 20 times 12; the result is 240.
כפול אותם כ"פ י"ב יעלו ר"מ
Divide it by 5; the result of division is 48.
\scriptstyle{\color{blue}{\frac{20\sdot12}{5}=\frac{240}{5}=48}}
חלקם על ה' יעלו מ"ח בחלוק
Hence, the length of the lance is 48 cubits.
א"כ אורך החנית מ"ח אמות
Reuven hired Shimon to build him a house in 30 days - for a day working in construction he will earn 9 liṭra, and for an unemployment day he will lose 4 liṭra. At the end of 30 days he did not earn or lose. How many days did he work and how many days he did not work?

\scriptstyle3x=\left(30-x\right)\sdot4

ראובן שכר שמעון שיבנה לו בית א' בל' יום והיום שיעבוד בבנין ירויח ג' ליט' והיום שלא יעבוד יפסיד ד' ליט' ובסוף ל' יום לא הרויח ולא הפסיד כלום כמה ימים עבד וכמה ימים לא ‫[81]עבד
\scriptstyle{\color{blue}{\frac{4\sdot30}{3+4}=\frac{120}{7}=17+\frac{1}{7}}} [82][י"ב ימים חלקים של ז' והם הימים שלא עבד בה ואחר הכפיל ד"פ ל' ויעלו ק"כ חלקם עם ז' ויעלו י"ז יום וחלק א' מז' ביום‫]
עשה כך אין ספק כי מה שירויח בד' ימים לחשבון ג' ליט' ליום יפסיד בג' ימים לחשבון ד' ליט' ליום חבר ד' עם הג' יהיו ז' כפול ג"פ ל' יהיו צ' חלקם על [...] יעלו [...] [...] וכן ימים עבד בה
If for a day working in building the house he will earn 36 pešuṭim, for an unemployment day he will lose 41 pešuṭim and at the end of 30 days he did not earn or lose

\scriptstyle36x=\left(30-x\right)\sdot41

ואם יאמר כי היום שיעבוד בבית ירויח ל"ו פשוט והיום שלא יעבוד יפסיד מ"א פשוטים ובסוף ל' יום לא הרויח ולא הפסיד כלום
\scriptstyle{\color{blue}{\frac{36\sdot30}{36+41}=\frac{1080}{77}=14+\frac{2}{77}}} עשה כך אין ספק כי מה שירויח במ"א יום לחשבון ל"ו פשוטים ליום יפסיד בל"ו יום לחשבון מ"א פשוטים ליום תחבר ל"ו עם מ"א יעלו ע"ז כפול ל"ו פעמים ל' יהיו לך י"ד יום שלמים יעלה לך אלף ופ' חלקם על ע"ז ויעלו בחלוק י"ד יום שלם וב' חלקים מע"ז ביום וכך ימים לא עבד בבית
\scriptstyle{\color{blue}{\frac{41\sdot30}{36+41}=\frac{1230}{77}=15+\frac{75}{77}}} ועוד כפול מ"א פעמים ל' ויעלה אלף ור"ל חלקם על ע"ז ויעלו בחלוק ט"ו ימים שלמים וע"ה חלקים מע"ז ביום
  • Divide a Quantity - Sharing Food

Two men sat down to eat. One had two loafs of bread and the second had three loafs of bread. A third came and ate with them. [The three ate the five loafs of bread and after they ate and drank, the third who came to eat with them gave five pešiṭim for the two. How should they share the five pešiṭim]? \scriptstyle\left[\left(2-\frac{5}{3}\right)\sdot X\right]+\left[\left(3-\frac{5}{3}\right)\sdot X\right]=5

[83]ב' אנשים היו יושבין לאכול לאחד היו ב' לחמים ולשני ג' לחמים בא אדם שלישי ואכל עמהם ואכלו בין שלשתם אלו הה' לחמים לאחר שאכלו נתן אותו השלישי שאכל עמהם לאותם השנים ה' פשוטים [...] ביניהם [...] כמה חלק מכל לחם אכל כל א' מהם א' לחם וב' שלישיות מלחם א"כ אותו שהיו לו ב' לחמים ואכל א' לחם וב' שלישיות לא הפסיד כי אם שליש לחם ואותו שהיו לו ג' לחמים ואכל א' לחם וב' שלישיות הפסיד א' לחם ושליש שהם ד' שלישיות לחם א"כ אותו שהיו לו ב' לחמים יקח א' פשוט כי הפסיד שליש לחם ואותו שהיו לו ג' לחמים יקח ד' פשוטים כי הפסיד לחם א' ושליש שהם ד' שלישי לחם
  • Motion Problem - To and From - an Ant Climbing a Tower

A tower is 20 cubits tall. An ant wants to climb up. Every day it climbs up one third of a cubit and every night it goes down a quarter of a cubit. How much further up it moves each day and in how many days it will reach to the top?
\scriptstyle\frac{1}{3}X-\frac{1}{4}X=20

מגדל שהוא גבוה כ' אמה ונמלה א' רוצה לעלות למעלה ובכל יום עולה שליש אמה ובכל לילה יורדה רביע אמה כמה יתרון יש לה בכל יום ובכמה ימים תעלה למעלה
\scriptstyle{\color{blue}{\frac{1}{3}-\frac{1}{4}=\frac{1}{12}}} אמור תחלה כמה הוא יותר השליש מן הרביע א' חלק מי"ב
הרי שבי"ב ימים היא עולה א' אמה
\scriptstyle{\color{blue}{x=12\sdot20=240}} ובעבור שהמגדל היא גבוה כ' אמות אמור י"ב פעמים כ' הרי ר"מ הרי שבר"מ ימים היא עולה לראש המגדל
  • How Much Problem – Money

You have some money. You take a third, a quarter, and a fifth of it and their sum is nine. How much remains? \scriptstyle X-\left(\frac{1}{3}X+\frac{1}{4}X+\frac{1}{5}X\right)=9

הרי שיש לך מעות והוצאת מהם השליש והרביע ‫[84]והחומש והם ט' פשוטים כמה יהיו הנשארים
אמור תחלה שליש ורביע וחומש ימצאו בס' השליש הוא כ' הרביע הוא ט"ו החומש הוא י"ב וכללם יהיו מ"ז הרי שהשליש והרביע והחומש שהם ט' פשוטים הם מ"ז חלקים מס' נמצא שהנשאר [...] י"ג חלקים מס' ולכן אמור אם מ"ז חלקים מס' שוים ט' פשוטים י"ג חלקים מס' כמה שוים אמור י"ג פעמים ט' הם קי"ז חלקם במ"ז יבואו כ"ג חלקים ממ"ז נמצא שהיו בכיס י"א פשוטים וכ"ג חלקים ממ"ז ומה שהוציא הוא ט' ומה שנשאר היו ב' וכ"ג חלקים ממ"ז וכן לכל חשבון שתרצה
A man has a jug with maximum capacity of 8 cups of wine and he wants to divide its content between two people, giving each 4 cups, but he has only two jars – one with a maximum capacity of 3 cups and the other [with a maximum capacity of] 5 [cups]. How will he divide it, giving each 4 [cups]? אדם א' יש לו קנקן שמחזיק ח' כוסות של יין ורוצה לחלקו לשני אנשים וליתן לכל א' ד' כוסות ואין לו רק שני כלים שהא' מחזיק ג' כוסות וא' ה' היאך יעשה לחלק אותם וליתן ד' לכל א'
  • Filling the small jar [3 cups] and pouring its content to the medium jar [5 cups]
3 cups - medium jar
5 cups - large jug
תחלה ימלא הכלי שמחזיק ג' כוסות וישים אותם בתוך הכלי המחזיק ה'
  • Filling the small jar once more, pouring its content to the medium jar until it is full
1 cup - small jar
5 cups - medium jar
[2 cups - large jug]
ואח"כ ימלא פעם אחר הכלי המחזיק ג' ויריק כמו כן באותו הכלי המחזיק ה' הרי שהכלי המחזיק ה' מלא ונשאר בכלי המחזיק ג' כוס א‫'
  • Pouring the content of the medium jar to the large jug [8 cups]
1 cup - small jar
7 cups - large jug
אח"כ יריק הכלי מלא של ה' כוסות בתוך הקנקן המחזיק ח' ונמצא ‫[85]שבתוך הקנקן גדול יש בו ז' כוסות ובכלי המחזיק ג' יש בו כוס א‫'
  • Pouring the content of the small jar [1 cup] to the medium jar, then filling the small jar once again from the large jug and pouring the content of the small jar [3 cup] to the medium jar
4 cups - medium jar
4 cups - large jug
אח"כ יריק הכלי של ג' כוסות שיש בו כוס א' בתוך הכלי המחזיק ה' ויחזור וימלא הכלי המחזיק ג' מתוך הכלי המחזיק ח' ויריק בתוך הכלי המחזיק ה' ונמצא עכשיו ד' כוסות בתוך הכלי המחזיק ח' וד' כוסות בתוך הכלי המחזיק ה' ועם זה היין חלוק בשוה
  • Joint Purchase Problem - If You Give Me - Amounts of Money
Three friend, one said to his two friends: know that all I have in my purse with a half of what the both of you have is 60. The second answers and says: all I have in my purse and a quarter of what the both of you have is 60. The third answers: all I have in my purse and a third of what the both of you have is 60.
\scriptstyle\begin{cases}\scriptstyle X+\left[\frac{1}{2}\sdot\left(Y+Z\right)\right]=60\\\scriptstyle Y+\left[\frac{1}{4}\sdot\left(X+Z\right)\right]=60\\\scriptstyle Z+\left[\frac{1}{3}\sdot\left(X+Y\right)\right]=60\end{cases}
שלשה חברים היו ואמר הא' לשני חבריו דעו כי כל מה שבכיסי והחצי משניכם עולה ס' ויען השני ויאמר כל מה שבכיסי ורביע משניכם עולה ס' ויען השלישי כל מה שבכיסי ושליש משניכם עולה ס‫'
  • False Position: we found 3 numbers - 5, 11 and 13, which are a sort of [an answer to] this question.
\scriptstyle{\color{blue}{\begin{cases}\scriptstyle X_1=5\\\scriptstyle Y_1=11\\\scriptstyle Z_1=13\end{cases}}}
מצאנו ג' מספרים והם ה' י"א וי"ג שהם כעין השאלה הזאת
For, 5 says to 11 and 13: me and a half of both of you is 17.
11 says to 5 and 13: me and a third of both of you is 17.
13 says to 5 and 11: me and a quarter of you is 17.
\scriptstyle{\color{blue}{\begin{cases}\scriptstyle X_1+\left[\frac{1}{2}\sdot\left(Y_1+Z_1\right)\right]=17\\\scriptstyle Y_1+\left[\frac{1}{4}\sdot\left(X_1+Z_1\right)\right]=17\\\scriptstyle Z_1+\left[\frac{1}{3}\sdot\left(X_1+Y_1\right)\right]=17\end{cases}}}
כי ה' אומר לי"א ולי"ג אני וחצי שניכם י"ז

וי"א אומר לה' ולי"ג אני ושליש שניכם י"ז
וי"ג אומר לה' ולי"א אני ורביע שניכם י"ז

  • Rule of Three: you see that if they would have said: "the sum of all three of us is 17", the first would have 5, the second 11 and the third 13.
והנך רואה שאלו אמרו מחובר שלשתנו י"ז יהיה לא' ה' ולשני י"א ולשלישי י"ג
Now, that they say: "the sum of all three of us together is 60", we turn to the ratios and say:
ועכשיו שאמרו מחובר שלשתנו יחד ס' נשוב לערכים ונאמר
  • As the ratio of 5 to 17 so is the ratio of the smaller to 60, i.e. the one who asked a half of his friends.
\scriptstyle{\color{blue}{\frac{5}{17}=\frac{X}{60}}}
כערך ה' לי"ז כן ערך הקטן אל ס' הוא ששאל לחבריו החצי
  • As the ratio of 11 to 17 so is the ratio of the second to 60, i.e. the one who asked a third of his friends.
\scriptstyle{\color{blue}{\frac{11}{17}=\frac{Y}{60}}}
וכערך י"א לי"ז כן ערך השני לס' והוא ששאל ‫[86]לחבריו השליש
  • As the ratio of 13 to 17 so is the ratio of the greater to 60, i.e. the one who asked a quarter of his friends.
\scriptstyle{\color{blue}{\frac{13}{17}=\frac{Z}{60}}}
וכערך י"ג לי"ז כן ערך הגדול אל ס' והוא ששאל לחביריו הרביע
וכן תערוך לכל הסכומים שיאמרו שלשתם תשים המורה ה' וי"א וי"ג ודרך הערכים הוא כענין
\scriptstyle{\color{blue}{\frac{17}{5}=\frac{60}{X}\longrightarrow X=\frac{60\sdot5}{17}=\frac{300}{17}=17+\frac{11}{17}}}
אמור אם בעת שהמחובר הוא י"ז יהיה חלק הקטן ה' בהיות המחובר ס' כמה הם חלקיו אמור ספ"ה הוא ש' וחלקם בי"ז יהיו י"ז וי"א חלקים מי"ז
\scriptstyle{\color{blue}{\frac{17}{11}=\frac{60}{Y}\longrightarrow Y=\frac{60\sdot11}{17}=\frac{660}{17}=38+\frac{14}{17}}}
ולדעת החלק האמצעי אמור אם בעת שהמחובר הוא י"ז שוה חלק האמצעי י"א בהיות המחובר ס' כמה הם חלקו אמור ס"פ י"א הם תר"ס חלקם בי"ז יהיו ל"ח וי"ד חלקים מי"ז
\scriptstyle{\color{blue}{\frac{17}{13}=\frac{60}{Z}\longrightarrow Z=\frac{60\sdot13}{17}=\frac{780}{17}=45+\frac{15}{17}}}
ולדעת חלקי הגדול אמור אם בעת שהמחובר הוא י"ז יהיה החלק הגדול י"ג בהיות המחובר ס' כמה יהיה חלקו אמור ס"פ י"ג תש"פ חלקם בי"ז יהיו מ"ה וט"ו חלקים מי"ז
Check:
ויהיה סדר הענין כך אומר הקטן אני שאני י"ז וי"א חלקים וחצי האמצעי שהם י"ט וז' חלקים מי"ז וחצי הגדול שהם כ"ב וי"ו חלקים מי"ז מחובר שלשתם ס‫'
\scriptstyle{\color{blue}{\begin{align}\scriptstyle X+\left[\frac{1}{2}\sdot\left(Y+Z\right)\right]&\scriptstyle=\left(17+\frac{11}{17}\right)+\left[\frac{1}{2}\sdot\left[\left(38+\frac{14}{17}\right)+\left(45+\frac{15}{17}\right)\right]\right]\\&\scriptstyle=\left(17+\frac{11}{17}\right)+\left(19+\frac{7}{17}\right)+\left(22+\frac{16}{17}\right)=60\\\end{align}}}
ואומר האמצעי אני שאני ל"ח וי"ד חלקים מי"ז ושליש הקטן שהם ה' וט"ו חלקים מי"ז ושליש הגדול שהם ט"ו וה' חלקים מי"ז מחובר שלשתנו ס‫'
\scriptstyle{\color{blue}{\begin{align}\scriptstyle Y+\left[\frac{1}{3}\sdot\left(X+Z\right)\right]&\scriptstyle=\left(38+\frac{14}{17}\right)+\left[\frac{1}{3}\sdot\left[\left(17+\frac{11}{17}\right)+\left(45+\frac{15}{17}\right)\right]\right]\\&\scriptstyle=\left(38+\frac{14}{17}\right)+\left(5+\frac{15}{17}\right)+\left(15+\frac{5}{17}\right)=60\\\end{align}}}
ואומר הגדול אני שאני מ"ה וט"ו ‫[87]חלקים מי"ז ורביע הקטן שהוא ד' וז' חלקים מי"ז ורביע האמצעי שהוא ט' וי"ב חלקים מי"ז מחובר שלושתנו עולה ס‫'
\scriptstyle{\color{blue}{\begin{align}\scriptstyle Z+\left[\frac{1}{4}\sdot\left(X+Y\right)\right]&\scriptstyle=\left(45+\frac{15}{17}\right)+\left[\frac{1}{4}\sdot\left[\left(17+\frac{11}{17}\right)+\left(38+\frac{14}{17}\right)\right]\right]\\&\scriptstyle=\left(45+\frac{15}{17}\right)+\left(4+\frac{7}{17}\right)+\left(9+\frac{12}{17}\right)=60\\\end{align}}}
Jacob divided [a certain amount] between his three sons. The share of Reuven was greater than the share of Shimon and the share of Shimon was greater than the share of Levi. Reuven gave his two brothers from his shares as much as their shares, Shimon gave his brothers also as much as their shares and Levi gave his brothers also as much as their shares, then the shares of the three were equal. How much was the [original] share of each? שאלה יעקב חלק לבניו ג' והיה חלק ראובן גדול משל שמעון ושל שמעון גדול משל לוי נתן ראובן לשני אחיו מחלקו כפי מה שהיה חלקם ושמעון גם הוא נתן לאחיו כפי חלקם ולוי גם כן נתן לאחיו כפי חלקם ואז נמצא חלק שלשתם שוה כמה היה חלק כל א' מהם
אמור כי חלק הראשון היה ד' וחלק השני ז' וחלק השלישי י"ג ונמצא בסוף חלקם שוה והיה ח' פשוטים לכל א' כיצד דרך משל חלק ראובן היה י"ג וחלק שמעון ז' וחלק לוי ד' והנה התחיל ראובן ונתן מחלקו לשמעון ז' כפי שהיה לו וללוי ד' ושנים נשאר בידו ואח"כ שמעון שעכשיו היה לו י"ד נתן ללוי ח' כפי מה שהיה בידו ולראובן ב' כפי מה שהיה עכשיו בידו ואח"כ לוי שעכשיו היה לו י"ו נתן מאלו לראובן ד' ונמצא שיש לו ח' וד' לשמעון ועם זה נמצא שביד כולם יש ח' פשוט' וחלקם שוה
Buy and Sell Problems
  • A man said: here are two baskets of figs in each there are 100 figs, the fine are [sold at a rate of] 20 for one pašuṭ, the defective are [sold at a rate of] 30 for one pašuṭ. Their total price is 8 pešuṭim and one third.
אדם א' אמר הנה שני כלכלות של תאנים ובכל א' יש ק תאנים משל היפות כ' לפשוט והרעות ‫[88]ל' לפשוט עולה חשבונם ח' פשוטים ושליש בא א' לקנות ואמר היאך אתה מוכר אמר מאלו אתן לך לז' ומאלו כ' השיב הקונה אם כן תן לי מאלו ומאלו ב' בב' פשוטים ונתן הכל בח' פשוטים והפסיד שליש פשוט
אדם שכר שכיר לל' יום בשכר [...] פשוט לכל יום והיה צריך לפרוע מידי יום ביום ולא היה לו כי אם ששה מטבעות ששוויים בין הכל ל' פשוטים ועכשיו שואלים מה יהיה שווי המטבעות כדי שיוכל לפרוע מידי יום ביומו
תשובה שיווי המטבעות צריך להיות כזה א' ב' ג' ד' ח' י"ב
  • Ordering Problem
A man had a wolf, a goat, and a cabbage, and he had to move them across the water. He had nothing but a small boat that could contain only the person and one more thing. If he will leave the goat and the cabbage and move the wolf the goat will eat the cabbage, if he will move the cabbage and leave the wolf with the goat the wolf will eat the goat
אדם היה לו זאב ועז וכרוב והיה לו לעבור מעבר מים ולא היה כי אם ספינה קטנה מאד שאינה מחזיק כי אם האדם ודבר אחד ולא יותר

ואם תניח העז והכרוב ויעביר הזאב העז אכל הכרוב
ואם הכרוב יעביר הכרוב ויניח הזאב אצל העז הזאב יאכל העז
וכמו כן אם יעביר הא' ויחזור ליקח השני להעביר בעוד שיבא ליקח א' יאכל א' חבירו ואם כן כיצד יעשה

He should move first the goat, leaving the wolf and the cabbage, then move the cabbage and bring the goat back with him, then he should move the wolf to the other side and go back to move the goat with him to the other side
תחלה יעביר העז ויניח הזאב והכרוב

ואחר יעביר הכרוב ויחזור להעביר העז עמו ‫[89]למקום הראשון
ויעביר הזאב לעבר האחר ויחזור להעביר העז עמו לעבר הא' ויעביר הכרוב ויניח העז ואחר יחזור ליקח העז

  • Joint Purchase Problem - "If You Give Me"
Reuven told Shimon: if you will give me one thousand zehuvim my amount will be equal to your amount of money.
Shimon answered Reuven: if you will give me one thousand zehuvim my money will be double your amount of money.
How much money did each of them have?
\scriptstyle\begin{cases}\scriptstyle X+1000=Y-1000\\\scriptstyle 2\sdot\left(X-1000\right)=Y+1000\end{cases}
ראובן אמר לשמעון אם אתה נותן לי אלף זהובים יעלה הקרן שלי כסכום מעותיך

ושמעון משיב לראובן ואם אתה נותן לי אלף זהובים אני אכפול מעותי לסכום מעותיך
כמה מעות יש לכל אחד

\scriptstyle{\color{blue}{\begin{cases}\scriptstyle X=5000\\\scriptstyle Y=7000\end{cases}}}
\scriptstyle{\color{blue}{\begin{cases}\scriptstyle 5000+1000=6000=7000-1000\\\scriptstyle 2\sdot\left(5000-1000\right)=2\sdot4000=8000=7000+1000\end{cases}}}
תשובה ראובן יש לו ה' אלפים זהובים ושמעון יש לו ז' אלפים

וזה פי' ראובן שואל לשמעון אלף זהובים ואם שמעון יתן לו נשאר ביד שמעון ו' אלפים וראובן שהיה לו ה' אלפים תחלה עכשיו עם האלף שנותן לו שמעון יש לו ו' אלפים נמצא שלכל א' יש להם ו' אלפים
ושמעון אומר לראובן אם אתה תתן לי אלף זהובים נמצא שישאר ביד ראובן ד' אלפים והקרן של שמעון שהיה ז' אלפים נמצא עכשיו עולה לסכום ח' אלפים והיינו הכפל ממה שנשאר ביד ראובן

Chapter On Cubic Roots [P1088 2r-v]

והילך שער על דבר מרובע על כל עבריו
  • \scriptstyle{\color{blue}{568\times568}}
כגון שתחשוב חוה פעם חוה וזהו רבוע
  • \scriptstyle{\color{blue}{2\times2}}
כמו שתאמר ב פעמים ב' זהו ד' כזה
\scriptstyle{\color{blue}{2\times2\times2}}
ואם תאמר ותחשוב הד' חתיכות גם ב' פעמים [...] ויהיו ח' זהו רבוע על כל עבריו

ב' פעם ב' זהו ד'
ב' פעמים ד' זהו ח' כו'

  • \scriptstyle{\color{blue}{464\times464}}
כשתחשוב דוד פעם דוד עולה וטבהאב
\scriptstyle{\color{blue}{464\times464\times464}}
תאמר דוד פעם וטבהאב ועולה דדגזטחטט כו'
  • \scriptstyle{\color{blue}{\sqrt[3]{149721291}}}
דומיון הנה הכלל העולה מן החשבון המרובע [לג'] צדדין הוא כזה
א ד ט ז ב א ב ט א
\scriptstyle\xrightarrow{{\color{red}{149-{\color{blue}{5}}^3}}=149-125={\color{blue}{24}}} 5       \scriptstyle\xrightarrow{{\color{red}{3\times5}}={\color{blue}{15}}}    5    
149721291 24721291 24721291
5         15    
ותמנה לעולם ברביעיות [....] [אטב]א אבזט טדא ומה שלא עולה לרבעיות מאות[...] תוכל להבין החשבון עתה בכלל הנרשם טדא ג' אותיות ותאמר [מה] הריבוע המרובע על כל עבריו אטדא באה ג' אותיות טדא ע"כ לא יותר מן ה' כי ה' פעמי' ה' זהו ה"ב ה' פעמים ה"ב זהו הבא ועתה הסר הבא מן טדא ונשאר ד"ב ויהא כזה ותכתוב ה' תחת הד' ועל הד' כזה
  5            
2 4 7 2 1 2 9 1
  5            
  ה            
ב ד ז ב א ב ט א
  ה            
ומעתה תשלש האות הנמצא ר"ל ה' ונסוג שלש מעלות לאחריך דהיינו מן ה' יהיה ה"א ותכתוב ה' תחת ב' וא' תחת ז' כזה
      5        
2 4 7 2 1 2 9 1
    1 5        
      ה        
ב ד ז ב א ב ט א
    א ה        
   53    \scriptstyle\xrightarrow{{\color{blue}{3}}\times{\color{red}{53\times15}}={\color{blue}{2385}}}   \scriptstyle\xrightarrow{{\color{red}{23850+}}{\color{red}{3^3}}=23850+27=238{\color{blue}{77}}}  
24721291    
  15     2385 23877
ועתה תעיין מה אות מצורף לאות ה' שממנה בא זה החשבון הכלל הנרשם ואז תנסה ותצרף אליה אות שאם תחשוב כאשר אשכילך שיהא מכוון אות האחרון מן חשבון העולה לאות אחרון מן חשבון אשר אנו מתעסקים בו או בקרוב דומה לאות אחרון ועתה הילך הדרך תלך בו תקח ג' וכתוב למעלה על הא' אחד לפני הה' העומדת על הב' כזה
      5 3      
2 4 7 2 1 2 9 1
    1 5        
      ה ג      
ב ד ז ב א ב ט א
    א ה        
ועתה נסה אם אמת הדבר תצרף ג"ה של מעלה עם ה"א של מטה ויעלה ה ט ז ועתה תאמר תצרף ג' העולה עם הט"ז ג' פעמים ז' ג' פעמי' ט' ג' פעמי' ה' כו ויעלה כזה
2 3 8 5
ב ג ח ה
ואז תוסיף עליו על זה החשבון ג' פעמי' ג' על כל עבריו זהו ז"ב אותו ז"ב שים על החג"ב וככה תעשה אות ראשון מן ז"ב ר"ל הז' כתוב קו לפני החג"ב [...] דהיינו ב' שים על ה' כזה
2 3 8 7 7
ב ג ח ז ז
  \scriptstyle\xrightarrow{{\color{red}{24721-23877}}={\color{blue}{844}}}  
24721291 844291
23877      
ו[...] ה' אות [ה] שים נגד האותיות [..]כלל הנרשם דהוא כזה
2 4 7 2 1 2 9 1
2 3 8 7 7      
ב ד ז ב א ב ט א
ב ג ח ז ז      
ו[תחסר] כלל התחתון מן העליון ונש[אר] כזה
8 4 4 2 9 1
ח ד ד ב ט א
 53    \scriptstyle\xrightarrow{{\color{red}{3\times3}}={\color{blue}{9}}}  
844291 844291
15        159
ועתה יהיה החשבון צורתו כזה
  5 3      
8 4 4 2 9 1
1 5        
  ה ג      
ח ד ד ב ט א
א ה        
ועתה [...] ג' מעלות לאחריך ונסוג ג' ג"כ לאחריך ג' מעלות ותשלש ויהיה ט' וצורתו כזה
8 4 4 2 9 1
      1 5 9
ח ד ד ב ט א
      א ה ט
\scriptstyle\xrightarrow{{\color{red}{53{\color{blue}{1}}\times159}}={\color{blue}{84429}}} 84429
ועתה תאמר מה היה אות ראשון ע"כ היה א' כי לעולם כשיהיה א' אות ראשון מן הכלל העולה היה הפרט א' ואם אות ראשון ח' אז היה השרש ב' [..] ועתה תחשב אג"ה עם טה"א ויעלה טבדדח
\scriptstyle\xrightarrow{{\color{red}{844290+1}}={\color{blue}{844291}}} 844291
ועתה תצרף הא' ג"כ עם כל אות אטבדד"ח ותשים לפניו א' פעמים א' ויהיה כזה
8 4 4 2 9 1
ח ד ד ב ט א
נמצא שהם מכוונים זה העולה מן אג"ה פעמים טה"א אחד צרופך והכלל הנרשם למעלה ולעולם כשהם מכוונים אז החשבון אמת ואם יוותר לך אפי' אות אחת תוכל להבין שלא [נאות]
  • \scriptstyle{\color{blue}{\sqrt[3]{99897344}}}
דומיון אחר הכלל העולה ד ד ג ז ט ח ט ט
\scriptstyle\xrightarrow{\scriptstyle\begin{cases}\scriptstyle{\color{red}{99-{\color{blue}{4}}^3}}=99-64={\color{blue}{35}}\\\scriptstyle{\color{red}{3\times4=}}{\color{blue}{12}}\end{cases}}   46    
99897344 35897344
  12    
נתחיל מאות ט' הראשונה כי היא אות רביעית ונקח מן ט"ט הריבוע והוא ע"כ ד' כי לא תוכל ליקח יותר והוא ד' פעמים ד' עלה ד"ו חסר ד"ו מן ט"ט ונשאר ה"ג אותו ד' תכתוב למטה תחת הט' ולמעלה נסוג ד' ג' מעלות ותשלש לאחריך ויהיה ב"א תכתוב ב' תחת הט' וא' תחת ח' כזה
    4 6        
3 5 8 9 7 3 4 4
    1 2        
    ד ו        
ג ה ח ט ז ג ד ד
    א ב        
\scriptstyle\xrightarrow{{\color{blue}{6}}\times{\color{red}{46\times12}}=6\sdot552={\color{blue}{3312}}} 3312
ואח' תצרף אל הד' ד' מנין השוה בדעתך וזהו ו' ואם תצרף אליו ה' אז אינו מכוון פרט העולה לחשבון הכלל ולפעמים לפי האמת אינו מכוון אך תדקדק על אות הסמוך לאות אחרון שהוא דומה קצת ועתה קח ו' ותצרף לד' ותאמר ו"ד פעמי' ב"א ויעלה בה"ה תצרף ו' עם בה"ה ויעלה כזה
3 3 1 2
ג ג א ב
\scriptstyle\xrightarrow{{\color{red}{33120+}}{\color{red}{6^3}}=33{\color{blue}{336}}} 33336
ושים עליו ו' פעמים ו' ויהיה כזה
3 3 3 3 6
ג ג ג ג ו
\scriptstyle\xrightarrow{{\color{red}{35897-33336=}}{\color{blue}{2561}}}   46   
2561344
 12    
תחסר זה העולה מן ה' אותיות החשבון הנרשם ויהיה אחר חסרונך כזה ועתה צורתו כזה
    4 6      
2 5 6 1 3 4 4
  1 2        
    ד ו      
ב ה ו א ג ד ד
  א ב        
\scriptstyle\xrightarrow{{\color{red}{120+\left(3\times6\right)=1}}{\color{blue}{38}}}     46 
2561344
    138
ועתה נסוג עם ו' העולה ג' מעלות לאחריך ותשלש וב"א ג"כ ג' מעלות לאחריך ויהיה כזה
        4 6  
2 5 6 1 3 4 4
        1 3 8
        ד ו  
ב ה ו א ג ד ד
        א ג ח
\scriptstyle\xrightarrow{{\color{red}{\left[\left[4\times\left(464\times138\right)\right]\sdot10\right]+4^3}}={\color{blue}{2561344}}} 2561344
ועתה מה היה אות ראשון ע"כ ד' ותחבר [...] עם חג"א ויעלה [...] ושים עליו ד' פעמי' ד' ויעלה הפרט אות באות [...] הכלל ודוק

Chapter on Square Roots [P1088 6v-7v]

הילך שער ונקר' שער השורש ושייך על דבר כשחשבת ריבוע כגו'
  • \scriptstyle{\color{blue}{568\times568}}
חו"ה פעם חו"ה
  • \scriptstyle{\color{blue}{257\times257}}
או זה"ב פעם זה"ב
שתראה מה תחילת החשבון אע"ג שלא ידעת בתחילה הפרט
  • \scriptstyle{\color{blue}{\sqrt{215296}}}
ועת' אכתו' דומיון חשבתי דבר ועולה ממנה כזה הוה הכלל
ב א ה ב ט ו
וראה מה היה מתחילה הפרט שעולה ממנ' ועתה אשכילך ותן לחכם ויחכם עוד ויסף לקח [90] קח הכלל לפניך ואראה לך דבר לעולם תתחיל מן האו' שלא מכוון

כגו' אם ו' ז' או ט' אם האותיות ו' אז תתחיל באות ה'
ואם האותיו' ח' אז תתחיל באות ז'
וכן לעולם ואם האותיו' ז' אז תתחיל באות האחרון

\scriptstyle\xrightarrow{{\color{red}{21-{\color{blue}{4}}^2}}=21-16={\color{blue}{5}}} 4     \scriptstyle\xrightarrow{{\color{red}{2\times4}}={\color{blue}{8}}}  4   
215296 55296 55296
4     8   
ועתה אראה חשב' הכלל ו' אותיות ו"טב"הא"ב אז תתחיל באו' ה' וזהו א' ותאמ' מה הריבוע בא"ב פי' מה אות אתה יכול ליקח זה פעם זה אי אתה יכול ליקח ה' פעם ה' מן א"ב כי ה' פעם ה' זהו כ"ה והשו' אין לך אלא כ"א אלא אתה יכול [לומ'] ליקח ד' פעם ד' כי ד' פעם ד' זהו ו"א פי' י"ו ועוד נשאר לך ה' ואות' ד' העולה כי הריבוע בא"ב זהו ד' פעם ד' ואות' ד' תכתוב על הא' מן ו'ט'ב'ה'א'ב' ותחת הא' וצורת ותמחק הא"ב מן וטבהא"ב ותכתוב במקומ' ה' כי מן ד' פעם ד' נשאר ה' והד' תכתו' למעלה מן הה' ולמט' מן הה' והילך צורתו
4        
5 5 2 9 6
4        
ד        
ה ה ב ט ו
ד        
ואז תכפול הד' הריבוע העומד [ותמשוך] הח' לאחריה תחת ה' השנייה ויהא ח' והד' העומדת על הה' תמשוך ג"כ לאחריה על ה' השניי' אבל לא תכפול אות' וצורתו כזה
  4      
5 5 2 9 6
  8      
  ד      
ה ה ב ט ו
  ח      
 46   \scriptstyle\xrightarrow{{\color{red}{55-\left({\color{blue}{6}}\times8\right)=}}{\color{blue}{7}}} 46   \scriptstyle\xrightarrow{{\color{red}{72-6^2}}=72-36={\color{blue}{36}}} 46  
55296 7296 3696
 86   86   86  
ואז תאמר כמה פעם ח' בה"ה פי' בנ"ה והוה בה ו' פעמים אות' ו' תכתוב למעלה מן הב' ולמטה מן הב' כזה
  4 6    
5 5 2 9 6
  8 6    
  ד ו    
ה ה ב ט ו
  ח ו    
ועוד נשאר ז' וז' מן ה"ה ותמחוק השני ה' ותכתו' במקומ' הז' ויהא צורתו כזה
4 6    
7 2 9 6
8 6    
ד ו    
ז ב ט ו
ח ו    
והו' העולה מן השני ה' העומדת על הב' ולמט' מן הב' תקח אות' נמי ו' פעמי' ו' פעם ו' זהו ו"ג פי' ל"ו וקח הו"ג מן הב"ז קח ארבעי' מן הע' כי הב"ז הוה ע"ב ועוד נשאר ב' ודע שלקחת ארבעי' ולא אתה צרך אל צריך אלא ל"ו אז קח הד' מן המ' ושים אות' על הב' שלפני הז' ויהא צורתו כזה
4 6    
3 6 9 6
8 6    
ד ו    
ג ו ט ו
ח ו    
\scriptstyle\xrightarrow{{\color{red}{80+\left(2\times6\right)=80+12=}}{\color{blue}{92}}}  46  \scriptstyle\xrightarrow{{\color{red}{36-\left({\color{blue}{4}}\times9\right)=36-36=0}}} 464 \scriptstyle\xrightarrow{{\color{red}{9-\left(4\times2\right)=}}{\color{blue}{1}}} 464
3696  96 16
92  24   4
ועתה תכפול הו' ג"כ לאחריה ויהא י"ב ואז תכתו' הכי שים הב"א לאחריה והח' נמי לאחרי' ואז תעשה הכי שים הב' תחת הט' והא' שים על הח' ויהיה ט' ותשים נמי למפריע הו' העליונ' ולא תכפול ושי' אות' על הט' והד' העליונ' תמשוך נמי לאחריה על הו' נגד הט' כזה
  4 6  
3 6 9 6
  9 2  
  ד ו  
ג ו ט ו
  ט ב  
ואז תאמ' כמה פעמים ט' בו"ג פי' בל"ו והוה בו ד' פעמים ולא נשארי' לך מאומה ואות' ד' תכתו' על הו' הראשונ' ותחת הו' ותמחק הו"ג של מעלה והט' של מטה וצורת' כזה
4 6 4
  9 6
  2 4
ד ו ד
  ט ו
  ב ד
ואז קח הב' נמי ד' פעמים מן הט' ועוד נשאר לך א' ונמח' הט' ותכתוב במקו' א' ונמח' הב' תחתונ' כי לקחנו נמי ד' פעמי' ועוד נשאר כזה
4 6 4
  1 6
    4
ד ו ד
  א ו
    ד
\scriptstyle\xrightarrow{{\color{red}{16-4^2}}=16-16={\color{blue}{0}}} 464×464=215296
ואז קח הד' נמי ד' פעמי' מן ו"א פי' מן י"ו ואז לא נשאר לך מאומה נמצא שהפרט היה בתחילה דו"ד פעם דו"ד ועולה הכלל ו"טב"הא"ב
ודע לעולם כשתעשה בדרך זה ולא נשאר לך מאומ' אז מה שעולה בידך זה היה תחילת החשבון
  • \scriptstyle{\color{blue}{\sqrt{97344}}}
ועוד אראה לך דומיון החשבון עולה כזה
ט ז ג ד ד
3     \scriptstyle\xrightarrow{\scriptstyle\begin{cases}\scriptstyle{\color{red}{9-{\color{blue}{3}}^2=9-9-0}}\\\scriptstyle{\color{red}{2\times3}}={\color{blue}{6}}\end{cases}} 3   
97344 7344
3     6   
אז תתחיל בט' כי הט' אות חמיש' ואז תאמר כמה הריבוע בט' ודע שהריבוע בט' הוה ג' כי ג' פעמי' ג' זהו ט' ולא נשאר לך מאומה והג' תכתוב תחת הט' ועל הט' כזה
3        
9 7 3 4 4
3        
ג        
ט ז ג ד ד
ג        
ואז תכפול הג' לאחריה והוה ו' ותשים לאחריה תחת הז' והג' שלמעלה תמשוך לאחריה על הז' אבל [לא] תכפול כמו שתעשה לג' תחתונ' והילך צורתו ונמחק הט' כזה
3      
7 3 4 4
6      
ג      
ז ג ד ד
ו      
\scriptstyle\xrightarrow{{\color{red}{7-\left({\color{blue}{1}}\times6\right)=}}{\color{blue}{1}}} 31   \scriptstyle\xrightarrow{{\color{red}{13-{\color{blue}{1}}^2=}}{\color{blue}{12}}} 31   \scriptstyle\xrightarrow{{\color{red}{2\times1=}}{\color{blue}{2}}}  31  \scriptstyle\xrightarrow{{\color{red}{12-\left({\color{blue}{2}}\times6\right)=0}}} 312
1344 1244 1244  44
61   61    62 22
ואז תאמ' כמה פעמי' ו' בז' ואינ' אלא פעם א' ועוד נשאר א' ואות' א' שעולה מן הז' תכתוב על הג' שלפני הז' ותחת הג' ונמח' הז' ותכתו' במקומ' א' הנשארת מן הז' שלא מגיע נמי לז' וזה וצורת' כזה
3 1    
1 3 4 4
6 1    
ג א    
א ג ד ד
ו א    
ואז תקח הא' נמי א' פעם מן ג"א ועדיין הוה ב"א
3 1    
1 2 4 4
6 1    
ג א    
א ב ד ד
ו א    
ואז תכפול הא' שתחת הב' לאחריה תחת הד' ויהא ב' והו' תשים ג"כ לאחרי' אבל לא תכפול שכבר כפלת הו' ותשים אות' ו' תחת הב' שכבר עומד שם הא' והא' למעלה על הב' נמי תמשוך לאחריה על הד' ולא תכפול והג' במקו' הא' על הב' כזה
  3 1  
1 2 4 4
  6 2  
  ג א  
א ב ד ד
  ו ב  
ואז תאמר כמה פעמים ו' בב"א פי' בי"ב והוה בו ב' פעמים אות' ב' תכתוב על הד' הראשונ' ותחת הד' ותמחוק הב"א ויהא צורתו כזה והו' של מט' נמי תמחוק ויהא כזה
3 1 2
  4 4
  2 2
ג א ב
  ד ד
  ב ב
\scriptstyle\xrightarrow{\scriptstyle\begin{cases}\scriptstyle{\color{red}{4-\left(2\times2\right)}}=4-4={\color{blue}{0}}\\\scriptstyle{\color{red}{4-2^2}}=4-4={\color{blue}{0}}\end{cases}} 312×312=97344
ואז תקח הב' נמי ב' פעמים והוה ד' ולא נשאר מאומ' והב' השנייה נמי תקח ב' פעמים מן הד' ואז לא נשאר לך מאומא נמצא הפרט הוה ב'א'ג' פעם ב'א'ג' ויוצא ממנ' כלל ד'ד'ג'ז'ט'
ודוק ותובין לעולם בדרך זה

Notes

  1. תהילים מה, ב
  2. במדבר כא, כז
  3. שמונה פרקים, פרק ה
  4. 109v
  5. תהלים פג, יד
  6. M om.
  7. 110r
  8. M om.
  9. M om.
  10. M om.
  11. M om.
  12. MS Paris 1088, 4v: supplement
  13. MS Paris 1088, 4v: end of the supplement
  14. MS Paris 158, 198r: supplement
  15. MS Paris 158, 198r: end of the supplement
  16. M: מהם
  17. M om.
  18. MS Oxford 60, 151v, 161r: supplement
  19. MS Oxford 60, 151v, 161r: end of the supplement
  20. MS New York, 94r-v; MS Oxford 60, 161r; MS Oxford 440, 115r, 124r: supplement
  21. end of the supplement
  22. MS Oxford 440, 115r: supplement
  23. MS Oxford 440, 115r: end of the supplement
  24. 110v
  25. M om.
  26. M om.
  27. M om.
  28. M והם
  29. M om.
  30. M om.
  31. MS Paris158, 198v
  32. MS Paris158, 198v
  33. 115r
  34. 115v
  35. 116r
  36. 116v
  37. M om.
  38. 117r
  39. 117v
  40. 118r
  41. 118v
  42. ישעיה כט, כד
  43. 119r
  44. בבלי, מועד, סוכה, דף ה, א גמרא
  45. 119v
  46. M.: החלק
  47. M:עולה
  48. ישעיהו ל, כ
  49. 120r
  50. 120v
  51. M: בחצי הממריק'
  52. 121r
  53. משלי כג, א
  54. 121v
  55. Paris 1088 יט
  56. 122r
  57. 122v
  58. 123r
  59. 123v
  60. 124r
  61. M ואמור
  62. M כמבין
  63. 124v
  64. M ושליש
  65. M רביע
  66. M והה'
  67. M שלישיתו
  68. marg. הפוך דף א' לפניך
  69. 126r
  70. 126v
  71. 125r
  72. M: אשנים
  73. M: ושנים
  74. 82r
  75. 82v
  76. 83r
  77. 83v
  78. 84r
  79. 84v
  80. 85r
  81. 85v
  82. marg.
  83. 86r
  84. 86v
  85. 87r
  86. 87v
  87. 88r
  88. 88v
  89. 89r
  90. משלי ט, ט

Appendix I: Glossary of Terms

to know לידע, דע כי, דע שתדע ש
to explain לפרש, ביארתי
chapter שערים
teaching הקבלות
one who calculates המחשב, המפתח
calculation החשבונות
numeral חשבון, אותיות, ציפרא
zero גלגל
place holder שומר המעלות
first rank מעלה הראשונה
units מעלת היחידים
third rank מעלה השלישית
hundreds מעלת המאות
fourth rank מעלה הרביעית
thousands מעלת האלפים
fifth rank מעלה החמישית
tens of thousands מעלת הרבבות, י' אלפים
sixth rank מעלה ששית
hundreds of thousands מעלת מאה אלפים
seventh rank מעלה שביעית
millions מעלת אלף אלפים
smaller than קטן מן
greater than גדול מן
more than יותר מ
to exceed by יותר על, יתיר על, עודף על, למעלה מ
bottom numeral התחתונה, תחתונה
upper numeral העליונה, עליונה
infinitely, endlessly עד אין מספר
times פעמים
to multiply לחשוב, לכפול זע"ז
rank מעלות, מעלה
המעלה שנייה
עליונה
שיט'
שבשיט' עליונ', שיטות עליונות, שיטות העליונות
שיט' ראשונ'
השיטה התחתונה
דומיון, דמיון
מגיע ל
עולה, יעלה, יעלה בידך, מה שיעלה בידך, העולה בידך
יצא
נקראת, נקרא
יקראו
אות, האות
מניינם, מניין
תחשוב
חשוב
חשוב אותו
חשבונך
תאמר, אמור
ישאלך
שואל
תשיב אל לבך
לכתוב, כתוב, כתוב (אותו / אותה / ב), כתבתי, כתבת, תכתוב (אותו), נכתוב, אכתוב לך, כותבין
כתיבה
שכתבת
רשום, ארשום לך
חרו[ת]ים
העתקתי
לראות
שאראך
אדירין
חברם יחד
לחבר, לחבר ... עם, תחבר...אל, תחבר... על, תחבר... ה, חבור... על, חבור אל ה, נחבר... עם, נחבר... על, אחבר
לחבר כמה חשבונות יחד
חבורם, חבורו, חיבור שחברנו
הטור מן החיבור
צירופו
תצרף, צרוף (...יחד), צורפם יחד, צרפם (יחד)
נוסיף... על, נוסיף... עליה
מוסיף ...על, מוסיף... עליה
בשער החיבור, שער חיבור
המחובר
השליך, השלך (...מ / ה), השלך מידך, קח ממנו, תקח ... מן, קח מה ש
השלך ט"ט... מ, השלך ... בט"ט
נשאר, ישאר, ישאר בידך, ישאר לך, הנשארת
בלי חסרון ויתרון
ומה שנשאר לך, ומה שנשמר לך
הנותרת לי
משקלו, משקל ה, משקלים
אבני המשקל, אבן הראשון
תכפול יחד, לכפול יחד
תכפול
כפל
כפל קטן
מה שבא מן הכפל
בשער כפל
לוח
חצי לוח
מתוקנת
שער הכפל קטן, שער כפל קטן
ציור
צורתו
עברת על ה, תעבור
תקח ה, קח ה, קח בידך, קח בידך ל, יקח ה... מה
ומהם תבין
מרחק מן, המרחק עד, מרחקים
מכל אחד, מן כל אחד ואחד
זה על זה
דהיינו, היינו
הילך
היאך
המניין הקטון, מניין קטון, המנין הקטן, האות הקטן
אות הגדול
tens העשיריות
ספר
גלחות, בגלחת
מחוק
עניין
כלל
פי'
המותר מ, עודף עליו
לעשות, עשה, תעשה, עשיתי
כאשר, כש
עתה
תדיר
לעולם
ולפעמים
לא ... כלל
לא ימוש מפיך
תוכל ל
כל כמה שתוכל
אינך צריך
צריך ל
צריך ש
תלוה לו, הלוית לו
תרצה (ל), תחפוץ ל, בקשת ל, רצונך, בקשנו ל
אשר בקשת, מבוקש
מתכונך
מכוון
כוינת חשבונך
אשכילך
תשכיל, תחכם
מושכל ראשון
עיין
תקיש
ודוק
להודיעך ש
למצוא, תמצא (ה), נמצא, מצאתי, נמצא ה
לזכרון
וככלות
תשלם
המלאכה
סליק
הוי אומר
בדרך הזה, דרך אחרת ל
ואז, אז
כבר
כדי ש
מה ש
כל מה ש, כל אשר
אשר ב
אף כי
כי
לכך
והנה
נמי
אחר כך, אח"כ
ואם... אז
אם
אפילו
רק
כמה
יהיה בכל פעם
פעמים
לכל היותר
יותר מן
מותר ה... מ
פחות מ, פחותים מ, מה שלמטה מן, למטה מ
הרבה כל כך
ויהיה, ויהי, ויהא
שם
יש
הרי
ויהיה הכל
הוה
שהם
אני
הוא, היא
או כלך לדרך זו, או כלך בדרך זו
זה, זה ה
כזה
הזה
אילו ה
האחרונים
חשבונות, חשבון
שבידך
בא לידך מ
לפניך, מה שלפניך
הסמוכ' לה, הסמוך ל
מצד אותיות של שמאל
לצד שמאל, בצד שמאל (ל), לשמאל
אצל, אל
נגד
במקום
אחר
עוד
ועוד
וכן, ג”כ
וכפי זה
כגון
כאילו
כמו כן
כל כיוצא בזה
שלאחריו, לאחריה, שלאחריה
שלפניה, לפני ה, קודם ה
מן ה
תחת, תחת ה
למטה, שלמטה
למעלה, למעלה מזו
לעיל
שאין בו ממש
בקלות
ולא ... אלא
בלא שום
זכר ל
דבר
כל דבר
את"ל
בע"ה
לישב על אופניו

Appendix II: Bibliography

Anonymous
Sefer Ṣifra


Manuscripts:

1) Budapest, Magyar Tudományos Akadámia, Ms. Kaufmann A 520/10 (IMHM: f 15170), ff. 179-200; 217-218 (16th century)
Kaufmann A 520/10
2) Cincinnati, Hebrew Union College 890/1 (IMHM: f 30901), ff. 4r-18v (Hanau, 1641)
Cincinnati 890
3) Mantova, Comunità Ebraica MS ebr. 8/16 (IMHM: f 788), ff. 69r-71v (Porto, 1464-1471)‬
Mantova 8
4) Moscow, Russian State Library, Ms. Guenzburg 714/4 (IMHM: f 27994), ff. 64r-83v (17th-18th century)
Guenzburg 714
5) München, Bayerische Staatsbibliothek, Cod. hebr. 394/4 (IMHM: f 1223), ff. 109v-127r (1566)
München Cod. hebr. 394
6) New York, Jewish Theological Seminary Ms. 2634/6 (IMHM: f 28887), ff. 94r-124v
JTS 2634
7) Oxford, Bodleian Library MS Mich. 60/11 (IMHM: f 22085), ff. 151r-176v (cat. Neub. 2171); (Frankfurt am Main, 1537)
8) Oxford, Bodleian Library MS Mich. 440/4 (IMHM: f 19984), ff. 114v-124v (cat. Neub. 2170); (1645)
9) Paris, Bibliothèque Nationale heb. 1088/1 (IMHM: f 14921), ff. 1r-23v (15th century)
heb.1088
10) Paris, Séminaire Israélite de France (École Rabbinique) 158/1 (IMHM: f 4102), ff. 197r-211v (1604)
École Rabbinique 158
11) Warszaw, Żydowski Instytut Historyczny 288/1 (IMHM: f 12013), ff. 1r-5v (15th century)
12) Warszaw, Żydowski Instytut Historyczny 295/4 (IMHM: f 10129), f. 56v (16th century)

The transcript is based mainly on manuscript München 394

Bibliography:

  • Steinschneider, Moritz (Moshe). 1893–1901. Die Mathematik bei den Juden. Berlin-Leipzig-Frankfurt: Kaufmann; repr. Hildesheim: G. Olms, 1964 and 2001. pp. 216-217 [i478-i479]
  • ———. 1905. Mathematik bei den Juden, Band II: 1551-1840. Monatsschrift für die Geschichte und Wissenschaft des Judenthums 49, pp. 85-86. repr.: ed. Gad Freudenthal, Hildesheim, Zürich, New York: Olms, 2014, pp. 8-9.