Difference between revisions of "בר נותן טעם"

From mispar
Jump to: navigation, search
(Common Denominator)
(Written Subtraction)
 
Line 1: Line 1:
 +
{{#annotpage: author="Jacob Canpanṭon", country="Spain", city="Castile", time="1430"}}
 +
 
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><big>ספר הנקרא בר נותן טעם<br>
 
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><big>ספר הנקרא בר נותן טעם<br>
  
Line 4: Line 6:
  
  
=Prologue=
+
== <span style=color:Green>Prologue</span> ==
  
 
{|style="margin-left: auto; margin-right: 0px; text-align:center;"
 
{|style="margin-left: auto; margin-right: 0px; text-align:center;"
Line 12: Line 14:
 
|-
 
|-
 
|אהבת נפש חשקתיך
 
|אהבת נפש חשקתיך
|ואני אהבתיך&#x202B;<ref>ישעיהו מג, ד</ref>
+
|ואני אהבתיך&#x202B;<ref group=note>ישעיהו מג, ד</ref>
 
|-
 
|-
 
|יפה פה תאר [ונחמד] מראה
 
|יפה פה תאר [ונחמד] מראה
Line 19: Line 21:
 
|colspan="2" style="text-align: center;" |ר' יואל ן' דאוד
 
|colspan="2" style="text-align: center;" |ר' יואל ן' דאוד
 
|-
 
|-
|כל בניינה בנוי לתלפיות
+
|כל בניינה ''בנוי לתלפיות''&#x202B;<ref group=note>שיר השירים ד, ד</ref>
 
|אשר נפשך חשקה בחכמת הלימודיות
 
|אשר נפשך חשקה בחכמת הלימודיות
 
|-
 
|-
|מרחקת שוא ודבר כזב תפל והתול
+
|מרחקת ''שוא ודבר כזב''<ref group=note>משלי ל, ח</ref> תפל והתול
|אין בה עקש ופתלתול
+
|אין בה ''עקש ופתלתול''&#x202B;<ref group=note>דברים לב, ה</ref>
 
|-
 
|-
|מעוות לא תוכל לתקן וחסרון לא תמלא
+
|מעוות לא תוכל ''לתקן וחסרון''&#x202B;<ref group=note>קהלת א, טו</ref> לא תמלא
 
|צדק תצדיק ויושר תעלה
 
|צדק תצדיק ויושר תעלה
 
|-
 
|-
 
|אומרת על הן הן ועל לאו לאו
 
|אומרת על הן הן ועל לאו לאו
|תחת לשונה דבש וחלב &#x202B;<ref>שיר השירים ד, י"א</ref>
+
|תחת לשונה דבש וחלב &#x202B;<ref group=note>שיר השירים ד, י"א</ref>
 
|-
 
|-
|חכמת המספר כסבה ואחותה
+
|חכמת המספר בתה ואחותה
 
|ולהיות יסודה וכלי אומנותה
 
|ולהיות יסודה וכלי אומנותה
 
|-
 
|-
Line 37: Line 39:
 
|וזה כמה כתבתי עליה
 
|וזה כמה כתבתי עליה
 
|-
 
|-
|colspan="2"|ולהטעים דרכיה דרכי נועם &#x202B;<ref>משלי ג, י"ז</ref>
+
|colspan="2"|ולהטעים דרכיה דרכי נועם &#x202B;<ref group=note>משלי ג, י"ז</ref>
 
|-
 
|-
|colspan="2"|בלשון עם נועז&#x202B;<ref>ישעיה ל"ג, י"ט</ref>
+
|colspan="2"|בלשון עם נועז&#x202B;<ref group=note>ישעיה ל"ג, י"ט</ref>
 
|-
 
|-
|colspan="2"|ללעוזות בלעז&#x202B;<ref>מועד, מגילה, ב, א</ref>
+
|colspan="2"|ללעוזות בלעז&#x202B;<ref group=note>מועד, מגילה, ב, א</ref>
 
|-
 
|-
 
|colspan="2"|בלי דופי ולעז
 
|colspan="2"|בלי דופי ולעז
Line 66: Line 68:
 
|אמרתי אשר מן האנשים חיו
 
|אמרתי אשר מן האנשים חיו
 
|-
 
|-
|colspan="2"|יעזרם אלהים צור בו חציו חסיו&#x202B;<ref>דברים ל"ב, ל"ז</ref>
+
|colspan="2"|יעזרם אלהים צור בו חציו חסיו&#x202B;<ref group=note>דברים ל"ב, ל"ז</ref>
 
|-
 
|-
|colspan="2"|ואליהם אהלים ישליו&#x202B;<ref>איוב י"ב, ו</ref>
+
|colspan="2"|ואליהם אהלים ישליו&#x202B;<ref group=note>איוב י"ב, ו</ref>
 
|-
 
|-
|colspan="2"|ושנות מספר יאתיו&#x202B;<ref>איוב טז, כ"ב</ref>
+
|colspan="2"|ושנות מספר יאתיו&#x202B;<ref group=note>איוב טז, כ"ב</ref>
 
|-
 
|-
 
|רזה ודלה
 
|רזה ודלה
Line 82: Line 84:
 
|colspan="2"|חשקה נפשם ועמהם לבם נקשר
 
|colspan="2"|חשקה נפשם ועמהם לבם נקשר
 
|-
 
|-
|colspan="2"|וכל לומדם בעיניהם יכשר
+
|colspan="2"|&#x202B;<ref>2r</ref>וכל לומדם בעיניהם יכשר
 
|-
 
|-
 
|colspan="2"|ישבחוהו לאומים ותומכם מאושר
 
|colspan="2"|ישבחוהו לאומים ותומכם מאושר
 
|-
 
|-
|ולהיות על שתי הסעיפים פוצח [פוסח]&#x202B;<ref>מלכים א י"ח, כ"א</ref>
+
|ולהיות על שתי הסעיפים פוצח [פוסח]&#x202B;<ref>marg.</ref><ref group=note>מלכים א י"ח, כ"א</ref>
 
|בהם יוכל להשתרר ולנצח
 
|בהם יוכל להשתרר ולנצח
 +
|-
 +
|colspan="2"|ללכת כרצונו אנה ואנה&#x202B;<ref group=note>מלכים א ב, מ"ב</ref>
 
|-
 
|-
 
|וכמקשה המלונה
 
|וכמקשה המלונה
|כאשר בתוך המים ינוד הקנה&#x202B;<ref>מלכים א י"ד, ט"ו</ref>
+
|כאשר בתוך המים ינוד הקנה&#x202B;<ref group=note>מלכים א י"ד, ט"ו</ref>
|-
 
|colspan="2"|ללכת כרצייו אנה ואנה&#x202B;<ref>מלכים א ב, מ"א</ref>
 
 
|-
 
|-
 
|פעם לאסור ופעם להתיר
 
|פעם לאסור ופעם להתיר
Line 100: Line 102:
 
|בחכמת הטבע ודומיהן
 
|בחכמת הטבע ודומיהן
 
|-
 
|-
|ובלומדי אזן [לא יפתחו] לשמוע בלימודים
+
|ובלומדי אזן [לא יפתחו]&#x202B;<ref>marg.</ref> לשמוע כלימודים
 
|לכן קצה נפשם בכל חכמת הלימודיות
 
|לכן קצה נפשם בכל חכמת הלימודיות
 
|-
 
|-
Line 127: Line 129:
 
|כי יהיה להם לשחוק
 
|כי יהיה להם לשחוק
 
|-
 
|-
|[כי יהיה להם לשחוק]
+
|&#x202B;[כי יהיה להם לשחוק]&#x202B;<ref>marg.</ref>
 
|ולמחוייב ולנמנע לא ישימו חוק
 
|ולמחוייב ולנמנע לא ישימו חוק
 
|-
 
|-
Line 136: Line 138:
 
|כי אין עסקם בפשוטות
 
|כי אין עסקם בפשוטות
 
|-
 
|-
|ומה יתרון לבעל הלשון
+
|ומה ''יתרון לבעל הלשון''&#x202B;<ref group=note>קהלת י, י"א</ref>
 
|מושגות בבבת עין ואישון
 
|מושגות בבבת עין ואישון
 
|-
 
|-
Line 142: Line 144:
 
|ואם כה יאמרו חכמים
 
|ואם כה יאמרו חכמים
 
|-
 
|-
|והאלהים עשה אותם ישר&#x202B;<ref>קהלת ז, כ"ט</ref>
+
|והאלהים עשה אותם ישר&#x202B;<ref group=note>קהלת ז, כ"ט</ref>
 
|מה יעשו הסכלים אשר לא ידעו אי זה יכשר
 
|מה יעשו הסכלים אשר לא ידעו אי זה יכשר
 
|-
 
|-
 
|colspan="2"|והמה בקשו חשבונות רבים
 
|colspan="2"|והמה בקשו חשבונות רבים
 
|-
 
|-
|colspan="2"|הכל מרבים מחסרים ומחברים
+
|colspan="2"|הבל מרבים מחסרים ומחברים
 
|-
 
|-
 
|colspan="2"|אם מעטים ואם רבים
 
|colspan="2"|אם מעטים ואם רבים
Line 155: Line 157:
 
|-
 
|-
 
|למאות לאלפים ולרבבות
 
|למאות לאלפים ולרבבות
|מאליפות מרובבות
+
|''מאליפות מרובבות''&#x202B;<ref group=note>תהילים קמד, י"ג</ref>
 
|-
 
|-
|מדרגה תחת מדרגה מונים
+
|מדרגה תחת מדרגה חונים
|מי[..] ממינים שונים
+
|מי[נים] ממינים שונים
 
|-
 
|-
 
|אלו יורדים ואלו עולים
 
|אלו יורדים ואלו עולים
 
|דגלים דגלים שבילים שבילים
 
|דגלים דגלים שבילים שבילים
 
|-
 
|-
|אשר בחפצם מתנודדים
+
|&#x202B;<ref>2v</ref>אשר בחפצם מתנודדים
 
|ואליהם רזום ירמזון על ידי דברים נעים ונדים
 
|ואליהם רזום ירמזון על ידי דברים נעים ונדים
 
|-
 
|-
 
|וברצונם יעקרו שוד וישנו את תפקידם
 
|וברצונם יעקרו שוד וישנו את תפקידם
|יען באפם יגזלו מאנשי ה[ה]ודם ומאודם
+
|יען באפם יגזלו מאנשי ה&#x202B;[ה]&#x202B;<ref>marg.</ref>ודם ומאודם
 
|-
 
|-
 
|ומהם בפולי ועדשים וכל מיני זרעונים
 
|ומהם בפולי ועדשים וכל מיני זרעונים
Line 181: Line 183:
 
|זה ישכיב וזה יחריד
 
|זה ישכיב וזה יחריד
 
|-
 
|-
|colspan="2"|זה ישפיל וזה ירים&#x202B;<ref>תהילים ע"ה, ח</ref>
+
|colspan="2"|זה ישפיל וזה ירים&#x202B;<ref group=note>תהילים ע"ה, ח</ref>
 
|-
 
|-
 
|colspan="2"|זה יגנוב הדינרים
 
|colspan="2"|זה יגנוב הדינרים
 
|-
 
|-
|colspan="2"|וזה יאכל ב'ג' גרגרים
+
|colspan="2"|וזה יאכל ''ב' ג' גרגרים''&#x202B;<ref group=note>ישעיה י"ז, ו</ref>
 
|-
 
|-
 
|ירא וחרד על דברו
 
|ירא וחרד על דברו
|ואשר על יש שברו
+
|ואשר על יי שברו
 
|-
 
|-
|[מהדק] מהמדקדקים
+
|&#x202B;[מהדק]&#x202B;<ref>marg.</ref> מה<sup>מ</sup>דקדקים
 
|להחזיק ולהקים
 
|להחזיק ולהקים
 
|-
 
|-
Line 209: Line 211:
 
|colspan="2"|וחלק לו בבינה
 
|colspan="2"|וחלק לו בבינה
 
|-
 
|-
|colspan="2"|הבדילו מן התועים ומעשה ידיהו כוננה&#x202B;<ref>תהילים צ, י"ז</ref>
+
|colspan="2"|הבדילו מן התועים ומעשה ידיהו כוננה&#x202B;<ref group=note>תהילים צ, י"ז</ref>
 
|-
 
|-
 
|colspan="2"|והיו ידיו אמונה
 
|colspan="2"|והיו ידיו אמונה
Line 219: Line 221:
 
|colspan="2"|וכל אחד את רעהו יונה
 
|colspan="2"|וכל אחד את רעהו יונה
 
|-
 
|-
|colspan="2"|והוא שומר דרכי אל ומי כמוהו מונה&#x202B;<ref>איוב ל"ו, כ"ב</ref>
+
|colspan="2"|והוא שומר דרכי אל ומי כמוהו מונה&#x202B;<ref group=note>איוב ל"ו, כ"ב</ref>
 
|-
 
|-
 
|&nbsp;
 
|&nbsp;
Line 228: Line 230:
 
|-
 
|-
 
|-
 
|-
|colspan="2"|קורץ בעיניו
+
|colspan="2"|''קורץ בעיניו''
 
|-
 
|-
|colspan="2"|מולל ברגליו
+
|colspan="2"|''מולל ברגליו''
 
|-
 
|-
|colspan="2"|מורה באצבעותיו
+
|colspan="2"|''מורה באצבעותיו''&#x202B;<ref group=note>משלי ו, יג</ref>
 
|-
 
|-
 
|ורוע מזלו
 
|ורוע מזלו
Line 242: Line 244:
 
|colspan="2"|לבל יחליף וימיר
 
|colspan="2"|לבל יחליף וימיר
 
|-
 
|-
|colspan="2"|ולא יאכל גרגרים מראש אמיר
+
|colspan="2"|ולא יאכל ''גרגרים מראש אמיר''&#x202B;<ref group=note>ישעיה י"ז, ו</ref>
 
|-
 
|-
 
|colspan="2"|לחלוק לחקוק אותו בלוח ברזל בצפורן שמיר
 
|colspan="2"|לחלוק לחקוק אותו בלוח ברזל בצפורן שמיר
 
|-
 
|-
 
|לנצח יוכל להבחן במופתיו
 
|לנצח יוכל להבחן במופתיו
|אהל בל יצען בל יסע יתדותיו&#x202B;<ref>ישעיה לג, כ</ref>
+
|אהל בל יצען בל יסע יתדותיו&#x202B;<ref group=note>ישעיה לג, כ</ref>
 
|-
 
|-
 
|בכל מיני אזון וחקור
 
|בכל מיני אזון וחקור
|יתברר ויתלבן בבחינה [ובקור] ובכור
+
|יתברר ויתלבן בבחינה [ובכור]&#x202B;<ref>marg.</ref> ובקור
 
|-
 
|-
 
|colspan="2"|הן כל אלה הדברי' מחלישים דעתי
 
|colspan="2"|הן כל אלה הדברי' מחלישים דעתי
Line 258: Line 260:
 
|colspan="2"|מרפים ידי לשמור משמרתי
 
|colspan="2"|מרפים ידי לשמור משמרתי
 
|-
 
|-
|אהבה מקלקלת את השורה
+
|אהבה מקלקלת <sup>את השורה</sup>
 
|וחבתן על כולם גברה
 
|וחבתן על כולם גברה
 
|-
 
|-
|colspan="2"|לכן אני הקטן יעקב בן החכם ר' יצחק קנפנטון
+
|colspan="2"|&#x202B;<ref>3r</ref>לכן אני הקטן יעקב בן החכם ר' יצחק קנפנטון
 
|-
 
|-
 
|הלא היא גדר הענוה
 
|הלא היא גדר הענוה
Line 267: Line 269:
 
|-
 
|-
 
|עד שקמתי בפניהם קימה שאין בה הדור
 
|עד שקמתי בפניהם קימה שאין בה הדור
|פרץ על בני פרץ בלי סדור
+
|פרץ על פני פרץ בלי סדור
 
|-
 
|-
 
|colspan="2"|כי לאמת לבדה אחלוק הכבוד ארבה המשרה
 
|colspan="2"|כי לאמת לבדה אחלוק הכבוד ארבה המשרה
Line 273: Line 275:
 
|colspan="2"|להעשר סידורה
 
|colspan="2"|להעשר סידורה
 
|-
 
|-
|colspan="2"|כמשפט הבכורה&#x202B;<ref>דברים כ"א, י"ז</ref>
+
|colspan="2"|כמשפט הבכורה&#x202B;<ref group=note>דברים כ"א, י"ז</ref>
 
|-
 
|-
 
|&nbsp;
 
|&nbsp;
 
|-
 
|-
|colspan="2"|וחברתי קיצור זה בדרכי המספר וטעמיהם
+
|colspan="2"|וחברתי קיצור זה בדרכי המספר וטעמי<sup>הם</sup>
 
|-
 
|-
 
|&nbsp;
 
|&nbsp;
Line 293: Line 295:
 
|ולהורות הוראות
 
|ולהורות הוראות
 
|-
 
|-
|כאיש אשר לא שומע [יודע] ומימיו לא ראה מאורות
+
|כאיש אשר לא <s>שומע</s> &#x202B;[יודע]&#x202B;<ref>marg.</ref> ומ<sup>י</sup>מיו לא ראה מאורות
|אבל כמקטלט שבלים&#x202B;<ref>ישעיה, י"ז, ה</ref> ואורות<br>
+
|אבל כמק<s>ט</s>לט שבלים&#x202B;<ref group=note>ישעיה י"ז, ה</ref> ואורות
 
|-
 
|-
 
|colspan="2"|ואם מדעתי אמציא המצאות
 
|colspan="2"|ואם מדעתי אמציא המצאות
Line 305: Line 307:
 
|הלא גם הם חכמים הרשומים
 
|הלא גם הם חכמים הרשומים
 
|-
 
|-
|[...]יצעקו
+
|&#x202B;[...]קו
|יענו כי יתנו עיריהם ואותי יצדיקו
+
|יענו כי יתנו עידיהם ואותי יצדיקו
 
|-
 
|-
 
|וטענות התנצלותי ישמיעו
 
|וטענות התנצלותי ישמיעו
 
|לרבים אותם יודיעו
 
|לרבים אותם יודיעו
 
|-
 
|-
|וגם חוכמות שרותיה תענינה
+
|וגם חוכמות <s>שרותיה תענינה</s>
 
|ויאמרו אמת ואמונה
 
|ויאמרו אמת ואמונה
 
|-
 
|-
 
|colspan="2"|כי לא מחכמה שאל על זאת הקלה
 
|colspan="2"|כי לא מחכמה שאל על זאת הקלה
 
|-
 
|-
|colspan="2"|ולא בכוונה ממכוונה לבקשת מעלה
+
|colspan="2"|ולא בכוונה <s>מ</s><sup>מ</sup>כוונה לבקש<s>ת</s> מעלה
 
|-
 
|-
 
|colspan="2"|עזב את הגבירות מרבות השררה והגדולה
 
|colspan="2"|עזב את הגבירות מרבות השררה והגדולה
 
|-
 
|-
|ורבות בנות עשו חיל ופירות
+
|ו''רבות בנות עשו חיל''&#x202B;<ref group=note>משלי לא, כט</ref> ופירות
 
|אשר להם סנסנים ופארות
 
|אשר להם סנסנים ופארות
 
|-
 
|-
Line 333: Line 335:
 
|-
 
|-
 
|והניח את הספק צפון ונעלם
 
|והניח את הספק צפון ונעלם
|אחז את סודה המפורסם ובריא אולם&#x202B;<ref>תהילים עג, ד</ref>
+
|אחז את [...] המפורסם ובריא אולם&#x202B;<ref group=note>תהילים עג, ד</ref>
  
 
|-
 
|-
Line 340: Line 342:
  
 
|-
 
|-
|מבררים ומלבנים בנות שכלנו
+
|מבררים ומלבנים ב[.]ת שכלנו
|כמונו היום אומדים מדעתנו
+
|כמונו היום אומדים &#x202B;<ref>3v</ref>מדעתנו
  
 
|-
 
|-
Line 348: Line 350:
 
|-
 
|-
 
|עזרם ומגינם
 
|עזרם ומגינם
|ואת יסוד בע בניינם
+
|ואת יסוד <s>בע</s> בניינם
 
|-
 
|-
 
|ומעט הבנתי
 
|ומעט הבנתי
 
|אשר הוא קוצר השגתי
 
|אשר הוא קוצר השגתי
 
|-
 
|-
|לא נקטף עודנו באבו
+
|לא נקטף עודנו באבו&#x202B;<ref group=note>איוב ח, יב</ref>
|יתד אהל תלוי בו
+
|יתד שהכל תלוי בו
 
|-
 
|-
 
|תקוע במקום נאמן
 
|תקוע במקום נאמן
Line 361: Line 363:
 
|colspan="2"|אכן יודע האמת ידע כי כוונתי לשום שמים
 
|colspan="2"|אכן יודע האמת ידע כי כוונתי לשום שמים
 
|-
 
|-
|colspan="2"|לפתוח פתח בריח ודלתים
+
|colspan="2"|לפתוח פתח ''בריח ודלתים''&#x202B;<ref group=note>איוב לח, י</ref>
 
|-
 
|-
 
|colspan="2"|ולהציע הצעות ולהבין הבנות למלאכת השמים
 
|colspan="2"|ולהציע הצעות ולהבין הבנות למלאכת השמים
Line 372: Line 374:
 
|colspan="2"|במיעוט שכלי המפורסם להעמיד הבית והחדרים אשר עליהם נשענים
 
|colspan="2"|במיעוט שכלי המפורסם להעמיד הבית והחדרים אשר עליהם נשענים
 
|-
 
|-
|colspan="2"|וזה אחל לעשות בעזרת שוכן מרומים מעונים
+
|colspan="2"|וזה אחל לעשות בעזרת שוכן <s>מרומים</s> מעונים
 
|}
 
|}
  
Line 378: Line 380:
 
|-
 
|-
 
|
 
|
==Notes==
 
|
 
|-
 
|
 
|style="text-align:right;"|<references />
 
|-
 
|
 
|}
 
  
{|
+
== <span style=color:Green>Introduction: The Positional Decimal System</span> ==
|-
 
|
 
= Introduction: The Positional Decimal System =
 
 
|
 
|
 
|-
 
|-
|The numerals: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 and the corresponding Hebrew letters
+
|The numerals [...] in the books of the Gentile sages are these [corresponding to Hebrew letters]:
|style="text-align:right;"|הרשמים ה[...] במספר בספרי חכמי הגוים הם אלו&#x202B;:
+
|style="width:45%; text-align:right;"|הרשמים ה[...] במספר בספרי חכמי הגוים הם אלו
 
|-
 
|-
 
|
 
|
Line 431: Line 422:
 
|}
 
|}
 
|-
 
|-
|Zero - not a number
+
|The last numeral is called '''Sifra''' [= zero], which is not a number.
|style="text-align:right;"|וזה הרושם האחרון הנקרא סיפרא אינננו מספר
+
|style="text-align:right;"|וזה ה{{#annot:term|204,1823|O5d7}}רושם{{#annotend:O5d7}} האחרון הנקרא {{#annot:term|205,1554|E3nK}}סיפרא{{#annotend:E3nK}} אינננו מספר
 
|-
 
|-
|The meaning of the decimal places
+
|<span style=color:Green>The meaning of the decimal places:</span> Each rank is given in this science its numerical role, as will be explained, to indicate the numerical ranks that follow it.
|style="text-align:right;"|אכן הונח בזאת החכמה בכל מעלה ומעלה חלקה ממספר, כמו שיתבאר כדי להראות מעלות המספרים הבאים אחריה
+
|style="text-align:right;"|אכן הונח בזאת החכמה בכל מעלה <s>ומעלה</s> חלקה ממספר כמו שיתבאר כדי להראות מעלות המספרים הבאים אחריה
 
|-
 
|-
|The ranks are written from right to left
+
|These ranks start from the right.
|style="text-align:right;"|ואלו המעלות מתחילות מהימין
+
|style="text-align:right;"|ואלו ה{{#annot:term|203,1316|Ze8E}}מעלות{{#annotend:Ze8E}} מתחילות מהימין
 
|-
 
|-
|Every rank is ten times the preceding rank
+
|Each rank to the left is ten times the preceding [rank].
|style="text-align:right;"|וכל מעלה העולה היא לצד שמאל עולה עשר ידות מאשר לפניה
+
|style="text-align:right;"|וכל {{#annot:term|203,1316|Yypw}}מעלה{{#annotend:Yypw}} העולה היא לצד שמאל עולה עשר ידות מאשר לפניה
 
|-
 
|-
!The written ranks [= decimal places]
+
!<span style=color:Green>The written ranks [= decimal places]</span>
 
|
 
|
 
|-
 
|-
 
|
 
|
*Units
+
*I.e. the numeral that is in the first rank are the units.
 
|style="text-align:right;"|ר"ל שרושם המספר אשר במעלה הא' יהיו אחדים
 
|style="text-align:right;"|ר"ל שרושם המספר אשר במעלה הא' יהיו אחדים
 
|-
 
|-
 
|
 
|
*Tens
+
*In the second - the tens.
 
|style="text-align:right;"|ובשנית עשרות
 
|style="text-align:right;"|ובשנית עשרות
 
|-
 
|-
 
|
 
|
*Hundreds
+
*In the third - the hundreds.
 
|style="text-align:right;"|ובג' מאות
 
|style="text-align:right;"|ובג' מאות
 
|-
 
|-
 
|
 
|
*Thousands
+
*In the fourth - the thousands
 
|style="text-align:right;"|ובד' אלפים
 
|style="text-align:right;"|ובד' אלפים
 
|-
 
|-
|Illustration: naming the number 30678002
+
|And so on, so that these numerals: 30678002 are thirty thousands of thousands that are called millions, six hundred and seventy-eight thousand, and two.
|style="text-align:right;"|וכן לעולם בענין שרשמים אלו 30678002 עולים שלשים אלפי אלפים הנקראים חשבונות ושש מאות ושבעים ושמונת אלפים ושנים
+
|style="text-align:right;"|וכן לעולם בענין ש{{#annot:term|204,1823|RC87}}רשמים{{#annotend:RC87}} אלו 30678002 עולים שלשים אלפי אלפים הנקראים {{#annot:term|350,1200|PJuV}}חשבונות{{#annotend:PJuV}} &#x202B;<ref>4r</ref>ושש מאות ושבעים ושמונת אלפים ושנים
 
|-
 
|-
|The significance of the zeros as a place holders - without them the number 30678002 would be written similarly as the number 36782
+
|<span style=color:Green>The significance of the zeros as a place holders:</span> Since there are no tens and hundreds, here, as well as units of millions, the zeros are written instead of them, to indicate the rest of the numerals, because without them these numerals would indicat thirty-six thousand, seven hundred, and eighty-two [36782]. Deduce from this.
|style="text-align:right;"|ולפי שאין בכאן עשרות ומאות, גם אחדדי חשבונות, הושמו הספרות במקומם, להורות מעלות שאר המספרים. כי זולתם לא היו עולים רשמים אלו, כי אם שלשים ושש אלף ושבע מאות ושמונים ושנים והקש על זה
+
|style="text-align:right;"|ולפי שאין בכאן עשרות ומאות גם אח<sup>ד</sup>י חשבונות הושמו ה{{#annot:term|205,1554|p3vj}}ספרות{{#annotend:p3vj}} במקומם להורות מעלות שאר המספרים כי זולתם לא היו עולים רשמים אלו כי אם שלשים ושש אלף ושבע מאות ושמונים ושנים והקש על זה
 
|-
 
|-
 
|}
 
|}
Line 474: Line 465:
 
|
 
|
  
= Table of Contents =
+
== <span style=color:Green>Table of Contents</span> ==
 
|
 
|
 +
|-
 +
|I have divided this book into two sections:
 +
|style="width:45%; text-align:right;"|וחלקתי הספר לב' חלקים
 +
|-
 +
|The first section of integers
 +
|style="text-align:right;"|<big>החלק הא' בשלמים</big>
 +
|-
 +
|The second section on fractions and in it six chapters, including an introduction, in which there are three parts.
 +
|style="text-align:right;"|<big>החלק הב'</big> [בשברים]&#x202B;<ref>marg.</ref> <s>בשברים</s> ובו ששה פרקים ובו הקדמה ובה ג' שערי&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וחלקתי הספר לב' חלקים&#x202B;:
+
{| class="wikitable"
 +
|-
 +
|The first part on decomposing to a fraction
 +
|The first chapter on addition
 +
|-
 +
|The second part on multiplication [= fractions of fractions]
 +
|The first chapter on subtraction
 
|-
 
|-
|
+
|The third part on expansion to a common denominator
|style="text-align:right;"|החלק הא' בשלמים
+
|The third chapter on multiplication
 +
|-
 +
|In it also are six chapters on fractions
 +
|The fourth chapter on division
 
|-
 
|-
|
+
|The first chapter on addition
|style="text-align:right;"|החלק הב' [בשברים] בשברים ובו ששה פרקים ובו הקדמה ובה ג' שערי' ועוד בו כלל אחד כולל עניינים מועילים לכל פרקי השברים
+
|The fifth chapter on proportions
 
|-
 
|-
|
+
|The five remaining chapters are as stated on integers
 +
|The sixth chapter on roots
 +
|}
 
|
 
|
 
{| class="wikitable" style="margin-left: auto; margin-right: auto; border: none;"
 
{| class="wikitable" style="margin-left: auto; margin-right: auto; border: none;"
Line 509: Line 520:
 
|}
 
|}
 
|-
 
|-
|
+
|Discussion on conversion and summing.
|style="text-align:right;"|&#x202B;[מאמ' ההמרה גם מאמר האחדות&#x202B;]
+
|style="text-align:right;"|&#x202B;[מאמ' ההמרה גם מאמר האחדות&#x202B;]&#x202B;<ref>marg.</ref>
 +
|-
 +
|There is in it also a rule that includes matters that are useful for all chapters of the fractions.
 +
|style="text-align:right;"|ועוד <sup>בו</sup> כלל אחד כולל עניינים מועילים לכל פרקי השברים
 
|-
 
|-
 
|}
 
|}
Line 517: Line 531:
 
|-
 
|-
 
|
 
|
 +
 
= Section One: Integers =
 
= Section One: Integers =
  
Line 523: Line 538:
 
|
 
|
 
== Chapter One: Addition ==
 
== Chapter One: Addition ==
!style="text-align:right;"|<big> הפרק הא' בחיבור</big>
+
|style="width:45%; text-align:right;"|<big> הפרק הא' ב{{#annot:term|154,1208|BNXU}}חיבור{{#annotend:BNXU}}</big>
 
|-
 
|-
 
|
 
|
=== Written Addition ===
+
=== <span style=color:Green>Written Addition</span> ===
 
|
 
|
 
|-
 
|-
 
|
 
|
==== Description of the Procedure ====
+
==== <span style=color:Green>Description of the Procedure</span> ====
 
|
 
|
 
|-
 
|-
|
+
|When you wish to sum two or three numbers or more, set the rows of the digits one beneath the other, each rank beneath its corresponding, i.e. the units under the units, the tens under the tens, the hundreds under the hundreds, and so on.
|style="text-align:right;"|כאשר תרצה לחבר ב' או ג' מספרים או יותר, תשים שורות רשמי המספרים זו תחת זו, כל מעלה תחת בת גילה, ר"ל האחדים תחת האחדים, העשרות תחת העשרות, והמאות תחת המאות, וכן כולם
+
|style="text-align:right;"|כאשר תרצה לחבר ב' או ג' מספרים או יותר תשים שורות {{#annot:term|204,1823|RSnD}}רשמי המספרים{{#annotend:RSnD}} זו תחת זו כל מעלה תחת בת גילה ר"ל האחדים תחת האחדים העשרות תחת <ref>4v</ref>העשרות והמאות תחת המאות וכן כולם
 +
|-
 +
|Draw a line [beneath] all the rows.
 +
|style="text-align:right;"|ותשרט קו דיו על כל השורות
 
|-
 
|-
|
+
|Then, sum all the numbers that are in the first ranks in all the rows.
|style="text-align:right;"|ותשרט קו דיו על כל השורות ותחבר כל המספרים הנמצאים בכל השורות במעלה ראשונה
+
|style="text-align:right;"|ו{{#annot:term|178,1165|8h5b}}תחבר{{#annotend:8h5b}} כל ה{{#annot:term|204,1174|xdbP}}מספרים{{#annotend:xdbP}} הנמצאים בכל השורות במעלה ראשונה
 
|-
 
|-
 
|
 
|
* The sum of the digits in the rank is zero
+
*If you do not find there any number, but zeros, put a zero in the rank of the units.
|style="text-align:right;"|ואם לא תמצא שם מספר כי אם סיפרות, תשים אתחת הקו במקום מעלת האחדים סיפרא
+
|style="text-align:right;"|ואם לא תמצא שם {{#annot:term|204,1174|hWEo}}מספר{{#annotend:hWEo}} כי אם {{#annot:term|205,1554|ab8C}}סיפרות{{#annotend:ab8C}} תשים <s>א</s><sup>ת</sup>חת הקו במקום מעלת האחדים סיפרא
 
|-
 
|-
 
|
 
|
* Not all the digits in the rank are zero:
+
*If you find a number or numbers with zeros, do not [pay attention to] the zeros and sum the numbers that are in that rank.
|style="text-align:right;"|ואם תמצא מספר או מספרים עם סיפרות לא תחוש לסיפרות<del>אות</del> ותחבר [......] הנמצאים במעלה ההיא
+
|style="text-align:right;"|ואם תמצא מספר או מספרים עם סיפרות לא תחוש לסיפרו<sup>ת</sup><s>אות</s> ותחבר [המספרים] הנמצאים במעלה ההיא
 
|-
 
|-
 
|
 
|
:* The sum of the digits in the rank is equal to tens
+
*If the [interim] result is ten or tens, without units, put a zero beneath the line, in the place of that rank, and keep the ten, or tens, as units to sum them with what you find in the succeeding rank.
|style="text-align:right;"|ואם יעלה לעשר או עשרות מצומצמות בלא אחדים, שים סיפרא תחת הקו במקום אותה המעלה ושמור העשר או העשרות והיו לאחדים בידך לחברם עם אשר תמצא במעלה הבאה אחריה
+
|style="text-align:right;"|ואם יעלה לעשר או עשרות מצומצמות בלא אחדים שים סיפרא תחת הקו במקום אותה המעלה ושמור העשר או העשרות והיו לאחדים בידך לחברם עם אשר תמצא במעלה הבאה אחריה
 
|-
 
|-
 
|
 
|
 +
:In order that you will not forget them, put a dot or dots on top of the number in the succeeding rank, as the number of the reserved tens that are kept as units.
 
|style="text-align:right;"| וכדי שלא תשכחם שים על ראש מספר המעלה הבאה אחריה נקודה או נקודות כמספר העשרות השמורים אשר הם לאחדים בידך
 
|style="text-align:right;"| וכדי שלא תשכחם שים על ראש מספר המעלה הבאה אחריה נקודה או נקודות כמספר העשרות השמורים אשר הם לאחדים בידך
 
|-
 
|-
 
|
 
|
:* The sum of the digits in the rank is equal to tens and units
+
*If the [interim] result is ten or tens and units, put the number of the units beneath the line, in the place of that rank, and keep the ten, or tens, as units to sum them with what you find in the succeeding rank.
|style="text-align:right;"|ואם יעלה לעשר או עשרות ואחדים שים מספר האחדים ההם תחת הקו, במקום אותה המעלה ושמור העשר או העשרות לאחדים לחברם עד אשר תמצא במעלה הבאה אחריה
+
|style="text-align:right;"|ואם יעלה לעשר או עשרות ואחדים שים מספר האחדים ההם תחת הקו במקום אותה המעלה ושמור העשר או העשרות לאחדים לחברם עד אשר תמצא במעלה הבאה אחריה
 
|-
 
|-
 
|
 
|
::*There are only zeros in the next rank
+
::If you do not find in the succeeding rank but zeros, do not pay attention to them, since you have a [reserved] ten, or tens, to put as units in that rank. Put these tens as units beneath the line corresponding to that rank.
 
|style="text-align:right;"|ואם למעלה הבאה אחריה לא תמצא כי אם סיפרות לא תחוש להם אחרי היות בידך עשר או עשרות לשום במעלה ההיא לאחדים ותשים העשרות ההם לאחדים תחת הקו כנגד המעלה ההיא
 
|style="text-align:right;"|ואם למעלה הבאה אחריה לא תמצא כי אם סיפרות לא תחוש להם אחרי היות בידך עשר או עשרות לשום במעלה ההיא לאחדים ותשים העשרות ההם לאחדים תחת הקו כנגד המעלה ההיא
 
|-
 
|-
 
|
 
|
 +
*If you do not have a ten, or tens, and you find in that rank only zeros, put beneath the line a zero corresponding to that rank, as mentioned for the first rank, when there is no number there but zeros, for there is one rule to this.
 
|style="text-align:right;"|אכן אם לא היו בידך עשר או עשרות ומצאת במעלה ההיא כולה סיפרות תשים תחת הקו כנגד אותה המעלה סיפרא אחת כאשר הזכרתי במעלה הראשונה כשאין שם מספר כי אם סיפרות כי משפט אחד להנה
 
|style="text-align:right;"|אכן אם לא היו בידך עשר או עשרות ומצאת במעלה ההיא כולה סיפרות תשים תחת הקו כנגד אותה המעלה סיפרא אחת כאשר הזכרתי במעלה הראשונה כשאין שם מספר כי אם סיפרות כי משפט אחד להנה
 
|-
 
|-
|
+
|Always proceed so that the tens that are resulted in a certain rank are units to be summed in the succeeding rank, or to be placed in [that rank] if you do not find there any number, whether all are zeros, or it is the end of the number. Do so always until [the digits] are complete.
::*The tens in a certain rank are units in the next rank
+
|style="text-align:right;"|וכן תעשה לעולם שהעשרות <ref>5r</ref>שעלו בידך משום מעלה יהיו לאחדים בידך לחברם עם אשר תמצא במעלה שאחריה או לשומם במקומה אם לא מצאת שם מספר בין שהיה כלה סיפרות או שכלה כבר המספר ועשה כן לעולם עד כלותם
|style="text-align:right;"|וכן תעשה לעולם שהעשרות שעלו בידך משום מעלה יהיו לאחדים בידך לחברם עם אשר תמצא במעלה שאחריה או לשומם במקומה אם לא מצאת שם מספר בין שהיה כלה סיפרות או שכלה כבר המספר ועשה כן לעולם עד כלותם
 
 
|-
 
|-
|
+
|What is obtained under the line is the result of the addition.
 
|style="text-align:right;"|והיוצא תחת הקו הוא העולה מהחיבור ההוא
 
|style="text-align:right;"|והיוצא תחת הקו הוא העולה מהחיבור ההוא
 
|-
 
|-
Line 575: Line 594:
  
 
==== Example ====
 
==== Example ====
|style="text-align:right;"|'''המשל'''
+
|style="text-align:right;"|<big>המשל</big>
 +
|-
 +
|
 +
*{{#annot:205003+390005+625002|154|XaDs}}You wish to sum up two hundred and five thousand and five with three hundred ninety thousand and five and with six hundred twenty five thousand and two.
 +
:<math>\scriptstyle205003+390005+625002</math>
 +
|style="text-align:right;"|רצית לחבר מאתים וחמשת אלפים ושלשה עם שלש מאות ותשעים אלף וחמשה ועם שש מאות ועשרים וחמשת אלפים ושנים{{#annotend:XaDs}}
 
|-
 
|-
|<math>\scriptstyle{\color{blue}{205003+390005+625002}}</math>
+
|
|style="text-align:right;"|רצית לחבר מאתים וחמשת אלפים ושלשה עם שלש מאות ותשעים אלף וחמשה ועם שש מאות ועשרים וחמשת אלפים ושנים, שים הצורות ככה&#x202B;:
+
:Set the digits as follows:
 +
|style="text-align:right;"|שים הצורות ככה
 
|-
 
|-
 
|
 
|
Line 596: Line 621:
 
|-
 
|-
 
|}
 
|}
 +
|}
 +
::<span style=color:Green>[Illustration of the procedure:]</span>
 +
::{|
 
|-
 
|-
|
+
|20500<span style="color:red>3</span>||rowspan="4"|<math>\scriptstyle\xrightarrow{{\color{red}{3+5+2=8+2}}={\color{blue}{10}}}</math>||2050<span style="color:red>0</span>3||rowspan="4"|<math>\scriptstyle\xrightarrow{{\color{red}{0+0+1}}={\color{blue}{1}}}</math>||205<span style="color:red>0</span>03||rowspan="4"|<math>\scriptstyle\xrightarrow{{\color{red}{0+0+0}}={\color{blue}{0}}}</math>||20<span style="color:red>5</span>003
{|
 
|-
 
|20500<span style="color:red>3</span>||rowspan="4"|<math>\scriptstyle\xrightarrow{{\color{red}{3+5+2=8+2}}={\color{blue}{10}}}</math>||2050<span style="color:red>0</span>3
 
 
|-
 
|-
|39000<span style="color:red">5</span>||3900<span style="color:red">0</span>5
+
|39000<span style="color:red">5</span>||3900<span style="color:red">0</span>5||390<span style="color:red">0</span>05||39<span style="color:red">0</span>005
 
|-
 
|-
|62500<span style="color:red">2</span>||<u>6250<span style="color:red">0</span>2</u>
+
|62500<span style="color:red">2</span>||<u>6250<span style="color:red">0</span>2</u>||<u>625<span style="color:red">0</span>02</u>||<u>62<span style="color:red">5</span>002</u>
 
|-
 
|-
| ||&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>0</span>
+
| ||&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>0</span>||&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>1</span>0||&#8199;&#8199;&#8199;<span style="color:#0000FF>0</span>10
 
|}
 
|}
|style="text-align:right;"|ותאמ' 3 ו 5 הם 8 ו 2 הם 10. ואחר שאין לך אחדי' כי עם עשר שלם, תשיבם תחת הקו כנגד המעלה הראשונה ותשמר העשר לאחד למעלה הבאה אחריה ותשים נקדה אחת עליה שלא ישכח
+
 
|-
 
|
 
 
::::{|
 
::::{|
 
|-
 
|-
|rowspan="4"|<math>\scriptstyle\xrightarrow{{\color{red}{0+0+1}}={\color{blue}{1}}}</math>||205<span style="color:red>0</span>03
+
|rowspan="4"|<math>\scriptstyle\xrightarrow{{\color{red}{5+0+5}}={\color{blue}{10}}}</math>||2<span style="color:red>0</span>5003||rowspan="4"|<math>\scriptstyle\xrightarrow{{\color{red}{1+9+2}}={\color{blue}{12}}}</math>||<span style="color:red>&#1465;2</span>05003||rowspan="4"|<math>\scriptstyle\xrightarrow{{\color{red}{1+2+3+6}}={\color{blue}{12}}}</math>||&#8199;205003
 
|-
 
|-
|390<span style="color:red">0</span>05
+
|3<span style="color:red">9</span>0005||<span style="color:red">3</span>90005||&#8199;390005
 
|-
 
|-
|<u>625<span style="color:red">0</span>02</u>
+
|<u>6<span style="color:red">2</span>5002</u>||<u><span style="color:red">6</span>25002</u>||<u>&#8199;625002</u>
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>1</span>0
+
|&#8199;&#8199;<span style="color:#0000FF>0</span>010||&#8199;<span style="color:#0000FF>2</span>0010||<span style="color:#0000FF>12</span>20010
 
|}
 
|}
  
|style="text-align:right;"|ואחר שלא מצאת שם מספר כי אם סיפרות ויש בידך עשר זה לא תחוש לסיפרות ההן ותשים [כנגד המעלה ההיא השנית] נקודה אחת תחת הקו בעד העשר אשר היה בידך לאחד
+
{|
 
|-
 
|-
 
|
 
|
::::{|
+
:*<span style="color:Green>First rank:</span> Say: 3 and 5 are 8, plus 2 they are 10.
 +
::<math>\scriptstyle{\color{blue}{3+5+2=8+2=10}}</math>
 +
|style="width:45%; text-align:right;"|ותאמ' 3 ו 5 הם 8 ו 2 הם 10
 
|-
 
|-
|rowspan="4"|<math>\scriptstyle\xrightarrow{{\color{red}{0+0+0}}={\color{blue}{0}}}</math>||20<span style="color:red>5</span>003
+
|
 +
::Since you do not have units, but a whole ten, put 0 beneath the line corresponding to the first rank.
 +
|style="text-align:right;"|ואחר שאין לך אחדי' כי עם עשר שלם תשיבם <sup>0</sup> תחת הקו כנגד המעלה הראשונה
 
|-
 
|-
|39<span style="color:red">0</span>005
+
|
 +
::Keep the ten, as one, for the succeeding rank, and put one dot above it so it will not be forgotten.
 +
|style="text-align:right;"|ותשמר העשר לאחד למעלה הבאה אחריה ותשים נקדה אחת עליה שלא ישכח
 
|-
 
|-
|<u>62<span style="color:red">5</span>002</u>
+
|
 +
:*<span style="color:Green>Second rank:</span> Since you do not find there any number, and you have that ten, do not pay attention to these zeros, put one under the line corresponding to the second rank, for the ten that you reserved as one.
 +
|style="text-align:right;"|ואחר שלא מצאת שם מספר כי אם סיפרות ויש בידך עשר זה לא תחוש לסיפרות ההן ותשים [כנגד המעלה ההיא השנית]<ref>marg.</ref> <s>נקודה</s> אחת תחת הקו בעד העשר אשר היה בידך לאחד
 
|-
 
|-
|&#8199;&#8199;&#8199;<span style="color:#0000FF>0</span>10
+
|
|}
+
:*<span style="color:Green>Third rank:</span> Go to the third rank and since all of it are zeros and you do not have any reserved number, put one zero beneath the line corresponding to the third rank.
 
+
|style="text-align:right;"|ולך אל המעלה השלישית ואחרי היות כלה סיפרות ויש בידך בלי מספר ואין בידך מאומה שים סיפרא אחת תחת הקו כנגד אותה המעלה השלישית
|style="text-align:right;"|ולך אל המעלה השלישית ואחרי היות כלה סיפרות ויש בידך בלי מספר ואין בידך מאומה, שים סיפרא אחת תחת הקו כנגד אותה המעלה השלישית
 
 
|-
 
|-
 
|
 
|
::::{|
+
:*<span style="color:Green>Fourth rank:</span> Go to the fourth rank and you will find there numbers and a zero. Since there is a number or numbers there, do not pay attention to the zero or the zeros that are there.
 +
|style="text-align:right;"|ולך אל הרביעית ותמצא שם מספרים וסיפרא ואחר היות שם מספר או מספרים אל תחוש לסיפרא או סיפרות שיהיו שם
 
|-
 
|-
|rowspan="4"|<math>\scriptstyle\xrightarrow{{\color{red}{5+0+5}}={\color{blue}{10}}}</math>||2<span style="color:red>0</span>5003
+
|
 +
::Say: 5 and 5 are 10.
 +
::<math>\scriptstyle{\color{blue}{5+5=10}}</math>
 +
|style="text-align:right;"|ותאמר 5 ו5 הם 10
 
|-
 
|-
|3<span style="color:red">9</span>0005
+
|
 +
::Put 0 beneath the line, corresponding to that rank, as you did in the first rank.
 +
|style="text-align:right;"|ותשים 0 תחת הקו כנגד אותה המעלה כאשר עשית במעלה הראשונה
 
|-
 
|-
|<u>6<span style="color:red">2</span>5002</u>
+
|
 +
::Keep the 10 as one to sum it with what you find in the fifth succeeding rank and put one dot above it so it will not be forgotten.
 +
|style="text-align:right;"|ותשמור <s>ה</s> ה10 לאחד לחבירו עם אשר תמצא במעלה הה' הבאה אחריה ותשים עליה נקודה אחת בעדו שלא <del>ישרך</del> ישכח
 
|-
 
|-
|&#8199;&#8199;<span style="color:#0000FF>0</span>010
+
|
|}
+
:*<span style="color:Green>Fifth rank:</span> Say: one for the reserved and 9 are 10, plus 2 are 12.
 
+
::<math>\scriptstyle{\color{blue}{1+9+2=10+2=12}}</math>
|style="text-align:right;"|ולך אל הרביעית ותמצא שם מספרים וסיפרא ואחר היות שם מספר או מספרים אל תחוש לסיפרא או סיפרות שיהיו שם ותאמר 5 ו5 הם 10. ותשים 0 תחת הקו כנגד אותה המעלה כאשר עשית במעלה הראשונה ותשמור ה ה10 לאחד לחבירו עם אשר תמצא במעלה הה' הבאה אחריה ותשים עליה נקודה אחת בעדו שלא <del>ישרך</del> ישכח
+
|style="text-align:right;"|ותאמ' אחד על השמור <ref>5v</ref>ו9 הם 10 ו2 הם 12
 
|-
 
|-
 
|
 
|
::::{|
+
::Put the two units beneath the line, keep one for the ten, and put one dot above the following rank.
 +
|style="text-align:right;"|שים השנים האחדים תחת הקו ושמור אחד על העשר ושים נקדה אחת על המעלה הבאה אחריה
 
|-
 
|-
|rowspan="4"|<math>\scriptstyle\xrightarrow{{\color{red}{1+9+2}}={\color{blue}{12}}}</math>||<span style="color:red>&#1465;2</span>05003
+
|
 +
:*<span style="color:Green>Sixth rank:</span> Say: one for the reserved and 2 are 3, plus 3 are 6, plus 6 are 12.
 +
::<math>\scriptstyle{\color{blue}{1+2+3+6=3+3+6=6+6=12}}</math>
 +
|style="text-align:right;"|ותאמר אחד בעבור השמור ו2 הם 3 ו3 הם 6 ו6 הם 12
 
|-
 
|-
|<span style="color:red">3</span>90005
+
|
 +
::Put the two units beneath the line, corresponding to that rank, and keep the ten as one in the succeeding rank.
 +
|style="text-align:right;"|שים השנים האחדים תחת הקו כנגד ה{{#annot:term|203,1344|ahn0}}מדרגה{{#annotend:ahn0}} ההיא והעשר יהיו בידך לאחד למדרגה הבאה אחריה
 
|-
 
|-
|<u><span style="color:red">6</span>25002</u>
+
|
 +
::Since the numbers are complete [and there is no more rank there] put that ten as 1 in the seventh rank, which is the succeeding rank.
 +
|style="text-align:right;"|ואחר שכבר כלה המספר ואין ש[.....] מעלה שים העשר ההוא לא' במעלה הז' שהיא המעלה הבאה אחריה
 
|-
 
|-
|&#8199;<span style="color:#0000FF>2</span>0010
+
|Hence, you have already summed them and their sum is [1220010].
 +
|style="text-align:right;"|וכבר {{#annot:term|178,1165|sFLm}}חברת אותם{{#annotend:sFLm}} ועלה {{#annot:term|388,1208|mibG}}חיבורם{{#annotend:mibG}}
 
|}
 
|}
 +
{|
 +
|-
 +
|
  
|style="text-align:right;"|ותאמ' אחד על השמור ו9 הם 10 ו2 הם 12. שים השנים האחדים תחת הקו ושמור אחד על העשר ושים נקדה אחת על המעלה הבאה אחריה
+
==== <span style=color:Green>Check</span> ====
|-
 
 
|
 
|
:::{|
 
|-
 
|rowspan="4"|<math>\scriptstyle\xrightarrow{{\color{red}{1+2+3+6}}={\color{blue}{12}}}</math>||&#8199;205003
 
|-
 
|&#8199;390005
 
 
|-
 
|-
|<u>&#8199;625002</u>
+
|If you wish to examine whether you did it rightly and correctly with no error
|-
+
|style="width:45%; text-align:right;"|ואם תרצה <big>להבחין</big> אם עשית כדין וכשורה בלי טעות
|<span style="color:#0000FF>12</span>20010
 
|}
 
 
 
|style="text-align:right;"|ותאמר אחד בעבור השמור ו2 הם 3 ו3 הם 6 ו6 הם 12. שים השנים האחדים תחת הקו כנגד המדרגה ההיא והעשר יהיו בידך לאחד למדרגה הבאה אחריה
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואחר שכבר כלה המספר ואין ש[.....] מעלה, שים העשר ההוא לא' במעלה הז' שהיא המעלה הבאה אחריה וכבר חברת אותם ועלה חיבורם
+
*<span style=color:Green>Subtraction:</span> subtract the first row from the result, subtract the second [row] from the remainder and so on, until only one [row] is left to subtract and the remainder then is equal to [the row] that you did not subtract.
 +
|style="text-align:right;"|{{#annot:term|181,1362|q7lM}}חסר{{#annotend:q7lM}} מזה העולה השורה האחת ומהנשאר תחסר השנית וכן כולם עד אשר לא תשאר מלחסר כי אם אחת והנשאר בעת ההיא יהיה שוה לאשר לא חסרת
 
|-
 
|-
 
|
 
|
 
+
:As appears in the following diagram:
==== Check ====
+
|style="text-align:right;"|כאשר בא בזאת הצורה
|style="text-align:right;"|ואם תרצה '''להבחין''' אם עשית כדין וכשורה בלי טעות
 
 
|-
 
|-
 
|
 
|
*Subtraction
+
:*<span style=color:Green>Example:</span> <math>\scriptstyle{\color{OliveGreen}{1220010-625002-390005=205003}}</math>
|style="text-align:right;"|חסר מזה העולה השורה האחת ומהנשאר תחסר השנית וכן כולם, עד אשר לא תשאר מלחסר כי אם אחת והנשאר בעת ההיא יהיה שוה לאשר לא חסרת, כאשר בא בזאת הצורה&#x202B;:
 
|-
 
|Example: <math>\scriptstyle{\color{blue}{1220010-625002-390005=205003}}</math>
 
 
|
 
|
 
{|class="wikitable" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
{|class="wikitable" style="margin-left: auto; margin-right: 0px; text-align:center;"
Line 708: Line 745:
 
|-
 
|-
 
|
 
|
:::<math>\scriptstyle1220010-625002-390005=595008-390005=205003</math>
+
::For, when we subtract the row 625002 from their sum beneath the line, which is 1220010, 595008 remains, we subtract from this the other row, which is 390005, and 205003 remains, which is equal to the remaining row that was not subtracted yet.
|style="text-align:right;"|כי כאשר חסרנו מאשר עולה חיבורם תחת הקו שהוא 1220010 וחסרנו ממנו שורת 625002 ונשאר 595008 ומזה הנשאר חסרנו השורה האחרת והוא שורת 390005 ונשאר 205003 השוה לצורה הנשארת אשר לא נחסרה עד הנה וזה מה שרצינו לבאר
+
::<math>\scriptstyle{\color{blue}{1220010-625002-390005=595008-390005=205003}}</math>
 +
|style="text-align:right;"|כי כאשר חסרנו מאשר עולה חיבורם תחת הקו שהוא 1220010 ו{{#annot:term|181,1362|CfXy}}חסרנו ממנו{{#annotend:CfXy}} שורת 625002 ונשאר 595008 ומזה הנשאר חסרנו השורה האחרת והוא שורת 390005 ונשאר 205003 השוה לצורה הנשארת אשר לא נחסרה עד הנה
 +
|-
 +
|
 +
::Q.E.D.
 +
|style="text-align:right;"|וזה מה שרצינו לבאר
 
|-
 
|-
 
|
 
|
  
==== Reason: Procedure ====
+
==== <span style=color:Green>Reason: Procedure</span> ====
|style="text-align:right;"|'''הטעם במעשה''' ברור
+
|
 
|-
 
|-
|
+
|The reason of the procedure is clear.
* every rank is ten times of the preceding rank, and the ten of the preceding rank are one unit in the next rank
+
|style="text-align:right;"|<big>הטעם במעשה</big> ברור
|style="text-align:right;"|כי כל מעלה עולה לעשר מאשר לפניה א"כ העשר מהקודמת אינו כי אם אחד מהבאה אחריה
+
|-
 +
|For, every rank is ten times of the preceding rank.
 +
|style="text-align:right;"|כי כל מעלה עולה לעשר מאשר לפניה
 +
|-
 +
|Therefore, the ten of the preceding rank is one in the succeeding rank.
 +
|style="text-align:right;"|א"כ העשר מהקודמת אינו כי אם אחד מהבאה אחריה
 
|-
 
|-
 
|
 
|
  
==== Reason: Check ====
+
==== <span style=color:Green>Reason: Check</span> ====
|style="text-align:right;"|גם '''טעם הבחינה''' מבואר
+
|
 +
|-
 +
|The reason of the examination is also clear.
 +
|style="text-align:right;"|גם <big>טעם הבחינה</big> מבואר
 +
|-
 +
|For, since the number that is under the line is generated from the sum of all the rows together, when we subtract them one by one it will be gone.
 +
|style="text-align:right;"|כי אחר שהמספר אשר תחת הקו נתחדש <ref>6r</ref>מ{{#annot:term|388,1211|I2Z0}}קיבוץ{{#annotend:I2Z0}} כל השורות יחד כאשר {{#annot:term|181,1252|SGlf}}נסירם ממנה{{#annotend:SGlf}} אחת יצא כלו בהם בשוה
 
|-
 
|-
|
+
|Hence, when only one is left to subtract, the remainder is the same as it, so when we subtract it from [the remainder] nothing is left.
* subtracting the addends one by one from the sum will end with nothing left
+
|style="text-align:right;"|ולזה כאשר [לא]<ref>marg.</ref> נשאר מלחסר כי אם אחד יהיה הנשאר כמוה בענין שכאשר נסירה ממנו לא יחס' ולא ישאר
|style="text-align:right;"|כי אחר שהמספר אשר תחת הקו נתחדש מקיבוץ כל מקיבוץ כל השורות יחד, כאשר נסירם ממנה אחת, יצא כלו בהם בשוה. ולזה כאשר [לא] נשאר מלחסר כי אם אחד, יהיה הנשאר כמוה בענין שכאשר נסירה ממנו לא יחס' ולא ישאר
 
 
|-
 
|-
 
|
 
|
Line 737: Line 789:
  
 
== Chapter Two: Subtraction ==
 
== Chapter Two: Subtraction ==
!style="text-align:right;"|<big> הפרק השני בחסרון</big>
+
|style="width:45%; text-align:right;"|<big> הפרק השני ב{{#annot:term|155,1514|ljpi}}חסרון{{#annotend:ljpi}}</big>
 
|-
 
|-
 
|
 
|
=== Written Subtraction ===
+
=== <span style=color:Green>Written Subtraction</span> ===
 
|
 
|
 
|-
 
|-
 
|
 
|
==== Description of the Procedure ====
+
==== <span style=color:Green>Description of the Procedure</span> ====
 +
|
 +
|-
 +
|When you wish to subtract a small number from a greater number, set the smaller beneath the greater, each rank beneath its corresponding.
 +
|style="text-align:right;"|כאשר תרצה לחסו' מספר קטן ממספר גדול ממנו תשים הקטן תחת הגדול כל מעלה תחת מינה
 +
|-
 +
|Draw a line beneath them.
 +
|style="text-align:right;"|ורשום קו דיו תחתיהן
 +
|-
 +
|Then, subtract each bottom digit from the corresponding upper [digit] above it and put the remainder under the line in the corresponding rank.
 +
|style="text-align:right;"|וחסר כל מספ' תחתון מהעליון אשר על ראשו שהוא ממינו והנשאר שים אותו תחת הקו כנגד זאת המעלה
 +
|-
 
|
 
|
 +
*If you cannot subtract it from what is above it, as it is smaller than it or 0, take one from the upper digit that is in the succeeding rank, so it is ten in the [present] rank, and put one dot beneath the upper digit, from which you have borrowed the one.
 +
|style="text-align:right;"|ואם לא תוכל לחסרו מאשר על ראשו שהוא קטן ממנו או 0 קח אחד מהמספר העליון אשר במעלה הבאה אחריה ויהיה לעשר במעלה ותשים נקדה אחת תחת הרושם העליון אשר ממנו לוית האחד
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כאשר תרצה לחסו' מספר קטן ממספר גדול ממנו, תשים הקטן תחת הגדול, כל מעלה תחת מינה ורשום קו דיו תחתיהן וחסר כל מספ' תחתון מהעליון אשר על ראשו שהוא ממינו והנשאר שים אותו תחת הקו כנגד זאת המעלה
+
:*Even if there is 0 [in the succeeding upper rank], borrow from it and put a dot under it, so the one that you have borrowed is 10 in the [present] rank.
 +
|style="text-align:right;"|ואף אם היה שם 0 לא תחדל מהיות לווה ממנה ותשים תחתיה נקדה וזה האחד אשר לוית אשר הוא ל10 במעלה זו
 
|-
 
|-
 
|
 
|
* The digit of the subtrahend is larger than the digit in the corresponding rank of the subtracted
+
::*Even if there is only 0 in this rank, subtract the bottom [digit] from it and put the remainder from these 10 under the line.
|style="text-align:right;"|ואם לא תוכל לחסרו מאשר על ראשו, שהוא קטן ממנו או 0, קח אחד מהמספר העליון אשר במעלה הבאה אחריה ויהיה לעשר במעלה ותשים נקדה אחת תחת הרושם העליון אשר ממנו לוית האחד
+
|style="text-align:right;"|<s>ו</s>[ואם]<ref>marg.</ref>אין במעלה זו מספר כי אם 0 {{#annot:term|181,1192|CoHV}}גרע ממנו{{#annotend:CoHV}} התחתון <s>אשר מ ממינו</s> והנשאר <sup>מאלו ה</sup>10 תשים תחת הקו
 
|-
 
|-
 
|
 
|
:*A zero in the following rank of the subtracted
+
::*If there is a number in the [present] rank, add the 10 to what you find there and subtract the corresponding bottom digit from the total sum, then put the remainder under the line, corresponding to the [present] rank.
|style="text-align:right;"|ואף אם היה שם 0' לא תחדל מהיות לווה ממנה ותשים תחתיה נקדה וזה האחד אשר לוית אשר הוא ל10 1 במעלה זו ו[ואם]אין במעלה זו מספר כי אם 0', גרע ממנו התחתון אשר מ ממינו והנשאר מאלו ה10 תשים תחת הקו
+
|style="text-align:right;"|ואם היה שם מספר במעלה הזאת יחבר ה10 עם אשר מצאת שם ומהכל {{#annot:term|181,1252|nAHE}}תסיר{{#annotend:nAHE}} המספר התחתון אשר ממינו והנשאר תשים תחת הקו כנגד המעלה ההיא
 
|-
 
|-
 
|
 
|
:*A digit other than zero in the present rank of the subtracted
+
:*When you go to the rank, from which you have borrowed the one, where you have put the dot, add one for it to what you find in that rank in the bottom row, if there is a number there, and subtract the total from this rank in the upper row.
|style="text-align:right;"|ואם היה שם מספר במעלה הזאת יחבר ה10 עם אשר מצאת שם ומהכל תסיר המספר התחתון אשר ממינו והנשאר תשים תחת הקו כנגד המעלה ההיא
+
|style="text-align:right;"|&#x202B;[ובלכתך למעלה אשר ממנה לוית האחד ושמת שם נקודה תוסיף אחד בעדו על אשר תמצא במעלה ההיא]<ref>marg.</ref> בשורה התחתונה אם היה שם מספר ותחסר הכל מהמעלה ההיא מהשורה העליונה
 
|-
 
|-
 
|
 
|
:*Adding one to the next rank of the subtrahend in exchange for the borrowed unit of the subtracted
+
::*If you do not find there enough to subtract, borrow one from the succeeding rank and put a dot under it, so it is ten in the [present] rank, as explained and so on.
|style="text-align:right;"|[ובלכתך למעלה אשר ממנה לוית האחד ושמת שם נקודה, תוסיף אחד בעדו על אשר תמצא במעלה ההיא] בשורה התחתונה אם היה שם מספר ותחסר הכל מהמעלה ההיא מהשורה העליונה
+
|style="text-align:right;"|ואם לא תמצא שם מחסורך אשר יחסר לך תלוה אחד מהמעלה הבאה אחריה ותשים תחתיה <sup>נ</sup>קודה ויהיה לעש' במעלה זו כאשר ביארנו וכן לעולם
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם לא תמצא שם מחסורך אשר יחסר לך, תלוה אחד מהמעלה הבאה אחריה ותשים תחתיה נקודה ויהיה לעש' במעלה זו כאשר ביארנו וכן לעולם
+
:*If there is no number on the bottom row in the place of the dot, for instance when there is a zero there, or nothing, as the bottom row is already complete, subtract the one from the rank, under which the dot is, if there is a number there, and put the remainder under the line, corresponding to the [present] rank.
 +
|style="text-align:right;"|ואם במקום הנקודה <ref>6v</ref>אין בשורה התחתונה מספר כגון שיש שם סיפרא או לא דבר שכלתה כבר השורה התחתונה תחסר אותו האחד מהמעלה אשר הנקדה תחתיה אם יש שם מספר והנשאר תשים תחת הקו כנגד המעלה ההיא
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם במקום הנקודה אין בשורה התחתונה מספר, כגון שיש שם סיפרא, או לא דבר, שכלתה כבר השורה התחתונה, תחסר אותו האחד מהמעלה אשר הנקדה תחתיה אם יש שם מספר והנשאר תשים תחת הקו כנגד המעלה ההיא ואם אין בשורה ההיא כנגד הנקדה ההיא מספר כי אם 0, תלוה אחד מהמעלה הבאה אחריה ותשים תחתיה נקודה והאחד ההוא יהיה לעשר בידך ותחסר מהם האחד והנשארים תשימם תחת הקו כנגד המעלה ההיא
+
::*If there is no number but 0 in the [upper] row corresponding to the dot, borrow one from the succeeding rank and put under it a dot, so that this one is ten [in the present rank]. Subtract from it the one and put the remainder under the line, corresponding to the [present] rank.
 +
|style="text-align:right;"|ואם אין בשורה ההיא כנגד הנקדה ההיא מספר כי אם 0 תלוה אחד מהמעלה הבאה אחריה ותשים תחתיה נקודה והאחד ההוא יהיה לעשר בידך ותחסר מהם האחד והנשארים תשימם תחת הקו כנגד המעלה ההיא
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכאשר כלית כל מלאכתך, אם נשארו עוד רשמים בשורה העליונה אשר אין תחתיהן לא מספר ולא 0 ולא נקודה, שכבר נשלם הכל, תשימם לשארית תחת הקו כמות שהן
+
*When the whole procedure is complete, if there are still digits on the upper row, under which there is no number, nor 0, or a dot, since all is complete, put them as a remainder under the line, as they are.
 +
|style="text-align:right;"|וכאשר כלית כל מלאכתך אם נשארו עוד רשמים בשורה העליונה אשר אין תחתיהן לא מספר ולא 0 ולא נקודה שכבר נשלם הכל תשימם ל{{#annot:term|184,2454|fYDP}}שארית{{#annotend:fYDP}} תחת הקו כמות שהן
 
|-
 
|-
 
|
 
|
  
 
==== Example ====
 
==== Example ====
|style="text-align:right;"| '''המשל'''
+
|style="text-align:right;"|<big>המשל</big>
 +
|-
 +
|
 +
*{{#annot:76540304-40438|155|EpGw}}We wish to subtract 40438 the smaller from the greater number that is 76540304.
 +
:<math>\scriptstyle76540304-40438</math>
 +
|style="text-align:right;"|רצינו לחסר 40438 הקטן ממספר הגדול והוא 76540304{{#annotend:EpGw}}
 +
|-
 +
|
 +
:We put the smaller under the greater, like this:
 +
|style="text-align:right;"|נשימם הקטן תחת הגדול כזה
 
|-
 
|-
|<math>\scriptstyle{\color{blue}{76540304-40438}}</math>
+
|
|style="text-align:right;"|רצינו לחסר 40438 הקטן ממספר הגדול והוא 76540304, נשימם הקטן תחת הגדול כזה&#x202B;:
+
:This second diagram is as follows:
 +
|style="text-align:right;"|&#x202B;[זאת הצורה הב' היא ככה]<ref>marg.</ref>
 
|-
 
|-
 
|
 
|
Line 789: Line 868:
 
|
 
|
 
{|style="margin-left: auto; margin-right: 0px;"
 
{|style="margin-left: auto; margin-right: 0px;"
| style="text-align: left;" | 76540304
+
| style="text-align: left;" |76540304
 
|-
 
|-
| style="text-align: left;" | <u>&#8199;&#8199;&#8199;40438</u>
+
| style="text-align: left;" |<u>&#8199;&#8199;&#8199;40438</u>
 
|-
 
|-
| style="text-align: left;" | <u>76499866</u>
+
| style="text-align: left;" |<u>76499866</u>
 
|-
 
|-
| style="text-align: left;" | <u>76540304</u>
+
| style="text-align: left;" |<u>76540304</u>
 
|}
 
|}
 
|-
 
|-
 
|}
 
|}
 
|-
 
|-
|
+
|}
|style="text-align:right;"|[זאת הצורה הב' היא ככה]
+
 
 +
::<span style=color:Green>[Illustration of the procedure:]</span>
 +
::{|
 
|-
 
|-
|
+
|7654030<span style="color:red>4</span>||rowspan="3"|<math>\scriptstyle\xrightarrow{{\color{red}{14-8}}={\color{blue}{6}}}</math>||765403<span style="color:red>0</span>4||rowspan="3"|<math>\scriptstyle\xrightarrow{{\color{red}{10-\left(3+1\right)}}={\color{blue}{6}}}</math>||76540<span style="color:red>3</span>04||rowspan="3"|<math>\scriptstyle\xrightarrow{{\color{red}{13-\left(4+1\right)}}={\color{blue}{8}}}</math>||7654<span style="color:red>0</span>304
{|
 
 
|-
 
|-
|7654030<span style="color:red>4</span>||rowspan="3"|<math>\scriptstyle\xrightarrow{{\color{red}{14-8}}={\color{blue}{6}}}</math>||765403<span style="color:red>0</span>4
+
|&#8199;&#8199;&#8199;4043<span style="color:red">8</span>||<u>&#8199;&#8199;&#8199;404<span style="color:red">3</span>8</u>||<u>&#8199;&#8199;&#8199;40<span style="color:red">4</span>38</u>||<u>&#8199;&#8199;&#8199;4<span style="color:red">0</span>438</u>
 
|-
 
|-
|&#8199;&#8199;&#8199;4043<span style="color:red">8</span>||<u>&#8199;&#8199;&#8199;404<span style="color:red">3</span>8</u>
+
| ||&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>6</span>||&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>6</span>6||&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>8</span>66
|-
 
| ||&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>6</span>
 
 
|}
 
|}
  
|style="text-align:right;"|ונתחיל לחסר מהמעלה הראשונה ונאמ' 8 מ 4 לא יוכלו לצאת ונלוה אחד מהמעלה העליונה הבאה אחריה אשר שם ה0 תשים תחתיה נקדה וזה האחד יהיה במעלה הראשונה לעשר ועם ה 4 אשר בה יהיו 14 לא נוכל לחסרם וזה אשר בשורה העליונה במעלה נסיר מהם 8 ישארו 6 נשימם תחת הקו כנגד המעלה הראשונה ההיא
+
::::{|
|-
 
|
 
::{|
 
 
|-
 
|-
|rowspan="3"|<math>\scriptstyle\xrightarrow{{\color{red}{10-\left(3+1\right)}}={\color{blue}{6}}}</math>||76540<span style="color:red>3</span>04
+
|rowspan="3"|<math>\scriptstyle\xrightarrow{{\color{red}{14-\left(4+1\right)}}={\color{blue}{9}}}</math>||76<span style="color:red>5</span>40304||rowspan="3"|<math>\scriptstyle\xrightarrow{{\color{red}{10-1}}={\color{blue}{9}}}</math>||765<span style="color:red>4</span>0304||rowspan="3"|<math>\scriptstyle\xrightarrow{{\color{red}{5-1}}={\color{blue}{4}}}</math>||76540304
 
|-
 
|-
|<u>&#8199;&#8199;&#8199;40<span style="color:red">4</span>38</u>
+
|<u>&#8199;&#8199;<span style="color:red">.</span>40438</u>||<u>&#8199;&#8199;&#8199;<span style="color:red">4</span>0438</u>||<u>&#8199;&#8199;&#8199;40438</u>
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>6</span>6
+
|&#8199;&#8199;&#8199;<span style="color:#0000FF>9</span>9866||&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>9</span>866||&#8199;&#8199;<span style="color:#0000FF>'''4'''</span>'''99866'''
 
|}
 
|}
  
|style="text-align:right;"|נלך למעלה השנית, נמצאנו שם נקדה הוספנוהו על ה 3 הנמצאים במעלה ההיא בשורה התחתונה יהיו 4 לא נוכל לחסרם מה0 אשר בשורה העליונה במעלה ההיא, לכן נלוה אחד מהמעלה הג' ונשים נקדה תחתיה ויהיה לנו לעשר, נסיר מהם ה 4 ישארו 6, נשימם תחת הקו כנגד המעלה השנית ההיא
+
{|
 
|-
 
|-
 
|
 
|
::{|
+
:*<span style="color:Green>First rank:</span> We start to subtract from the first rank and say: 8 cannot be subtracted from 4. We borrow one from the succeeding upper rank, where there is 0. Put a dot beneath it. The one becomes a ten in the first rank and with the 4 that are in it they are 14. We subtract 8 from them. 6 remain. We put them under the line corresponding to the first rank.
 +
::<math>\scriptstyle{\color{blue}{\left(10+4\right)-8=14-8=6}}</math>
 +
|style="width:45%; text-align:right;"|ונתחיל לחסר מהמעלה הראשונה ונאמ' 8 מ 4 לא יוכלו לצאת ונלוה אחד מהמעלה העליונה הבאה אחריה אשר שם ה0 תשים תחתיה נקדה וזה האחד יהיה במעלה הראשונה לעשר ועם ה 4 אשר בה יהיו 14 <s>לא נוכל לחסרם וזה אשר בשורה העליונה במעלה</s> נסיר מהם 8 ישארו 6 נשימם תחת הקו כנגד המעלה הראשונה ההיא
 
|-
 
|-
|rowspan="3"|<math>\scriptstyle\xrightarrow{{\color{red}{13-\left(4+1\right)}}={\color{blue}{8}}}</math>||7654<span style="color:red>0</span>304
+
|
 +
:*<span style="color:Green>Second rank:</span> We go to the second rank and we find there a dot. We add it to 3 that is found in this rank on the bottom row, they are 4. We cannot subtract them from 0 that is on the upper row in this rank, so we borrow one from the third rank and put a dot beneath it. So we have a ten, we subtract from them 4, 6 remain. We put them under the line, corresponding to the second rank.
 +
::<math>\scriptstyle{\color{blue}{10-\left(1+3\right)=10-4=6}}</math>
 +
|style="text-align:right;"|נלך למעלה השנית נמצאנו שם נקדה הוספנוהו על ה 3 הנמצאים במעלה ההיא בשורה התחתונה יהיו 4 לא נוכל <ref>7r</ref>לחסרם מה0 אשר בשורה העליונה במעלה ההיא לכן נלוה אחד מהמעלה הג' ונשים נקדה תחתיה ויהיה לנו לעשר נסיר מהם ה 4 ישארו 6 נשימם תחת הקו כנגד המעלה השנית ההיא
 
|-
 
|-
|<u>&#8199;&#8199;&#8199;4<span style="color:red">0</span>438</u>
+
|
 +
:*<span style="color:Green>Third rank:</span> We go to the third rank and add the dot to 4 that is on the bottom row, they are 5. We cannot subtract them from 3 that are above them, so we borrow one from the fourth rank, where there is 0, and we put a dot beneath it. This one becomes a ten, we add to it 3 that is on the upper row in the third rank and the total is 13. We subtract from them 5, 8 remain. We put them under the line, corresponding to the [third] rank.
 +
::<math>\scriptstyle{\color{blue}{\left(10+3\right)-\left(1+4\right)=13-5=8}}</math>
 +
|style="text-align:right;"|נלך למעלה השלישית ונוסיף הנקדה על ה 4 אשר בשורה התחתונה יהיו 5 ולא נוכל להוציאם מהג' אשר על ראשם לכן <s>נוליד</s> נלוה אחד מהמעלה הרביעית אשר שם ה0 ונשים תחתיה נקדה וזה <s>הראשון</s> <sup>האחד</sup> יהיה לנו ל10 ונחבר אליהם הג' אשר בשורה <s>התחתונה יהיו 5 ולא נוכל להוציאם מהג' אשר על ראשם לכן נלוה אחד מהמעלה</s> העליונה במעלה השלישית ההיא יהיו כלם 13 ונסיר מהם ה 5 ישארו 8 נשימם תחת הקו כנגד המעלה
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>8</span>66
+
|
|}
+
:*<span style="color:Green>Fourth rank:</span> We go to the fourth rank and we find there a dot, but there is no number in the fourth rank on the bottom row to add to it, only 0, so we subtract this one alone from what is found in the fourth rank on the upper row. Yet, we cannot since there is no number there but 0, so we borrow one from the fifth rank and put a dot beneath it. The 1 becomes a ten, we subtract from it 1, 9 remain. We put them under the line, corresponding to the [fourth] rank.
 
+
::<math>\scriptstyle{\color{blue}{10-\left(1+0\right)=10-1=9}}</math>
|style="text-align:right;"|נלך למעלה השלישית ונוסיף הנקדה על ה 4 אשר בשורה התחתונה יהיו 5 ולא נוכל להוציאם מהג' [.] אשר על ראשם, לכן נוליד נלוה אחד מהמעלה הרביעית אשר שם ה0' ונשים תחתיה נקדה וזה האחד הראשון יהיה לנו [.] ל10 ונחבר אליהם הג' אשר בשורה התחתונה יהיו 5 ולא נוכל להוציאם מהג' אשר על ראשם לכן נלוה אחד מהמעלה העליונה במעלה השלישית ההיא יהיו כלם 13 ונסיר מהם ה 5 ישארו 8, נשימם תחת הקו כנגד המעלה
+
|style="text-align:right;"|ונלך למעלה הרביעית ונמצא שם נקדה ואין מספר במעלה הרביעית ההיא בשורה התחתונה ההיא לחברו עמו כי אם 0 לכן נחסר זה האחד לבדו מהנמצא במעלה הרביעית ההיא בשורה העליונה ולא נוכל כי אין שם מספר כי אם 0 לכן נקרא <s>ראשון</s> <sup>אחד</sup> מהמעלה החמישית ונשים תחתיה נקדה וזה הא' יהיה לנו לעשר נסי<sup>ר</sup>ם ממנו ה 1 ישארו 9 נשימם תחת הקו כנגד המעלה ההיא
 
|-
 
|-
 
|
 
|
:::{|
+
:*<span style="color:Green>Fifth rank:</span> We go to the fifth rank and add the dot that is found there to 4 that is found in the fifth rank on the bottom row, they are 5. We cannot subtract them from 4 that above them, so we borrow 1 from the succeeding sixth rank and we put a dot beneath it. Thus, we have 10 and with 4 they are 14. We subtract from them 5, 9 remain. We put them under the line.
|-
+
::<math>\scriptstyle{\color{blue}{\left(10+4\right)-\left(1+4\right)=14-5=9}}</math>
|rowspan="3"|<math>\scriptstyle\xrightarrow{{\color{red}{10-1}}={\color{blue}{9}}}</math>||765<span style="color:red>4</span>0304
+
|style="text-align:right;"|ונלך למעלה החמישית ונוסיף הנקדה הנמצאת שם עם ה 4 הנמצא במעלה הה' ההיא בשורה התחתונה ויהיו 5 ולא נוכל לחסרם מה 4 אשר על ראשם לכן [נלוה]<ref>marg.</ref> א' מהמעלה השישית הבאה אחריה ונשים תחתיה נקדה ויהיו לנו ל 10 ועם ה 4 יהיו 14 נסיר מהם ה 5 ישארו 9<ref>7v</ref> ונשימם תחת הקו
|-
 
|<u>&#8199;&#8199;&#8199;<span style="color:red">4</span>0438</u>
 
|-
 
|&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>9</span>866
 
|}
 
 
 
|style="text-align:right;"|ונלך למעלה הרביעית ונמצא שם נקדה ואין מספר במעלה הרביעית ההיא בשורה התחתונה ההיא לחברו עמו כי אם 0, לכן נחסר זה האחד לבדו מהנמצא במעלה הרביעית ההיא בשורה העליונה ולא נוכל כי אין שם מספר כי אם 0, לכן נקרא ראשון אחד מהמעלה החמישית ונשים תחתיה נקדה וזה הא' יהיה לנו לעשר נסירם ממנו ה 1, ישארו 9, נשימם תחת הקו כנגד המעלה ההיא
 
 
|-
 
|-
 
|
 
|
::{|
+
:*<span style="color:Green>Sixth rank:</span> We go to the sixth rank and we find there a dot, but there is no number corresponding to it on the bottom row, since it is already complete, so we subtract the one alone from 5 that is in the sixth rank on the upper row and 4 remain. We put them under the line.
|-
+
::<math>\scriptstyle{\color{blue}{5-1=4}}</math>
|rowspan="3"|<math>\scriptstyle\xrightarrow{{\color{red}{14-\left(4+1\right)}}={\color{blue}{9}}}</math>||76<span style="color:red>5</span>40304
+
|style="text-align:right;"|ונלך למעלה השישית ומצאנו שם נקדה ואין כנגדה מספר בשורה התחתונה כי כבר נשלם לכן נסיר זה האחד לבדו מהה' אשר במעלה הו' ההיא בשורה העליונה וישארו 4 נשימם תחת הקו
|-
 
|<u>&#8199;&#8199;<span style="color:red">.</span>40438</u>
 
|-
 
|&#8199;&#8199;&#8199;<span style="color:#0000FF>9</span>9866
 
|}
 
 
 
|style="text-align:right;"|ונלך למעלה החמישית ונוסיף הנקדה הנמצאת שם עם ה 4 הנמצא במעלה הה' ההיא בשורה ה התחתונה ויהיו 5 ולא נוכל לחסרם מה 4 אשר על ראשם, לכן [נלוה] א' מהמעלה השישית הבאה אחריה ונשים תחתיה נקדה ויהיו לנו ל 10 ועם ה 4 יהיו 14, נסיר מהם ה 5 ישארו 9 ונשימם תחת הקו
 
 
|-
 
|-
 
|
 
|
::::{|
+
:*The digits that are on the bottom row are already complete, as well as the dots, and there are two digits left on the upper row. We put them under the line as they are successively, as a remainder.
|-
+
|style="text-align:right;"|וכבר כלו אלו הרשמים אשר בשורה התחתונה גם הנקדות ונשארו שני רשמים בשורה העליונה נשימם תחת הקו לשארית כמו שהן על הסדר זה אחר זה
|rowspan="3"|<math>\scriptstyle\xrightarrow{{\color{red}{5-1}}={\color{blue}{4}}}</math>||76540304
 
|-
 
|<u>&#8199;&#8199;&#8199;40438</u>
 
|-
 
|&#8199;&#8199;<span style="color:#0000FF>'''4'''</span>'''99866'''
 
|}
 
 
 
|style="text-align:right;"|ונלך למעלה השישית ומצאנו שם נקדה ואין כנגדה מספר בשורה התחתונה כי כבר נשלם, לכן נסיר זה האחד לבדו מהה' אשר במעלה הו' ההיא בשורה העליונה וישארו 4, נשימם תחת הקו
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכבר כלו אלו הרשמים אשר בשורה התחתונה גם הנקדות ונשארו שני רשמים בשורה העליונה, נשימם תחת הקו לשארית כמו שהן על הסדר זה אחר זה וזה אשר יצא תחת הקו הוא אשר נשאר מהמספר הגדול אחר אשר חסרנו ממנו הקטן
+
:Thus, what resulted under the line is what remains from the greater number after we subtract the smaller from it.
 +
|style="text-align:right;"|וזה אשר יצא תחת הקו הוא אשר נשאר מהמספר הגדול אחר אשר חסרנו ממנו הקטן
 
|-
 
|-
 
|
 
|
  
==== Reason: Check ====
+
==== <span style=color:Green>Reason: Check</span> ====
 
|
 
|
 
|-
 
|-
|larger number [= the subtracted] is equal to the sum of the smaller number [= the subtrahend] and the remainder of the subtraction
+
|We find that the greater number [= the subtracted] is as [the sum of] the smaller number [= the subtrahend] that we subtracted from it and the remainder together, no more and no less.
 
|style="text-align:right;"|נמצא שמספר הגדול הוא כמו המספר הקטן אשר חסרנו ממנו וכמו זה הנשאר יחד בלי תוספת ומגרעת
 
|style="text-align:right;"|נמצא שמספר הגדול הוא כמו המספר הקטן אשר חסרנו ממנו וכמו זה הנשאר יחד בלי תוספת ומגרעת
 
|-
 
|-
 
|
 
|
  
==== Check ====
+
==== <span style=color:Green>Check</span> ====
 
+
|
|style="text-align:right;"| לכן כאשר תרצה '''להבחין''' מעשיך
 
 
|-
 
|-
 +
!<span style=color:Green>Addition</span>
 
|
 
|
*Addition
+
|-
|style="text-align:right;"|חבר אלו שני המספרים אשר תחת העליון, ר"ל המספר הקטן אשר חסרת והנשאר אשר תחת הקו, ואם יעלה כמספר הגדול אשר חסרת ממנו בלי תוספת ומגרעת הנה אמת הנה נכון ואם לאו דע שטעית והקש על זה
+
|Therefore, when you wish to examine your procedure, add these two numbers that are beneath the upper [number], i.e. the smaller number that you subtracted and the remainder that is under the line, and if the sum is as the greater number, from which you have subtracted, no more and no less, then it is true and correct, and if not, know that you were wrong.
 +
|style="text-align:right;"| לכן כאשר תרצה להבחין מעשיך חבר אלו שני המספרים אשר תחת העליון ר"ל המספר הקטן אשר חסרת והנשאר אשר תחת הקו ואם יעלה כמספר הגדול אשר חסרת ממנו בלי תוספת ומגרעת הנה אמת הנה נכון ואם לאו דע שטעית
 +
|-
 +
|Apply this.
 +
|style="text-align:right;"|והקש על זה
 
|-
 
|-
 
|
 
|
Line 904: Line 970:
  
 
== Chapter Three: Multiplication ==
 
== Chapter Three: Multiplication ==
!style="text-align:right;"|<big>הפרק השלישי בכפל</big>
+
|style="width:45%; text-align:right;"|<big>הפרק השלישי בכפל</big>
 
|-
 
|-
 
|
 
|
=== Written Multiplication ===
+
=== <span style=color:Green>Written Multiplication</span> ===
 
|
 
|
 
|-
 
|-
 
|
 
|
==== Description of the Procedure ====
+
==== <span style=color:Green>Description of the Procedure</span> ====
 
|
 
|
 
|-
 
|-
|
+
|When you want to multiply a number by a number, i.e. to see how much are the multiples of one number when multiplied by the multiples of the other number, write the two forms of these numbers one above the other by the order and draw an ink line beneath them.
|style="text-align:right;"|כאשר תרצה לכפול מספר במספר, ר"ל לראות כמה יעלו כפלי המספר האחד כשיוכפל כפלים בחשבון המספר האחר, שיש [שים] שתי צורות מספרים אלו זו על זו על הסדר ותרשום קו דיו תחתיהן
+
|style="text-align:right;"|כאשר תרצה לכפול מספר במספר ר"ל לראות כמה יעלו כפלי המספר האחד כשיוכפל כפלים בחשבון המספר האחר שיש [שים]&#x202B;<ref>marg.</ref> שתי צורות מספרים אלו זו על זו על הסדר ותרשום קו דיו תחתיהן
 
|-
 
|-
 
|
 
|
*The procedure starts by multiplying the digit in the lowest rank of the number in the top line [= the multiplier] - the first digit on the right - by all the digits of the second number in the line below [= the multiplicand]
+
*Multiply the first upper digit by each of the bottom digits and always write the units of the result of its product by each of the bottom digit beneath the line, under that bottom digit and keep the tens to add them as units to its product by the following digit to the left.
|style="text-align:right;"|וכפול המספר הראשון העליון בכל אחד מהמספרים התחתונים [וכאשר תעלה מכפלו עם כל אחד מהמספרים התחתונים תשים לעולם] תשים לעולם האחדים תחת הקו כנגד המספר התחתון ההוא והעשרות תשמור והיו לאחדים בידך לחברם עם העולה מכפלו עם המספר הנמשך אליו לצד שמאלי
+
|style="text-align:right;"|וכפול המספר הראשון העליון בכל אחד מהמספרים התחתונים [וכאשר תעלה מכפלו עם כל אחד מהמספרים התחתונים תשים לעולם]&#x202B;<ref>marg.</ref> תשים לעולם האחדים תחת הקו כנגד המספר התחתון ההוא והעשרות תשמור והיו לאחדים בידך לחברם עם העולה מכפלו עם המספר הנמשך אליו לצד שמאלי
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם לא יהיה במעלה שאחר או שום מספר בשורה התחתונה שנשלמה כבר או שיש שם [סיפרא], תשים במעלה שאחר זו תחת הקו מספר האחדים אשר בידך
+
:*If there is no number in the following rank of the bottom line since it is already completed or since there is a zero there, write the [reserved] number that you have in the following rank under the line.
 +
|style="text-align:right;"|ואם לא &#x202B;<ref>8r</ref>יהיה במעלה שאחר <s>או</s> <sup>זו</sup> שום מספר בשורה התחתונה שנשלמה כבר או שיש שם [סיפרא]&#x202B;<ref>marg.</ref> תשים במעלה שאחר זו תחת הקו מספר האחדים אשר בידך
 
|-
 
|-
 
|
 
|
:*Multiplying a digit by zero - when there are no tens in the product of the digit by the digit to the right of the zero
+
:*If when you multiply the upper digit by zero, you do not have [reserved] units, write a zero corresponding to that rank.
 
|style="text-align:right;"|אכן אם כשתכפול המספ' העליון עם הסיפרא [...] לא יהיו בידך אחדים תשים סיפרא כנגד המעלה ההיא
 
|style="text-align:right;"|אכן אם כשתכפול המספ' העליון עם הסיפרא [...] לא יהיו בידך אחדים תשים סיפרא כנגד המעלה ההיא
 
|-
 
|-
 
|
 
|
:*Multiplying a digit by zero - when there are tens in the product of the digit by the digit to the right of the zero
+
:*If you have tens [reserved] as units, write them in that rank, under the line, as said, and do not write a zero at all.
|style="text-align:right;"|אבל אם יהיו בידך עשרות לאחר שת[שימם]במעלה ההיא תחת הקו כנזכר ולא תשים סיפרא כלל
+
|style="text-align:right;"|אבל אם יהיו בידך עשרות לאחדים שת[שימם] במעלה ההיא תחת הקו כנזכר ולא תשים סיפרא כלל
 
|-
 
|-
 
|
 
|
 +
*Once you complete multiplying the first top digit by each of the bottom digits, you start multiplying again the second top digit by each of the bottom digits and produce a second row from it.
 
|style="text-align:right;"|ואחר שתשלים לכפול המספר הראשון העליון עם כל אחד מהמספרים התחתוני' תשוב כבתחלה ותכפול המספר השני העליון עם כל אחד מהמספרים התחתונים ותעשה ממנו שורה שנית
 
|style="text-align:right;"|ואחר שתשלים לכפול המספר הראשון העליון עם כל אחד מהמספרים התחתוני' תשוב כבתחלה ותכפול המספר השני העליון עם כל אחד מהמספרים התחתונים ותעשה ממנו שורה שנית
 
|-
 
|-
 
|
 
|
*The product of two digits is equal to units and tens - the tens are kept for the next rank
+
:Always write down the units and keep the tens as units to add them to the the next [product] as said.
 
|style="text-align:right;"|ותשי' לעולם האחדים ותשמור העשרות לאחדים לחברם עם הבא אחריו כנזכר
 
|style="text-align:right;"|ותשי' לעולם האחדים ותשמור העשרות לאחדים לחברם עם הבא אחריו כנזכר
 
|-
 
|-
|
+
|You should know that the row of the product of each of the upper digits starts from the corresponding rank i.e. that when you start multiplying the second upper digit with the first bottom [digit], write the units resulting from that multiplication in the second rank that corresponds to that upper digit. The [row of the products] of the third upper digit starts from the third rank and so on.
*The decimal place of the product of a certain digit of the multiplier by all the digits of the multiplicand is the rank of that digit of the multiplier
+
|style="text-align:right;"|אכן יש לך לדעת ששורת כפל כל אחד מהמספרים העליונים תתחיל מהמעלה הדומה לה ר"ל שכשתתחיל לכפול המספר השני העליון עם הראשון התחתון האחדים העולים מהכפל ההוא תשימם במעלה השנית הדומה למספר העליון ההוא וצורת המספר הג' העליון תתחיל מהמעלה הג' וכן כלם
|style="text-align:right;"|אכן יש לך לדעת ששורת כפל כל אחד מהמספרים העליונים תתחיל מהמעלה הדומה לה, ר"ל שכשתתחיל לכפול המספר השני העליון עם הראשון התחתון, האחדים העולים מהכפל ההוא תשימם במעלה השנית הדומה למספר העליון ההוא וצורת המספר הג' העליון תתחיל מהמעלה הג' וכן כלם
+
|-
 +
|Accordingly, the decimal place of the units of the product of any upper digit by any bottom digit is always as the sum of the decimal places of both digits minus one.
 +
|style="text-align:right;"|עד שיצא לנו מזה שלעולם מספר מעלות מקום אחדי כפל שום מספר עליון עם שום מספר תחתון יהיה כמנין מעלות שני המספרים {{#annot:term|178,2083|2zri}}מחוברות יחד{{#annotend:2zri}} חסר אחת
 
|-
 
|-
 
|
 
|
*The decimal place of the product of a digit of the multiplier by a digit of the multiplicand is equal to the sum of the ranks of both digits minus 1
+
*After you complete multiplying all the upper digits by the bottom [digits], draw an ink line beneath all these rows and sum them up, each with all its corresponding [digits], as we explained in the chapter on addition, and the result is the sought, which is the product of the two numbers one by the other.
|style="text-align:right;"|עד שיצא לנו מזה שלעולם מספר מעלות מקום אחדי כפל שום מספר עליון עם שום מספר תחתון יהיה כמנין מעלות שני המספרים מחוברות יחד חסר אחת
+
|style="text-align:right;"|ואחר שתשלים לכפול כל המספרי' העליונים עם התחתונים תרשום קו דיו תחת כל שורות אלו ותחברם יחד כל מעלה עם כל בת גילה כמו שביארנו בפרק החיבור והעולה הוא <sup>ה</sup>מב<sup>ו</sup>קש והוא כפל שני המספרי' זה בזה
 
|-
 
|-
 
|
 
|
* Summing the interim products
+
:*If there is a zero in the top row of the multiplicands, it would be expected to produce a row of zeros from it, but there is no need for that, since when you keep that every row starts from the rank that corresponds the rank of the upper digit by which you multiply all the bottom [digits] in that row and as you proceed, you always move one rank to the left - when you keep all that, you do not need to take care of the zeros [or to produce] rows of zeros from at all.
|style="text-align:right;"|ואחר שתשלים לכפול כל המספרי' העליונים עם התחתונים, תרשום קו דיו תחת כל שורות אלו ותחברם יחד, כל מעלה עם כל בת גילה, כמו שביארנו בפרק החיבור והעולה הוא המבוקש והוא כפל שני המספרי' זה בזה
+
|style="text-align:right;"|ואם היה סיפרא בשורה העליונה מהנכפלים &#x202B;<ref>8v</ref>היה נראה שיעשה ממנה שורה אחת כל הסיפרות ואין צורך כי בהיותך שומ<s>ע</s><sup>ר</sup> שכל התחלת שורה תתחיל מהמעלה הדומה למעלת המספר העליון ההוא אשר אתה כופל בכל התחתונים בשורה ההיא [וכל מה] שתתרחק תלך לצד שמאל מעלה אחת לעולם בהיותך נזהר מכל זה אינך צריך לחוש מהסיפרות ה[...]ת כלל ל[...]ת מהם שורות סיפרות כלל
 
|-
 
|-
 
|
 
|
:* Zero in multiplier - no need for a line of zeros - as each interim product is placed in its appropriate rank
+
:*If at the beginning of the top line you find zero or zeros before any digit, you have to write one zero for each zero of them below the line and complete [this row] by multiplying the next digit that follows them in the top line by all the bottom digits.
|style="text-align:right;"|ואם היה סיפרא בשורה העליונה מהנכפלים,היה נראה שיעשה ממנה שורה אחת כל הסיפרות ואין צורך כי בהיותך שומרע שכל התחלת שורה תתחיל מהמעלה הדומה למעלת המספר העליון ההוא אשר אתה כופל בכל התחתונים בשורה ההיא [...] שתתרחק תלך לצד שמאל מעלה אחת לעולם בהיותך נזהר מכל זה אינך צריך לחוש מהסיפרות ה[...]ת כלל ל[...]ת מהם שורות סיפרות כלל
+
|style="text-align:right;"|אכן אם בתחלת השורה העליונה תמצא סיפרא או סיפרו' קודם שום מספר תצטרך לעשות בעד כל סיפרא מהן סיפרא אחת תחת הקו ותשלים [השורה] ההיא בכפל המספר הבא אחריהם בשורה העליונה על כל המספרים התחתונים
 
|-
 
|-
 
|
 
|
:* A zero or a sequence of zeros at the lowest rank/s of the multiplier - indicate a zero or a sequence of zeros at the lowest rank/s of the multiplication result
+
*If you want also, in order that you would not be mistaken [...] always this procedure itself, i.e. that you put one zero for every zero in the top row, even if they are in the middle, in the rank that corresponds to that zero and complete this row by multiplying [the upper next digit that follows them] by all the bottom digits.
|style="text-align:right;"|אכן אם בתחלת השורה העליונה תמצא סיפרא או סיפרו' קודם שום מספר, תצטרך לעשות בעד כל סיפרא מהן סיפרא אחת תחת הקו ותשלים [...] ההיא בכפל המספר הבא אחריהם בשורה העליונה על כל המספרים התחתונים. ואם תרצה ג"כ כדי שלא תטעה [...] זה המעשה בעצמו לעולם ר"ל שתשים בעד כל סיפרא שבשורה העליונה, אף אם הם באמצע, סיפרא אחת במעלה הדומה למעלתה בשורה הראויה לסיפרא ההיא אם היה מספר ותשלים לשורה ההיא בכפל [...] עם כל המספרי' התחתונים
+
|style="text-align:right;"|ואם תרצה ג"כ כדי שלא תטעה [...] זה המעשה בעצמו לעולם ר"ל שתשים בעד כל סיפרא שבשורה העליונה אף אם הם באמצע סיפרא אחת במעלה הדומה למעלתה בשורה הראויה לסיפרא ההיא אם היה מספר ותשלים לשורה ההיא בכפל [המספר העליון הבא אחריהם] עם כל המספרי' התחתונים
 
|-
 
|-
 
|
 
|
  
==== Example ====
+
==== <span style=color:Green>Example</span> ====
!style="text-align:right;"|'''המשל'''
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|רצינו לכפול מספר 9007500 במספר אחר שהוא 5400920 ותשים המספרים זה על זה על הסדר
+
*{{#annot:9007500×5400920|156|Anhy}}Example: we wish to multiply the number 9007500 by another number 5400920.
 +
:<math>\scriptstyle9007500\times5400920</math>
 +
|style="text-align:right;"|המשל רצינו לכפול מספר 9007500 במספר אחר שהוא 5400920{{#annotend:Anhy}}
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כזה&#x202B;:
+
:Set the numbers one above the other successively, like this:
 +
|style="text-align:right;"|ותשים המספרים זה על זה על הסדר כזה
 
|-
 
|-
 
|
 
|
Line 991: Line 1,063:
 
|}
 
|}
 
|-
 
|-
|
 
:::{|
 
|-
 
|900705<span style="color:red>00</span>||rowspan="3"|<math>\scriptstyle\xrightarrow{{\color{blue}{00}}}</math>||90070<span style="color:red>5</span>00
 
|-
 
|&#8199;5400920||<u>&#8199;<span style="color:red">5400920</span></u>
 
|-
 
| ||&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>00</span>
 
 
|}
 
|}
  
|style="text-align:right;"|ולפי שבתחלת השורה העליונה שתי סיפרות, תשים בתחלת השורה העליונ' בעדן תחת הקו שתי סיפרו' כמספרן
+
::<span style=color:Green>[Illustration of the procedure:]</span>
 +
::{|
 
|-
 
|-
|
+
|900705<span style="color:red>00</span>||rowspan="4"|<math>\scriptstyle\xrightarrow{{\color{blue}{00}}}</math>||90070<span style="color:red>5</span>00||rowspan="4"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{5\times0}}={\color{blue}{0}}\\&\scriptstyle{\color{red}{5\times2}}=1{\color{blue}{0}}\\&\scriptstyle\left({\color{red}{5\times9}}\right)+1=4{\color{blue}{6}}\\&\scriptstyle\left({\color{red}{5\times0}}\right)+4={\color{blue}{4}}\\&\scriptstyle{\color{red}{5\times0}}={\color{blue}{0}}\\&\scriptstyle{\color{red}{5\times4}}=2{\color{blue}{0}}\\&\scriptstyle\left({\color{red}{5\times5}}\right)+2={\color{blue}{27}}\\\end{align}}</math>||&#8199;&#8199;9007<span style="color:red>0</span>500||rowspan="4"|<math>\scriptstyle\xrightarrow{{\color{blue}{0}}}</math>||&#8199;&#8199;900<span style="color:red>7</span>0500
::{|
 
 
|-
 
|-
|rowspan="3"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{5\times0}}={\color{blue}{0}}\\&\scriptstyle{\color{red}{5\times2}}=1{\color{blue}{0}}\\&\scriptstyle\left({\color{red}{5\times9}}\right)+1=4{\color{blue}{6}}\\&\scriptstyle\left({\color{red}{5\times0}}\right)+4={\color{blue}{4}}\\&\scriptstyle{\color{red}{5\times0}}={\color{blue}{0}}\\&\scriptstyle{\color{red}{5\times4}}=2{\color{blue}{0}}\\&\scriptstyle\left({\color{red}{5\times5}}\right)+2={\color{blue}{27}}\\\end{align}}</math>||&#8199;&#8199;9007<span style="color:red>0</span>500
+
|&#8199;5400920||<u>&#8199;<span style="color:red">5400920</span></u>||<u>&#8199;&#8199;&#8199;<span style="color:red">5400920</span></u>|||<u>&#8199;&#8199;&#8199;<span style="color:red">5400920</span></u>
 
|-
 
|-
|<u>&#8199;&#8199;&#8199;<span style="color:red">5400920</span></u>
+
| ||&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>00</span>||<span style="color:#0000FF>27004600</span>00||2700460000
 
|-
 
|-
|<span style="color:#0000FF>27004600</span>00
+
| ||&nbsp;||&nbsp;||&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>0</span>&#8199;&#8199;&#8199;
 
|}
 
|}
  
|style="text-align:right;"|ותשלים השורה ההיא מכפל המספר העליון הבא אחריהן והוא ה5<br>
+
::{|
ותכפול ה5 בסיפרא שהיא אשר במעלה הראשונה מהמספר התחתון ויהיה סיפרא ותשימנה אחר השתי סיפרות הנזכרות שהיא המעלה השלישית הדומה למעלה הרביעית והנה בא על מתכונתו ששורתו מתחלת במעלה הג' שהיא מעלתו<br>
 
ותאמ' אח"כ כפול 5 ב-2 הוא 10, תשים סיפרא אחר הסיפרות הנזכרות<br>
 
ותשמור ה-10 לאחד לחברו עם כפל 5 ב-9 שהוא 45 ויהיה הכל 46 ותשים ה6 אחר כל הסיפרות ותשמור ה-4<br>
 
וכאש' תכפול ה5 בסיפרא הבאה אחר ה9, (לא) תשים סיפרא אחר היות בידך 4 ותשימם במקומה אחר ה6<br>
 
אכן כאש' תכפול ה5 בסיפרא הנמשכת לא תשים סיפרא אחר ה4 אחר שאין בידך מאומה<br>
 
ותכפול 5 ב-4 ויעלו 20, תשים סיפרא ותשמר 2<br>
 
ותכפול 5 ב5 ויהיו 25 ועם ה2 אשר בידך יהיה עם הכל 27 שים 7 ותשים אחריהם 2, כי כבר נשלם כפל המספר העליון בכל המספרים התחתונים
 
 
|-
 
|-
|
+
|rowspan="5"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{7\times0}}={\color{blue}{0}}\\&\scriptstyle{\color{red}{7\times2}}=1{\color{blue}{4}}\\&\scriptstyle\left({\color{red}{7\times9}}\right)+1=6{\color{blue}{4}}\\&\scriptstyle\left({\color{red}{7\times0}}\right)+6={\color{blue}{6}}\\&\scriptstyle{\color{red}{7\times0}}={\color{blue}{0}}\\&\scriptstyle{\color{red}{7\times4}}=2{\color{blue}{8}}\\&\scriptstyle\left({\color{red}{7\times5}}\right)+2={\color{blue}{37}}\\\end{align}}</math>||&#8199;&#8199;&#8199;&#8199;9<span style="color:red>00</span>70500||rowspan="5"|<math>\scriptstyle\xrightarrow{{\color{blue}{00}}}</math>||&#8199;&#8199;&#8199;&#8199;<span style="color:red>9</span>0070500||rowspan="5"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{9\times0}}={\color{blue}{0}}\\&\scriptstyle{\color{red}{9\times2}}=1{\color{blue}{8}}\\&\scriptstyle\left({\color{red}{9\times9}}\right)+1=8{\color{blue}{2}}\\&\scriptstyle\left({\color{red}{9\times0}}\right)+8={\color{blue}{8}}\\&\scriptstyle{\color{red}{9\times0}}={\color{blue}{0}}\\&\scriptstyle{\color{red}{9\times4}}=3{\color{blue}{6}}\\&\scriptstyle\left({\color{red}{9\times5}}\right)+3={\color{blue}{48}}\\\end{align}}</math>||&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;90070500
:::::{|
 
 
|-
 
|-
|rowspan="4"|<math>\scriptstyle\xrightarrow{{\color{blue}{0}}}</math>||&#8199;&#8199;900<span style="color:red>7</span>0500
+
|<u>&#8199;&#8199;&#8199;&#8199;&#8199;5400920</u>||<u>&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:red">5400920</span></u>||<u>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:red">5400920</span></u>
 
|-
 
|-
|<u>&#8199;&#8199;&#8199;<span style="color:red">5400920</span></u>
+
|&#8199;&#8199;2700460000||&#8199;&#8199;2700460000||&#8199;&#8199;&#8199;&#8199;&#8199;2700460000
 
|-
 
|-
|2700460000
+
|<span style="color:#0000FF>37806440</span>0&#8199;&#8199;&#8199;||378064400&#8199;&#8199;&#8199;||&#8199;&#8199;&#8199;378064400&#8199;&#8199;&#8199;
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>0</span>&#8199;&#8199;&#8199;
+
| ||&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>00</span>&#8199;&#8199;&#8199;&#8199;&#8199;||<span style="color:#0000FF>48608280</span>00&#8199;&#8199;&#8199;&#8199;&#8199;
 
|}
 
|}
  
|style="text-align:right;"|ואתה היותך מוצא אחר ה5 העליון הנכפל כבר היה הדין נותן לכפלה עם כל המספרים התחתונים ולעשות ממנו שורה אחת<br>
+
{|
ואין צורך אלא שתתחיל מה7 אשר אחריה ותעשה שורתו בלבד שתתחיל שורת ה7 מהמעלה הה' אשר היא מעלתו כנזכר<br>
 
אכן כדי שלא תטעה תשים בראש שורת ה7 במעלה סיפרא בעד הסיפרא העליונה אשר בין הה' וה7 אשר מעלתה המעלה ה5
 
 
|-
 
|-
 
|
 
|
:{|
+
:*Since there are two zeros at the beginning of the top row, write under the line two zeros corresponding to them as their number.
 +
|style="width:45%; text-align:right;"|ולפי שבתחלת השורה העליונה שתי סיפרות תשים בתחלת השורה העליונ' בעדן תחת הקו שתי סיפרו' כמספרן
 
|-
 
|-
|rowspan="4"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{7\times0}}={\color{blue}{0}}\\&\scriptstyle{\color{red}{7\times2}}=1{\color{blue}{4}}\\&\scriptstyle\left({\color{red}{7\times9}}\right)+1=6{\color{blue}{4}}\\&\scriptstyle\left({\color{red}{7\times0}}\right)+6={\color{blue}{6}}\\&\scriptstyle{\color{red}{7\times0}}={\color{blue}{0}}\\&\scriptstyle{\color{red}{7\times4}}=2{\color{blue}{8}}\\&\scriptstyle\left({\color{red}{7\times5}}\right)+2={\color{blue}{37}}\\\end{align}}</math>||&#8199;&#8199;&#8199;&#8199;9<span style="color:red>00</span>70500
+
|
 +
:*Complete this row by multiplying the next upper digit that follows them, which is 5:
 +
|style="text-align:right;"|ותשלים השורה ההיא מכפל המספר העליון הבא אחריהן והוא ה5
 
|-
 
|-
|<u>&#8199;&#8199;&#8199;&#8199;&#8199;5400920</u>
+
|
 +
::*Multiply the 5 by the zero that is in the first rank of the bottom number; it is zero. Place it after the two mentioned zeros, which is the third rank that [precedes] the fourth rank. It follows that its row starts from the third rank.
 +
:::<math>\scriptstyle{\color{blue}{5\times0=0}}</math>
 +
|style="text-align:right;"|ותכפול ה5 בסיפרא שהיא אשר במעלה הראשונה מהמספר התחתון ויהיה סיפרא ותשימנה &#x202B;<ref>9r</ref>אחר השתי סיפרות הנזכרות שהיא המעלה השלישית הדומה למעלה הרביעית והנה בא על מתכונתו ששורתו מתחלת במעלה הג' שהיא מעלתו
 
|-
 
|-
|&#8199;&#8199;2700460000
+
|
 +
::*Then say: multiply 5 by 2; it is 10. Place the zero after the mentioned zeros.
 +
:::<math>\scriptstyle{\color{blue}{5\times2=10}}</math>
 +
|style="text-align:right;"|ותאמ' אח"כ כפול 5 ב-2 הוא 10 תשים סיפרא אחר הסיפרות הנזכרות
 
|-
 
|-
|<span style="color:#0000FF>37806440</span>0&#8199;&#8199;&#8199;
+
|
|}
+
::*Keep the 10 as one, to add it to the product of 5 by 9, which is 45; the total sum is 46. Place the 6 after all the zeros and keep the 4.
 
+
:::<math>\scriptstyle{\color{blue}{1+\left(5\times9\right)=1+45=46}}</math>
|style="text-align:right;"|ותשלים השורה בכפל ה7 הבאה אחריה בכל הרשמים התחתונים<br>
+
|style="text-align:right;"|ותשמור ה-10 לאחד לחברו עם כפל 5 ב-9 שהוא 45 ויהיה הכל <sup>4</sup>6 ותשים ה6 אחר כל הסיפרות ותשמ<sup>ו</sup>ר ה-4
ותאמ' כפל 7 בסיפרא הוא סיפרא ותשים סיפרא אחרת<br>
 
ותאמר עוד כפל 7 [ב2 ויעלו 14, תשים 4 שהם האחדים אחר הסיפרות הנזכרות ותשמור הא'<br>
 
ותאמר עוד כפל 7 ב9] ב9 ויעלה 63 ועוד האחד אשר בידינו, יעלה 64, נשים ה4 ונשמר ה6 לאחדים בידינו.<br>
 
ונאמר עוד כפל 7 בסיפרא היה עולה סיפרא, אכן להיות בידינו ה6 לא נשים סיפרא, אבל נשים ה6 אשר בידינו למקומה<br>
 
ונאמר כפל 7 בסיפרא עולה סיפרא ונשים סיפרא, אחר שאין בידינו אחדים כלל<br>
 
ונאמר כפל 7 ב4 עולה 28, נשים 8 ותשמור 2<br>
 
ונאמר כפל 7 ב5 עולה 35 ועם השנים אשר בידינו יעלו 37, נשים 7 ואחריהם 3, כי כבר נשלם כפל זה ה7 על כל הרשמי' התחתונים
 
 
|-
 
|-
 
|
 
|
::::{|
+
::*When you multiply the 5 by the zero that follows the 9, do not put zero, since you have 4 in your hand, so place it instead after the 6.
 +
:::<math>\scriptstyle{\color{blue}{4+\left(5\times0\right)=4+0=4}}</math>
 +
|style="text-align:right;"|וכאש' תכפול ה5 בסיפרא הבאה אחר ה9 לא תשים סיפרא אחר היות בידך 4 ותשימם במקומה אחר ה6
 
|-
 
|-
|rowspan="5"|<math>\scriptstyle\xrightarrow{{\color{blue}{00}}}</math>||&#8199;&#8199;&#8199;&#8199;<span style="color:red>9</span>0070500
+
|
|-
+
::*When you multiply the 5 by the following zero, [place] a zero after the 4, since you have nothing in your hand.
|<u>&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:red">5400920</span></u>
+
:::<math>\scriptstyle{\color{blue}{5\times0=0}}</math>
|-
+
|style="text-align:right;"|אכן כאש' תכפול ה5 בסיפרא הנמשכת לא תשים סיפרא אחר ה4 אחר שאין בידך מאומה
|&#8199;&#8199;2700460000
 
|-
 
|378064400&#8199;&#8199;&#8199;
 
|-
 
|&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>00</span>&#8199;&#8199;&#8199;&#8199;&#8199;
 
|}
 
 
 
|style="text-align:right;"|ואחר היות שתי סיפרות בשורה העליונה אחר ה7, כדי שלא נטעה, נשים שתי סיפרות כנגד מעלתן בהתחלת שורת ה9 הבא אחריהן
 
 
|-
 
|-
 
|
 
|
{|
+
::*Multiply 5 by 4; the result is 20. Put a zero and keep the 2.
|-
+
:::<math>\scriptstyle{\color{blue}{5\times4=20}}</math>
|rowspan="5"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{9\times0}}={\color{blue}{0}}\\&\scriptstyle{\color{red}{9\times2}}=1{\color{blue}{8}}\\&\scriptstyle\left({\color{red}{9\times9}}\right)+1=8{\color{blue}{2}}\\&\scriptstyle\left({\color{red}{9\times0}}\right)+8={\color{blue}{8}}\\&\scriptstyle{\color{red}{9\times0}}={\color{blue}{0}}\\&\scriptstyle{\color{red}{9\times4}}=3{\color{blue}{6}}\\&\scriptstyle\left({\color{red}{9\times5}}\right)+3={\color{blue}{48}}\\\end{align}}</math>||&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;90070500
+
|style="text-align:right;"|ותכפול 5 ב-4 ויעלו 20 תשים סיפרא ותשמר 2
|-
 
|<u>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:red">5400920</span></u>
 
|-
 
|&#8199;&#8199;&#8199;&#8199;&#8199;2700460000
 
|-
 
|&#8199;&#8199;&#8199;378064400&#8199;&#8199;&#8199;
 
|-
 
|<span style="color:#0000FF>48608280</span>00&#8199;&#8199;&#8199;&#8199;&#8199;
 
|}
 
 
 
|style="text-align:right;"|ושוב נאמ' כפל 9 בסיפרא הוא סיפרא ותשים סיפרא אחר השתי סיפרות כאשר שמנו בג[ת]חלת שורה זו<br>
 
ונאמר כפל 9 ב2 עולה 18, נשים 8 אחר השלשה סיפרות הנזכרות ונשמור אחד<br>
 
ונאמר כפל 9 ב7 ב9 עולה 18 81 ואחר שהיה בידינו 1 יעלו 82, נשים 2 ונשמור 8<br>
 
ונאמר כפל 9 בסיפרא הוא סיפרא ונשים ה8 אשר בידינו במקומה<br>
 
ונאמר כפל 9 בסיפרא הוא סיפרא ונשימה אחר שאין בידינו דבר שוב<br>
 
ונאמר כפל 9 ב4 עולה 36, נשים 6 ונשמור 3<br>
 
ונאמר כפל 9 ב5 עולה 45 ו3 אשר בידינו יעלו 48 ונשים 8 ואחריהן 7 כי כבר נשלם כפל 9 זה בכל הרשמים התחתונים
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואחרי אשר כבר נכפלו, ר"ל הרשמים העליונים עם כל התחתונים, נרשום תחת כל השורות קו דיו ונחבר כל השורות שנתחדשו מכפליהן, ר"ל ה3 שורות אשר בין הקוים להנה, יעלה בידינו שכפל הב' מספרים הנשאלים זה בזה עלה 486463564860000
+
::*Multiply 5 by 5; they are 25 and with the 2 that you have the total sum is 27. Put 7 and after it put 2, because the multiplication of the upper digit by all the bottom digits is complete.
 +
:::<math>\scriptstyle{\color{blue}{2+\left(5\times5\right)=2+25=27}}</math>
 +
|style="text-align:right;"|ותכפול 5 ב5 ויהיו 25 ועם ה2 אשר בידך יהיה עם <sup>הכל</sup> 27 שים 7 ותשים אחריהם 2 כי כבר נשלם כפל המספר העליון בכל המספרים התחתונים
 
|-
 
|-
 
|
 
|
 
+
:*Since you find [a zero] after the upper 5 that was multiplied, the rule requires to multiply it by all the bottom digits and make of it one line.
==== Check ====
+
|style="text-align:right;"|ואחרי היותך מוצא אחר ה5 העליון הנכפל כבר היה הדין נותן לכפלה עם כל המספרים התחתונים ולעשות ממנו שורה אחת
|
 
 
|-
 
|-
 
|
 
|
*Division
+
::But, there is no need for this, only that you start with the 7 that is after it and make its line provided that the line of the 7 starts from the fifth rank, which is its rank as mentioned.
|style="text-align:right;"|ואם תרצה '''לבחון''' אם עשית כדין אם לאו, יתחלק זה המספר הגדול העולה מהכפל לאחד מהב' מספרים הנכפלים ויצא בחילוק האחר ולא ישאר דבר. ואם יחסר או יעדיף, דע לך שטעית באחד המעשים בכפל או בחילוק
+
|style="text-align:right;"|ואין צורך אלא שתתחיל מה7 אשר אחריה ותעשה שורתו בלבד שתתחיל שורת ה7 מהמעלה הה' אשר היא מעלתו כנזכר
 
|-
 
|-
 
|
 
|
 
+
::In order not to be mistaken, place a zero at the beginning of the line of the 7, for the upper zero that is between the 5 and 7, whose rank is the fifth rank.
==== Reason: Procedure ====
+
|style="text-align:right;"|אכן כדי שלא תטעה תשים בראש שורת ה7 במעלה סיפרא בעד הסיפרא העליונה אשר בין הה' וה7 אשר מעלתה המעלה ה5
!style="text-align:right;"|'''הטעם'''
 
 
|-
 
|-
 
|
 
|
*The reason for the decimal place of the product of each digit of the multiplier:
+
::Complete the line by multiplying the 7 that follows it by all the bottom digits:
|style="text-align:right;"|בהתחלת שורת כפל כל מספר עליון בתחתונים מהמעלה הדומה לו
+
|style="text-align:right;"|ותשלים השורה בכפל ה7 הבאה אחריה בכל הרשמים התחתונים
 
|-
 
|-
 
|
 
|
:*The product [of units] by hundreds - are hundreds
+
::*Say: the product of 7 by zero is zero. Put another zero.
|style="text-align:right;"|כי על ד"מ אם המספר העליון הוא מאות, שהוא במעלה הג', כשנכפלם באחדי המספר התחתון יהיה העולה מאות
+
:::<math>\scriptstyle{\color{blue}{7\times0=0}}</math>
 +
|style="text-align:right;"|ותאמ' כפל 7 בסיפרא הוא סיפרא ותשים סיפרא אחרת
 
|-
 
|-
 
|
 
|
:*The product [of units] by thousands - are thousands
+
::*Say also: the product of 7 by 2 is 14. Place 4, which are the units, after the mentioned zeros and keep the 1.
|style="text-align:right;"|ואם יהיה אלפים, שהוא בד', יהיה העולה אלפים
+
:::<math>\scriptstyle{\color{blue}{7\times2=14}}</math>
 +
|style="text-align:right;"|ותאמר עוד כפל 7 &#x202B;[ב2 ויעלו 14 תשים 4 שהם האחדים אחר הסיפרות הנזכרות ותשמור הא&#x202B;'
 
|-
 
|-
 
|
 
|
:*The units of a product [of units] by hundreds are hundreds; the tens of this product are units of the subsequent rank
+
::*Say also: the product of 7 by 9 is 63; plus the one that we have the result is 64. We put the 4 and keep the 6 as units.
|style="text-align:right;"|לכן כאשר יהיו [מקום האחדים] אחדים העולי' מהכפל הראשון ההוא במעלה הג', שהיא המעלה הדומה למעלתו והעשרות העולות מזה הכפל הם אחדים במעלה הבאה אחריהן, כמו שנתבאר בתחלת הספר בפי' המעלות, לכן תשמרם לאחדים לחברם עם הבא אחריהן
+
:::<math>\scriptstyle{\color{blue}{1+\left(7\times9\right)=1+63=64}}</math>
 +
|style="text-align:right;"|ותאמר עוד כפל 7 ב9]&#x202B;<ref>marg.</ref> ב9 ויעלה 63 ועוד האחד אשר בידינו יעלה 64 נשים ה4 ונשמר ה6 לאחדים בידינו
 
|-
 
|-
 
|
 
|
:*The product of tens by hundreds - are tens of hundreds, i.e. thousands
+
::*We say also: the product of 7 by zero is zero. Since we have a 6, we do not put a zero, but we put the 6 that we have in its place.
|style="text-align:right;"|וכשנכפול מספר עליון זה באשר במעלה השנית מהתחתונים יהיו העולה עשירי מאות, שהם אלפים, אם העליון הוא מאות
+
:::<math>\scriptstyle{\color{blue}{6+\left(7\times0\right)=6+0=6}}</math>
 +
|style="text-align:right;"|&#x202B;<ref>9v</ref>ונאמר עוד כפל 7 בסיפרא היה עולה סיפרא אכן להיות בידינו ה6 לא נשים סיפרא אבל נשים ה6 אשר בידינו למקומה
 
|-
 
|-
 
|
 
|
:*The product of tens by thousands - are tens of thousands - which is the rank that follows the rank of thousands
+
::*We say: the product of 7 by zero is zero. We put a zero, as we do not have units at all.
|style="text-align:right;"|ואם הוא אלפים, יהיו העשרות האלה עשרות אלפים, לכן נשימהו במעלה הנמשכת לאשר שמנו בתחלת שורה זו ונחבר להם השמור בידינו מהכפל הקודם
+
:::<math>\scriptstyle{\color{blue}{7\times0=0}}</math>
 +
|style="text-align:right;"|ונאמר כפל 7 בסיפרא עולה סיפרא ונשים סיפרא אחר שאין בידינו אחדים כלל
 
|-
 
|-
 
|
 
|
:Therefore, the rank of the units in the product of a digit of the multiplier by a digit of the multiplicand is equal to the sum of the ranks of both digits minus 1
+
::*We say: the product of 7 by 4 is 28. We put 8 and keep the 2.
|style="text-align:right;"|וכן לעולם כאשר יתרחק יעלה מעלה אחר מעלה, עד שיצא לנו מזה ברור מה שאמרנו, כי אחדי כפל כל מספר עליון בתחתון יהיה מקום האחדים העולים מהכפל ההוא במעלה אשר מנין מדרגותיה כמנין מעלות שני רשמים האלו הנכפלים זה בזה, העליון והתחתון יחד, חסר אחת
+
:::<math>\scriptstyle{\color{blue}{7\times4=28}}</math>
 +
|style="text-align:right;"|ונאמר כפל 7 ב4 עולה 28 נשים 8 ותשמור 2
 
|-
 
|-
 
|
 
|
:*The product of units by a certain rank - the units are placed in that certain rank
+
::*We say: the product of 7 by 5 is 35; plus the two that we have the result is 37. We put the 7 and after it the 3, because the multiplication of the 7 by all the bottom digits is complete.
|style="text-align:right;"|וזה שאם האחד מהם במעלה הראשונה הרי ביארנו שמקומו הוא במעלה הדומה למעלתו
+
:::<math>\scriptstyle{\color{blue}{2+\left(7\times5\right)=2+35=37}}</math>
 +
|style="text-align:right;"|ונאמר כפל 7 ב5 עולה 35 ועם השנים אשר בידינו יעלו 37 נשים 7 ואחריהם 3 כי כבר נשלם כפל זה ה7 על כל הרשמי' התחתונים
 
|-
 
|-
 
|
 
|
:*The product of tens by a certain rank - the units are placed one rank higher than that certain rank
+
:*Since there are two zeros after the 7 in the upper line, in order not to be mistaken, we put two zeros corresponding their rank at the beginning of the line of the 9 that follows them.
|style="text-align:right;"|ואם יהיה בשנית יעלה מעלה אחת על מעלות המספר האחר כמנין מעלותיו כמו שביארנו
+
|style="text-align:right;"|ואחר היות שתי סיפרות בשורה העליונה אחר ה7 כדי שלא נטעה נשים שתי סיפרות כנגד מעלתן בהתחלת שורת ה9 הבא אחריהן
 
|-
 
|-
 
|
 
|
:*The product of hundreds by a certain rank - the units are placed in the second rank higher than that certain rank
+
::*Again we say: the product of 9 by zero is zero. Put a zero after the two zeros that we placed at the beginning of this line.
|style="text-align:right;"|ואם הוא בג' יעלה שתים וכן יוסיף לעולם על מעלות המספר האחר כמנין מעלותיו כמו שביארנו ואם הוא בג' יעלה שתים
+
:::<math>\scriptstyle{\color{blue}{9\times0=0}}</math>
 +
|style="text-align:right;"|ושוב נאמ' כפל 9 בסיפרא הוא סיפרא ותשים סיפרא אחר השתי סיפרות כאשר שמנו ב<s>ג</s>[ת]&#x202B;<ref>marg.</ref>חלת שורה זו
 
|-
 
|-
 
|
 
|
:So, the digit of the multiplier adds its rank minus 1 to the decimal place of the product in addition to the rank of the digit of the multiplicand
+
::*We say: the product of 9 by 2 is 18. We put 8 after the three mentioned zeros and keep the one.
|style="text-align:right;"|וכן יוסיף לעולם על מעלות המספר האחר כמנין מעלותיו חסר אחת
+
:::<math>\scriptstyle{\color{blue}{9\times2=18}}</math>
 +
|style="text-align:right;"|ונאמר כפל 9 ב2 עולה 18 נשים 8 אחר השלשה סיפרות הנזכרות ונשמור אחד
 
|-
 
|-
 
|
 
|
:Hence, the rank of the units in the product of a digit of the multiplier by a digit of the multiplicand is equal to the sum of the ranks of both digits minus 1
+
::*We say: the product of 9 by 9 is 81 and since we have 1, the result is 82. We put the 2 and keep the 8.
|style="text-align:right;"|והנה יהיה מעלות אחדי העולים מהכפל כמעלות שני הרשמים הנכפלים זה בזה חסר אחת וכל זה ברור בטעם
+
:::<math>\scriptstyle{\color{blue}{1+\left(9\times9\right)=1+81=82}}</math>
 +
|style="text-align:right;"|ונאמר כפל 9 <s>ב7</s> ב9 עולה <s>18</s> 81 ואחר שהיה בידינו 1 יעלו 82 נשים 2 ונשמור 8
 
|-
 
|-
 
|
 
|
 
+
::*We say: the product of 9 by zero is zero. We put the 8 that we have in its place.
==== Reason: Check ====
+
:::<math>\scriptstyle{\color{blue}{8+\left(9\times0\right)=8+0=8}}</math>
!style="text-align:right;"|'''וטעם הבחינה'''
+
|style="text-align:right;"|ונאמר כפל 9 בסיפרא הוא סיפרא ונשים ה8 אשר בידינו במקומה
|-
 
|Multiplication is the inverse operation of division
 
|style="text-align:right;"|הוא כי הכפל הוא הפך החילוק
 
|-
 
|Practical illustration: dividing a given property equally between a certain number of people
 
|style="text-align:right;"|כי כאשר למין מה ממספר תשים ידועים ויעלה לכל אחד מהם מנין ממון ידוע
 
 
|-
 
|-
 
|
 
|
*property&divide;(number of people) = share of each
+
::*We say: the product of 9 by zero is zero. We put it, as we have nothing in our hands.
|style="text-align:right;"|הרי יש בכל הממון כפלי ממספר האנשים כמספר הממון העולה לכל אחד מהן
+
:::<math>\scriptstyle{\color{blue}{9\times0=0}}</math>
 +
|style="text-align:right;"|ונאמר כפל 9 בסיפרא הוא סיפרא ונשימה אחר שאין בידינו דבר שוב
 
|-
 
|-
 
|
 
|
*property&divide;(share of each) = number of people
+
::*We say: the product of 9 by 4 is 36. We put 6 and keep the 3.
|style="text-align:right;"|או אם תרצה לומר כפלי הממון שיצא לכל אחד מהם כמספר האנשים ההם והכל אחד
+
:::<math>\scriptstyle{\color{blue}{9\times4=36}}</math>
 +
|style="text-align:right;"|ונאמר כפל 9 ב4 עולה 36 נשים 6 ונשמור 3
 
|-
 
|-
 
|
 
|
Example: dividing 12 golden coins equally between 3 people - the share of each will be 4<br>
+
::*We say: the product of 9 by 5 is 45; plus the 3 that we have the result is 48. We put the 8 and after it the 4, because the multiplication of the 9 by all the bottom digits is complete.
:<math>\scriptstyle{\color{blue}{12=3\times4=4\times3\longrightarrow\begin{cases}\scriptstyle\frac{12}{4}=3\\\scriptstyle\frac{12}{3}=4\end{cases}}}</math>
+
:::<math>\scriptstyle{\color{blue}{3+\left(9\times5\right)=3+45=48}}</math>
|style="text-align:right;"|כי המשל אם חלקנו 12 זהובים ל3 אנשים, עלה לכל אחד מהם 2 4, הרי השנים עשר הם כפל 3 ב4, או ה4 ב3 ואם נחלק 2 12 אלו ל3 ל4 אנשים, יעלה לכל אחד מהם ג' ואם לג', יעלה לכל אחד מהם 4
+
|style="text-align:right;"|ונאמר כפל 9 ב5 עולה 45 ו3 אשר בידינו יעלו 48 ונשים 8 ואחריהן <s>7</s> [4]&#x202B;<ref>marg.</ref> כי כבר נשלם כפל 9 זה בכל הרשמים התחתונים
 
|-
 
|-
 
|
 
|
The result of dividing a product of multiplication by one of the multiplicands is precisely the other multiplicand - thus, the check of the multiplication operation is division, and the check of the division operation is multiplication
+
:*Since the upper digits were already multiplied by all the bottom [digits], we draw a line beneath all the lines and sum all the lines that were generated from their products, i.e. the three lines between the lines.
|style="text-align:right;"|הרי שכאשר נחלק העולה מהכפל לאחד מהמספרים הנכפלים, יצא השני בחילוק בלי תוספת ומגרעת
+
|style="text-align:right;"|ואחרי אשר כבר נכפלו ר"ל הרשמים העליונים עם כל התחתונים נרשום תחת כל השורות קו דיו ונחבר כל השורות שנתחדשו מכפליהן ר"ל ה3 שורות אשר &#x202B;<ref>10r</ref>בין הקוים <sup>ו</sup>הנה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|הרי שבחינת הכפל בחילוק וכן בחינת החילוק בכפל וזה דבר ברור
+
:We receive that the result of the multiplication of the two questioned numbers one by the other is 486463564860000.
 +
|style="text-align:right;"|יעלה בידינו שכפל הב' מספרים הנשאלים זה בזה עלה 486463564860000
 
|-
 
|-
 
|
 
|
|}
 
  
{|
+
==== <span style=color:Green>Check</span> ====
|-
 
 
|
 
|
 
== Chapter Four: Division ==
 
|style="text-align:right;"|<big>הפרק הרביעי בחילוק</big>
 
 
|-
 
|-
 
|
 
|
=== written division ===
+
*<span style="color:Green">Division:</span> If you want to check if you did it right or not, divide the great number resulting from the multiplication by one of the two multiplied numbers, so the result of division is the other [multiplied number]. But if it is lacking or exceeding, know that you have erred in one of the operations of multiplication or division.
|
+
|style="text-align:right;"|ואם תרצה לבחון אם עשית כדין אם לאו יתחלק זה המספר הגדול העולה מהכפל לאחד מהב' מספרים הנכפלים ויצא בחילוק האחר ולא ישאר דבר ואם יחסר או יעדיף דע לך שטעית באחד המעשים בכפל או בחילוק
 
|-
 
|-
 
|
 
|
  
 +
==== <span style=color:Green>Reason: Procedure</span> ====
 
|
 
|
 
|-
 
|-
|Division of a large number by a smaller number
+
|The reason for starting the line of multiplication of each upper digit by the bottom [digits] from its corresponding rank:
|style="text-align:right;"|כאשר תרצה לחלק מספר גדול למספר קטן
+
|style="text-align:right;"|<big>הטעם</big> בהתחלת שורת כפל כל מספר עליון בתחתונים מהמעלה הדומה לו
 
|-
 
|-
 
|
 
|
==== description of the procedure ====
+
:*Because, e.g. if the upper number is of the hundreds, which is the third rank, when we multiply it by the units of the bottom number, the result is of the hundreds.
|
+
|style="text-align:right;"|כי על ד"מ אם המספר העליון <sup>הוא</sup> מאות שהוא במעלה הג' כשנכפלם באחדי המספר התחתון יהיה העולה מאות
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ונשימם זה על זה על הסדר, הגדול למעלה נקראנוהו המתחלק והקטן למטה וקראנוהו אשר נחלק עליו עליו ותשים כל מעלה תחת בת גילה ויהיו שתי שורות אלו מרווחות, [..] ר"ל שתשים ריוח בין זו לזו לשים ביניהם היוצא בחילוק כאשר יתבאר בחילוק
+
:*If it is of the thousands, which is the fourth [rank], the result is of the thousands.
 +
|style="text-align:right;"|ואם יהיה אלפים שהוא בד' יהיה העולה אלפים
 
|-
 
|-
 
|
 
|
*The procedure starts with the highest rank - the last digit on the left of the divisor
+
:Therefore, the units resulting from the first multiplication are in the third rank, which corresponds to the rank [of the upper number], and the tens resulting from this multiplication are units of the subsequent rank, as explained in the beginning of the book, in the explanation of the ranks. So, you keep them as units to add them to the next [product].
|style="text-align:right;"|וראה המספר האחרון התחתון אשר לצד שמאל, כמה פעמים יצא מהמספר האחרון אשר בעליון
+
|style="text-align:right;"|לכן כאשר יהיו [...] אחדים העולי' מהכפל הראשון ההוא במעלה הג' שהיא המעלה הדומה למעלתו והעשרות העולות מזה הכפל הם אחדים במעלה הבאה אחריהן כמו שנתבאר בתחלת הספר בפי' המעלות לכן תשמרם לאחדים לחברם עם הבא אחריהן
 
|-
 
|-
 
|
 
|
:*The leftmost digit of the dividend is smaller than the corresponding digit of the divisor or its multiple - considering the next rank of the dividend as tens
+
:*When we multiply the upper number by the second of the bottom [digits], the result are tens of hundreds, which are thousands, if the upper [number] is of the hundreds.
|style="text-align:right;"|ואם איננו בו אפי' פעם אחת שהוא קטן ממנו, ראה כמה פעמים יצא מזה האחרון ומאשר לפניו בקחתך האחרון לעשרות ואשר לפניו לאחדים ומנין פעמים אלו הוא הנקרא היוצא בחילוק
+
|style="text-align:right;"|וכשנכפול מספר עליון זה באשר במעלה השנית מהתחתונים יהיו העולה עשירי מאות שהם אלפים אם העליון הוא מאות
 
|-
 
|-
 
|
 
|
:The interim result should be multiplied by all digits of the divisor and the products are extracted from the corresponding digits of the dividend
+
:*If it is of the thousands, these tens are tens of thousands, so we place them in the rank that follows the one that we place at the beginning of this line and we add to them the reserved from the previous multiplication.
|style="text-align:right;"|ודע שיש לך להוציא כ"כ פעמים המספרים אשר לפני האחרון התחתון מאשר לפני האחרון או האחרונים העליונים אשר הוצאת מהם כפלי האחרון התחתון כפעמים אשר הוצאת האחרון התחתון מהאחרון העליו' או האחרונים
+
|style="text-align:right;"|ואם הוא אלפים יהיו העשרות האלה עשרות אלפים לכן נשימהו במעלה הנמשכת לאשר שמנו בתחלת שורה זו ונחבר להם השמור בידינו מהכפל הקודם
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|[ואם אין בו וכאשר נשאר מהאחרון או מהאחרונים בקחתך אותם לעשרות ולמאות כפי ערכם אל המעלה הזאת כפולים אשר הוצאת האחרון התחתון מן האחרון העליון או האחרונים], לא תוציא לאחרון כפל הכפלים ההם, כי לעולם יש לך להוציא כל אחד כל פעמים מהעליון הראוי לו כפעמים אשר תוציא האחרון מן האחרון או מן האחרונים
+
:And so on, forever it rises rank by rank, until it is clear from what is said that the place of the units resulting from the multiplication of each upper digit by a bottom [digit] is the rank whose decimal position is as the [sum] of the ranks of both upper and bottom digits that are multiplied by each other minus one.
 +
|style="text-align:right;"|וכן לעולם כאשר יתרחק יעלה מעלה אחר מעלה עד שיצא לנו מזה ברור מה שאמרנו כי אחדי כפל כל מספר עליון בתחתון יהיה מקום האחדים העולים מהכפל ההוא במעלה אשר מנין מדרגותיה כמנין מעלות שני רשמים &#x202B;<ref>10v</ref>האלו הנכפלים זה בזה העליון והתחתון יחד <sup>חסר</sup> אחת
 
|-
 
|-
 
|
 
|
:*An interim digit of the dividend is smaller than the corresponding digit of the divisor or its multiple - considering the next rank of the dividend - keeping in mind the value of each rank in relation to the present rank
+
:*If one of them is in the first rank, we have explained that the place [of the product] is in the rank that corresponds the rank [of the other multiplied digit]
|style="text-align:right;"|א[כן] יש לך לדעת כי בכל עת שתרצה להוציא התחתון מהעליון ואין דיו לכופליו כאשר תמצא במעלה הראויה לו, שאם יש בנמשך אחר הנמשך תוכל להוציא ממנו ובלבד שתשמור לעולם ערך המעלות, שכל מספר הוא במעלה שלפניו לעשרות ואשר לפני פניו למאות וכן לעולם על הערך הזה
+
|style="text-align:right;"|וזה שאם האחד מהם במעלה הראשונה הרי ביארנו שמקומו הוא במעלה הדומה למעלתו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואחר שתדע הכפלים אשר תוכל להוציא כל אחד מהמספרים התחתונים מהמעלה או מעלות הראויות להם מהעליונים, ר"ל כי עד"מ אם האחרון התחתון לקח מהמעלה הו' התחתון ואשר לפני האחרון יקח מו' ואשר לפני פניו מהה' עד כלותם
+
:*If it is in the second rank, [the product] rises one rank above the rank of the other [multiplied] digit as explained.
 +
|style="text-align:right;"|ואם יהיה בשנית יעלה מעלה אחת על מעלות המספר האחר כמנין מעלותיו כמו שביארנו
 
|-
 
|-
 
|
 
|
*The decimal place of the interim result of division
+
:*If it is in the third [rank], [the product] rises by two.
|style="text-align:right;"|ובמעלה אשר יכלו, ר"ל שהראשון התחתון יש לו לקחת בפעם ההיא מהמעלה ההיא על סדר שביארנו, כנגד המעלה ההיא תשים מנין הכפלים אשר לקחו ותשימם תחת המספר העליון
+
|style="text-align:right;"|ואם הוא בג' יעלה שתים
 
|-
 
|-
 
|
 
|
*The remainder of the division
+
:And so on it exceeds over the ranks of the second [multiplied] digit by the number of the ranks [of the first multiplied digit] minus one.
|style="text-align:right;"|וכאשר ישאר שום דבר משום מספר עליון, תשים עליו השארית ושארית זה יהיה לעולם בין עיניך להועיל ממנו לעשרות או למאות לאשר לפניו ולפני פניו כמו שביארנו
+
|style="text-align:right;"|וכן {{#annot:term|420,1206|DvAU}}יוסיף{{#annotend:DvAU}} לעולם על מעלות המספר האחר כמנין מעלותיו <s>כמו שביארנו ואם הוא בג' יעלה שתים וכן יוסיף לעולם על מעלות המספר האחר כמנין מעלותיו</s> חסר אחת
 
|-
 
|-
 
|
 
|
*Proceeding to the next interim division
+
:Hence, the rank of the units resulting from the multiplication is as [the sum of] the ranks of both digits that are multiplied one by the other minus 1 and all this is clear by reason.
|style="text-align:right;"|וכאשר תמו כל התחתונות לקחת מן הראויות להם, אם נשאר עוד במספר העליון כמספר התחתון או יותר ממנו, נשוב לחלקו עליו כבתחלה ונראה כמה פעמים יצא האחרון התחתון מהאחרון או אחרוני' שארית זו כמו שעשינו בתחלה בכל המספר ואשר לפניו מאשר לפניו, לכולם כפלים שווים כל אחד מהראוי לו
+
|style="text-align:right;"|והנה יהיה מעלות אחדי העולים מהכפל כמעלות שני הרשמים הנכפלים זה בזה חסר אחת וכל זה ברור בטעם
 
|-
 
|-
 
|
 
|
*The last interim division
+
 
|style="text-align:right;"|וכן נשוב לעולם פעם אחר פעם, עד הגיע עת יקח כל אחד מהתחתונים ממעלתו ממש, ר"ל האחדי' מהאחדים והעשרות מהעשרות ומספר הכפלים יושם בעת ההיא במעלה הראשונה ולא נשוב עוד לחלק כי לא ישאר אז כי אם הפחות מהמספר התחתון והפחות על הרב לא יוכל לחלק לשלמים כי אם לשברים ועוד נזכיר בפרק זה איך יתחלק לשברים
+
==== <span style=color:Green>Reason: Check</span> ====
 +
|style="text-align:right;"|<big>וטעם הבחינה</big>
 
|-
 
|-
|
+
|Multiplication is the inverse operation of division.
|style="text-align:right;"|וזכור לעולם שתשים בכל פעם היוצא בחילוק בפעם ההיא, ר"ל לפעמים הכפלים אשר תוציא בפעם ההיא כנגד המעלה אשר משם [יקח] המספר הראשון התחתון, ר"ל אשר יהיה במעלה הראשונה, אם יהיה שם מספר [ואף אם לא יהיה שם מספר] כי אם סיפרא, תראה מהיכן היה לו ראוי ליקח אם היה שם מספר כי אם סיפרא ושם תשים היוצא בחילוק בפעם ההיא
+
|style="text-align:right;"|הוא כי הכפל הוא הפך החילוק
 
|-
 
|-
 +
|<span style="color:Green>Practical illustration: dividing a given amount of money between a certain number of people equally</span>
 
|
 
|
*Tracing the rank of the dividend to be divided by a certain digit of the divisor
+
|-
|style="text-align:right;"|ויצא לנו מכך כי כאשר נרצה לידע אי זה מקום ראוי לקחת ממנו שום מספר מהתחתונים בשום פנים, שנראה מאי זו מעלה לקחת לאחרון שבתחתונים בפעם ההיא ותמנה משם לצד ימין מנין מעלות כמספר מעלות מרחק המספר ההוא התחתון [לצד ימין מהמספר האחרון התחתון] ובמקום שיכלו מהעליונות משם יקח
+
|When a certain known number of people receive a known amount of money each
 +
|style="text-align:right;"|כי כאשר למין מה ממספר אנשים ידועים ועלה לכל אחד מהם מנין ממון ידוע
 
|-
 
|-
 
|
 
|
*The decimal place of the interim result of division
+
*The total [amount of] money is the product of the number of people multiplied by the amount of money that each of them receives.
|style="text-align:right;"|גם כאשר תרצה לידע באיזה מקום תשים היוצא בחילוק בכל פעם, ראה מאיזה מקום לקח האחרון התחתון בפעם ההיא ומנה משם לצד ימין כמנין רשמי התחתון וכאשר תכלה המנין ההוא, שם תשים היוצא בחלוק בפעם ההיא ומהמעלה ההיא בעצמה יקח המספר אשר במעלה הראשונה בטור התחתון בעת ההיא
+
|style="text-align:right;"|הרי יש בכל הממון כפלי ממספר האנשים כמספר הממון העולה לכל אחד מהן
 
|-
 
|-
 
|
 
|
 
+
*Or, if you want to say: the product of the money that each of them gets multiplied by the number of people. All is the same.
==== example ====
+
|style="text-align:right;"|או אם תרצה לומר כפלי הממון שיצא לכל אחד מהם כמספר האנשים ההם והכל אחד
|style="text-align:right;"|'''המשל'''
 
 
|-
 
|-
|<math>\scriptstyle4380408998\div46079</math>
+
|For example: if we divide 12 golden coins between 3 people [equally], each of them receives 4.
|style="text-align:right;"|רצינו לחלק 4380408998 על מספר קטן ממנו והוא 46079, נשימם בשני טורים מרווחים זה על זה על הסדר כזה&#x202B;:
+
:<math>\scriptstyle{\color{blue}{\frac{12}{3}=4}}</math>
 +
|style="text-align:right;"|כי המשל אם חלקנו 12 זהובים ל3 אנשים עלה לכל אחד מהם <s>2</s> 4
 
|-
 
|-
 
|
 
|
 +
:For, twelve is a product of 3 by 4, or 4 by 3.
 +
:<math>\scriptstyle{\color{blue}{12=3\times4=4\times3}}</math>
 +
|style="text-align:right;"|הרי השנים עשר הם כפל 3 ב4 או ה4 ב3
 +
|-
 
|
 
|
{|class="wikitable" style="margin-left: auto; margin-right: 0px; text-align:center;"
+
:*Thus, if we divide these 12 between 4 people, each receives 3
 +
::<math>\scriptstyle{\color{blue}{\frac{12}{4}=3}}</math>
 +
|style="text-align:right;"|ואם נחלק <s>2</s> 12 אלו <s>ל3</s> ל4 אנשים יעלה לכל אחד מהם ג'
 
|-
 
|-
 
|
 
|
{|style="margin-left: auto; margin-right: 0px;"
+
:*and if between 3 [people], each receives 4
| style="text-align: left;" | &#8199;&#8199;&#8199;&#8199;&#8199;0&#8199;&#8199;&#8199;&#8199;
+
::<math>\scriptstyle{\color{blue}{\frac{12}{3}=4}}</math>
 +
|style="text-align:right;"|ואם לג' יעלה לכל אחד מהם 4
 +
|-
 +
|Hence, when we divide the result of multiplication by one of the multiplied numbers, the result of division is the second [multiplicand] no more and no less.
 +
|style="text-align:right;"|הרי שכאשר נחלק העולה מהכפל לאחד מהמספרים הנכפלים יצא השני בחילוק בלי תוספת ומגרעת
 
|-
 
|-
| style="text-align: left;" | &#8199;&#8199;&#8199;&#8199;01&#8199;&#8199;&#8199;&#8199;
+
|So, the check of the multiplication operation is by division, and the check of the division operation is by multiplication and this is an obvious thing.
 +
|style="text-align:right;"|הרי שבחינת הכפל בחילוק וכן בחינת החילוק בכפל וזה דבר ברור
 
|-
 
|-
| style="text-align: left;" | &#8199;&#8199;&#8199;&#8199;13&#8199;&#8199;&#8199;&#8199;
+
|
 +
|}
 +
 
 +
{|
 
|-
 
|-
| style="text-align: left;" | &#8199;&#8199;&#8199;054&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
 
 +
== Chapter Four: Division ==
 +
|style="width:45%; text-align:right;"|&#x202B;<ref>11r</ref><big>הפרק הרביעי בחילוק</big>
 
|-
 
|-
| style="text-align: left;" | &#8199;00290102
+
|
 +
=== <span style=color:Green>written division</span> ===
 +
|
 
|-
 
|-
| style="text-align: left;" | &#8199;23324924
+
|
 +
 
 +
|
 
|-
 
|-
| style="text-align: left;" | 0744193751
+
|When you wish to divide a large number by a smaller number
 +
|style="text-align:right;"|כאשר תרצה לחלק מספר גדול למספר קטן
 
|-
 
|-
| style="text-align: left;" | <u>4380408998</u>
+
|
 +
==== <span style=color:Green>description of the procedure</span> ====
 +
|
 
|-
 
|-
| style="text-align: left;" | <u>&#8199;&#8199;&#8199;&#8199;&#8199;95063</u>
+
|We place them one above the other orderly: the greater above, we call it the dividend; the smaller beneath, we call it the divisor [lit. by which it is divided].
 +
|style="text-align:right;"|ונשימם זה על זה על הסדר הגדול למעלה נקראנוהו {{#annot:term|605,1563|dYoj}}המתחלק{{#annotend:dYoj}} והקטן למטה וקראנוהו {{#annot:term|604|FDOf}}אשר נחלק עליו{{#annotend:FDOf}}
 
|-
 
|-
| style="text-align: left;" | &#8199;&#8199;&#8199;&#8199;&#8199;46079
+
|Put every rank beneath its corresponding and
|}
+
|style="text-align:right;"|ותשים כל מעלה תחת בת גילה
 
|-
 
|-
|}
+
|These two lines should be spaced, i.e. leave a space between them, in order to put the result of division between them, as will be explained in the [description of the] division [procedure].
 +
|style="text-align:right;"|ויהיו שתי שורות אלו מרווחות [..] ר"ל שתשים ריוח בין זו לזו לשים ביניהם היוצא בחילוק כאשר יתבאר בחילוק
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|[אמ' משה זה טעות אבל האמת הוא כי היוצא בחלוק לכל א' [...] הוא זה 95000 שלמים נוסף על השברים]
+
*See how many times the last bottom digit to the left can be extracted from the last digit of the upper [number].
 +
|style="text-align:right;"|וראה המספר האחרון התחתון אשר לצד שמאל כמה פעמים יצא מהמספר האחרון אשר בעליון
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ונאמ' מה שהוא המספר האחרון העליון יוכל לצאת 4 שהוא המספר האחרון התחתון פעם אחת<br>
+
:*If it is not even once in it, as it is smaller than it, see how many times it can be extracted from the last [digit] and the one that precedes it, considering the last [digit] as tens and the one that precedes it as units. The number of these times is called the result of division.
אכן מד' אשר לפני האחרון העליון שהוא אשר לפני האחרון התחתון לא נוכל לצאת 6 שהוא אשר לפני האחרון התחתון לכן לא נוציא משום [משם] דבר, אבל נוציא מהשנים האחרונים שהם 43<br>
+
|style="text-align:right;"|ואם איננו בו אפי' פעם אחת שהוא קטן ממנו ראה כמה פעמים יצא מזה האחרון ומאשר לפניו בקחתך האחרון לעשרות ואשר לפניו לאחדים ומנין פעמים אלו הוא הנקרא {{#annot:term|783|TwBn}}היוצא בחילוק{{#annotend:TwBn}}
ונאמר 43 כמה פעמים יש 4 ולא נאמר עשרה, שמהמעלה הזאת היה יכול לקחת 10 היה לוקח מהאחרון אחרון שהוא 10 בערך המעלה הזאת, לכן לא נאמ' כי אם 9<br>
 
והנה השורה התחתונה היא 5 רשמים, לכן לא נמנה מהג [3] העליון אשר לוקח משם 5 מעלות לצד ימין ויכלו בסיפרא ונשים תחתיה אלו ה9 היוצאים בחילוק, שהוא מספר הכפלים אשר לנו להוציא התחתונים מהעליונים בפעם הזאת כל אחד מהמעלה הראויה לו כנזכר
 
 
|-
 
|-
 
|
 
|
{|
+
:Know that you have to extract the digits that precede the last bottom digit as many times from the upper one that precedes the last digit or digits, from which you extract the multiples of the last bottom digit, as the number of times that you extract the last bottom digit from the last upper digit or digits.
 +
|style="text-align:right;"|ודע שיש לך להוציא כ"כ פעמים המספרים אשר לפני האחרון התחתון מאשר לפני האחרון או האחרונים העליונים אשר הוצאת מהם כפלי האחרון התחתון כפעמים אשר הוצאת האחרון התחתון מהאחרון העליו' או האחרונים
 
|-
 
|-
|&nbsp;||rowspan="4"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{9\times4}}=36\\&\scriptstyle{\color{red}{4}}-1=3\\&\scriptstyle1{\color{red}{3}}-6={\color{green}{7}}\\&\scriptstyle3-3={\color{green}{0}}\\\end{align}}</math>||<span style="color:LimeGreen>07</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
:*When there is a remainder from the last digit or digits, consider them as tens or hundreds, according to their relation to the present rank, [subtract from them] as the multiples that you subtract the last bottom digit from the last upper digit or digits.
 +
|style="text-align:right;"|&#x202B;[וכאשר נשאר מהאחרון או מהאחרונים בקחתך אותם לעשרות ולמאות כפי ערכם אל המעלה הזאת ככפלים אשר הוצאת האחרון התחתון מן האחרון העליון או האחרונים&#x202B;]&#x202B;<ref>marg.</ref>
 
|-
 
|-
|<span style="color:red">43</span>80408998||43<span style="color:red">8</span>0408998
+
|
 +
:*If there is not enough, do not subtract from the last digit as much as these multiples, for you always have to subtract each [bottom digit] from its corresponding upper digit as many times as you subtract the last [bottom digit] from the last [upper] digit or digits.
 +
|style="text-align:right;"|&#x202B;[ואם אין בו&#x202B;]&#x202B;<ref>marg.</ref> לא תוציא <sup>לאחרון</sup> ככל הכפלים ההם כי לעולם יש לך להוציא כל אחד כל פעמים מהעליון הראוי לו כפעמים אשר תוציא האחרון מן האחרון או מן האחרונים
 
|-
 
|-
|&nbsp;||&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>9</span>&#8199;&#8199;&#8199;&#8199;
+
|
 +
:*You should know that whenever you wish to subtract the bottom digit from the upper digit and you do not find in its corresponding rank enough [to subtract] its multiples, if there is in the one that follows the consecutive [rank], you can subtract from it, provided that you keep the positional value of the ranks, so that every digit is tens to its preceding and hundreds to the one that precedes its preceding and so on according to this relation.
 +
|style="text-align:right;"|א[כן] יש לך לדעת כי בכל עת שתרצה להוציא <sup>ה</sup>תחתון מ<sup>ה</sup>עליון ואין דיו לכופליו כאשר תמצא במעלה הראויה לו שאם יש בנמשך אחר הנמשך תוכל להוציא ממנו ובלבד שתשמור לעולם ערך המעלות שכל מספר הוא במעלה שלפניו לעשרות ואשר לפני פניו למאות וכן לעולם &#x202B;<ref>11v</ref>על הערך הזה
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>4</span>6079||&#8199;&#8199;&#8199;&#8199;&#8199;4<span style="color:#0000FF>6</span>079
+
|
|}
+
*<span style="color:Green">Interim result:</span> After you know the multiples of which you can subtract each of the bottom digits from the corresponding upper rank or ranks,
|style="text-align:right;"|ונאמר 9 פעמים 4 הם 36 ואלו 6 האחדים היה לנו להוציאם מה3 וה3 עשרות מה4<br>
+
|style="text-align:right;"|ואחר שתדע הכפלים אשר תוכל להוציא כל אחד מהמספרים התחתונים מהמעלה או מעלות הראויות להם מהעליונים
ואין ב3 כדאי להוציאם מהם ה6 האחדים, לכן נקח עשר אחד מה4 מוסיף על ה3 עשרות אשר יש לנו לקחת משם<br>
 
לכן נקח כל ה4 ונשים עליו סיפרא, או נעביר עליו הקולמו&#x202B;'<br>
 
וזה העשר הנוסף אשר לקחנו נחברהו אל ה3 העליון ויהיו 13 נקח משם ה6 אחדים אשר לנו לקחת משם, ישארו 7 ונשימם על ה3<br>
 
והנה כבר לקחנו האחדים גם העשרות כל אחד מהמעלה הראויה לו
 
 
|-
 
|-
 
|
 
|
::::{|
+
::i.e. for example, if the last bottom [digit] is subtracted from the [seventh] [upper] rank and the one that precedes the last is subtracted from the sixth [rank] and the one that precedes the preceding is subtracted from the fifth, until they are complete.
 +
|style="text-align:right;"|ר"ל כי עד"מ אם האחרון התחתון לקח מהמעלה הו' התחתון ואשר לפני האחרון יקח מו' ואשר לפני פניו מהה' עד כלותם
 
|-
 
|-
|rowspan="5"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{9\times6}}=54\\&\scriptstyle{\color{red}{8}}-4={\color{green}{4}}\\&\scriptstyle{\color{red}{7}}-5={\color{green}{2}}\\\end{align}}</math>||&#8199;<span style="color:LimeGreen>2</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
:in the rank that they end, i.e. where the first bottom digit is to be subtracted as many times from that rank according to the order explained - place the number of the multiples that are subtracted corresponding to that rank, beneath the upper digit.
 +
|style="text-align:right;"|ובמעלה אשר יכלו ר"ל שהראשון התחתון יש לו לקחת בפעם ההיא מהמעלה ההיא על סדר שביארנו כנגד המעלה ההיא תשים מנין הכפלים אשר לקחו ותשימם תחת המספר העליון
 
|-
 
|-
|07<span style="color:LimeGreen>4</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
*<span style="color:Green">Interim remainder:</span> When there is a remainder from the upper digit, place the remainder above it, so that this remainder will be in front of your eyes to be used as tens or hundreds for the preceding [digit] and the one that precedes the preceding, as explained.
 +
|style="text-align:right;"|וכאשר ישאר שום דבר משום מספר עליון תשים עליו ה{{#annot:term|458,2454|S7vn}}שארית{{#annotend:S7vn}} ושארית זה יהיה לעולם בין עיניך להועיל ממנו לעשרות או למאות לאשר לפניו ולפני פניו כמו שביארנו
 
|-
 
|-
|438<span style="color:red">04</span>08998
+
|
 +
*<span style="color:Green">Repeated division:</span> When all the bottom [digits] to be subtracted from their corresponding [upper digits] are complete, if there is a remainder in the upper number that is as the bottom number or more, we divide it again as in the beginning: We see how many times the last bottom digit can be subtracted from the last digit or digits of this remainder, as we have done in the beginning with the whole number, and the preceding and the one that precedes the preceding, all by the same multiples, each from its corresponding [upper digit].
 +
|style="text-align:right;"|וכאשר תמו כל התחתונות לקחת מן הראויות להם אם נשאר עוד במספר העליון כמספר התחתון או יותר ממנו נשוב לחלקו עליו כבתחלה ונראה כמה פעמים יצא האחרון התחתון מהאחרון או אחרוני שארית זו כמו שעשינו בתחלה בכל המספר ואשר לפניו מאשר לפניו לכולם כפלים שווים כל אחד מהראוי לו
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>9</span>&#8199;&#8199;&#8199;&#8199;
+
|
 +
*<span style="color:Green">Last interim division:</span> We always repeate [the division] time and time again, until the time comes when each of the bottom [digits] are subtracted from its very rank, i.e. the units from the units, the tens from the tens and the number of multiples is placed at that time in the first rank.
 +
|style="text-align:right;"|וכן נשוב לעולם פעם אחר פעם עד הגיע עת יקח כל אחד מהתחתונים ממעלתו ממש ר"ל האחדי' מהאחדים והעשרות מהעשרות ומספר הכפלים יושם בעת ההיא במעלה הראשונה
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;460<span style="color:#0000FF>7</span>9
+
|
|}
+
:We do not divide again, because what remains then is less than the bottom number.
|style="text-align:right;"|ועוד נאמר 9 [פעמים] 6 הם 54<br>
+
|style="text-align:right;"|ולא נשוב עוד לחלק כי לא ישאר אז כי אם הפחות מהמספר התחתון
ונקח ה4 אחדים מהמעלה אשר לפני האחרונים העליונים הנזכרים שהוא ה8 וישארו 4, נשימם עליהם<br>
 
עוד נקח ה5 עשרות מהמעלה שאחריו לצד שמאל, שהם עשרות בעדה ותשים ותמצא שם 7, תסיר מהם 5, ישארו ב' ונשימם עליהם
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|עוד 9 פעמים 7, כי לא נחוש לסיפרא התחתונה, כי אם לשמירת המדרגות, ר"ל שהיא מורה לנו שאין להוציא כפל 7 זה אשר לפניה ממקום הסיפרא העליונה, אשר לפני ה8 אשר לקחנו משם ל6, אבל ממקום ה4 שהוא לפני ה8, 2 מעלות, כדרך שה7 לפני ה6, 2 מעלות
+
::The less cannot be divided by the more into integers but only into fractions.
 +
|style="text-align:right;"|והפחות על הרב לא יוכל לחלק לשלמים כי אם לשברים
 
|-
 
|-
 
|
 
|
::::{|
+
::We will mention further in this chapter how it will be divided into fractions.
 +
|style="text-align:right;"|ועוד נזכיר בפרק זה איך יתחלק לשברים
 
|-
 
|-
|rowspan="5"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{9\times7}}=63\\&\scriptstyle{\color{red}{4}}-3={\color{green}{1}}\\&\scriptstyle{\color{red}{4}}-1={\color{green}{3}}\\&\scriptstyle1{\color{red}{0}}-6={\color{green}{4}}\\\end{align}}</math>||&#8199;2<span style="color:LimeGreen>3</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
*<span style="color:Green">The decimal place of the interim result:</span> Always remember to place each time the result of division of that time, i.e. the multiples that you subtract at that time, corresponding to the rank from which the first bottom digit is subtracted, i.e. the [digit] that is in the first rank, if there is a number there, or if there is only a zero there - see from where it should be subtracted, if there is a number there, and place there the result of division of that time.
 +
|style="text-align:right;"|וזכור &#x202B;<ref>12r</ref>לעולם שתשים בכל פעם היוצא בחילוק בפעם ההיא ר"ל לפעמים הכפלים אשר תוציא בפעם ההיא כנגד המעלה אשר משם [יקח]&#x202B;<ref>marg.</ref> המספר הראשון התחתון ר"ל אשר יהיה במעלה הראשונה אם יהיה שם מספר [ואף אם לא יהיה שם מספר]&#x202B;<ref>marg.</ref> כי אם סיפרא תראה מהיכן היה לו ראוי ליקח אם היה שם מספר <s>כי אם סיפרא</s> ושם תשים היוצא בחילוק בפעם ההיא
 
|-
 
|-
|074<span style="color:LimeGreen>41</span>&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
:It turns out that when we want to know from which rank a certain bottom digit should be subtracted, we should see from which rank the last bottom digit should be subtracted at that time, then count the number of the ranks from there to the right, as the number of the ranks that this bottom digit is far to the right from the last bottom digit - where they end it should be subtracted from the upper digit.
 +
|style="text-align:right;"|ויצא לנו מכך כי כאשר נרצה לידע אי זה מקום ראוי לקחת ממנו שום מספר מהתחתונים בשום פנים שנראה מאי זו מעלה לקחת לאחרון שבתחתונים בפעם ההיא ותמנה משם לצד ימין מנין מעלות כמספר מעלות מרחק המספר ההוא התחתון [לצד ימין מהמספר האחרון התחתון]&#x202B;<ref>marg.</ref> ובמקום שיכלו מהעליונות משם יקח
 
|-
 
|-
|43804<span style="color:red">0</span>8998
+
|
 +
:Likewise, when you wish to know in which rank to place the result of division each time, see from which rank the last bottom digit was subtracted at that time, count from there to the right, as the number of the bottom digits, and where this counting ends, place the result of division at that time. From that very rank the digit that is in the first rank of the bottom number is subtracted at that time.
 +
|style="text-align:right;"|גם כאשר תרצה לידע באיזה מקום תשים היוצא בחילוק בכל פעם ראה מאיזה מקום לקח האחרון התחתון בפעם ההיא ומנה משם לצד ימין כמנין רשמי התחתון וכאשר תכלה המנין ההוא שם תשים היוצא בחלוק בפעם ההיא ומהמעלה ההיא בעצמה יקח המספר אשר במעלה הראשונה בטור התחתון בעת ההיא
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>9</span>&#8199;&#8199;&#8199;&#8199;
+
|
 +
 
 +
==== example ====
 +
|style="text-align:right;"|<big>המשל</big>
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;4607<span style="color:#0000FF>9</span>
+
|{{#annot:4380408998÷46079|157|5u2A}}We wish to divide 4380408998 by a smaller number, which is 46079.
|}
+
:<math>\scriptstyle4380408998\div46079</math>
|style="text-align:right;"|ונאמר 9 פעמים 7 הם 63<br>
+
|style="text-align:right;"|רצינו לחלק 4380408998 על מספר קטן ממנו והוא 46079{{#annotend:5u2A}}
נסיר ה3 אחדים מה4 העליון הנזכר וישאר 1 ונשימנו עליו<br>
 
והיה ראוי לנו לקחת ה6 עשרות ממקום הסיפרא ואחר שאין שם כדאי להוציאם, נקח אחד מהמעלה הבאה האחריה, תמצא שם 4, נקח אחד, ישארו 3, נשימם עליו<br>
 
וזה האחד הוא עשר בערך מעלת הסיפרא העליונה, אשר משם נקח העשרות, כי כל אחד מאלו העשרה הוא עשר בערך ה4, אשר משם לקח ה7 ונסור ה6 עשרות, אשר עליו, להוציא מאלו ה10 וישארו 4 ונשימם על הסיפרא
 
 
|-
 
|-
 
|
 
|
::::{|
+
:We put them in two spaced lines orderly one on top of the other like this:
 +
|style="text-align:right;"|נשימם בשני טורים מרווחים זה על זה על הסדר כזה
 
|-
 
|-
|rowspan="5"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{9\times9}}=81\\&\scriptstyle{1\color{red}{0}}-1={\color{green}{9}}\\&\scriptstyle{\color{red}{4}}-1={\color{green}{3}}\\&\scriptstyle{\color{red}{1}}0-8={\color{green}{2}}\\\end{align}}</math>||&#8199;<span style="color:red">2</span>3<span style="color:LimeGreen>32</span>&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
|
 +
{|class="wikitable" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
|-
 
|-
|07441<span style="color:LimeGreen>9</span>&#8199;&#8199;&#8199;&#8199;
+
|
 +
{|style="margin-left: auto; margin-right: 0px;"
 +
| style="text-align: left;" | &#8199;&#8199;&#8199;&#8199;&#8199;0&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|4380408998
+
| style="text-align: left;" | &#8199;&#8199;&#8199;&#8199;01&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;9&#8199;&#8199;&#8199;&#8199;
+
| style="text-align: left;" | &#8199;&#8199;&#8199;&#8199;13&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>4</span>6079
+
| style="text-align: left;" | &#8199;&#8199;&#8199;054&#8199;&#8199;&#8199;&#8199;&#8199;
|}
 
|style="text-align:right;"|עוד נאמ' 9 פעמים 9 והיו 81<br>
 
וזה האחד היה לנו לקחתו ממקום הסיפרא העליונה אשר לפני 4, אשר לקחנו משם ל7 ואין שם דבר, לכן נקח האחד אשר על ה4 ויהיה כאן עשרה. נקח האחד ישארו 9 ונשימם עליה<br>
 
וה8 עשרות היה לנו לקחת אותם ממעלת ה4 ואין שם דבר, כי אפי' האחד שיהיה שם כבר לקחנוהו ל[...] האחד, לכן נקח אחד מהד' אשר על הסיפרא הבאה אחריה וישארו 3 ונשימם עליו<br>
 
וזה האחד יהיה לעשר על ה4 אשר משם נקח ה8 עשרות וכל אחד מאלו העשרה הוא עשר, כערך מקום הסיפרא אשר משם לקח ה9 ונסיר ה8 [עשרות מעשר] עשרות אלו, ישארו 2 ונשימם על ה4, ר"ל על האחד שהיה על ה4<br>
 
וכבר לקחו כל התחתונים כ"כ כפלים כל אחד מהראוי לו כאשר לקח האחרון התחתון מהאחרוני' התחתונים<br>
 
ונשאר לנו 233298998 במספר העליון, שהוא יותר מהתחתון כמה כפלי כפלים<br>
 
לכן נשוב לחלק להם זאת השארית כאשר בתחלה ונרשום קו על כל הנשאר, כדי שלא נתבלבל
 
 
|-
 
|-
|
+
| style="text-align: left;" | &#8199;00290102
::::{|
 
 
|-
 
|-
|rowspan="6"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{5\times4}}=20\\&\scriptstyle{\color{red}{2}}-2={\color{green}{0}}\\\end{align}}</math>||&#8199;<span style="color:LimeGreen>0</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
| style="text-align: left;" | &#8199;23324924
 
|-
 
|-
|&#8199;2<span style="color:red">3</span>32&#8199;&#8199;&#8199;&#8199;&#8199;
+
| style="text-align: left;" | 0744193751
 
|-
 
|-
|074419&#8199;&#8199;&#8199;&#8199;
+
| style="text-align: left;" | <u>4380408998</u>
 
|-
 
|-
|4380408998
+
| style="text-align: left;" | <u>&#8199;&#8199;&#8199;&#8199;&#8199;95063</u>
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;9<span style="color:#0000FF>5</span>&#8199;&#8199;&#8199;
+
| style="text-align: left;" | &#8199;&#8199;&#8199;&#8199;&#8199;46079
 +
|}
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;4<span style="color:#0000FF>6</span>079
 
 
|}
 
|}
|style="text-align:right;"|ונאמ' מהשנים השארית האחרון לא יוכל לצאת הד' האחרון התחתון אפי' פעם א' פעמים, לכן נחלק ונקח לו מהכ"ג האחרוני' ויהיה שם חמשה פעמים ונשים זה הה' תחת הראשון שהוא לה' מעלות מזה הג', אשר אנו לוקחים משם לצד ימין, שהם כמספר מעלות השורה התחתונה<br>
 
ונאמ' ה' פעמי' 4 הם כ&#x202B;'<br>
 
ואחר שאין שם אחדים, לא נקח מהג' דבר, אבל הב' עשרות אלו נקח מהב' הבא אחריו ולא ישאר דבר ונעביר עליו ב&#x202B;'
 
 
|-
 
|-
 
|
 
|
::::{|
+
|style="text-align:right;"|&#x202B;[אמ' משה זה טעות אבל האמת הוא כי היוצא בחלוק לכל א' [...] הוא זה 95000 שלמים נוסף על השברים&#x202B;]&#x202B;<ref>marg.</ref>
 
|-
 
|-
|rowspan="6"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{5\times6}}=30\\&\scriptstyle{\color{red}{3}}-3={\color{green}{0}}\\\end{align}}</math>||&#8199;0<span style="color:LimeGreen>0</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
*We say: 4, which is the last bottom digit, can be subtracted once from the last upper digit.
 +
|style="text-align:right;"|ונאמ' מה שהוא המספר האחרון העליון יוכל לצאת 4 שהוא המספר האחרון התחתון פעם אחת
 
|-
 
|-
|&#8199;23<span style="color:red">32</span>&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
:But, we cannot subtract 6 that precedes the last bottom digit from 4 that precedes the last upper digit
 +
|style="text-align:right;"|אכן מד' אשר לפני האחרון העליון שהוא אשר לפני האחרון התחתון &#x202B;<ref>12v</ref>לא נוכל לצאת 6 שהוא אשר לפני האחרון התחתון
 
|-
 
|-
|07441<span style="color:red">9</span>&#8199;&#8199;&#8199;&#8199;
+
|
 +
:Therefore, we do not subtract from there [= the last upper digit], but we subtract from the last two [upper] digits, which are 43.
 +
|style="text-align:right;"|לכן לא נוציא משום [משם]&#x202B;<ref>marg.</ref> דבר אבל נוציא מהשנים האחרונים שהם 43
 
|-
 
|-
|4380408998
+
|
 +
:We say: how many times 4 is in 43?
 +
|style="text-align:right;"|ונאמר 43 כמה פעמים יש 4
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;9<span style="color:#0000FF>5</span>&#8199;&#8199;&#8199;
+
|
 +
:We do not say ten, since if the 3 that in this rank could have taken 10, it would have taken it from the last digit, which is ten in relation to this rank.
 +
|style="text-align:right;"|ולא נאמר עשרה שהג' שמהמעלה הזאת היה יכול לקחת 10 היה לוקח מהאחרון אחרון שהוא 10 בערך המעלה הזאת
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;460<span style="color:#0000FF>7</span>9
+
|
|}
+
:Therefore, we say: only 9.
|style="text-align:right;"| [missing]
+
|style="text-align:right;"|לכן לא נאמ' כי אם 9
 
|-
 
|-
 
|
 
|
::::{|
+
:The bottom line has 5 digits, hence we count 5 ranks to the right from the upper 3, from which we subtract. They end in the zero and we place beneath it the 9 resulting from the division, which is the number of times that we have to subtract the bottom digits from the upper digits at this time, each from its corresponding rank, as mentioned.
|-
+
|style="text-align:right;"|והנה השורה התחתונה היא 5 רשמים לכן לא נמנה מהג [3]&#x202B;<ref>marg.</ref> העליון אשר לוקח משם 5 מעלות לצד ימין ויכלו בסיפרא ונשים תחתיה אלו ה9 היוצאים בחילוק שהוא מספר הכפלים אשר לנו להוציא התחתונים מהעליונים בפעם הזאת כל אחד מהמעלה הראויה לו כנזכר
|rowspan="6"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{5\times7}}=35\\&\scriptstyle{\color{red}{9}}-5={\color{green}{4}}\\&\scriptstyle{\color{red}{3}}-1={\color{green}{2}}\\&\scriptstyle1{\color{red}{2}}-3={\color{green}{9}}\\\end{align}}</math>||&#8199;00<span style="color:LimeGreen>29</span>&#8199;&#8199;&#8199;&#8199;&#8199;
+
|}
 +
 
 +
::<span style=color:Green>[Illustration of the procedure:]</span>
 +
::{|
 
|-
 
|-
|&#8199;2332<span style="color:LimeGreen>4</span>&#8199;&#8199;&#8199;&#8199;
+
|&nbsp;||rowspan="5"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{9\times4}}=36\\&\scriptstyle{\color{red}{4}}-1=3\\&\scriptstyle1{\color{red}{3}}-6={\color{green}{7}}\\&\scriptstyle3-3={\color{green}{0}}\\\end{align}}</math>||&nbsp;||rowspan="5"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{9\times6}}=54\\&\scriptstyle{\color{red}{8}}-4={\color{green}{4}}\\&\scriptstyle{\color{red}{7}}-5={\color{green}{2}}\\\end{align}}</math>||&#8199;<span style="color:LimeGreen>2</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;||rowspan="5"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{9\times7}}=63\\&\scriptstyle{\color{red}{4}}-3={\color{green}{1}}\\&\scriptstyle{\color{red}{4}}-1={\color{green}{3}}\\&\scriptstyle1{\color{red}{0}}-6={\color{green}{4}}\\\end{align}}</math>||&#8199;2<span style="color:LimeGreen>3</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|074419&#8199;&#8199;&#8199;&#8199;
+
|&nbsp;||<span style="color:LimeGreen>07</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;||07<span style="color:LimeGreen>4</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;||074<span style="color:LimeGreen>41</span>&#8199;&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|438040<span style="color:red">8</span>998
+
|<span style="color:red">43</span>80408998||43<span style="color:red">8</span>0408998||438<span style="color:red">04</span>08998||43804<span style="color:red">0</span>8998
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;9<span style="color:#0000FF>5</span>&#8199;&#8199;&#8199;
+
|&nbsp;||&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>9</span>&#8199;&#8199;&#8199;&#8199;||&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>9</span>&#8199;&#8199;&#8199;&#8199;||&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>9</span>&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;4607<span style="color:#0000FF>9</span>
+
|&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>4</span>6079||&#8199;&#8199;&#8199;&#8199;&#8199;4<span style="color:#0000FF>6</span>079||&#8199;&#8199;&#8199;&#8199;&#8199;460<span style="color:#0000FF>7</span>9||&#8199;&#8199;&#8199;&#8199;&#8199;4607<span style="color:#0000FF>9</span>
 
|}
 
|}
 
+
::::::{|
|style="text-align:right;"|ועוד נאמ' ה' פעמים ז' הם 35<br>
 
ואלו ה5 אחדים נקחם מה9 אשר על ה0' כי שם מקום לקיחתם במעלת 4 לצד ימין מה3, אשר על ה8 העליון, אש' לקח רושם האחרון התחתון כמרחק זה הז' לצד ימין מה4 האחרון התחתון כמרחק ואחר קחתנו אלו ה5 אחדים מה9 הנזכרים, ישארו 4 ונשימם עליהם<br>
 
והג' עשרות נקחם מהב' אשר עליהם כי שם מקום לקיחתם הבא אחריו ולא נוכל, לכן נקח אחד מהג' הבא אחריו וישארו 2, נשימם עליו<br>
 
וזה הא' הוא עשרה בערך השנים ונחברם אליהם, יהיה 12, נקח מהם ה3 עשרות, ישארו 9 ונשימם עליהם
 
 
|-
 
|-
|
+
|rowspan="5"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{9\times9}}=81\\&\scriptstyle{1\color{red}{0}}-1={\color{green}{9}}\\&\scriptstyle{\color{red}{4}}-1={\color{green}{3}}\\&\scriptstyle{\color{red}{1}}0-8={\color{green}{2}}\\\end{align}}</math>||&#8199;<span style="color:red">2</span>3<span style="color:LimeGreen>32</span>&#8199;&#8199;&#8199;&#8199;&#8199;
::::{|
 
 
|-
 
|-
|rowspan="6"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{5\times9}}=45\\&\scriptstyle{\color{red}{8}}-5={\color{green}{3}}\\&\scriptstyle{\color{red}{4}}-4={\color{green}{0}}\\\end{align}}</math>||&#8199;00<span style="color:red>29</span><span style="color:LimeGreen>0</span>&#8199;&#8199;&#8199;&#8199;
+
|07441<span style="color:LimeGreen>9</span>&#8199;&#8199;&#8199;&#8199;
|-
 
|&#8199;23324&#8199;&#8199;&#8199;&#8199;
 
|-
 
|074419<span style="color:LimeGreen>3</span>&#8199;&#8199;&#8199;
 
 
|-
 
|-
 
|4380408998
 
|4380408998
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;95&#8199;&#8199;&#8199;
+
|&#8199;&#8199;&#8199;&#8199;&#8199;9&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
 
|&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>4</span>6079
 
|&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>4</span>6079
 
|}
 
|}
  
|style="text-align:right;"|עוד נאמר 5 פעמים 9 הם 45<br>
+
{|
נסיר ה5 מה8, ישארו 3<br>
 
נסיר ה4 עשרות מה4 ולא ישאר דבר ונשים עליו 0<br>
 
והנה לקחו כל התחתונות ונשאר לנו במספר העליון 2943998 והוא הרבה מאד יותר מהתחתון ונשוב לחלקם להם ונרשום על זאת השארית קו דיו, כדי שלא נתבלבל
 
 
|-
 
|-
 
|
 
|
::::{|
+
::*We say: 9 times 4 are 36.
 +
:::<math>\scriptstyle{\color{blue}{9\times4=36}}</math>
 +
|style="width:45%; text-align:right;"|ונאמר 9 פעמים 4 הם 36
 +
|-
 +
|
 +
:::We have to subtract the 6 units from the 3 and the 3 tens from the 4.
 +
|style="text-align:right;"|ואלו 6 האחדים היה לנו להוציאם מה3 וה3 עשרות מה4
 +
|-
 +
|
 +
:::There is not enough in 3 to subtract the 6 units from it, so we take a ten from the 4 and add it to the 3 tens, from which we should subtract.
 +
|style="text-align:right;"|ואין ב3 כדאי להוציאם מהם ה6 האחדים לכן נקח עשר אחד מה4 מוסיף על ה3 עשרות אשר יש לנו לקחת משם
 +
|-
 +
|
 +
:::We take the whole 4 and place above it a zero, or cross it out by a pen.
 +
|style="text-align:right;"|לכן נקח כל ה4 ונשים עליו סיפרא או נעביר עליו הקולמו&#x202B;'
 +
|-
 +
|
 +
:::We add the additional ten that we took to the upper 3; they are 13. We subtract from them the 6 units that we have to take from there; 7 remain. We place them above the 3.
 +
:::<math>\scriptstyle{\color{blue}{13-6=7}}</math>
 +
|style="text-align:right;"|וזה העשר הנוסף אשר לקחנו נחברהו אל ה3 העליון ויהיו 13 נקח משם ה6 אחדים אשר לנו לקחת משם ישארו 7 ונשימם על ה3
 
|-
 
|-
|rowspan="7"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{6\times4}}=24\\&\scriptstyle{\color{red}{9}}-4={\color{green}{5}}\\&\scriptstyle{\color{red}{2}}-2={\color{green}{0}}\\\end{align}}</math>||&#8199;&#8199;&#8199;<span style="color:LimeGreen>05</span>&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
:::Thus, we already took the units and the tens, each from its corresponding rank.
 +
|style="text-align:right;"|והנה כבר לקחנו האחדים גם העשרות כל אחד מהמעלה הראויה לו
 
|-
 
|-
|&#8199;0029<span style="color:red>0</span>&#8199;&#8199;&#8199;&#8199;
+
|
 +
::*We say also: 9 times 6 are 54.
 +
:::<math>\scriptstyle{\color{blue}{9\times6=54}}</math>
 +
|style="text-align:right;"|ועוד נאמר 9 [פעמים]&#x202B;<ref>marg.</ref> 6 הם 54
 
|-
 
|-
|&#8199;23324&#8199;&#8199;&#8199;&#8199;
+
|
 +
:::We subtract the 4 units from the rank that precedes the last mentioned upper [digits], which is the 8; 4 remain. We place them above it.
 +
:::<math>\scriptstyle{\color{blue}{8-4=4}}</math>
 +
|style="text-align:right;"|ונקח ה4 אחדים מהמעלה אשר לפני האחרונים העליונים הנזכרים שהוא ה8 וישארו 4 נשימם עליהם
 
|-
 
|-
|0744193&#8199;&#8199;&#8199;
+
|
 +
:::We subtract also the 5 tens from the rank that follows it on the left, which are tens in relation to it; you find there 7. Subtract 5 from it; 2 remain. We place them above it.
 +
:::<math>\scriptstyle{\color{blue}{7-5=2}}</math>
 +
|style="text-align:right;"|עוד נקח ה5 עשרות מהמעלה שאחריו לצד שמאל שהם עשרות בעדה <s>ותשים</s> ותמצא שם 7 תסיר מהם 5 ישארו ב' ונשימם עליהם
 
|-
 
|-
|4380408998
+
|
 +
::*Also 9 times 7, because we do not pay attention to the bottom zero, except for keeping the ranks, i.e. it indicates for us that the multiple of 7 that precedes it should not be subtracted from the rank of the upper zero that precedes the 8, from which we subtract the 6, but from the rank of the 4 that precedes the 8 by 2 ranks, as the 7 precedes the 6 by 2 ranks.
 +
|style="text-align:right;"|עוד 9 פעמים 7 <sup>כי</sup> לא נחוש &#x202B;<ref>13r</ref>לסיפרא התחתונה כי אם ל{{#annot:term|2453,2452|UO8O}}שמירת המדרגות{{#annotend:UO8O}} ר"ל שהיא מורה לנו שאין להוציא כפל 7 זה אשר לפניה ממקום הסיפרא העליונה אשר לפני ה8 אשר לקחנו משם ל6 אבל ממקום ה4 שהוא לפני ה8 2 מעלות כדרך שה7 לפני ה6 2 מעלות
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;950<span style="color:#0000FF>6</span>&#8199;
+
|
 +
:::We say: 9 times 7 are 63.
 +
:::<math>\scriptstyle{\color{blue}{9\times7=63}}</math>
 +
|style="text-align:right;"|ונאמר 9 פעמים 7 הם 63
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;4<span style="color:#0000FF>6</span>079
+
|
|}
+
:::We subtract the 3 units from the upper 4 mentioned; 1 remains. We place it above it.
 
+
:::<math>\scriptstyle{\color{blue}{4-3=1}}</math>
|style="text-align:right;"|ונאמר מ2 לא יצאו 4, אבל יצאו 4 מ29 ויצאו משם ז' פעמים ולא ישאר כי אם 1 1 ולא יהיה בו די לעשרות כפל הז' ב6, אשר לפני ה,4 שהם 4 עשרות<br>
+
|style="text-align:right;"|נסיר ה3 אחדים מה4 העליון הנזכר וישאר 1 ונשימנו עליו
לכן לא נקח כי אם 6 ונשימם תחת ה9 שהוא ה5 לצד ימין מה9 כנגד [....] העליון, אשר משם נקח לאחרון התחתון, ר"ל שהוא כמנין מעלות השורה התחתונה<br>
 
ואחר שיש מעלה חלקה ממספר בין ה5, אשר יצא לנו בחילוק מתחלה וזהו אשר יצא לנו עתה, נשים 0 במעלה החלקה ממספר, כי זה מעשה ה0, כאשר ביארנו בתחלת הספר<br>
 
ונאמר 6 פעמים 4 הם 24<br>
 
נקח 4 אחדים מה9, ישארו 5 ונשימם עליהם<br>
 
ונקח ה2 עשרות מה2 הבא אחריו ולא ישאר דבר ונעביר עליו הקולמוס
 
 
|-
 
|-
 
|
 
|
::::{|
+
:::We should have taken the 6 tens from the rank of the zero, but as there is not enough there to subtract them, we take one from the following rank. You find there 4. We take one; 3 remain. We place them above it.
 +
:::<math>\scriptstyle{\color{blue}{4-1=3}}</math>
 +
|style="text-align:right;"|והיה ראוי לנו לקחת ה6 עשרות ממקום הסיפרא ואחר שאין שם כדאי להוציאם נקח אחד מהמעלה הבאה האחריה תמצא שם 4 נקח אחד ישארו 3 נשימם עליו
 
|-
 
|-
|rowspan="8"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{6\times6}}=36\\&\scriptstyle{\color{red}{5}}-1=4\\&\scriptstyle1{\color{red}{0}}-6={\color{green}{4}}\\&\scriptstyle4-3={\color{green}{1}}\\\end{align}}</math>||&#8199;&#8199;&#8199;&#8199;<span style="color:LimeGreen>1</span>&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
:::This one is ten in relation to the rank of the upper zero, from which we take the tens. 
 +
|style="text-align:right;"|וזה האחד הוא עשר בערך מעלת הסיפרא העליונה אשר משם נקח העשרות
 
|-
 
|-
|&#8199;&#8199;&#8199;05<span style="color:LimeGreen>4</span>&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
:::Since each of these ten is ten in relation to the 4, from which the 7 is taken.
 +
|style="text-align:right;"|כי כל אחד מאלו העשרה הוא עשר בערך ה4 אשר משם לקח ה7
 
|-
 
|-
|&#8199;00290&#8199;&#8199;&#8199;&#8199;
+
|
 +
:::We subtract the 6 tens from these 10; 4 remain. We place them above the zero.
 +
:::<math>\scriptstyle{\color{blue}{10-6=4}}</math>
 +
|style="text-align:right;"|ונסור ה6 עשרות אשר עליו להוציא מאלו ה10 וישארו 4 ונשימם על הסיפרא
 
|-
 
|-
|&#8199;23324&#8199;&#8199;&#8199;&#8199;
+
|
 +
::*We say also: 9 times 9 are 81.
 +
:::<math>\scriptstyle{\color{blue}{9\times9=81}}</math>
 +
|style="text-align:right;"|עוד נאמ' 9 פעמים 9 והיו 81
 
|-
 
|-
|074419<span style="color:red>3</span>&#8199;&#8199;&#8199;
+
|
 +
:::We should have taken the the one from the rank of the upper zero that precedes the 4, from which we took for the 7, but since there is not enough there, we take the one that is above the 4, so it is ten here. We subtract the one; 9 remain. We place them above it.
 +
:::<math>\scriptstyle{\color{blue}{10-1=9}}</math>
 +
|style="text-align:right;"|וזה האחד היה לנו לקחתו ממקום הסיפרא העליונה אשר לפני 4 אשר לקחנו משם ל7 ואין שם דבר לכן נקח האחד אשר על ה4 ויהיה כאן עשרה נקח האחד ישארו 9 ונשימם עליה
 
|-
 
|-
|4380408<span style="color:red>9</span>98
+
|
 +
:::We should subtract the 8 tens from the rank of the 4, but there is nothing there, since even the one that was there is already taken. Therefore, we take one from the 4 that above the zero that follows; 3 remain. We place them above it.
 +
:::<math>\scriptstyle{\color{blue}{4-1=3}}</math>
 +
|style="text-align:right;"|וה8 עשרות היה לנו לקחת אותם ממעלת ה4 ואין שם דבר כי אפי' האחד שיהיה שם כבר לקחנוהו ל[...] האחד לכן נקח אחד מהד' אשר על הסיפרא הבאה אחריה וישארו 3 ונשימם עליו
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;950<span style="color:#0000FF>6</span>&#8199;
+
|
 +
:::The one becomes a ten above the 4, from which we subtract the 8 tens and each unit of these tens is ten in relation to the rank of the zero, from which the [1] is subtracted. We subtract the 8 tens from these ten tens; 2 remain. We place them above the 4, i.e. above the one that is above the 4.
 +
:::<math>\scriptstyle{\color{blue}{\left(10\sdot10\right)-80=2\sdot10}}</math>
 +
|style="text-align:right;"|וזה האחד יהיה לעשר על ה4 אשר משם נקח ה8 עשרות וכל אחד מאלו העשרה הוא עשר כערך מקום הסיפרא אשר משם לקח ה9 ונסיר ה8 [עשרות מעשר]&#x202B;<ref>marg.</ref> עשרות אלו ישארו 2 ונשימם על ה4 ר"ל על האחד &#x202B;<ref>13v</ref>שהיה על ה4
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;460<span style="color:#0000FF>7</span>9
+
|
|}
+
::The same multiples of all the bottom digits were subtracted, each from its corresponding [rank], as the last bottom digit was subtracted from the last [upper] digits.
 
+
|style="text-align:right;"|וכבר לקחו כל התחתונים כ"כ כפלים כל אחד מהראוי לו כאשר לקח האחרון התחתון מהאחרוני' התחתונים
|style="text-align:right;"|ונאמ' 6 פעמים 6 הם 36<br>
 
היה לנו לקחת ה6 אחדים מהם אשר בזו השארית ולא נוכל, לכן נקח אחד מה5 אשר משם נקח הג' עשרות<br>
 
ויהיה כאן עשרה, נקח 6 אחדים, ישארו 4 ונשימם עליהם<br>
 
עוד נקח ה3 עשרות מה5 וכבר לקחנו 1, הנה לא ישאר שם כי אם 1 ונשימהו עליו
 
 
|-
 
|-
 
|
 
|
::::{|
+
::We are left with 233298998 in the upper number, which is greater than the bottom number by some multiples.
 +
|style="text-align:right;"|ונשאר לנו 233298998 במספר העליון שהוא יותר מהתחתון כמה כפלי כפלים
 
|-
 
|-
|rowspan="8"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{6\times7}}=42\\&\scriptstyle{\color{red}{9}}-2={\color{green}{7}}\\&\scriptstyle{\color{red}{4}}-1={\color{green}{3}}\\&\scriptstyle1{\color{red}{3}}-4={\color{green}{9}}\\\end{align}}</math>||&#8199;&#8199;&#8199;&#8199;1<span style="color:LimeGreen>3</span>&#8199;&#8199;&#8199;&#8199;
+
|
 +
::Therefore we continue to divide this remainder by it as in the beginning and write a line above the remainder, so we will not be confused.
 +
|style="text-align:right;"|לכן נשוב לחלק להם זאת השארית כאשר בתחלה ונרשום קו על כל הנשאר כדי שלא נתבלבל
 
|-
 
|-
|&#8199;&#8199;&#8199;054&#8199;&#8199;&#8199;&#8199;&#8199;
+
|}
 +
::<span style=color:Green>[Illustration of the procedure:]</span>
 +
::{|
 
|-
 
|-
|&#8199;00290&#8199;&#8199;&#8199;&#8199;
+
|rowspan="6"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{5\times4}}=20\\&\scriptstyle{\color{red}{2}}-2={\color{green}{0}}\\\end{align}}</math>||&#8199;<span style="color:LimeGreen>0</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;||rowspan="6"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{5\times6}}=30\\&\scriptstyle{\color{red}{3}}-3={\color{green}{0}}\\\end{align}}</math>||&#8199;0<span style="color:LimeGreen>0</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;||rowspan="6"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{5\times7}}=35\\&\scriptstyle{\color{red}{9}}-5={\color{green}{4}}\\&\scriptstyle{\color{red}{3}}-1={\color{green}{2}}\\&\scriptstyle1{\color{red}{2}}-3={\color{green}{9}}\\\end{align}}</math>||&#8199;00<span style="color:LimeGreen>29</span>&#8199;&#8199;&#8199;&#8199;&#8199;||rowspan="6"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{5\times9}}=45\\&\scriptstyle{\color{red}{8}}-5={\color{green}{3}}\\&\scriptstyle{\color{red}{4}}-4={\color{green}{0}}\\\end{align}}</math>||&#8199;00<span style="color:red>29</span><span style="color:LimeGreen>0</span>&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|&#8199;23324<span style="color:LimeGreen>9</span>&#8199;&#8199;&#8199;
+
|&#8199;2<span style="color:red">3</span>32&#8199;&#8199;&#8199;&#8199;&#8199;||&#8199;23<span style="color:red">32</span>&#8199;&#8199;&#8199;&#8199;&#8199;||&#8199;2332<span style="color:LimeGreen>4</span>&#8199;&#8199;&#8199;&#8199;||&#8199;23324&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|0744193<span style="color:LimeGreen>7</span>&#8199;&#8199;
+
|074419&#8199;&#8199;&#8199;&#8199;||07441<span style="color:red">9</span>&#8199;&#8199;&#8199;&#8199;||074419&#8199;&#8199;&#8199;&#8199;||074419<span style="color:LimeGreen>3</span>&#8199;&#8199;&#8199;
 
|-
 
|-
|43804089<span style="color:red>9</span>8
+
|4380408998||4380408998||438040<span style="color:red">8</span>998||4380408998
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;950<span style="color:#0000FF>6</span>&#8199;
+
|&#8199;&#8199;&#8199;&#8199;&#8199;9<span style="color:#0000FF>5</span>&#8199;&#8199;&#8199;||&#8199;&#8199;&#8199;&#8199;&#8199;9<span style="color:#0000FF>5</span>&#8199;&#8199;&#8199;||&#8199;&#8199;&#8199;&#8199;&#8199;9<span style="color:#0000FF>5</span>&#8199;&#8199;&#8199;||&#8199;&#8199;&#8199;&#8199;&#8199;95&#8199;&#8199;&#8199;
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;4607<span style="color:#0000FF>9</span>
+
|&#8199;&#8199;&#8199;&#8199;&#8199;4<span style="color:#0000FF>6</span>079||&#8199;&#8199;&#8199;&#8199;&#8199;460<span style="color:#0000FF>7</span>9||&#8199;&#8199;&#8199;&#8199;&#8199;4607<span style="color:#0000FF>9</span>||&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>4</span>6079
 
|}
 
|}
  
|style="text-align:right;"|עוד נאמר 6 פעמים 7 הם 42<br>
+
{|
נקח השנים אחדים מה9, ר"ל אשר במעלת המאות שהוא ל4 מעלות לצד ימין מהמקום שלקח האחרון התחתון, ישארו 7 ונשימם עליהם<br>
 
ו[...] לנו לקחת ה4 עשרות מה3 ואין בו די, נקח אחד מה4 הבא אחריו וישארו 3 ונשימם עליו<br>
 
וזה ה1 הוא 10 במדרגת ה3 ונחברם ויהיו 13, נקח מהם ה4 עשרות, ישארו 9 ונשימם עליהם
 
 
|-
 
|-
 
|
 
|
::::{|
+
:*We say: the last bottom 4 cannot be subtracted even once from the last remaining two, therefore, we subtract it from the last 23. It is there five times.
 +
|style="width:45%; text-align:right;"|ונאמ' מהשנים השארית האחרון לא יוכל לצאת הד' האחרון התחתון אפי' פעם א' <s>פעמים</s> לכן נחלק ונקח לו מהכ"ג האחרוני' ויהיה שם חמשה פעמים
 
|-
 
|-
|rowspan="8"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{6\times9}}=54\\&\scriptstyle{\color{red}{9}}-4={\color{green}{5}}\\&\scriptstyle{\color{red}{7}}-5={\color{green}{2}}\\\end{align}}</math>||&#8199;&#8199;&#8199;&#8199;<span style="color:red>13</span>&#8199;&#8199;&#8199;&#8199;
+
|
 +
::We place this 5 beneath the first that is 5 ranks to the right from the 3, from which we subtract, which is as the number of the ranks of the bottom line.
 +
|style="text-align:right;"|ונשים זה הה' תחת הראשון שהוא לה' מעלות מזה הג' אשר אנו לוקחים משם לצד ימין שהם כמספר מעלות השורה התחתונה
 
|-
 
|-
|&#8199;&#8199;&#8199;054&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
::*We say: 5 times 4 are 20.
 +
:::<math>\scriptstyle{\color{blue}{5\times4=20}}</math>
 +
|style="text-align:right;"|ונאמ' ה' פעמי' 4 הם כ&#x202B;'
 
|-
 
|-
|&#8199;00290&#8199;&#8199;&#8199;&#8199;
+
|
 +
:::Since there are no units there, we do not subtract a thing from the 3, but we subtract these 2 tens from the 2 that follows. Nothing remains.
 +
:::<math>\scriptstyle{\color{blue}{2-2=0}}</math>
 +
|style="text-align:right;"|ואחר שאין שם אחדים לא נקח מהג' דבר אבל הב' עשרות אלו נקח מהב' הבא אחריו ולא ישאר דבר ונעביר עליו ב&#x202B;'
 
|-
 
|-
|&#8199;233249<span style="color:LimeGreen>2</span>&#8199;&#8199;
+
|
 +
|style="text-align:right;"| [missing]
 
|-
 
|-
|07441937<span style="color:LimeGreen>5</span>&#8199;
+
|
 +
::*We say also: 5 times 7 are 35.
 +
:::<math>\scriptstyle{\color{blue}{5\times7=35}}</math>
 +
|style="text-align:right;"|ועוד נאמ' ה' פעמים ז' הם 35
 
|-
 
|-
|4380408998
+
|
 +
:::We subtract the 5 units from the 9 that is above the 0, since this is the place from where they are subtracted, in the rank of 4, to the right of the 3 that is above the upper 8, from which the last bottom digit was subtracted, as the distance of the 7 to the right from the last bottom 4. After we subtract the 5 units from the 9 mentioned, 4 remain. We place them above it.
 +
:::<math>\scriptstyle{\color{blue}{9-5=4}}</math>
 +
|style="text-align:right;"|ואלו ה5 אחדים נקחם מה9 אשר על <sup>ה0</sup> כי שם מקום לקיחתם במעלת 4 לצד ימין מה3 אשר על ה8 העליון אש' לקח רושם האחרון התחתון כמרחק זה הז' לצד ימין מה4 האחרון התחתון <s>כמרחק</s> ואחר קחתנו אלו ה5 אחדים מה9 הנזכרים ישארו 4 ונשימם עליהם
 +
|-
 +
|
 +
:::We cannot subtract the 3 tens from the following rank, therefore we take one from the 3 that follows; 2 remain. We place them above it.
 +
:::<math>\scriptstyle{\color{blue}{3-1=2}}</math>
 +
|style="text-align:right;"|והג' עשרות נקחם מה<s>ב' אשר עליהם כי שם מקום לקיחתם</s> הבא אחריו ולא נוכל לכן נקח אחד מהג' הבא &#x202B;<ref>14r</ref>אחריו וישארו 2 נשימם עליו
 +
|-
 +
|
 +
:::This 1 is ten with relation to the two. We add them to is; they are 12. We subtract 3 tens from them; 9 remain. We place them above it.
 +
:::<math>\scriptstyle{\color{blue}{12-3=9}}</math>
 +
|style="text-align:right;"|וזה הא' הוא עשרה בערך השנים ונחברם אליהם יהיה 12 נקח מהם ה3 עשרות ישארו 9 ונשימם עליהם
 +
|-
 +
|
 +
::*We say also: 5 times 9 are 45.
 +
:::<math>\scriptstyle{\color{blue}{5\times9=45}}</math>
 +
|style="text-align:right;"|עוד נאמר 5 פעמים 9 הם 45
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;9506&#8199;
+
|
 +
:::We subtract the 5 from the 8; 3 remains.
 +
:::<math>\scriptstyle{\color{blue}{8-5=3}}</math>
 +
|style="text-align:right;"|נסיר ה5 מה8 ישארו 3
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>4</span>6079
+
|
|}
+
:::We subtract the 4 tens from the 4; nothing remains. We place 0 above it.
 
+
:::<math>\scriptstyle{\color{blue}{4-4=0}}</math>
|style="text-align:right;"|ונאמר 6 פעמים 9 הם 54<br>
+
|style="text-align:right;"|נסיר ה4 עשרות מה4 ולא ישאר דבר ונשים עליו 0
ונקח ה4 מה9, ישארו 5 ונשימם עליהם<br>
 
[missing]<br>
 
והנה לקחו כולם ונשאר עוד בעליון 139258 והוא יותר מהתחתון, לכן נשוב לחלקם עליהם, נרשום קו דיו עליהם על השארית הנזכר
 
 
|-
 
|-
 
|
 
|
::::{|
+
::All the bottom digits were subtracted and we are left with 2943998 in the upper number, which is much greater than the bottom number.
 +
|style="text-align:right;"|והנה לקחו כל התחתונות ונשאר לנו במספר העליון 2943998 והוא הרבה מאד יותר מהתחתון
 
|-
 
|-
|rowspan="9"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{3\times4}}=12\\&\scriptstyle{\color{red}{3}}-2={\color{green}{1}}\\&\scriptstyle{\color{red}{1}}-1={\color{green}{0}}\\\end{align}}</math>||&#8199;&#8199;&#8199;&#8199;<span style="color:LimeGreen>01</span>&#8199;&#8199;&#8199;&#8199;
+
|
 +
::Therefore we continue to divide them and draw a line above the remainder, so we will not be confused.
 +
|style="text-align:right;"|ונשוב לחלקם להם ונרשום על זאת השארית קו דיו כדי שלא נתבלבל
 +
|}
 +
::<span style=color:Green>[Illustration of the procedure:]</span>
 +
::{|
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;13&#8199;&#8199;&#8199;&#8199;
+
|rowspan="8"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{6\times4}}=24\\&\scriptstyle{\color{red}{9}}-4={\color{green}{5}}\\&\scriptstyle{\color{red}{2}}-2={\color{green}{0}}\\\end{align}}</math>||&nbsp;||rowspan="8"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{6\times6}}=36\\&\scriptstyle{\color{red}{5}}-1=4\\&\scriptstyle1{\color{red}{0}}-6={\color{green}{4}}\\&\scriptstyle4-3={\color{green}{1}}\\\end{align}}</math>||&#8199;&#8199;&#8199;&#8199;<span style="color:LimeGreen>1</span>&#8199;&#8199;&#8199;&#8199;&#8199;||rowspan="8"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{6\times7}}=42\\&\scriptstyle{\color{red}{9}}-2={\color{green}{7}}\\&\scriptstyle{\color{red}{4}}-1={\color{green}{3}}\\&\scriptstyle1{\color{red}{3}}-4={\color{green}{9}}\\\end{align}}</math>||&#8199;&#8199;&#8199;&#8199;1<span style="color:LimeGreen>3</span>&#8199;&#8199;&#8199;&#8199;||rowspan="8"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{6\times9}}=54\\&\scriptstyle{\color{red}{9}}-4={\color{green}{5}}\\&\scriptstyle{\color{red}{7}}-5={\color{green}{2}}\\\end{align}}</math>||&#8199;&#8199;&#8199;&#8199;13&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|&#8199;&#8199;&#8199;054&#8199;&#8199;&#8199;&#8199;&#8199;
+
|&#8199;&#8199;&#8199;<span style="color:LimeGreen>05</span>&#8199;&#8199;&#8199;&#8199;&#8199;||&#8199;&#8199;&#8199;05<span style="color:LimeGreen>4</span>&#8199;&#8199;&#8199;&#8199;&#8199;||&#8199;&#8199;&#8199;054&#8199;&#8199;&#8199;&#8199;&#8199;||&#8199;&#8199;&#8199;054&#8199;&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|&#8199;00290&#8199;&#8199;&#8199;&#8199;
+
|&#8199;0029<span style="color:red>0</span>&#8199;&#8199;&#8199;&#8199;||&#8199;00290&#8199;&#8199;&#8199;&#8199;||&#8199;00290&#8199;&#8199;&#8199;&#8199;||&#8199;00290&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|&#8199;23324<span style="color:red>9</span>2&#8199;&#8199;
+
|&#8199;23324&#8199;&#8199;&#8199;&#8199;||&#8199;23324&#8199;&#8199;&#8199;&#8199;||&#8199;23324<span style="color:LimeGreen>9</span>&#8199;&#8199;&#8199;||&#8199;233249<span style="color:LimeGreen>2</span>&#8199;&#8199;
 
|-
 
|-
|074419375&#8199;
+
|0744193&#8199;&#8199;&#8199;||074419<span style="color:red>3</span>&#8199;&#8199;&#8199;||0744193<span style="color:LimeGreen>7</span>&#8199;&#8199;||07441937<span style="color:LimeGreen>5</span>&#8199;
 
|-
 
|-
|4380408998
+
|4380408998||4380408<span style="color:red>9</span>98||43804089<span style="color:red>9</span>8||4380408998
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;9506<span style="color:#0000FF>3</span>
+
|&#8199;&#8199;&#8199;&#8199;&#8199;950<span style="color:#0000FF>6</span>&#8199;||&#8199;&#8199;&#8199;&#8199;&#8199;950<span style="color:#0000FF>6</span>&#8199;||&#8199;&#8199;&#8199;&#8199;&#8199;950<span style="color:#0000FF>6</span>&#8199;||&#8199;&#8199;&#8199;&#8199;&#8199;9506&#8199;
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;4<span style="color:#0000FF>6</span>079
+
|&#8199;&#8199;&#8199;&#8199;&#8199;4<span style="color:#0000FF>6</span>079||&#8199;&#8199;&#8199;&#8199;&#8199;460<span style="color:#0000FF>7</span>9||&#8199;&#8199;&#8199;&#8199;&#8199;4607<span style="color:#0000FF>9</span>||&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>4</span>6079
 
|}
 
|}
 
+
{|
|style="text-align:right;"|ונאמ' מא' אין די ל4 אבל נקח מי"ג האחרונים בשארית ויקח 3 פעמים ונשים ה3 הנמצא בחלוק תחת ה8 העליון, שהוא במעלה הראשונה, שהיא 5 ל3 זה אשר משם נקח לצד ימין, שהוא כמנין מעלות השורה התחתונה<br>
 
ונאמ' ג' פעמים 4 הם 12<br>
 
ונקח ה2 מה3 וישאר 1 ונשימהו עליו<br>
 
ונקח ה1 מה1 ולא ישאר דבר ונעביר עליו הקולמוס
 
 
|-
 
|-
 
|
 
|
::::{|
+
:*We say: 4 cannot be subtracted from 2, yet they can be subtracted from 29. They are subtracted from it 7 times and only 1 remains, but it is not enough for the tens of the product of 7 by 6 that precedes the 4, which are 4 tens.
 +
|style="width:45%; text-align:right;"|ונאמר מ2 לא יצאו 4 אבל יצאו 4 מ29 ויצאו משם ז' פעמים ולא ישאר כי אם <s>1</s> 1 ולא יהיה בו די לעשרות כפל הז' ב6 אשר לפני ה4 שהם 4 עשרות
 
|-
 
|-
|rowspan="10"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{3\times6}}=18\\&\scriptstyle{\color{red}{9}}-8={\color{green}{1}}\\&\scriptstyle{\color{red}{1}}-1={\color{green}{0}}\\\end{align}}</math>||&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:LimeGreen>0</span>&#8199;&#8199;&#8199;&#8199;
+
|
 +
::Therefore, we take only 6 and place it beneath the 9, which is 5 [ranks] to the right of the 9, corresponding to the upper [digit], from which we subtract the last bottom digit, i.e. as the number of the ranks of the bottom line.
 +
|style="text-align:right;"|לכן <sup>לא</sup> נקח כי אם 6 ונשימם תחת ה9 שהוא ה5 לצד ימין מה9 כנגד [...] העליון אשר משם נקח לאחרון התחתון ר"ל שהוא כמנין מעלות השורה התחתונה
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;01&#8199;&#8199;&#8199;&#8199;
+
|
 +
::Since there is a rank that is empty from a number between the 5 that resulted from the division and the current result, we place 0 in the empty rank, for this is the role of the 0, as we explained at the beginning of the book.
 +
|style="text-align:right;"|ואחר שיש {{#annot:term|2138,2137|STuT}}מעלה חלקה ממספר{{#annotend:STuT}} בין ה5 אשר יצא לנו בחילוק מתחלה וזהו אשר יצא לנו עתה נשים 0 במעלה החלקה ממספר כי זה מעשה ה0 כאשר ביארנו בתחלת הספר
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;13&#8199;&#8199;&#8199;&#8199;
+
|
 +
::*We say: 6 times 4 are 24.
 +
:::<math>\scriptstyle{\color{blue}{6\times4=24}}</math>
 +
|style="text-align:right;"|ונאמר 6 פעמים 4 הם 24
 
|-
 
|-
|&#8199;&#8199;&#8199;054&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
:::We subtract 4 units from the 9; 5 remain. We place them above them.
 +
:::<math>\scriptstyle{\color{blue}{9-4=5}}</math>
 +
|style="text-align:right;"|נקח 4 אחדים מה9 ישארו 5 ונשימם עליהם
 
|-
 
|-
|&#8199;00290<span style="color:LimeGreen>1</span>&#8199;&#8199;&#8199;
+
|
 +
:::We subtract 2 tens from the 2 that follows; nothing remains. We cross it out with a pen.
 +
:::<math>\scriptstyle{\color{blue}{2-2=0}}</math>
 +
|style="text-align:right;"|ונקח ה2 עשרות מה2 הבא אחריו ולא ישאר דבר ונעביר עליו הקולמוס
 
|-
 
|-
|&#8199;233249<span style="color:red>2</span>&#8199;&#8199;
+
|
 +
::*We say: 6 times 6 are 36.
 +
:::<math>\scriptstyle{\color{blue}{6\times6=36}}</math>
 +
|style="text-align:right;"|ונאמ' 6 פעמים 6 הם 36
 
|-
 
|-
|07441937<span style="color:red>5</span>&#8199;
+
|
 +
:::We should have taken the 6 units from the 0 that is in the remainder, but we cannot, therefore we take one from the 5, from which we subtract the 3 tens.
 +
|style="text-align:right;"|היה לנו לקחת ה6 אחדים מה0 אשר בזו השארית ולא נוכל לכן נקח אחד מה5 אשר משם נקח הג' עשרות
 
|-
 
|-
|4380408998
+
|
 +
:::It is ten [in the present rank]. We subtract 6 units; 4 remain. We place them above it.
 +
:::<math>\scriptstyle{\color{blue}{10-6=4}}</math>
 +
|style="text-align:right;"|ויהיה כאן עשרה נקח 6 אחדים ישארו 4 ונשימם עליהם
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;9506<span style="color:#0000FF>3</span>
+
|
 +
:::We subtract also the 3 tens from the 5, but we already took 1, so only 1 remains there. We place it above it.
 +
:::<math>\scriptstyle{\color{blue}{5-1-3=1}}</math>
 +
|style="text-align:right;"|עוד נקח ה3 עשרות מה5 וכבר לקחנו 1 הנה לא ישאר שם כי אם 1 ונשימהו עליו
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;460<span style="color:#0000FF>7</span>9
+
|
|}
+
::*We say also: 6 times 7 are 42.
 
+
:::<math>\scriptstyle{\color{blue}{6\times7=42}}</math>
|style="text-align:right;"|ונאמ' 3 פעמים 6 הם 18<br>
+
|style="text-align:right;"|עוד נאמר &#x202B;<ref>14v</ref>6 פעמים 7 הם 42
ונקח ה8 מה9 וישאר 1 ונשימהו עליו<br>
 
ונקח ה1 מה1 ולא ישאר דבר ונעביר עליו הקולמוס
 
 
|-
 
|-
 
|
 
|
::::{|
+
:::We subtract the two units from the 9, i.e. in the rank of hundreds, which is 4 ranks to the right of the rank from where the last bottom digit was subtracted; 7 remain. We place them above it.
 +
:::<math>\scriptstyle{\color{blue}{9-2=7}}</math>
 +
|style="text-align:right;"|נקח השנים אחדים מה9 ר"ל אשר במעלת המאות שהוא ל4 מעלות לצד ימין מהמקום שלקח האחרון התחתון ישארו 7 ונשימם עליהם
 
|-
 
|-
|rowspan="10"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{3\times7}}=21\\&\scriptstyle{\color{red}{5}}-1={\color{green}{4}}\\&\scriptstyle{\color{red}{2}}-2={\color{green}{0}}\\\end{align}}</math>||&#8199;&#8199;&#8199;&#8199;&#8199;0&#8199;&#8199;&#8199;&#8199;
+
|
 +
:::We should have taken the 4 tens from the 3, but is not enough, therefore we take one from the 4 that follows; 3 remain. We place them above it.
 +
:::<math>\scriptstyle{\color{blue}{4-1=3}}</math>
 +
|style="text-align:right;"|והיה לנו לקחת ה4 עשרות מה3 ואין בו די נקח אחד מה4 הבא אחריו וישארו 3 ונשימם עליו
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;01&#8199;&#8199;&#8199;&#8199;
+
|
 +
:::This 1 in 10 in the rank of the 3. We sum them; they are 13. We subtract the 4 tens from them; 9 remain. We place them above them.
 +
:::<math>\scriptstyle{\color{blue}{13-4=9}}</math>
 +
|style="text-align:right;"|וזה ה1 הוא 10 במדרגת ה3 ונחברם ויהיו 13 נקח מהם ה4 עשרות ישארו 9 ונשימם עליהם
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;13&#8199;&#8199;&#8199;&#8199;
+
|
 +
::*We say: 6 times 9 are 54.
 +
:::<math>\scriptstyle{\color{blue}{6\times9=54}}</math>
 +
|style="text-align:right;"|ונאמר 6 פעמים 9 הם 54
 
|-
 
|-
|&#8199;&#8199;&#8199;054&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
:::We subtract the 4 from the 9; 5 remain. We place them above them.
 +
:::<math>\scriptstyle{\color{blue}{9-4=5}}</math>
 +
|style="text-align:right;"|ונקח ה4 מה9 ישארו 5 ונשימם עליהם
 
|-
 
|-
|&#8199;002901<span style="color:LimeGreen>0</span>&#8199;&#8199;
+
|
 +
|style="text-align:right;"|[missing]
 
|-
 
|-
|&#8199;2332492<span style="color:LimeGreen>4</span>&#8199;
+
|
 +
::All were subtracted and 139258 still remains in the upper [number], which is more than the bottom [number].
 +
|style="text-align:right;"|והנה לקחו כולם ונשאר עוד בעליון 139258 והוא יותר מהתחתון
 
|-
 
|-
|074419375&#8199;
+
|
 +
::Therefore we continue to divide them and draw a line above the mentioned remainder.
 +
|style="text-align:right;"|לכן נשוב לחלקם עליהם נרשום קו דיו עליהם על השארית הנזכר
 +
|}
 +
::<span style=color:Green>[Illustration of the procedure:]</span>
 +
::{|
 
|-
 
|-
|438040899<span style="color:red>8</span>
+
|rowspan="10"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{3\times4}}=12\\&\scriptstyle{\color{red}{3}}-2={\color{green}{1}}\\&\scriptstyle{\color{red}{1}}-1={\color{green}{0}}\\\end{align}}</math>||&nbsp;||rowspan="10"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{3\times6}}=18\\&\scriptstyle{\color{red}{9}}-8={\color{green}{1}}\\&\scriptstyle{\color{red}{1}}-1={\color{green}{0}}\\\end{align}}</math>||&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:LimeGreen>0</span>&#8199;&#8199;&#8199;&#8199;||rowspan="10"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{3\times7}}=21\\&\scriptstyle{\color{red}{5}}-1={\color{green}{4}}\\&\scriptstyle{\color{red}{2}}-2={\color{green}{0}}\\\end{align}}</math>||&#8199;&#8199;&#8199;&#8199;&#8199;0&#8199;&#8199;&#8199;&#8199;||rowspan="10"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{3\times9}}=27\\&\scriptstyle{\color{red}{8}}-7={\color{green}{1}}\\&\scriptstyle{\color{red}{4}}-2={\color{green}{2}}\\\end{align}}</math>||&#8199;&#8199;&#8199;&#8199;&#8199;0&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;9506<span style="color:#0000FF>3</span>
+
|&#8199;&#8199;&#8199;&#8199;<span style="color:LimeGreen>01</span>&#8199;&#8199;&#8199;&#8199;||&#8199;&#8199;&#8199;&#8199;01&#8199;&#8199;&#8199;&#8199;||&#8199;&#8199;&#8199;&#8199;01&#8199;&#8199;&#8199;&#8199;||&#8199;&#8199;&#8199;&#8199;01&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;4607<span style="color:#0000FF>9</span>
+
|&#8199;&#8199;&#8199;&#8199;13&#8199;&#8199;&#8199;&#8199;||&#8199;&#8199;&#8199;&#8199;13&#8199;&#8199;&#8199;&#8199;||&#8199;&#8199;&#8199;&#8199;13&#8199;&#8199;&#8199;&#8199;||&#8199;&#8199;&#8199;&#8199;13&#8199;&#8199;&#8199;&#8199;
|}
+
|-
 
+
|&#8199;&#8199;&#8199;054&#8199;&#8199;&#8199;&#8199;&#8199;||&#8199;&#8199;&#8199;054&#8199;&#8199;&#8199;&#8199;&#8199;||&#8199;&#8199;&#8199;054&#8199;&#8199;&#8199;&#8199;&#8199;||&#8199;&#8199;&#8199;054&#8199;&#8199;&#8199;&#8199;&#8199;
|style="text-align:right;"|ונאמ' 6 פעמים 6 2 הם 12 21<br>
+
|-
ונקח ה1 מה5 וישארו 4 ונשימם עליו<br>
+
|&#8199;00290&#8199;&#8199;&#8199;&#8199;||&#8199;00290<span style="color:LimeGreen>1</span>&#8199;&#8199;&#8199;||&#8199;002901<span style="color:LimeGreen>0</span>&#8199;&#8199;||&#8199;00290'''10'''<span style="color:LimeGreen>'''2'''</span>&#8199;
ונקח ה2 מה2 ולא ישאר דבר ונעביר עליו הקולמוס
+
|-
 +
|&#8199;23324<span style="color:red>9</span>2&#8199;&#8199;||&#8199;233249<span style="color:red>2</span>&#8199;&#8199;||&#8199;2332492<span style="color:LimeGreen>4</span>&#8199;||&#8199;23324924&#8199;
 +
|-
 +
|074419375&#8199;||07441937<span style="color:red>5</span>&#8199;||074419375&#8199;||074419375<span style="color:LimeGreen>'''1'''</span>
 +
|-
 +
|4380408998||4380408998||438040899<span style="color:red>8</span>||4380408998
 +
|-
 +
|&#8199;&#8199;&#8199;&#8199;&#8199;9506<span style="color:#0000FF>3</span>||&#8199;&#8199;&#8199;&#8199;&#8199;9506<span style="color:#0000FF>3</span>||&#8199;&#8199;&#8199;&#8199;&#8199;9506<span style="color:#0000FF>3</span>||&#8199;&#8199;&#8199;&#8199;&#8199;'''95063'''
 +
|-
 +
|&#8199;&#8199;&#8199;&#8199;&#8199;4<span style="color:#0000FF>6</span>079||&#8199;&#8199;&#8199;&#8199;&#8199;460<span style="color:#0000FF>7</span>9||&#8199;&#8199;&#8199;&#8199;&#8199;4607<span style="color:#0000FF>9</span>||&#8199;&#8199;&#8199;&#8199;&#8199;46079
 +
|}
 +
{|
 +
|-
 +
|
 +
:*We say: in 1 there is not enough for 4, but we subtract from the last 13 of the remainder. It is subtracted 3 times. We place the 3 that is found in division beneath the upper 8, which is in the first rank, 5 [ranks] to the right of this 3 from which we subtract, as the number of the ranks of the bottom line.
 +
|style="width:45%; text-align:right;"|ונאמ' מא' אין די ל4 אבל נקח מי"ג האחרונים בשארית ויקח 3 פעמים ונשים ה3 הנמצא בחלוק תחת ה8 העליון שהוא במעלה הראשונה שהיא 5 ל3 זה אשר משם נקח לצד ימין שהוא כמנין מעלות השורה התחתונה
 +
|-
 +
|
 +
::*We say: 3 times 4 are 12.
 +
:::<math>\scriptstyle{\color{blue}{3\times4=12}}</math>
 +
|style="text-align:right;"|ונאמ' ג' פעמים 4 הם 12
 +
|-
 +
|
 +
:::We subtract the 2 from the 3; 1 remains. We place it above them.
 +
:::<math>\scriptstyle{\color{blue}{3-2=1}}</math>
 +
|style="text-align:right;"|ונקח ה2 מה3 וישאר 1 ונשימהו עליו
 
|-
 
|-
 
|
 
|
::::{|
+
:::We subtract 1 from the 1; nothing remains. We cross it out with a pen.
 +
:::<math>\scriptstyle{\color{blue}{1-1=0}}</math>
 +
|style="text-align:right;"|ונקח ה1 מה1 ולא ישאר דבר ונעביר עליו הקולמוס
 
|-
 
|-
|rowspan="10"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{3\times9}}=27\\&\scriptstyle{\color{red}{8}}-7={\color{green}{1}}\\&\scriptstyle{\color{red}{4}}-2={\color{green}{2}}\\\end{align}}</math>||&#8199;&#8199;&#8199;&#8199;&#8199;0&#8199;&#8199;&#8199;&#8199;
+
|
 +
::*We say: 3 times 6 are 18.
 +
:::<math>\scriptstyle{\color{blue}{3\times6=18}}</math>
 +
|style="text-align:right;"|ונאמ' 3 פעמים 6 הם 18
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;01&#8199;&#8199;&#8199;&#8199;
+
|
 +
:::We subtract the 8 from the 9; 1 remains. We place it above them.
 +
:::<math>\scriptstyle{\color{blue}{9-8=1}}</math>
 +
|style="text-align:right;"|ונקח ה8 מה9 וישאר 1 ונשימהו עליו
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;13&#8199;&#8199;&#8199;&#8199;
+
|
 +
:::We subtract 1 from the 1; nothing remains. We cross it out with a pen.
 +
:::<math>\scriptstyle{\color{blue}{1-1=0}}</math>
 +
|style="text-align:right;"|ונקח ה1 מה1 ולא ישאר דבר ונעביר עליו הקולמוס
 
|-
 
|-
|&#8199;&#8199;&#8199;054&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
::*We say: [3] times [7] are [21].
 +
:::<math>\scriptstyle{\color{red}{3\times7=21}}</math>
 +
|style="text-align:right;"|ונאמ' 6 פעמים <s>6</s> 2 הם <sup>12</sup> <s>21</s>
 
|-
 
|-
|&#8199;00290'''10'''<span style="color:LimeGreen>'''2'''</span>&#8199;
+
|
 +
:::We subtract the 1 from the 5; 4 remain. We place them above them.
 +
:::<math>\scriptstyle{\color{blue}{5-1=4}}</math>
 +
|style="text-align:right;"|ונקח ה1 מה5 וישארו 4 ונשימם עליו
 
|-
 
|-
|&#8199;23324924&#8199;
+
|
 +
:::We subtract 2 from the 2; nothing remains. We cross it out with a pen.
 +
:::<math>\scriptstyle{\color{blue}{2-2=0}}</math>
 +
|style="text-align:right;"|ונקח ה2 מה2 ולא ישאר דבר ונעביר עליו הקולמוס
 
|-
 
|-
|074419375<span style="color:LimeGreen>'''1'''</span>
+
|
 +
::*We say: 3 times 9 are 27.
 +
:::<math>\scriptstyle{\color{blue}{3\times9=27}}</math>
 +
|style="text-align:right;"|ונאמ' 3 פעמים 9 הם <s>28</s> <sup>27</sup>
 
|-
 
|-
|4380408998
+
|
 +
:::We subtract the 7 from the 8; 1 remains. We place it above them.
 +
:::<math>\scriptstyle{\color{blue}{8-7=1}}</math>
 +
|style="text-align:right;"|ונקח ה7 מה8 ישאר 1 ונשימהו עליו
 +
|-
 +
|
 +
:::We subtract the 2 tens from the 4; 2 remain. We place them above them.
 +
:::<math>\scriptstyle{\color{blue}{4-2=2}}</math>
 +
|style="text-align:right;"|ונקח ה2 עשרות מה4 ישארו 2 ונשימם עליו
 +
|-
 +
|
 +
::All were subtracted and 1021 remain, which is less than the bottom [number], therefore cannot be divided by it into integers.
 +
::<math>\scriptstyle{\color{blue}{1021<46079}}</math>
 +
|style="text-align:right;"|הנה כבר לקחו כלם ונשארו 1021 והוא פחות מהתחתון ולא יוכל להתחלק &#x202B;<ref>15r</ref>עליו לשלמים
 +
|-
 +
|
 +
:So you may say that you have finished the procedure completely.
 +
|style="text-align:right;"|לכן תאמר שכלית כל מלאכתך על השלמות
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;'''95063'''
+
|
 +
:*The result of division is 95063 for each.
 +
|style="text-align:right;"|ושיצא בחילוק לכל אחד 95<sup>0</sup>63
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;46079
+
|
|}
+
:*The remainder in the upper number that cannot be divided into integers is 1021.
|style="text-align:right;"|ונאמ' 3 פעמים 9 הם 28 27<br>
+
|style="text-align:right;"|ונשאר במספר העליון שלא יוכל להתחלק לשלמים 1021
ונקח ה7 מה8, ישאר 1 ונשימהו עליו<br>
 
ונקח ה2 עשרות מה4, ישארו 2 ונשימם עליו
 
 
|-
 
|-
|<math>\scriptstyle1021<46079\longrightarrow{\color{red}{\begin{align}&\scriptstyle95063\ the\ result\\&\scriptstyle1021\ the\ remainder\\\end{align}}}</math>
+
|We will discuss it further in this chapter.
|style="text-align:right;"|הנה כבר לקחו כלם ונשארו 1021 והוא פחות מהתחתון ולא יוכל להתחלק עליו לשלמים, לכן תאמר שכלית כל מלאכתך על השלמות ושיצא בחילוק לכל אחד 95063 ונשאר במספר העליון שלא יוכל להתחלק לשלמים 1021 ועוד נדבר בזה הפרק בעצמו
+
|style="text-align:right;"|ועוד נדבר בזה הפרק בעצמו
 
|-
 
|-
 
|
 
|
  
==== check ====
+
==== <span style=color:Green>check</span> ====
 +
|
 +
|-
 +
|<span style="color:Green">Multiplication:</span> If you wish to check your procedure, to know if you if you were not mistaken.
 +
|style="text-align:right;"|<big>ואם תרצה</big> לבחון מעשיך לדעת אם לא טעית
 +
|-
 
|
 
|
 +
:Multiply the result of division, i.e. 95063, by the divisor, i.e. 46079, add the remainder, i.e. 1021, to the product and you will receive the dividend, i.e. 4380408998, which is the number that you divided.
 +
:<math>\scriptstyle{\color{blue}{\left(95063\times46079\right)+1021=4380408998}}</math>
 +
|style="text-align:right;"|כפול היוצא בחילוק ר"ל 950<s>9</s>63 במספר אשר חלקנו עליו ר"ל 46079 ותוסיף השארית ר"ל ה1021 על העולה מכפל[ם] ויצא לך החשבון המתחלק ר"ל 4380408998 שזה המספר אשר חלקת עליהם
 
|-
 
|-
 
|
 
|
*Multiplication
+
:If the result is not as the [dividend], know that you made a mistake in one of the operation, i.e. the division or the multiplication.
|style="text-align:right;"|'''ואם תרצה''' לבחון מעשיך, לדעת אם לא טעית
+
|style="text-align:right;"|ואם לא יצא ראשון כמותו דע לך שטעית באחד המעשים ר"ל בחילוק או בכפל
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle\left(95063\times46079\right)+1021=4380408998</math>
+
:You will find it alluded in the noted diagram.
|style="text-align:right;"|כפול היוצא בחילוק, ר"ל 95063, במספר אשר חלקנו עליו, ר"ל 46079, ותוסיף השארית, ר"ל ה1021, על העולה מכפל[ם] ויצא לך החשבון המתחלק, ר"ל 4380408998, שזה המספר אשר חלקת עליהם
+
|style="text-align:right;"|כל זה תמצא רמוז בצורה הנזכרת
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם לא יצא ראשון כמותו, דע לך שטעית באחד המעשים, ר"ל בחילוק או בכפל. כל זה תמצא רמוז בצורה הנזכרת
+
*In order that you will learn it, I write here the check of the example that I have brought in the third chapter of multiplication, that is we divide the result of that multiplication, which is 486463564860000 by one of the two multiplied numbers, first it will be by 5400920.
 +
:<math>\scriptstyle486463564860000\div5400920</math>
 +
|style="text-align:right;"|<big>וכדי</big> שתתלמד ארשום כאן בחינת המשל אשר הבאתי בפרק הג' בכפל והוא שנחלק העולה מהכפל ההוא והוא 486463564860000 [על אחד מהב' מספרים הנכפלים ויהיה תחלה ל&#x202B;5400920]&#x202B;<ref>marg.</ref>
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle486463564860000\div5400920</math>
+
:We arrange them one on top of the other, the greater above, like this:
|style="text-align:right;"|'''וכדי''' שתתלמד, ארשום כאן בחינת המשל, אשר הבאתי בפרק הג' בכפל והוא שנחלק העולה מהכפל ההוא והוא 486463564860000 [על אחד מהב' מספרים הנכפלים ויהיה תחלה ל5400920] ונשימם זו על זו הגדולה למעלה כזה&#x202B;:
+
|style="text-align:right;"|ונשימם זו על זו הגדולה למעלה כזה
 
|-
 
|-
 
|
 
|
Line 1,725: Line 2,006:
 
|-
 
|-
 
|}
 
|}
 +
|}
 +
::<span style=color:Green>[Illustration of the procedure:]</span>
 +
:{|
 
|-
 
|-
|
+
|&nbsp;||rowspan="5"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{5\times{\color{blue}{9}}=}}{\color{YellowOrange}{45}}\\&\scriptstyle{\color{red}{8-}}{\color{YellowOrange}{5}}={\color{green}{3}}\\&\scriptstyle{\color{red}{4-}}{\color{YellowOrange}{4}}={\color{green}{0}}\\\end{align}}</math>||&nbsp;||rowspan="5"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{4\times{\color{blue}{9}}=}}{\color{YellowOrange}{36}}\\&\scriptstyle{\color{red}{6-}}{\color{YellowOrange}{6}}={\color{green}{0}}\\&\scriptstyle{\color{red}{3-}}{\color{YellowOrange}{3}}={\color{green}{0}}\\\end{align}}</math>||&#8199;<span style="color:LimeGreen>0</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
{|
 
 
|-
 
|-
|&nbsp;||rowspan="4"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{5\times{\color{blue}{9}}=}}{\color{YellowOrange}{45}}\\&\scriptstyle{\color{red}{8-}}{\color{YellowOrange}{5}}={\color{green}{3}}\\&\scriptstyle{\color{red}{4-}}{\color{YellowOrange}{4}}={\color{green}{0}}\\\end{align}}</math>||<span style="color:LimeGreen>03</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|&nbsp;||<span style="color:LimeGreen>03</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;||03<span style="color:LimeGreen>0</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|<span style="color:red">48</span>6463564860000||48<span style="color:red">6</span>463564860000
+
|<span style="color:red">48</span>6463564860000||48<span style="color:red">6</span>463564860000||486<span style="color:red">463</span>564860000
 
|-
 
|-
|&nbsp;||&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>9</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|&nbsp;||&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>9</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;||&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>9</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:red>5</span>400920||&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;5<span style="color:red>4</span>00920
+
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:red>5</span>400920||&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;5<span style="color:red>4</span>00920||&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;5400<span style="color:red>9</span>20
 
|}
 
|}
|style="text-align:right;"|ונאמר מ4 לא יצאו 5 ויקחו מ48 ויהיו שם 9 פעמים ונעשום זה ה9 תחת ה6, שהוא לשבע מעלות לצד ימין מה8, כמספר מעלות השורה התחתונה<br>
+
{|
ונאמר 9 ב5 הם 45<br>
 
נסיר ה5 מה8, ישאר 3<br>
 
נסיר ה4 מה4, לא ישאר דבר
 
 
|-
 
|-
 
|
 
|
:::::{|
+
:*We say: 5 cannot be subtracted from 4, but it can be subtracted from 48. It is found there 9 times. We place the 9 beneath the 6, which is seven ranks to the right of the 8, as the number of the ranks of the bottom line.
 +
|style="width:45%; text-align:right;"|ונאמר מ4 לא יצאו 5 ויקחו מ48 ויהיו שם 9 פעמים ונ<s>ע</s>שים זה ה9 תחת <sup>ה6</sup> שהוא לשבע מעלות לצד ימין מה8 כמספר מעלות השורה התחתונה
 
|-
 
|-
|rowspan="5"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{4\times{\color{blue}{9}}=}}{\color{YellowOrange}{36}}\\&\scriptstyle{\color{red}{6-}}{\color{YellowOrange}{6}}={\color{green}{0}}\\&\scriptstyle{\color{red}{3-}}{\color{YellowOrange}{3}}={\color{green}{0}}\\\end{align}}</math>||&#8199;<span style="color:LimeGreen>0</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
::*We say: 9 by 5 are 45.
 +
:::<math>\scriptstyle{\color{blue}{9\times5=45}}</math>
 +
|style="text-align:right;"|ונאמר 9 ב5 הם 45
 
|-
 
|-
|03<span style="color:LimeGreen>0</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
:::We subtract the 5 from the 8; 3 remains.
 +
:::<math>\scriptstyle{\color{blue}{8-5=3}}</math>
 +
|style="text-align:right;"|נסיר ה5 מה8 ישאר 3
 
|-
 
|-
|486<span style="color:red">463</span>564860000
+
|
 +
:::We subtract the 4 from the 4; nothing remains.
 +
:::<math>\scriptstyle{\color{blue}{4-4=0}}</math>
 +
|style="text-align:right;"|נסיר ה4 מה4 לא ישאר דבר
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>9</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
::*We say also: 9 by 4 are 36.
 +
:::<math>\scriptstyle{\color{blue}{9\times4=36}}</math>
 +
|style="text-align:right;"|&#x202B;[עוד נאמר 9 ב4 הם 36
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;5400<span style="color:red>9</span>20
+
|
|}
+
:::We subtract the 6 from the 6; nothing remains.
|style="text-align:right;"|[עוד נאמר 9 ב4 הם 36<br>
+
:::<math>\scriptstyle{\color{blue}{6-6=0}}</math>
נסיר ה6 מה6, לא ישאר דבר<br>
+
|style="text-align:right;"|נסיר ה6 מה6 לא ישאר דבר
ונסיר] ונסיר ה3 מה3, לא ישאר ג"כ דבר
 
 
|-
 
|-
 
|
 
|
:::::{|
+
:::We subtract the 3 from the 3; nothing remains also.
 +
:::<math>\scriptstyle{\color{blue}{3-3=0}}</math>
 +
|style="text-align:right;"|ונסיר]&#x202B;<ref>marg.</ref> ונסיר ה3 מה3 לא ישאר ג"כ דבר
 +
|}
 +
::<span style=color:Green>[Illustration of the procedure:]</span>
 +
::::{|
 
|-
 
|-
|rowspan="5"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{9\times{\color{blue}{9}}=}}{\color{YellowOrange}{81}}\\&\scriptstyle{\color{red}{3-}}{\color{YellowOrange}{1}}={\color{green}{2}}\\&\scriptstyle{\color{red}{4-}}{\color{YellowOrange}{1}}={\color{green}{3}}\\&\scriptstyle{\color{red}{16-}}{\color{YellowOrange}{8}}={\color{green}{8}}\\\end{align}}</math>||&#8199;0&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|rowspan="5"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{9\times{\color{blue}{9}}=}}{\color{YellowOrange}{81}}\\&\scriptstyle{\color{red}{3-}}{\color{YellowOrange}{1}}={\color{green}{2}}\\&\scriptstyle{\color{red}{4-}}{\color{YellowOrange}{1}}={\color{green}{3}}\\&\scriptstyle{\color{red}{16-}}{\color{YellowOrange}{8}}={\color{green}{8}}\\\end{align}}</math>||&#8199;0&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;||rowspan="5"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{2\times{\color{blue}{9}}=}}{\color{YellowOrange}{18}}\\&\scriptstyle{\color{red}{2-}}{\color{YellowOrange}{1=1}}\\&\scriptstyle{\color{YellowOrange}{1}}{\color{red}{5-}}{\color{YellowOrange}{8}}={\color{green}{7}}\\&\scriptstyle{\color{red}{1-}}{\color{YellowOrange}{1}}={\color{green}{0}}\\\end{align}}</math>||&#8199;0&#8199;&#8199;&#8199;<span style="color:LimeGreen>0</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|030<span style="color:LimeGreen>382</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|030<span style="color:LimeGreen>382</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;||030382<span style="color:LimeGreen>7</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|486463<span style="color:red">5</span>64860000
+
|486463<span style="color:red">5</span>64860000||486463564860000
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>9</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>9</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;||&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>9</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;54009<span style="color:red>2</span>0
+
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;54009<span style="color:red>2</span>0||&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:red>5</span>400920
 
|}
 
|}
|style="text-align:right;"|עוד נאמר 9 ב9 הם 81<br>
+
{|
ולדעת מאיזו מדרגה וקח [נקח] תעשה אחד מ2 דברים: או תמנה מהמעלה [אשר שמת שם היוצא בחלוק, שהוא ה6, לצד שמאל 3 מעלות במרחק זה ה9 מהמעלה הא'] הא' ויכלו ב[3] העליון ומשם נקח זה האחד שעלה בכפל<br>
 
ואם תרצה תמנה מהמקום אשר משם לקח המספר האחרון התחתון והוא ה8 [העליון, 5] מעלות לצד ימין כמרחק זה ה9 מה5 המספר האחרון לצד ימין ויכלו ג"כ ג' ומשם נקח ה1 וישארו 2<br>
 
ונקח ה8 עשרות מה6 ואין די ויקחו מה4 וישארו 3 וזה הראשון הוא לעשרה ועם ה6 יהיו 16, נסיר מהם ה8, ישארו 8
 
 
|-
 
|-
 
|
 
|
:::::{|
+
::*We say also: 9 by 9 are 81.
 +
:::<math>\scriptstyle{\color{blue}{9\times9=81}}</math>
 +
|style="width:45%; text-align:right;"|עוד נאמר 9 ב9 הם 81
 
|-
 
|-
|rowspan="5"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{2\times{\color{blue}{9}}=}}{\color{YellowOrange}{18}}\\&\scriptstyle{\color{red}{2-}}{\color{YellowOrange}{1=1}}\\&\scriptstyle{\color{YellowOrange}{1}}{\color{red}{5-}}{\color{YellowOrange}{8}}={\color{green}{7}}\\&\scriptstyle{\color{red}{1-}}{\color{YellowOrange}{1}}={\color{green}{0}}\\\end{align}}</math>||&#8199;0&#8199;&#8199;&#8199;<span style="color:LimeGreen>0</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
:::To know from which rank we subtract, do one of the two things:
 +
|style="text-align:right;"|ולדעת מאיזו מדרגה וקח [נקח]&#x202B;<ref>marg.</ref> תעשה אחד מ2 דברים
 
|-
 
|-
|030382<span style="color:LimeGreen>7</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
:::*Count from the rank where you put the result of division, which is the 6, three ranks to the left, as the distance of the 9 from the first rank. They end in the upper 3 and from it we subtract the one resulted in the multiplication.
 +
|style="text-align:right;"|או תמנה מהמעלה [אשר שמת שם היוצא בחלוק שהוא ה6 לצד שמאל 3 מעלות כמרחק זה ה9 מהמעלה הא']&#x202B;<ref>marg.</ref> הא' ויכלו ב[3] העליון ומשם נקח זה האחד שעלה בכפל
 
|-
 
|-
|486463564860000
+
|
 +
:::*If you want, count from the rank from which the last bottom digit was subtracted, which is the upper 8, five ranks to the right, as the distance of the 9 from the last digit 5. They end also in 3.
 +
|style="text-align:right;"|ואם תרצה תמנה מהמקום אשר משם לקח המספר האחרון התחתון &#x202B;<ref>15v</ref>והוא ה8 [העליון 5]&#x202B;<ref>marg.</ref> מעלות לצד ימין כמרחק זה ה9 מה5 המספר האחרון לצד ימין ויכלו ג"כ ג&#x202B;'
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:#0000FF>9</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
:::We subtract the 1 from there; 2 remains.
 +
:::<math>\scriptstyle{\color{blue}{3-1=2}}</math>
 +
|style="text-align:right;"|ומשם נקח ה1 וישארו 2
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:red>5</span>400920
+
|
|}
+
:::We subtract the 8 tens from the 6; there is not enough. [We] take [1] from the 4; 3 remains. The 1 is as ten and with the 6 they are 16. We subtract the 8 from it; 8 remains.
|style="text-align:right;"|ונאמר עוד 9 ב2 הם 18<br>
+
:::<math>\scriptstyle{\color{blue}{16-8=8}}</math>
ומה5 לא יוכל לצאת ה8, לכן נקח 1 מה2 ועוד נקח משם 1 לעשר ולא ישאר דבר<br>
+
|style="text-align:right;"|ונקח ה8 עשרות מה6 ואין די ויקחו מה4 וישארו 3 וזה הראשון הוא לעשרה ועם ה6 יהיו 16 נסיר מהם ה8 ישארו 8
וזה ה1 הראשון אשר לקחנו יהיה עשרה ועם ה5 יהיו 9, נסיר מהם 8, ישארו 7 [ישאר 7]
 
 
|-
 
|-
 
|
 
|
:::::{|
+
::*We say also: 9 by 2 are 18.
 +
:::<math>\scriptstyle{\color{blue}{9\times2=18}}</math>
 +
|style="text-align:right;"|ונאמר עוד 9 ב2 הם 18
 
|-
 
|-
|rowspan="5"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{5\times{\color{blue}{7}}=}}{\color{YellowOrange}{35}}\\&\scriptstyle{\color{red}{8-}}{\color{YellowOrange}{5}}={\color{green}{3}}\\&\scriptstyle{\color{red}{3-}}{\color{YellowOrange}{3}}={\color{green}{0}}\\\end{align}}</math>||&#8199;0&#8199;<span style="color:LimeGreen>03</span>0&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
:::8 cannot be subtracted from 5, so we take 1 from the 2. We subtract another 1 for the ten and nothing remains.
 +
:::<math>\scriptstyle{\color{blue}{1-1=0}}</math>
 +
|style="text-align:right;"|ומה5 לא יוכל לצאת ה8 לכן נקח 1 מה2 ועוד נקח משם 1 לעשר ולא ישאר דבר
 
|-
 
|-
|0303827&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
:::The first 1 that we took becomes ten and with the 5 they are [15]. We subtract 8 from it; 7 remains.
 +
:::<math>\scriptstyle{\color{blue}{{\color{red}{15}}-8=27}}</math>
 +
|style="text-align:right;"|וזה ה1 הראשון אשר לקחנו יהיה עשרה ועם ה5 יהיו 9 נסיר מהם 8 ישארו 7 [ישאר 7&#x202B;]&#x202B;<ref>marg.</ref>
 
|-
 
|-
|486463564860000
+
|
|-
+
::All the digits were subtracted, because you do not take anything for the 0.
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;9<span style="color:#0000FF>007</span>&#8199;&#8199;&#8199;&#8199;
+
|style="text-align:right;"|וכבר לקחו כל המספרים כי ה0 ולא תקח דבר
|-
 
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;5<span style="color:red>4</span>00920
 
 
|}
 
|}
|style="text-align:right;"|וכבר לקחו כל המספרים, כי ה0 ולא תקח דבר<br>
+
::<span style=color:Green>[Illustration of the procedure:]</span>
והנה נשאר בעליון 3807648606000 והוא רב מאד מהמספר התחתון, לכן נשוב נחלקנו עליו ונרשום קו דיו עליהם<br>
+
::::{|
ונאמ' מ3 אין די ל5 ונקח מ38 ויהיה בהם 7 פעמים 5, תשים זה ה7 היוצא בחילוק תחת ה6, כי שם יכלו הד' מעלות מזה ה8 לצד ימין, אשר הם כמנין מעלות השורה התחתונה<br>
 
ונאמ' 7 ב5 הם 35<br>
 
ונקח ה5 מה8, ישארו 3<br>
 
וה3 מה3, לא ישאר דבר
 
|-
 
|
 
:::::{|
 
 
|-
 
|-
|rowspan="6"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{4\times{\color{blue}{7}}=}}{\color{YellowOrange}{28}}\\&\scriptstyle{\color{red}{3-}}{\color{YellowOrange}{1=2}}\\&\scriptstyle{\color{YellowOrange}{10-8}}={\color{green}{2}}\\&\scriptstyle{\color{YellowOrange}{2-2}}={\color{green}{0}}\\\end{align}}</math>||&#8199;&#8199;&#8199;&#8199;<span style="color:LimeGreen>02</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|rowspan="6"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{5\times{\color{blue}{7}}=}}{\color{YellowOrange}{35}}\\&\scriptstyle{\color{red}{8-}}{\color{YellowOrange}{5}}={\color{green}{3}}\\&\scriptstyle{\color{red}{3-}}{\color{YellowOrange}{3}}={\color{green}{0}}\\\end{align}}</math>||&nbsp;||rowspan="6"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{4\times{\color{blue}{7}}=}}{\color{YellowOrange}{28}}\\&\scriptstyle{\color{red}{3-}}{\color{YellowOrange}{1=2}}\\&\scriptstyle{\color{YellowOrange}{10-8}}={\color{green}{2}}\\&\scriptstyle{\color{YellowOrange}{2-2}}={\color{green}{0}}\\\end{align}}</math>||&#8199;&#8199;&#8199;&#8199;<span style="color:LimeGreen>02</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|&#8199;0&#8199;030&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|&#8199;0&#8199;<span style="color:LimeGreen>03</span>0&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;||&#8199;0&#8199;030&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|0303827&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|0303827&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;||0303827&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|486463564860000
+
|486463564860000||486463564860000
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;900<span style="color:#0000FF>7</span>&#8199;&#8199;&#8199;&#8199;
+
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;9<span style="color:#0000FF>007</span>&#8199;&#8199;&#8199;&#8199;||&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;900<span style="color:#0000FF>7</span>&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;5400<span style="color:red>9</span>20
+
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;5<span style="color:red>4</span>00920||&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;5400<span style="color:red>9</span>20
 
|}
 
|}
|style="text-align:right;"|ונאמר 7 ב4 הם 28<br>
+
{|
וה8 לא יוכלו לצאת מהם ונקח 1 מה3 ויהיה '''34''', נקח ה8 וישארו ב' ונשימם עליו<br>
 
ונקח עוד מה3 '''ויהיה 4''' הב' עשרות ולא ישאר דבר
 
 
|-
 
|-
 
|
 
|
:::::{|
+
::3807648606000 remains in the upper line and it is much greater than the bottom number, so we divide it by it again and draw a line above them.
 +
|style="width:45%; text-align:right;"|והנה נשאר בעליון 3807648606000 והוא רב מאד מהמספר התחתון לכן נשוב נחלקנו עליו ונרשום קו דיו עליהם
 
|-
 
|-
|rowspan="6"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{9\times{\color{blue}{7}}=}}{\color{YellowOrange}{63}}\\&\scriptstyle{\color{red}{4-}}{\color{YellowOrange}{3}}={\color{green}{1}}\\&\scriptstyle{\color{red}{6-}}{\color{YellowOrange}{6}}={\color{green}{0}}\\\end{align}}</math>||&#8199;&#8199;&#8199;&#8199;02&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
:*We say: in 3 there is not enough for 5, so we take from 38. There is 7 times 5 in it. Place the 7 resulting in the division beneath the 6, for the four ranks to the right of the 8 end there, which is as the number of the ranks of the bottom line.
 +
|style="text-align:right;"|ונאמ' מ3 אין די ל5 ונקח מ38 ויהיה בהם 7 פעמים 5 תשים זה ה7 היוצא בחילוק תחת ה6 כי שם יכלו הד' מעלות מזה ה8 לצד ימין אשר הם כמנין מעלות השורה התחתונה
 
|-
 
|-
|&#8199;0&#8199;030&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
::*We say: 7 by 5 are 35.
 +
:::<math>\scriptstyle{\color{blue}{7\times5=35}}</math>
 +
|style="text-align:right;"|ונאמ' 7 ב5 הם 35
 
|-
 
|-
|0303827<span style="color:LimeGreen>01</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
:::We subtract the 5 from the 8; 3 remains.
 +
:::<math>\scriptstyle{\color{blue}{8-5=3}}</math>
 +
|style="text-align:right;"|ונקח ה5 מה8 ישארו 3
 
|-
 
|-
|486463564860000
+
|
 +
:::The 3 from the 3; nothing remains.
 +
:::<math>\scriptstyle{\color{blue}{3-3=0}}</math>
 +
|style="text-align:right;"|וה3 מה3 לא ישאר דבר
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;900<span style="color:#0000FF>7</span>&#8199;&#8199;&#8199;&#8199;
+
|
 +
::*We say: 7 by 4 are 28.
 +
:::<math>\scriptstyle{\color{blue}{7\times4=28}}</math>
 +
|style="text-align:right;"|ונאמר 7 ב4 הם 28
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;54009<span style="color:red>2</span>0
+
|
|}
+
:::8 cannot be subtracted from 0, so we take 1 from the 3; it becomes [ten]. We subtract the 8 and 2 remains. We write it there
|style="text-align:right;"|עוד נאמר ז' בט' הם 63<br>
+
:::<math>\scriptstyle{\color{blue}{10-8=2}}</math>
ונקח ה3 מה4, שהיא מדרגה הראויה לו כמו שהזכרנו באחד מהב' דרכים, אם להיותה שלישית לשמאל ואם להיותה חמישית לימין, כמו שהוא ה9 וישאר א' מה4 ונשימהו עליו<br>
+
|style="text-align:right;"|וה8 לא יוכלו לצאת מה0 ונקח 1 מה3 ויהיה 34 נקח ה8 וישארו ב' ונשימם עליו
והו' עשרות נסירם מה6 ולא ישאר דבר והנה לקחו כלם
 
 
|-
 
|-
 
|
 
|
:::::{|
+
:::We subtract the 2 tens from the 3 also; nothing remains.
 +
:::<math>\scriptstyle{\color{blue}{3-1-2=0}}</math>
 +
|style="text-align:right;"|ונקח עוד מה3 <s>ויהיה 4</s> הב' עשרות ולא ישאר דבר
 +
|}
 +
::<span style=color:Green>[Illustration of the procedure:]</span>
 +
::::{|
 
|-
 
|-
|rowspan="6"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{2\times{\color{blue}{7}}=}}{\color{YellowOrange}{14}}\\&\scriptstyle{\color{red}{8-}}{\color{YellowOrange}{4}}={\color{green}{4}}\\&\scriptstyle{\color{red}{1-}}{\color{YellowOrange}{1}}={\color{green}{0}}\\\end{align}}</math>||&#8199;&#8199;&#8199;&#8199;02&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|rowspan="6"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{9\times{\color{blue}{7}}=}}{\color{YellowOrange}{63}}\\&\scriptstyle{\color{red}{4-}}{\color{YellowOrange}{3}}={\color{green}{1}}\\&\scriptstyle{\color{red}{6-}}{\color{YellowOrange}{6}}={\color{green}{0}}\\\end{align}}</math>||&#8199;&#8199;&#8199;&#8199;02&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;||rowspan="6"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{2\times{\color{blue}{7}}=}}{\color{YellowOrange}{14}}\\&\scriptstyle{\color{red}{8-}}{\color{YellowOrange}{4}}={\color{green}{4}}\\&\scriptstyle{\color{red}{1-}}{\color{YellowOrange}{1}}={\color{green}{0}}\\\end{align}}</math>||&#8199;&#8199;&#8199;&#8199;02&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|&#8199;0&#8199;030&#8199;&#8199;<span style="color:LimeGreen>0</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|&#8199;0&#8199;030&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;||&#8199;0&#8199;030&#8199;&#8199;<span style="color:LimeGreen>0</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|030382701<span style="color:LimeGreen>4</span>&#8199;&#8199;&#8199;&#8199;&#8199;
+
|0303827<span style="color:LimeGreen>01</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;||030382701<span style="color:LimeGreen>4</span>&#8199;&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|486463564860000
+
|486463564860000||486463564860000
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;900<span style="color:#0000FF>7</span>&#8199;&#8199;&#8199;&#8199;
+
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;900<span style="color:#0000FF>7</span>&#8199;&#8199;&#8199;&#8199;||&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;900<span style="color:#0000FF>7</span>&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:red>5</span>400920
+
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;54009<span style="color:red>2</span>0||&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:red>5</span>400920
 
|}
 
|}
|style="text-align:right;"|עוד נאמר 7 ב2 הם 14<br>
+
{|
נסיר ה4 מה8, ישארו 4<br>
 
ונסיר ה1 מ1 ולא ישאר דבר
 
 
|-
 
|-
 
|
 
|
:::::{|
+
::*We say also: 7 by 9 are 63.
 +
:::<math>\scriptstyle{\color{blue}{7\times9=63}}</math>
 +
|style="width:45%; text-align:right;"|עוד נאמר ז' בט' הם 63
 
|-
 
|-
|rowspan="7"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{5\times{\color{blue}{5}}=}}{\color{YellowOrange}{25}}\\&\scriptstyle{\color{red}{7-}}{\color{YellowOrange}{5}}={\color{green}{2}}\\&\scriptstyle{\color{red}{2-}}{\color{YellowOrange}{2}}={\color{green}{0}}\\\end{align}}</math>||&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:LimeGreen>0</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
:::We subtract the 3 from the 4, which is [in] the corresponding rank, as we mentioned in one of the two methods, whether as third to the left, or as fifth to the right like the 9; 1 remains from the 4. We write it above it.
 +
:::<math>\scriptstyle{\color{blue}{4-3=1}}</math>
 +
|style="text-align:right;"|ונקח ה3 מה4 שהיא מדרגה הראויה לו כמו שהזכרנו באחד מהב' דרכים אם להיותה שלישית לשמאל ואם להיותה חמישית לימין כמו שהוא ה9 וישאר א' מה4 ונשימהו עליו
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;02&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
:::We subtract the 6 tens from the 6; nothing remains.
 +
:::<math>\scriptstyle{\color{blue}{6-6=0}}</math>
 +
|style="text-align:right;"|והו' עשרות נסירם מה6 ולא ישאר דבר <s>והנה לקחו כלם</s>
 
|-
 
|-
|&#8199;0&#8199;030<span style="color:LimeGreen>2</span>&#8199;0&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
::*We say also: 7 by 2 are 14.
 +
:::<math>\scriptstyle{\color{blue}{7\times2=14}}</math>
 +
|style="text-align:right;"|עוד נאמר 7 ב2 הם 14
 
|-
 
|-
|0303827014&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
:::We subtract the 4 from the 8; 4 remains.
 +
:::<math>\scriptstyle{\color{blue}{8-4=4}}</math>
 +
|style="text-align:right;"|נסיר ה4 מה8 ישארו 4
 
|-
 
|-
|486463564860000
+
|
 +
:::We subtract the 1 from the 1; nothing remains.
 +
:::<math>\scriptstyle{\color{blue}{1-1=0}}</math>
 +
|style="text-align:right;"|ונסיר ה1 מ1 ולא &#x202B;<ref>16r</ref>ישאר דבר
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;9007<span style="color:#0000FF>05</span>&#8199;&#8199;
+
|
 +
::All are subtracted and 2700460000 remains in the upper line.
 +
|style="text-align:right;"|והנה לקחו כלם ונשאר בעליון 2700460000
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;5<span style="color:red>4</span>00920
+
|
 +
::Since the 7 is first beneath the drawn line and you might forget it, write it above the drawn line. Draw also a line above all and divide them again, as they are much more than the bottom number.
 +
|style="text-align:right;"|וה7 לפי שהוא תחת הקו הרשום תחלה ואולי תשכחהו שימהו על הקו הרשום ועוד תרשום קו על הכל ותשוב לחלקים אחרי היותם יותר מהתחתון
 
|}
 
|}
|style="text-align:right;"|והנה לקחו כלם ונשאר בעליון 2700460000<br>
+
::<span style=color:Green>[Illustration of the procedure:]</span>
וה7, לפי שהוא תחת הקו הרשום תחלה ואולי תשכחהו, שימהו על הקו הרשום ועוד תרשום קו על הכל ותשוב לחלקים אחרי היותם יותר מהתחתון<br>
+
::::{|
ונאמר ב2 אין די ל5, ניקח מ27 ויהיו בו ה' פעמים ונשימהו תחת השלישית, כי שם יכלו ה7 מעלות לצד ימין, שהם כמנין מעלות השורה התחתונה ונאמר 5 ב5 הם 25<br>
 
נסיר הה' מהז', ישארו שנים<br>
 
ונסיר הב' מהב' ולא ישאר דבר
 
|-
 
|
 
:::::{|
 
 
|-
 
|-
|rowspan="7"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{4\times{\color{blue}{5}}=}}{\color{YellowOrange}{20}}\\&\scriptstyle{\color{red}{2-}}{\color{YellowOrange}{2}}={\color{green}{0}}\\\end{align}}</math>||&#8199;&#8199;&#8199;&#8199;&#8199;0&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|rowspan="7"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{5\times{\color{blue}{5}}=}}{\color{YellowOrange}{25}}\\&\scriptstyle{\color{red}{7-}}{\color{YellowOrange}{5}}={\color{green}{2}}\\&\scriptstyle{\color{red}{2-}}{\color{YellowOrange}{2}}={\color{green}{0}}\\\end{align}}</math>||&#8199;&#8199;&#8199;&#8199;&#8199;<span style="color:LimeGreen>0</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;||rowspan="7"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{4\times{\color{blue}{5}}=}}{\color{YellowOrange}{20}}\\&\scriptstyle{\color{red}{2-}}{\color{YellowOrange}{2}}={\color{green}{0}}\\\end{align}}</math>||&#8199;&#8199;&#8199;&#8199;&#8199;0&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;||rowspan="7"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{9\times{\color{blue}{5}}=}}{\color{YellowOrange}{45}}\\&\scriptstyle{\color{red}{6-}}{\color{YellowOrange}{5}}={\color{green}{1}}\\&\scriptstyle{\color{red}{4-}}{\color{YellowOrange}{4}}={\color{green}{0}}\\\end{align}}</math>||&#8199;&#8199;&#8199;&#8199;&#8199;0&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;02<span style="color:LimeGreen>0</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|&#8199;&#8199;&#8199;&#8199;02&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;||&#8199;&#8199;&#8199;&#8199;02<span style="color:LimeGreen>0</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;||&#8199;&#8199;&#8199;&#8199;020&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|&#8199;0&#8199;0302&#8199;0&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|&#8199;0&#8199;030<span style="color:LimeGreen>2</span>&#8199;0&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;||&#8199;0&#8199;0302&#8199;0&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;||&#8199;0&#8199;0302&#8199;0<span style="color:LimeGreen>0</span>&#8199;&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|0303827014&#8199;&#8199;&#8199;&#8199;&#8199;
+
|0303827014&#8199;&#8199;&#8199;&#8199;&#8199;||0303827014&#8199;&#8199;&#8199;&#8199;&#8199;||0303827014<span style="color:LimeGreen>1</span>&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|486463564860000
+
|486463564860000||486463564860000||486463564860000
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;90070<span style="color:#0000FF>5</span>&#8199;&#8199;
+
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;9007<span style="color:#0000FF>05</span>&#8199;&#8199;||&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;90070<span style="color:#0000FF>5</span>&#8199;&#8199;||&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;90070<span style="color:#0000FF>5</span>&#8199;&#8199;
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;5400<span style="color:red>9</span>20
+
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;5<span style="color:red>4</span>00920||&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;5400<span style="color:red>9</span>20||&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;54009<span style="color:red>2</span>0
 
|}
 
|}
|style="text-align:right;"|ונאמ' ה' בד' הם כ&#x202B;'<br>
+
{|
ולא נקח אחדים<br>
 
אכן הב' עשרות נקחם מהב' אשר שמנו עתה על הז' ולא ישאר דבר
 
 
|-
 
|-
 
|
 
|
:::::{|
+
:*We say: in 2 there is not enough for 5, so we take from 27. There is 5 times in it. We place it beneath the third [rank], for the seven ranks end there.
 +
|style="width:45%; text-align:right;"|ונאמר ב2 אין די ל5 ניקח מ27 ויהיו בו ה' פעמים ונשימהו תחת השלישית כי שם יכלו ה7 מעלות לצד ימין <sup>שהם</sup> כמנין מעלות השורה התחתונה
 
|-
 
|-
|rowspan="7"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{9\times{\color{blue}{5}}=}}{\color{YellowOrange}{45}}\\&\scriptstyle{\color{red}{6-}}{\color{YellowOrange}{5}}={\color{green}{1}}\\&\scriptstyle{\color{red}{4-}}{\color{YellowOrange}{4}}={\color{green}{0}}\\\end{align}}</math>||&#8199;&#8199;&#8199;&#8199;&#8199;0&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
::*We say: 5 by 5 are 25.
 +
:::<math>\scriptstyle{\color{blue}{5\times5=25}}</math>
 +
|style="text-align:right;"|ונאמר 5 ב5 הם 25
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;020&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
:::We subtract the 5 from the 7; 2 remains.
 +
:::<math>\scriptstyle{\color{blue}{7-5=2}}</math>
 +
|style="text-align:right;"|נסיר הה' מהז' ישארו שנים
 
|-
 
|-
|&#8199;0&#8199;0302&#8199;0<span style="color:LimeGreen>0</span>&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
:::We subtract the 2 from the 2; nothing remains.
 +
:::<math>\scriptstyle{\color{blue}{2-2=0}}</math>
 +
|style="text-align:right;"|ונסיר הב' מהב' ולא ישאר דבר
 
|-
 
|-
|0303827014<span style="color:LimeGreen>1</span>&#8199;&#8199;&#8199;&#8199;
+
|
 +
::*We say: 5 by 4 are 20.
 +
:::<math>\scriptstyle{\color{blue}{5\times4=20}}</math>
 +
|style="text-align:right;"|ונאמ' ה' בד' הם כ&#x202B;'
 
|-
 
|-
|486463564860000
+
|
 +
:::We do not subtract units.
 +
|style="text-align:right;"|ולא נקח אחדים
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;90070<span style="color:#0000FF>5</span>&#8199;&#8199;
+
|
 +
:::The 2 are tens, so we subtract them from the 2 that we wrote now above the 7; nothing remains.
 +
:::<math>\scriptstyle{\color{blue}{2-2=0}}</math>
 +
|style="text-align:right;"|אכן הב' עשרות נקחם מהב' אשר שמנו עתה על הז' ולא ישאר דבר
 
|-
 
|-
|&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;54009<span style="color:red>2</span>0
+
|
|}
+
::*We say also: 5 by 9 are 45.
|style="text-align:right;"|עוד נאמר ה' בט' הם מ"ה<br>
+
:::<math>\scriptstyle{\color{blue}{5\times9=45}}</math>
נסיר הה' מהו', כי היא מעלה הראויה לו כנזכר וישאר א&#x202B;'<br>
+
|style="text-align:right;"|עוד נאמר ה' בט' הם מ"ה
ונסיר הד' מהד' ולא ישאר דבר הנה לנו שכלה כל החשבון
 
 
|-
 
|-
|<span style=color:red>[the last step is missing <math>\scriptstyle{\color{red}{2\times5=10\longrightarrow1-1=0}}</math>]</span>
+
|
|style="text-align:right;"|ולהיות לנו בזה היוצא בחלוק מעלות חלקות מהמספר, הן בתחלה, הן באמצע, נשים ספרות במקומם, כי זה מעשה הסיפרות ותועלתם כאשר הזכרנו
+
:::We subtract the 5 from the 6, as it is the corresponding rank as stated; 1 remains.
 +
:::<math>\scriptstyle{\color{blue}{6-5=1}}</math>
 +
|style="text-align:right;"|נסיר הה' מהו' כי היא מעלה הראויה לו כנזכר וישאר א&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|והנה יצא לנו שכאשר חלקנו העולה מהכפל באחת הנכפלים, יצא השני בלי תוספת ומגרעת ובלי שארית כלל
+
:::We subtract the 4 from the 4; nothing remains.
 +
:::<math>\scriptstyle{\color{blue}{4-4=0}}</math>
 +
|style="text-align:right;"|ונסיר הד' מהד' ולא ישאר דבר
 +
|-
 +
|<span style=color:red>[the last step is missing <math>\scriptstyle{\color{red}{2\times5=10\longrightarrow1-1=0}}</math>]</span>
 +
|
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle486463564860000\div90070500</math>
+
:The whole number is gone.
|style="text-align:right;"|וכן אם תחלקנה לחבירתה, תצא חבירתה בחילוק, כאשר בא בזאת הצורה
+
|style="text-align:right;"|הנה לנו שכלה כל החשבון
 +
|-
 +
|
 +
:Since we have empty ranks in the result of division, both at the beginning and in the middle, we write zeros in these places, because this is the role and the value of the zeros, as we have mentioned.
 +
|style="text-align:right;"|ולהיות לנו בזה היוצא בחלוק {{#annot:term|2138,2137|6jNM}}מעלות חלקות מהמספר{{#annotend:6jNM}} הן בתחלה הן באמצע נשים ספרות במקומם כי זה מעשה הסיפרות ותועלתם כאשר הזכרנו
 +
|-
 +
|We receive that when we divide the product by one of the multiplicands, the second results no more and no less, with no remainder at all.
 +
|style="text-align:right;"|והנה יצא לנו שכאשר חלקנו העולה מהכפל באחת הנכפלים יצא השני בלי תוספת ומגרעת ובלי שארית כלל
 +
|-
 +
|Likewise, if you divide by the other, the one results in the division, as appears in the following diagram:
 +
|style="text-align:right;"|וכן אם תחלקנה לחבירתה תצא חבירתה בחילוק כאשר בא בזאת הצורה
 
|-
 
|-
 
|
 
|
 +
*<math>\scriptstyle486463564860000\div90070500</math>
 
|
 
|
 
{|class="wikitable" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
{|class="wikitable" style="margin-left: auto; margin-right: 0px; text-align:center;"
Line 1,971: Line 2,337:
 
|}
 
|}
 
|-
 
|-
|
+
|I do not want to elaborate it any further and all is clear to the one who understands.
 
|style="text-align:right;"|ולא ראיתי להאריך בזה עוד והכל מבואר למבין
 
|style="text-align:right;"|ולא ראיתי להאריך בזה עוד והכל מבואר למבין
 
|-
 
|-
 
|
 
|
  
==== reason: procedure ====
+
==== <span style=color:Green>reason: procedure</span> ====
 +
|
 +
|-
 +
|<span style=color:Green>The reason for the decimal place of the interim result of division:</span>
 
|
 
|
 
|-
 
|-
|'''The reason for the decimal place of the interim result of division''': this decimal place is set according to the rank of the dividend from which the multiple of the rightmost digit of the divisor was subtracted
+
|The reason for the writing place of the result of division is that according to the rank [of the dividend] from which the first digit [of the divisor] is subtracted, so is the [rank of the number of] times that it is subtracted from it.
|style="text-align:right;"| '''וטעם מקום הנחת''' היוצא בחילוק הוא כי כפי המדרגה אשר ממנה לקח המספר הראשון, הם הפעמים אשר לקחו
+
|style="text-align:right;"|&#x202B;<ref>16v</ref><big>וטעם מקום הנחת</big> היוצא בחילוק הוא כי כפי המדרגה אשר ממנה לקח המספר הראשון הם הפעמים אשר לקחו
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle600\div3</math>
+
*I.e. if we divide six hundred by 3 units:
 +
:<math>\scriptstyle600\div3</math>
 
|style="text-align:right;"|ר"ל שאם חלקנו שש מאות לג' אחדים
 
|style="text-align:right;"|ר"ל שאם חלקנו שש מאות לג' אחדים
 
|-
 
|-
 
|
 
|
 +
:Each unit receives 2 and the rank from which it is subtracted is the rank of hundreds, so the two resulting from the division are of the same rank and they are two hundred.
 
:<math>\scriptstyle{\color{blue}{600\div3=200}}</math>
 
:<math>\scriptstyle{\color{blue}{600\div3=200}}</math>
|style="text-align:right;"|הנה יגיע לכל אחד ב' והמדרגה אשר ממנה לקח היא מדרגת המאות, הנה השנים אשר יצאו בחלוק היא הם מאותה המדרגה והם מאתים
+
|style="text-align:right;"|הנה יגיע לכל אחד ב' והמדרגה אשר ממנה לקח היא מדרגת המאות הנה השנים אשר יצאו בחלוק <s>היא</s> הם מאותה המדרגה והם מאתים
 
|-
 
|-
|<math>\scriptstyle a00\div b=c00\longrightarrow a000\div b0=c00</math>
+
|
|style="text-align:right;"|ואם היו שם עוד אלפים בעליון ועשרות בתחתון, הנה הפעמים אשר יגיעו לאחדים מהמאות, יגיעו לעשרות מהאלפים
+
:If there were thousands in the upper [line] and tens in the bottom [line], then as the units receive from the hundreds, so the tens would receive from the thousands.
 +
:<math>\scriptstyle{\color{OliveGreen}{a00\div b=c00\longrightarrow a000\div b0=c00}}</math>
 +
|style="text-align:right;"|ואם היו שם עוד אלפים בעליון ועשרות בתחתון הנה הפעמים אשר יגיעו לאחדים מהמאות יגיעו לעשרות מהאלפים
 
|-
 
|-
 
|
 
|
:As the tens are tens in relation to the units, so the thousands are tens in relation to the hundreds; and as the hundreds are in relation to the units, so the thousands are in relation to the tens, and the tens of thousands are in relation to the hundreds
+
:Because, as the tens are tens in relation to the units, so the thousands are tens in relation to the hundreds; and as the hundreds are in relation to the units, so the thousands are in relation to the tens, and the tens of thousands are in relation to the hundreds; and so on, as those are in relation to those, so are these in relation to these.
|style="text-align:right;"|כי כמו שהעשרות הם עשרות לאחדים, [ככה האלפים הם עשרות למאות, הנה כאשר הגיע לאחדים מהמאות] מהמאות, יגיעו לעשרות מהאלפים וכן למאות מהעשרות אלפים וכן לעולם, כי כמו שזה עולה לאשר כמותו כן עולה זה
+
|style="text-align:right;"|כי כמו שהעשרות הם עשרות לאחדים [ככה האלפים הם עשרות למאות הנה כאשר הגיע לאחדים מהמאות]&#x202B;<ref>marg.</ref> מהמאות יגיעו לעשרות מהאלפים וכן למאות מהעשרות אלפים וכן לעולם כי כמו שזה עולה לאשר כמותו כן עולה זה
 
|-
 
|-
 
|
 
|
:The rank of the division by units is the rank of the dividend - thus, if the units were extracted from the hundreds, the tens will be extracted from the thousands, and the hundreds will be extracted from the tens of thousands
+
:We have already explained that the rank of the [number of] times that the units [are subtracted] is the rank from which they are subtracted
|style="text-align:right;"|כבר ביארנו כי מדרגת הפעמים אשר הגיעו לאחדים היא מרוחק המדרגה אשר ממנו לקח והיא בעצמה המדרגה אשר לקחו העשרות מהאלפים והמאות מהעשרות אלפים וכן כולם
+
|style="text-align:right;"|כבר ביארנו כי מדרגת הפעמים אשר הגיעו לאחדים היא מרוחק המדרגה אשר ממנו לקח
 
|-
 
|-
|The multiple of a certain digit of the divisor should be extracted from the rank of the dividend that is placed in relation to the rank from which the multiple of the divisor's units was extracted, as the decimal position of that certain digit of the divisor in relation to its units
+
|
|style="text-align:right;"|ר"ל שכל אחד מהתחתונות, מדרגתה הראויה לקחת ממנה היא מרוחקת לצד שמאל [מהמדרגה אשר לקחו ממנה האחדים, כמספר המדרגות אשר היא מהאחדים] מהאחדים
+
:[Thus, since the units are subtracted from the hundreds], the tens are subtracted from the thousands, and the hundreds from the tens of thousands and so on.
 +
|style="text-align:right;"|והיא בעצמה המדרגה אשר לקחו העשרות מהאלפים והמאות מהעשרות אלפים וכן כולם
 +
|-
 +
|I.e. each of the bottom [digits] should be extracted from the rank [of the dividend] that is as far to the left of the rank, from which the [divisor's] units was extracted, as the number of ranks that it is far from the [rank of] units, i.e. as the number [of ranks] that the bottom [digit] is far to the left from the units [of the divisor].
 +
|style="text-align:right;"|ר"ל שכל אחד מהתחתונות מדרגתה הראויה לקחת ממנה היא מרו<sup>ח</sup>קת לצד שמאל [מהמדרגה אשר לקחו ממנה האחדים כמספר המדרגות אשר היא מהאחדים]&#x202B;<ref>marg.</ref> מהאחדים ר"ל כמספר אשר זה התחתון לצד שמאל מהאחדים <s>ר"ל כמספר אשר זה התחתון לצד שמאל מהאחדים</s>
 
|-
 
|-
 
|
 
|
:If the units of the divisor were extracted from the hundreds of the dividend, then the hundreds of the divisor, that are on the third rank in relation to the units of the divisor, should be taken from the tens of thousands of the dividend, that are on the third rank in relation to the hundreds of the dividend
+
:The rank of the hundreds is third to the left of the units, so when the units are taken from the hundreds, as we mentioned, the tens should be taken from the thousands that are third [in relation to the tens] to the left of the rank of hundreds, from which the units are taken.
|style="text-align:right;"|ר"ל כמספר אשר זה התחתון לצד שמאל מהאחדים ר"ל כמספר אשר זה התחתון לצד שמאל מהאחדים, שהרי המאות מדרגתם היא שלישית לצד שמאל מהאחדים וכן העשרות אלפים, אשר ראוי לו לקחת מהם בקחת האחדים מהמאות כאשר זכרנו, גם הם שלישיים לצד שמאל מהמאות, אשר היא המדרגה אשר ממנה לקחו האחדים והקש על זה, ובזה נכלל טעם כל המעשה
+
|style="text-align:right;"| שהרי המאות מדרגתם היא שלישית לצד שמאל מהאחדים וכן העשרות אלפים אשר ראוי לו לקחת מהם בקחת האחדים מהמאות כאשר זכרנו גם הם שלישיים לצד שמאל מהמאות אשר היא <sup>ה</sup>מדרגה אשר ממנה לקחו האחדים
 +
|-
 +
|Apply this.
 +
|style="text-align:right;"|והקש על זה
 +
|-
 +
|This includes the reason of the whole procedure.
 +
|style="text-align:right;"|ובזה נכלל טעם כל המעשה
 
|-
 
|-
 
|
 
|
  
 
==== reason: check ====
 
==== reason: check ====
|style="text-align:right;"|'''וטעם הבחינה'''
+
|style="text-align:right;"|&#x202B;<ref>17r</ref><big>וטעם הבחינה</big>
 
|-
 
|-
|'''The reason for the checking procedure''': multiplication is the inverse operation of division
+
|For the multiplication is the inverse operation of division.
 
|style="text-align:right;"|כי הכפל הוא הפך החילוק
 
|style="text-align:right;"|כי הכפל הוא הפך החילוק
 +
|-
 +
|I.e. [the meaning of] division is to know how many times the small number is in the larger number.
 +
|style="text-align:right;"|ר"ל שהחילוק הוא לידע כמה פעמים המספר הקטון במספר הגדול
 +
|-
 +
|Whereas [the meaning of] multiplication is [to know] how much is the sum of the multiples of a given number for a given number of times.
 +
|style="text-align:right;"|והכפל הוא כמה סך כפלי מספר ידוע פעמים ידועים
 +
|-
 +
|
 +
*If we divide 20 by 5, each one receives 4; if by 4, each one [receives] 5.
 +
|style="text-align:right;"|וכן אם בחלקנו כ' לה' יעלה לכל אחד ד' או לד' לכל אחד ה&#x202B;'
 
|-
 
|-
 
|
 
|
*The meaning of division: finding out how many times the small number is in the larger number
+
:So, 20 is a product of 4 by 5, which are the number by which we divide and the result of division.
|style="text-align:right;"|ר"ל שהחילוק הוא לידע כמה פעמים המספר הקטון במספר הגדול
+
|style="text-align:right;"|הנה כ' הוא כפל ד' בה' שהם המספר אשר חלקנו עליו והיוצא בחילוק
 
|-
 
|-
 
|
 
|
*The meaning of multiplication: [finding out] how much is the sum of the multiples of a given number for a given number of times
+
:<math>\scriptstyle{\color{blue}{\begin{cases}\scriptstyle20\div5=4\\\scriptstyle20\div4=5\end{cases}\longrightarrow20=4\times5}}</math>
|style="text-align:right;"|והכפל הוא כמה סך כפלי מספר ידוע פעמים ידועים
+
|
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle{\color{blue}{\begin{cases}\scriptstyle20\div5=4\\\scriptstyle20\div4=5\end{cases}\longrightarrow20=4\times5}}</math>
+
*If we divide 21 by 4, each one receives 5 and 1 remains.
|style="text-align:right;"|וכן אם בחלקנו כ' לה', יעלה לכל אחד ד&#x202B;'<br>
+
|style="text-align:right;"|ואם חלקנו כ"א לד' [..] יעלה לכל אחד ה' וישאר א&#x202B;'
או לד' לכל אחד ה&#x202B;'<br>
 
הנה כ' הוא כפל ד' בה', שהם המספר אשר חלקנו עליו והיוצא בחילוק
 
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle{\color{blue}{21\div4=5+\frac{1}{4}\longrightarrow21=\left(4\times5\right)+1}}</math>
+
:Therefore, when we multiply 4 by 5, the result is 20. We add to it the remaining 1; the total result is 21, which is the same as the dividend.
|style="text-align:right;"|ואם חלקנו כ"א לד', כמה יעלה לכל אחד, ה' וישאר א&#x202B;'<br>
+
:<math>\scriptstyle{\color{blue}{21\div4=5+\frac{1}{4}\longrightarrow21=\left(4\times5\right)+1}}</math>
ולזה כאשר כפלנו ד' בה' ויעלה כ', הוספנו עליהם הא' הנשאר, יעלה הכל כ"א, שהוא כמספר המתחלק וכל זה ברור
+
|style="text-align:right;"|ולזה כאשר כפלנו ד' בה' ויעלה כ' הוספנו עליהם הא' הנשאר יעלה הכל כ"א שהוא כמספר המתחלק
 +
|-
 +
|All this is clear.
 +
|style="text-align:right;"|וכל זה ברור
 
|-
 
|-
|Finding the proper fraction of the remainder from division - reference to the section on fractions
+
|<span style=color:Green>Finding the proper fraction of the remainder from division:</span> When you wish to add the smaller [number] that remains above the bottom number that is greater than it, or any small number that is above a greater number, you will find in the discussion on summing fractions chapter 1, section 2, a general method for all the numbers, whether they have divisors, or they are prime.
|style="text-align:right;"|וכאשר תרצה לחבר המעט הנשאר על המספר התחתון, שהוא גדול ממנו, או שום אחד מספר קטן על מספר אחד גדול ממנו, תמצא בחלק הב' בפרק הא' במאמ' האחדות, אשר בו דרך כולל לכל המספרים, בין יהיו להם מורים, בין אם יהיו פשוטים
+
|style="text-align:right;"|<big>וכאשר</big> תרצה לחבר המעט הנשאר על המספר התחתון שהוא גדול ממנו או שום אחד מספר קטן על מספר אחד גדול ממנו תמצא בחלק הב' בפרק הא' במאמ' האחדות אשר בו דרך כולל לכל המספרים בין יהיו להם מורים בין אם יהיו {{#annot:term|76,2029|O61W}}פשוטים{{#annotend:O61W}}
 +
|}
 +
{|
 
|-
 
|-
 
|
 
|
  
=== divisibility of a number ===
+
=== <span style="color:Green>divisibility of a number</span> ===
 
|
 
|
 
|-
 
|-
|For an inclusive method of dividing a large number by a smaller number and vice versa - the author uses a technique of the ancients of finding the fractions [= divisors] of numbers
+
|To give you an inclusive method for dividing a large number by a smaller number and vice versa, I use the technique of the ancients: to extract the denominators of the number by which you want to divide, whether it is the smaller number or the greater number; that is to consider the numbers of which it is composed, if it is not a prime number.
|style="text-align:right;"|'''אכן לתת לך דרך כולל''', בין לחלק רב למעט, או בהפך, דרכתי דרך הראשונים והוא שתוציא המורים מהחשבון אשר תרצה לחלק עליו, אם מועט אם הרבה, והוא ל[ראו'] המספרים אשר הוא מורכב מהם, אם איננו פשוט
+
|style="width:45%; text-align:right;"|<big>אכן לתת לך דרך כולל</big> בין לחלק רב למעט או בהפך דרכתי דרך הראשונים והוא שתוציא המורים מהחשבון אשר תרצה לחלק עליו אם מועט אם הרבה והוא ל[ראו'] המספרים אשר הוא {{#annot:term|2491,1961|4sLD}}מורכב מהם{{#annotend:4sLD}} אם איננו {{#annot:term|76,2029|2DxW}}פשוט{{#annotend:2DxW}}
 
|-
 
|-
 
|
 
|
==== 3; 6; 9 ====
+
==== <span style="color:Green>3; 6; 9</span> ====
 
|
 
|
 
|-
 
|-
|To find out if a given number has a third, a sixth, or a ninth [= if 3, 6, or 9 are divisors of the number]
+
|First, if you want to know if it has a third, a sixth, or a ninth [= if 3, 6, or 9 are divisors of the number]:
|style="text-align:right;"|'''ראשונה''' אם תרצה לדעת אם יש לו שלישית, או שישית, או תשיעית, מבלי שברים
+
|style="text-align:right;"|<big>ראשונה</big> אם תרצה לדעת אם יש לו שלישית או שישית או תשיעית מבלי שברים
 
|-
 
|-
 
|
 
|
*six: If the units of the number are not even - the number has no sixth [= not divisible by 6]
+
*<span style="color:Green>six:</span> See, if the first digit that is in the first rank is an odd number, then you know that the number does not have a sixth [= not divisible by 6].
|style="text-align:right;"|עיין אם האות הראשונה אשר במעלה הא' מהחשבון הוא נפרד, תדע שאין לו שישית
+
|style="text-align:right;"|עיין אם ה{{#annot:term|204,1332|EozN}}אות{{#annotend:EozN}} הראשונה אשר במעלה הא' מהחשבון הוא נפרד תדע שאין לו שישית
 
|-
 
|-
 
|
 
|
::If it is an even number and it has a third [= divisible by 3] - it has a sixth [= divisible by 6]
+
:If it is an even number, know that if it has a third [= divisible by 3], it has also a sixth [= divisible by 6], otherwise it has not.
|style="text-align:right;"|ואם הוא <s>ס</s><sup>ז</sup>וג, [אז] דע שאם יהיה לו שלישית, יהיה לו ג"כ שישית ואם לאו לאו
+
|style="text-align:right;"|ואם הוא <s>ס</s><sup>ז</sup>וג [אז] דע שאם יהיה לו שלישית יהיה לו ג"כ שישית ואם לאו לאו
 
|-
 
|-
 
|
 
|
*nine and three:
+
*<span style="color:Green>nine and three:</span> Every [number] that it has a ninth [= divisible by 9], has also a third [= divisible by 3], but not vice versa.
 +
|style="text-align:right;"|&#x202B;<ref>17v</ref>וכל שיש לו תשיעית יש לו ג"כ שלישית ולא יתהפך
 +
|-
 
|
 
|
 +
:To know if a number has a ninth or a third, consider all the digits of the number as if they are of the first rank, i.e. sum them as units and cast out the nines from this sum
 +
|style="text-align:right;"|ולדעת אם יש למספר תשיעית או שלישית הבט כל רשמי מספרי החשבון כאלו היו כולם מהמעלה הראשונה ר"ל שתחברם כלם כאלו היו אחדים ו{{#annot:term|1560,1362|LIme}}חסר כל ט' ט' {{#annotend:LIme}}שבחבור ההוא
 
|-
 
|-
 
|
 
|
::If it has a ninth [= divisible by 9] - it has a third [= divisible by 3]
+
:*<span style="color:Green>No remainder</span> - If it is consumed by the nines, know that it has a ninth [= divisible by 9] and it certainly has a third [= divisible by 3].
|style="text-align:right;"|וכל שיש לו תשיעית, יש לו ג"כ שלישית ולא יתהפך
+
|style="text-align:right;"|ואם יצא כולו תשיעיות תדע שיש לו תשיעית וכ"ש שלישית
 
|-
 
|-
 
|
 
|
:Considering the remainder after casting out nines from the sum of all the digits of the given number
+
:*<span style="color:Green>The reminder is 6 or 3</span> - if 6 or 3 remains, it has a third [= divisible by 3], but it does not have a ninth [not divisible by 9].
|style="text-align:right;"|ולדעת אם יש למספר תשיעית, או שלישית, הבט כל רשמי מספרי החשבון כאלו היו כולם מהמעלה הראשונה, ר"ל שתחברם כלם כאלו היו אחדים וחסר כל ט' ט' שבחבור ההוא
+
|style="text-align:right;"|ואם ישארו ו' או ג' יהיה לו שלישית לא תשיעית
 
|-
 
|-
 
|
 
|
:*No remainder - the number has a ninth [= divisible by 9] and therefore has a third [= divisible by 3] also
+
:*<span style="color:Green>The reminder is a number other than 3</span> - if another number remains, such as 4 or 5 and the like, it does not even have third [= not divisible by 3].
|style="text-align:right;"|ואם יצא כולו תשיעיות, תדע שיש לו תשיעית וכ"ש שלישית
+
|style="text-align:right;"|ואם ישאר מספר אחר כמו ד' או ה' או הדומה להם אין לו אפי' שלישי&#x202B;'
 
|-
 
|-
 +
!<span style="color:Green>Reasons</span>
 
|
 
|
:*The reminder is 3 - it has a third [= divisible by 3], but does not have a ninth [not divisible by 9]
 
|style="text-align:right;"|ואם ישארו ו' או ג', יהיה לו שלישית, לא תשיעית
 
 
|-
 
|-
 
|
 
|
:*The reminder is a number other than 3 - it has no third [= not divisible by 3]
+
*The reason that we consider all the digits of the number as units, without considering their ranks, is that every [unit of] a certain rank is ten [units of] the preceding rank, therefore when subtracting nine from the ten [of a certain rank] the remainder belongs to the preceding rank, and so on repeatedly. We find that after casting out the nines [their ranks] are the same.
|style="text-align:right;"|ואם ישאר מספר אחר, כמו ד', או ה', או הדומה להם, אין לו אפי' שלישי&#x202B;'
+
|style="text-align:right;"|<big>הטעם</big> מה שא[נו] לוקחים כל רשמי המספרים לאחדים בלי עיון אל מעלותיהן הוא לפי שכל מעלה היא עשר בערך אל אשר לפניה בהסר מהעשרה תשע ישאר כמותה וכן כולם<br>
 +
נמצא שלאחר הסרת התשיעיות כלם שוים
 
|-
 
|-
|'''The reason that the reminder after casting out nines is an indicator for a division by 9''': every [unit of] a certain rank is ten [units of] the preceding rank, therefore the result of subtracting nine from the ten of a certain rank will belong to the preceding rank, and so on repeatedly
+
|
|style="text-align:right;"|'''הטעם''' מה שא[נו] לוקחים כל רשמי המספרים לאחדים, בלי עיון אל מעלותיהן, הוא לפי שכל מעלה היא עשר בערך אל אשר לפניה, בהסר מהעשרה תשע, ישאר כמותה וכן כולם. נמצא שלאחר הסרת התשיעיות כלם שוים
+
*We say that if the first digit is an odd number, it does not have a sixth [= 6 is not a divisor of the number], since the whole number is odd, and an odd number is indivisible by an even number, i.e. it is not a product of an even number multiplied by an odd number and all the more so by an even number.
 +
|style="text-align:right;"|ואמרנו שאם הרושם הראשון הוא מספר נפרד שאין לו שישית הוא לפי שכל <sup>ה</sup>חשבון בכללו <s>הוא נפרד שאין לו שישית הוא לפי שכל החשבון בכללו</s> הוא נפרד והחשבון הנפרד לא {{#annot:term|2187,1226|sEuM}}נחלק לשלמים{{#annotend:sEuM}} אל חשבון זוג ר"ל שאינו מורכב מחשבון זוג אפי' עם הנפרד כ"ש עם הזוג
 
|-
 
|-
|'''The reason that a number does not have sixth [= 6 is not a divisor of the number] if its units are odd''': since the whole number is odd, and an odd number cannot be composed of an even number and therefore cannot be divided by an even number
+
|
|style="text-align:right;"|ואמרנו שאם הרושם הראשון הוא מספר נעדר, שאין לו שישית, הוא לפי שכל החשבון בכללו הוא נפרד שאין לו שישית הוא לפי שכל החשבון בכללו הוא נפרד והחשבון הנפרד לא נחלק לשלמים אל חשבון זוג, ר"ל שאינו מורכב מחשבון זוג, אפי' עם הנפרד, כ"ש עם הזוג
+
*We say that if it is an even number that has a third [= divisible by three], it has also a sixth [= divisible by six], since the whole number that consists of an even number multiplied by 3 is an even number. For if it were an odd number, it were a product of an odd number by an odd number, but as the number that consists of the 3 is even, it is divisible by double the 3, i.e. by six, so it has a sixth.
|-
+
|style="text-align:right;"|ואמרנו שאם הוא זוג שאם יש לו שלישית יש לו ג"כ שישית הוא לפי שמאחר שהחשבון בכללו זוג מספר כפלי הג' ג' אשר בו הוא זוג שאם היה נפרד הנה היה {{#annot:term|2491,1961|Dhiz}}מורכב מ{{#annotend:Dhiz}}נפרד בנפרד והיה כולו בנפרד ואחר שהחשבון אשר בו הג' ג' הוא זוג א"כ הוא נחלק לזוגי ג' ר"ל לששה ששה והנה יש לו שישית על השלימות וזה מבואר
|'''The reason that an even number that is divisible by three is divisible also by six''': since it is even number, the multiplier of three in it is an even number. For if it was an odd number, the whole number was odd, as a product of odd number by odd number, but as the number is even it is divisible by even times three, that is to six
 
|style="text-align:right;"|ואמרנו שאם הוא זוג, שאם יש לו שלישית, יש לו ג"כ שישית, הוא לפי שמאחר שהחשבון בכללו זוג, מספר כפלי הג' ג' אשר בו הוא זוג, שאם היה נפרד, הנה היה מורכב מנפרד בנפרד והיה כולו בנפרד, ואחר שהחשבון אשר בו הג' ג' הוא זוג, א"כ הוא נחלק לזוגי ג', ר"ל לששה ששה והנה יש לו שישית על השלימות וזה מבואר
 
 
|-
 
|-
 
|
 
|
  
==== 2; 4; 8 ====
+
==== <span style="color:Green>2; 4; 8</span> ====
 
|
 
|
 
|-
 
|-
|To find out if a given number has a half, a quarter, or an eighth [= if 2, 4, or 8 are divisors of a the number]
+
|If you want to find out if it has a half, a quarter, or an eighth [= if 2, 4, or 8 are divisors of a the number]
|style="text-align:right;"|'''ואם תרצה''' לדעת אם יש לו מחצית, או רביעית, או שמינית
+
|style="text-align:right;"|<big>ואם תרצה</big> לדעת אם יש לו מחצית או רביעית או שמינית
 
|-
 
|-
|Considering its units:
+
|Consider its first numeral [its units]:
|style="text-align:right;"|ראה הרושם הראשון
+
|style="text-align:right;"|&#x202B;<ref>18r</ref>ראה הרושם הראשון
 
|-
 
|-
|If it is an odd number, it does not have a half, a quarter or an eighth [not divisible by 2, 4, or 8] - from the same reason mentioned above concerning the sixth [= 6 as a divisor]
+
|If it is an odd number, it does not have any of them [not divisible by 2, 4, or 8] - from the reason we have mentioned concerning the sixth [= 6 as a divisor].
|style="text-align:right;"|אם הוא חשבון נפרד, הנה אין לו אח' מהם, מהטעם שאמרנו בשישית
+
|style="text-align:right;"|אם הוא חשבון נפרד הנה אין לו אח' מהם מהטעם שאמרנו בשישית
 
|-
 
|-
 
|
 
|
*two: if it is an even number or 0 - then the whole number is even, for the tens and up are even - therefore it has a half [= divisible by 2]
+
*<span style="color:Green>two:</span> if it is an even number or 0 - then the whole number is even, for the tens and up are even - therefore it is known that it has a half [= divisible by 2].
|style="text-align:right;"|ואם הוא זוג, או 0', הרי כל החשבון בכללו זוג, כי העשרות ומהם ולמ[ע]לה כלם זוג אחדים וא"כ בידוע שיש לו מחצית
+
|style="text-align:right;"|ואם הוא זוג או 0' הרי כל החשבון בכללו זוג כי העשרות ומהם ולמ[ע]&#x202B;<ref>marg.</ref>לה כלם זוג אחדים וא"כ בידוע שיש לו מחצית
 
|-
 
|-
 
|
 
|
*four and eight: if it is an even number or 0
+
*<span style="color:Green>four and eight:</span> to know if it has also a quarter and an eighth:
 
|style="text-align:right;"|ולדעת אם יש לו ג"כ רביעית ושמינית
 
|style="text-align:right;"|ולדעת אם יש לו ג"כ רביעית ושמינית
 
|-
 
|-
|The digits of the whole number are summed according to the following procedure:<br>
+
|
:*for a number of the type <math>\scriptstyle2a+10b+\left[100\sdot\left(2c-1\right)\right]</math><br>
+
:<span style="color:Green>The digits of the whole number are summed according to the following procedure:</span>
::&rarr; the sum is <math>\scriptstyle2a+2b+4</math>
+
|
:*for a number of the type <math>\scriptstyle2a+10b+\left(100\sdot2c\right)</math><br>
 
::&rarr; the sum is <math>\scriptstyle2a+2b</math>
 
|style="text-align:right;"|קח המספר אשר במעלה הראשונה כמו שהוא ואשר בשנייה כפול, אם יש שם מספר ואשר בשלישי', אם הוא נפרד, קח בעבורו ד' אחדים<br>
 
ואם הוא זוג, או 0, לא תקח בעבורו מאומה וכן מהמעלה השלישית ולמעלה לא תקח דבר
 
 
|-
 
|-
 
|
 
|
:Considering the remainder after casting out eights from this sum
+
:*Take the numeral that is in the first rank as it is.
|style="text-align:right;"|וחבר כל אשר לקחת והשלך אותו ח' ח&#x202B;'
+
|style="text-align:right;"|קח המספר אשר במעלה הראשונה כמו שהוא
 
|-
 
|-
 
|
 
|
:*No remainder - the number has an eighth and a quarter [= divisible by 8 and 4]
+
:*Double what is in the second [rank], if there is a number there.
|style="text-align:right;"|ואם יצא הכל, הנה יש לו שמינית ורביעית
+
|style="text-align:right;"|ואשר בשנייה כפול אם יש שם מספר
 
|-
 
|-
 
|
 
|
:*The remainder is 4 - the number has a quarter [= divisible by 4]
+
:*If what is in the third [rank] is an odd number, take 4 units for it; if it is an even number or 0, do not take any thing for it.
|style="text-align:right;"|ואם ישאר [ארבעה] יש לו רביעית לבד
+
|style="text-align:right;"|ואשר בשלישי' אם הוא נפרד קח בעבורו ד' אחדים ואם הוא זוג או 0 לא תקח בעבורו מאומה
 
|-
 
|-
 
|
 
|
:*The remainder is a number other than 4 - the number does not have an eighth or a quarter [=not divisible by 4 or 8]
+
:*Likewise from the third rank up, do not take any thing.
|style="text-align:right;"|ואם ישאר חשבון אחר, אין לו לא שמינית ולא רביעית
+
|style="text-align:right;"|וכן מהמעלה השלישית ולמעלה לא תקח דבר
 
|-
 
|-
|'''The reason for doubling the digit of the tens in the sum''': when extracting eight from each ten the remainder is two
+
|
|style="text-align:right;"|'''וטעם''' אומרנו שנקח אשר במעלה השנית כפול, הוא לפי שהם עשרות ומכל עשר, כאשר תסיר ח', ישארו ב', הרי שישאר לנו מכל עשר שנים, לכן אנו כופלים כל העשרות ולכך אנו לוקחים אותם כפולות
+
:Sum up all that you took and cast out the eights.
|-
+
|style="text-align:right;"|וחבר כל אשר לקחת ו{{#annot:term|1560,1265|07O7}}השלך אותו ח' ח&#x202B;'{{#annotend:07O7}}
|'''The reason for not taking any digit for an even number of hundreds in the sum''': every even number of hundreds is divisible by 8 (for example: 200÷8=25)
 
|style="text-align:right;"|ואשר במעלה השלישית הם מאות וכל זוגי מאות יש להם שמינית, כי שמינית מאתים הוא כ"ה, לכן לא נקח בעבור זוגי המאות דבר
 
|-
 
|'''The reason for taking 4 for an odd number of hundreds in the sum''': when extracting eights from one hundred the remainder is four - 100-(12·8)=100-96=4
 
|style="text-align:right;"|אך אם יש שם מאה נפרד, אחר הסרת זוגי המאות, נקח בעבורו ד', כי בהסיר שמיניות המאה, שהם י"ב שמיניות, שהם עולים לצ"ו, ישארו ד&#x202B;'
 
|-
 
|'''No need to take any thing for the ranks that are higher than the hundreds''' - because all of them are an even number of hundreds and therefore are divisible by 8
 
|style="text-align:right;"|ומהמעלה השלישית ולמעלה לא תקח דבר, כי כלם הם זוגי מאות ויש להם שמינית כמו שביארנו
 
 
|-
 
|-
 
|
 
|
 
+
:<math>\scriptstyle{\color{OliveGreen}{2a+10b+\left[100\sdot\left(2c-1\right)\right]\longrightarrow2a+2b+4}}</math>
==== 7 ====
+
:<math>\scriptstyle{\color{OliveGreen}{2a+10b+\left(100\sdot2c\right)\longrightarrow2a+2b}}</math>
 
|
 
|
 
|-
 
|-
|To find out if a given number has a seventh [= if 7 is a divisor of a given number]
+
|
|style="text-align:right;"|ואם תרצה לדעת אם יש לו שביעית
+
:*If all is gone [= no remainder], it has an eighth and a quarter [= divisible by 8 and 4].
 +
|style="text-align:right;"|ואם {{#annot:term|1560,1231|293n}}יצא הכל{{#annotend:293n}} הנה יש לו שמינית ורביעית
 
|-
 
|-
|Considering the final remainder from the following procedure: multiplying the leftmost digit of the number by 3, adding the product to the digit in the preceding rank on the right and casting out sevens from the sum. Multiplying the remainder by 3, adding the product to the preceding rank on the right and casting out sevens from the sum, and so on repeatedly
+
|
|style="text-align:right;"|ראה הרושם האחרון אשר לצד שמאל וכפלהו בג' וחברהו לאשר תמצא במעלה לאשר לפניה והסר לעולם השביעיות והנשאר כפלהו בג' וחברהו עם אשר תמצא אשר לפניה ואם לא תמצא שם מספר כי אם 0', כפלהו פעם שנית בג' וכן על כל 0' וחברהו עם אשר תמצא לפניו והשלך לעולם הז' ז&#x202B;'
+
:*If four remains, it has a quarter [= divisible by 4].
 +
|style="text-align:right;"|ואם ישאר [ארבעה]&#x202B;<ref>marg.</ref> יש לו רביעית לבד
 
|-
 
|-
 
|
 
|
:*If there is no remainder - the number has a seventh [= divisible by 7]
+
:*If another number remains, it does not have an eighth nor a quarter [=not divisible by 4 or 8]
|style="text-align:right;"|ואם יצא הכל לשביעיות, הרי ידענו שיש לו שביעית
+
|style="text-align:right;"|ואם ישאר חשבון אחר אין לו לא שמינית ולא רביעית
 
|-
 
|-
 +
|<span style="color:Green>The reason for doubling the digit of the tens in the sum:</span>
 
|
 
|
:*Otherwise - it does not
 
|style="text-align:right;"|ואם לאו לאו
 
 
|-
 
|-
|'''The reason for multiplying each rank by 3 and adding the product to the preceding rank''': [the unit of] every rank is ten [units of] the preceding rank and when subtracting 7 from 10 the remainder is 3. Therefore, each unit is valued 3 in the preceding rank after subtracting 7 from it
+
|The reason we say that we take what is in the second rank as doubled is that they are tens and when you subtract 8 from each ten, 2 remains. So, we are left with two from each ten, therefore we double all the tens and take them doubled.
|style="text-align:right;"|'''הטעם''' מה שאנו כופלים כל מעלה בג' לחברו לאש' לפניה, הוא לפי שכל מעלה היא עשר בערך אשר לפניה ובהסר מהם הז' [ישארו ג', הנה כל אחד הוא כשלש בערך אשר לפניו, אחרי הסרת הז&#x202B;']
+
:<math>\scriptstyle{\color{blue}{10-8=2}}</math>
 +
|style="text-align:right;"|<big>וטעם</big> אומרנו שנקח אשר במעלה השנית כפול הוא לפי שהם עשרות ומכל עשר כאשר תסיר ח' ישארו ב' הרי שישאר לנו מכל עשר שנים לכן אנו כופלים כל העשרות ולכך אנו לוקחים אותם כפולות
 
|-
 
|-
 +
|<span style="color:Green>The reason for not taking any digit for an even number of hundreds in the sum:</span>
 
|
 
|
 
+
|-
==== 5; 10 ====
+
|What is in the third rank are hundreds and every even number of hundreds has an eighth [= is divisible by 8]. For the eighth of two hundred is 25. So, we do not take any thing for an even number of hundreds.
 +
:<math>\scriptstyle{\color{blue}{\frac{1}{8}\sdot200=25}}</math>
 +
|style="text-align:right;"|ואשר במעלה השלישית הם מאות וכל זוגי מאות יש להם שמינית כי שמינית מאתים הוא כ"ה לכן לא נקח בעבור זוגי המאות דבר
 +
|-
 +
|<span style="color:Green>The reason for taking 4 for an odd number of hundreds in the sum:</span>
 
|
 
|
 
|-
 
|-
|To find out if a given number has a tenth, or a fifth [= if 10, or 5 are divisors of a given number]
+
|But, if there is an odd number of hundreds, after subtracting the even number of hundreds, we take 4 for it. Because, when subtracting the eights from one hundred, which are 12 eights that are 96, 4 remains.
|style="text-align:right;"|'''ואם תרצה''' לדעת אם יש לו עשירית, או חמישית
+
:<math>\scriptstyle{\color{blue}{100-\left(12\sdot8\right)=100-96=4}}</math>
 +
|style="text-align:right;"|אך אם יש שם מאה נפרד אחר הסרת זוגי המאות נקח בעבורו ד' כי בהסיר שמיניות המאה שהם י"ב שמיניות שהם עולים לצ"ו ישארו ד&#x202B;'
 
|-
 
|-
 +
|<span style="color:Green>No need to take any thing for the ranks that are higher than the hundreds</span>
 
|
 
|
:*If the digit of the units is zero - the whole number is tens and therefore it has a tenth and a fifth [= divisible by 10 and 5]
 
|style="text-align:right;"|אם הרושם הראשון הוא 0, הנה הכל עשרות, [כי אם המאות ומשם ולמעלה הכל הוא עשרות] והנה יש לו עשירית גם חמישית
 
 
|-
 
|-
|
+
|You do not take any thing for the third rank up, because all of them are an even number of hundreds, so they have an eighth [= are divisible by 8], as we have explained.
:*If the digit of the units is 5 - the number has a fifth [= divisible by 5]
+
|style="text-align:right;"|ומהמעלה השלישית ולמעלה לא תקח דבר כי כלם הם זוגי מאות ויש להם שמינית כמו שביארנו
|style="text-align:right;"|ואם הוא ה', הנה יש לו חמישית לבד
 
 
|-
 
|-
 
|
 
|
:*If the digit of the units is other than 0 or 5 - it does not have a fifth [= not divisible by 5]
+
 
 +
==== <span style="color:Green>7</span> ====
 +
|
 +
|-
 +
|If you want to find out if it has a seventh [= if 7 is a divisor of a given number]
 +
|style="text-align:right;"|ואם תרצה לדעת אם יש לו שביעית
 +
|-
 +
|See the final digit to the right and multiply it by 3, add [the product] to what you find in the preceding [rank], and cast out the sevens [from the sum]. Multiply the remainder by 3 and add [the product] to what you find in the preceding [rank]. If you do not find there any number, but 0, multiply [the product] again by 3, likewise for every 0, and add [the product] to what you find in the preceding [rank]. Then, cast out the sevens [from the sum, and so on repeatedly].
 +
|style="text-align:right;"|ראה הרושם האחרון אשר לצד שמאל וכפלהו בג' וחברהו לאשר תמצא במעלה לאשר לפניה והסר לעולם &#x202B;<ref>18v</ref>השביעיות והנשאר כפלהו בג' וחברהו עם אשר תמצא אשר לפניה ואם לא תמצא שם מספר כי אם 0' כפלהו פעם שנית בג' וכן על כל 0' וחברהו עם אשר תמצא לפניו ו{{#annot:term|1560,1265|yHcy}}השלך לעולם הז' ז&#x202B;'{{#annotend:yHcy}}
 +
|-
 +
|
 +
*If all is cast out by the sevens, we know that it has a seventh [= divisible by 7].
 +
|style="text-align:right;"|ואם {{#annot:term|1560,1231|jc6j}}יצא הכל לשביעיות{{#annotend:jc6j}} הרי ידענו שיש לו שביעית
 +
|-
 +
|
 +
*Otherwise - it does not.
 +
|style="text-align:right;"|ואם לאו לאו
 +
|-
 +
|<span style="color:Green>The reason for multiplying each rank by 3 and adding the product to the preceding rank:</span>
 +
|
 +
|-
 +
|The reason that we multiply every rank by 3 [and add the product] to the preceding rank is that every rank is ten with regard to the preceding [rank] and when subtracting 7 from [10], 3 remains. Therefore, each unit is valued three with regard to the preceding [rank], after subtracting the 7 [from it].
 +
|style="text-align:right;"|<big>הטעם</big> מה שאנו כופלים כל מעלה בג' לחברו לאש' לפניה הוא לפי שכל מעלה היא עשר בערך אשר לפניה ובהסר מהם הז' [ישארו ג' הנה כל אחד הוא כשלש בערך אשר לפניו אחרי הסרת הז&#x202B;']&#x202B;<ref>marg.</ref>
 +
|-
 +
|
 +
 
 +
==== <span style="color:Green>5; 10</span> ====
 +
|
 +
|-
 +
|If you want to find out if it has a tenth, or a fifth [= if 10, or 5 are divisors of a given number]
 +
|style="text-align:right;"|<big>ואם תרצה</big> לדעת אם יש לו עשירית או חמישית
 +
|-
 +
|
 +
*If the first digit is 0, the whole [number] is tens, because the hundreds and up are all tens also, therefore it has a tenth and a fifth [= divisible by 10 and 5].
 +
|style="text-align:right;"|אם הרושם הראשון הוא 0 הנה הכל עשרות [כי אם המאות ומשם ולמעלה הכל הוא עשרות]&#x202B;<ref>marg.</ref> והנה יש לו עשירית גם חמישית
 +
|-
 +
|
 +
*If it is 5, it has only a fifth [= divisible by 5].
 +
|style="text-align:right;"|ואם הוא ה' הנה יש לו חמישית לבד
 +
|-
 +
|
 +
*If it is another number, it does not have even a fifth [= not divisible by 5].
 
|style="text-align:right;"|ואם הוא מספר אחר גם חמישית אין לו
 
|style="text-align:right;"|ואם הוא מספר אחר גם חמישית אין לו
 
|-
 
|-
 
|
 
|
  
==== 11 ====
+
==== <span style="color:Green>11</span> ====
 
|
 
|
 
|-
 
|-
|To find out if a given number has 11th [= if 11 is a divisor of a given number]
+
|If you want to find out if it has 11th [= if 11 is a divisor of a given number]
 
|style="text-align:right;"|ואם תרצה לדעת אם יש לו י"א
 
|style="text-align:right;"|ואם תרצה לדעת אם יש לו י"א
 
|-
 
|-
|Meaning: completely divisible by 11 - no remainder is left when casting out by elevens
+
|I.e. if it is completely divisible by 11, meaning that it is all cast out by elevens and nothing is left, the same as what we have said in all the preceding divisors.
|style="text-align:right;"|פי' אם יתחלק לי"א על השלימות והוא שיושלך כלו י"א י"א ולא ישאר דבר וכיוצא בזה הוא מה שאמרנו בכל המורים העוברים
+
|style="text-align:right;"|פי' אם {{#annot:term|2187,1225|sJQw}}יתחלק ל{{#annotend:sJQw}}י"א על השלימות והוא ש{{#annot:term|1560,2017|Cxib}}יושלך כלו י"א <sup>י"א</sup>{{#annotend:Cxib}} ולא ישאר דבר וכיוצא בזה הוא מה שאמרנו בכל המורים העוברים
 
|-
 
|-
|Subtracting the numeral in the highest rank of the given number from the numeral in the previous rank, then subtracting the remainder from the preceding numeral and so on repeatedly
+
|See the last digit and subtract 1 from what you find in the preceding rank. Subtract the remainder from what you find in the further preceding rank and so on repeatedly, until reaching to the beginning.
|style="text-align:right;"|ראה הרושם האחרון והוצא ה1' מאשר תמצא במעלה אשר לפניו והנשאר הוציאנו מה שתמצא מאשר לפני פניו וכן עד הגיעו לראש
+
|style="text-align:right;"|ראה הרושם האחרון והוצא ה1 מאשר תמצא במעלה אשר לפניו והנשאר הוציאנו מה שתמצא מאשר לפני פניו וכן עד הגיעו לראש
 
|-
 
|-
 
|
 
|
:*If there is no remainder - the number has an 11th [= divisible by 11]
+
*If all is cast out, it has an 11th [= divisible by 11].
|style="text-align:right;"|ואם יצא הכל, יש לו י"א י"א
+
|style="text-align:right;"|ואם יצא הכל יש לו י"א <sup>י"א</sup>
 
|-
 
|-
 
|
 
|
:*Otherwise - it does not
+
*Otherwise - it does not
 
|style="text-align:right;"|ואם לאו לאו
 
|style="text-align:right;"|ואם לאו לאו
 
|-
 
|-
|If one of the numerals is a zero or if it is smaller than the subtrahend, 11 is added to this numeral and the procedure continues as described
+
|If you find a zero anywhere or any small number, from which you cannot subtract what I have instructed you, add 11 to what is found there, whether [it is] a zero or a small number, and subtract from the sum as I have instructed you, then [subtract] the remainder from what precedes and so on.
|style="text-align:right;"|ואם בשום מקום תמצא סיפרא, או שום מספר קטן במנין, שלא תוכל להוציא ממנו אשר צוויתיך, הוסיף י"א על הנמצא שם סיפרא 0, וכן או שמונה חשבון קטן ומהכל תוציא אשר ציויתיך והנשאר מאשר לפניו, כן לעולם
+
|style="text-align:right;"|ואם בשום מקום תמצא <sup>סיפרא</sup> או שום מספר קטן במנין שלא תוכל להוציא ממנו אשר צוויתיך {{#annot:term|178,1206|2EI3}}הוסיף{{#annotend:2EI3}} י"א על הנמצא שם סיפרא 0 <s>וכן</s> או <s>שמונה</s> חשבון קטן ומהכל תוציא אשר ציויתיך והנשאר מאשר לפניו כן לעולם
 
|-
 
|-
|'''The reason for the procedure''': every rank is ten times the preceding rank, therefore when taken with the preceding rank these are tens and units
+
|<span style="color:Green>The reason for the procedure:</span> For every number is ten times with regard to the preceding rank, therefore when you take it as tens and what precedes it as units, it is as if all that you take are tens and units.
|style="text-align:right;"|'''הטעם''' כי כל מספר הוא עשרה בערך במעלה אשר לפניו, לכן כאשר תקחנו לעשרות ואשר לפניו לאחדים זה בזה, הרי כל מה שלקחת הם י"א י"א
+
|style="text-align:right;"|<big>הטעם</big> כי כל מספר הוא עשרה בערך במעלה אשר לפניו לכן כאשר תקחנו לעשרות ואשר לפניו לאחדים זה בזה הרי כל מה שלקחת הם י"א י"א
 
|-
 
|-
|'''The reason for adding 11 to a small number''' is that 11 will be extracted anyway in this procedure
+
|<span style="color:Green>The reason for adding 11 to a small number:</span> Our saying to add 11 to what precedes, when you do not find there enough to subtract, is that if we add some 11s to our number it neither raises nor decreases, for it is cast out by elevens anyway, either with the addition or without, and this is clear.
|style="text-align:right;"|ואשר הוא לפי אמרנו ולהוסיף אות י"א באשר לפניו, כאשר לא תמצא שם די מחסורו, הוא לפי שאם נוסיף כמה י"א י"א בחשבוננו, לא יעלה ולא יוריד, כי הוא בעצמו יושלך לי"א י"א, ר ג"כ יצא אחר התוספת ואם לאו לאו וזה מבואר
+
|style="text-align:right;"|ואשר <s>הוא לפי</s> אמרנו ולהוסיף &#x202B;<ref>19r</ref><s>אות</s> י"א באשר לפניו כאשר לא תמצא שם די מחסורו הוא לפי שאם נוסיף כמה י"א י"א בחשבוננו לא יעלה ולא יוריד כי הוא בעצמו {{#annot:term|1560,2017|DNT7}}יושלך לי"א י"א{{#annotend:DNT7}} <s>ר</s> ג"כ יצא אחר התוספת ואם לאו <sup>לאו</sup> וזה מבואר
 
|-
 
|-
 
|
 
|
  
==== 13 ====
+
==== <span style="color:Green>13</span> ====
 
|
 
|
 
|-
 
|-
|To find out if a given number has 13th [= if 13 is a divisor of a given number]
+
|If you want to find out if it has 13th [= if 13 is a divisor of a given number]
|style="text-align:right;"|'''ואם תרצה''' לדעת אם יש לו י"ג
+
|style="text-align:right;"|<big>ואם תרצה</big> לדעת אם יש לו י"ג
 
|-
 
|-
|Multiplying the leftmost digit of the number by 3, casting out thirteens from the product, subtracting the remainder from the preceding rank then multiplying the result of subtraction by 3 again and so on
+
|See the last digit and multiply it by 3, then cast out the thirteens that are in [the product] and subtract the remainder from what you find in the preceding rank. Multiply the remainder again by 3, then cast out the thirteens that are in [the product] and subtract the remainder from the preceding [rank] and so on until the [digits] end.
|style="text-align:right;"|ראה הרושם האחרון וכפלהו בג' והוצא הי"ג י"ג אשר בו והנשאר הוציאהו מאשר תמצא במעלה אשר לפניו והנשאר כפלהו שנית בג' והוצא הי"ג אשר בו <s>והנשאר כפלהו שנית בג' והוצא הג' אשר בו</s> והנשאר הוציאהו מאשר לפניו וכן לעולם עד תכליתם
+
|style="text-align:right;"|ראה הרושם האחרון וכפלהו בג' ו{{#annot:term|1560,1232|tDVX}}הוצא הי"ג י"ג{{#annotend:tDVX}} אשר בו והנשאר הוציאהו מאשר תמצא במעלה אשר לפניו והנשאר כפלהו שנית בג' והוצא הי"ג אשר בו <s>והנשאר כפלהו שנית בג' והוצא הג' אשר בו</s> והנשאר הוציאהו מאשר לפניו וכן לעולם עד תכליתם
 
|-
 
|-
 
|
 
|
:*If there is no remainder - the number has a 13th [= divisible by 13]
+
*If all is cast out, it has a 13th [= divisible by 13].
 
|style="text-align:right;"|ואם יצא הכל יש לו י"ג
 
|style="text-align:right;"|ואם יצא הכל יש לו י"ג
 
|-
 
|-
 
|
 
|
:*Otherwise - it does not
+
*Otherwise - it does not.
 
|style="text-align:right;"|ואם לאו לאו
 
|style="text-align:right;"|ואם לאו לאו
 
|-
 
|-
|If there is a small number in one of the ranks so that 13 cannot be extracted in the above procedure: 13 should be add to the preceding rank then the small number should be subtracted from the sum and the procedure can continue
+
|If you do not find not enough in a certain rank to subtract as I have instructed you, add 13 and subtract from the sum what you need to subtract. Then multiply the remainder by 3 and cast out the thirteens. Subtract the remainder from the preceding [rank] and so on.
|style="text-align:right;"|וכאשר יחסר בשום פנים מעלה, שלא תמצא די להוציא אשר ציויתיך, הוסף י"ג והוצא [מהמתחבר אשר עליך להוציא והנשאר כפלהו בג' והוצא] הי"ג י"ג והנ' הוציאהו מאשר לפניו וכן לעולם
+
|style="text-align:right;"|וכאשר יחסר בשום <s>פנים</s> מעלה שלא תמצא די להוציא אשר ציויתיך הוסף י"ג והוצא [מ{{#annot:term|178,1215|PVjr}}המתחבר{{#annotend:PVjr}} אשר עליך להוציא והנשאר כפלהו בג' והוצא]&#x202B;<ref>marg.</ref> הי"ג י"ג והנ' הוציאהו מאשר לפניו וכן לעולם
 
|-
 
|-
|'''The reason for the procedure''': every number is ten times its value in the preceding rank, so for each 13 subtracted - the 3 units are subtracted from the preceding rank
+
|<span style="color:Green>The reason for the procedure:</span> Because every number is ten times its value with regard to the preceding rank. Hence, when you subtract it and you subtract 3 times as much as it in the preceding rank, which is as units with regard to it, all that you subtract is as tens and 3 units for each ten. So each number are 13s.
|style="text-align:right;"|'''הטעם''' כי כל מספ' הוא עשרה כערך אשר במעלה הקודמת וכאשר תסירנו ותסיר ג' שכמותו מהמעלה הקודמת שהי' לה לאחדים, הרי כל אשר הוצאת הוא עשרות וג' ואחדים על כל עשר, מספר הנה כל מספר הוא י"ג י"ג
+
|style="text-align:right;"|<big>הטעם</big> כי כל מספ' הוא עשרה כערך אשר במעלה הקודמת וכאשר תסירנו ותסיר ג' שכמותו מהמעלה הקודמת שהי' לה לאחדים הרי כל אשר הוצאת הוא עשרות וג' <s>ו</s>אחדים על כל עשר <s>מספר</s> הנה כל מספר הוא י"ג י"ג
 
|-
 
|-
|Adding 13 to a small number will not harm the procedure for the same reason noted above regarding 11  
+
|Furthermore, the addition of the 13 that I have instructed you to add does not harm the extraction procedure of 13, as we have noted concerning the addition of 11 in the extraction procedure of 11 as a divisor. This is clear.
|style="text-align:right;"|גם התוספת אש' ציויתיך להוסיף מהי"ג לא יזיק בהוצאת הי"ג, כאשר הזכרנו בהוספת הי"א בהמצאת מורה הי"א וזה מבואר
+
|style="text-align:right;"|גם התוספת אש' ציויתיך להוסיף מהי"ג לא יזיק בהוצאת הי"ג כאשר הזכרנו ב{{#annot:term|154,2511|b7h5}}הוספת ה{{#annotend:b7h5}}י"א בהמצאת מורה הי"א וזה מבואר
 
|-
 
|-
 
|
 
|
  
==== general rules ====
+
==== <span style="color:Green>general rules</span> ====
 
|
 
|
 
|-
 
|-
 
|
 
|
*If the numbers 2-11, 13 are not [divisors] of a given number - any [divisor] of the given number is not divisible by these numbers
+
*For a number that you do not find any of the aforesaid divisors [2-11, 13] and you want to know if it has any other divisor, the divisor that you look for cannot have any of these divisors [= cannot be divisible by any of the numbers 2-11, 13].
|style="text-align:right;"|והמספר אשר לא תמצא לו אחד מהמורים הנזכרים ותרצה לידע אם יש לו מורה אחר המורה הזה, אשר תבקש הוא שלא יהיה לו שום מורה מהמורים
+
|style="text-align:right;"|והמספר אשר לא תמצא לו אחד מה{{#annot:term|604,1239|gIva}}מורים {{#annotend:gIva}}הנזכרים ותרצה לידע אם יש לו מורה אחר המורה הזה אשר תבקש הוא שלא יהיה לו שום מורה מהמורים
 
|-
 
|-
 
|
 
|
:'''The reason''': if one of these numbers was a [divisor] of the [divisor], then this [divisor] could not have been a [divisor] of the given number, for if it were a [divisor] of the given number then its own [divisor] should have been the [divisor] of the given number also
+
:The reason is that if it has any divisor of them, then it is known that it cannot be a divisor of the [given] number. For if it were a divisor of the [given] number, then the [given] number also would have had the same divisor that this divisor had, but you have not found it.
|style="text-align:right;"|הטעם שאם היה לו שום מורה מהם, בידוע שאינו מורה לזה החשבון, שאם הוא מורה לזה החשבון, הנה לחשבון ג"כ יש לו המורה אשר לזה המורה ואתה לא מצאתו
+
|style="text-align:right;"|הטעם שאם היה לו שום {{#annot:term|604,1239|TmQF}}מורה{{#annotend:TmQF}} מהם בידוע שאינו מורה לזה החשבון שאם הוא מורה לזה החשבון הנה לחשבון ג"כ יש לו <sup>ה</sup>מורה אשר לזה המורה ואתה לא מצאתו
 
|-
 
|-
 
|
 
|
:*21 is a [divisor] &rarr; 7 and 3 are also [divisors]
+
:*Example: when one takes 21, if 21 is a divisor of a number, then this number also has the divisors of this divisors, i.e. [it has] a seventh and a third, but you already know that your number does not have any of them, so it does not have 21 either.
|style="text-align:right;"|המשל אם יקח כ"א, הנה אם כ"א הוא מורה לחשבון, הנה יש לחשבון מורי זה המורה, ר"ל שביעית ושלישית וכבר ידעת שאין לחשבונך אחד מהם, לכן לא יהיה לו כ"א
+
|style="text-align:right;"|המשל אם יקח כ"א הנה אם &#x202B;<ref>19v</ref>כ"א הוא מורה לחשבון הנה יש לחשבון מורי זה המורה ר"ל שביעית ושלישית וכבר ידעת שאין לחשבו<sup>נ</sup>ך אחד מהם לכן לא יהיה לו כ"א
 
|-
 
|-
 
|
 
|
*If 1; 2; 3; …; ''n-1''  are not [divisors] of a given number ''a'', and ''a<n''<sup>''2''</sup> - then ''n'' is not a [divisor] of ''a''
+
*In addition, when you examine if a number has all the previous divisors one after the other and you do not find, if it is less than the square of the next divisor that you want to examine, you do not need to examine it, because it is not its divisor, neither does any other number, for it is known that it is a prime number.
|style="text-align:right;"|גם אם מספר אשר בקשת לו כל המורים העוברים זה אחר זה ולא מצאתם, אם הוא פחות ממרובע המורה הסמוך אשר תרצה לבקש, אינך צריך לבקשו, כי איננו לו מורה אם לא מורה אחר בעולם, כי בידוע שהוא מספר פשוט
+
|style="text-align:right;"|גם אם מספר אשר בקשת לו כל המורים העוברים זה אחר זה ולא מצאתם אם הוא פחות ממרובע המורה הסמוך אשר תרצה לבקש אינך צריך לבקשו כי איננו לו מורה אם לא מורה אחר בעולם כי בידוע שהוא {{#annot:term|76,2029|LVhT}}מספר פשוט{{#annotend:LVhT}}
 
|-
 
|-
 
|
 
|
:'''The reason''': if ''n'' is a [divisor] of a and ''a<n''<sup>''2''</sup>, then there is ''b<n'', so that ''a=b·n'', but ''b'' cannot be a [divisor] of ''a'' according to the condition that 1; 2; 3; …; ''n-1'' are not [divisors] of ''a'' → contradiction
+
:The reason is that if it had this next divisor that you seek for, needless to say another greater than it, then since your number is less than its square, the number of times that this divisor can be in it should be less than the divisor itself, and this number of times itself should be its divisor.
|style="text-align:right;"|הטעם שאם היה לו זה המורה הפשוט הסמוך אשר אתה מבקש ואין צריך לומר אחר גדול ממנו, הנה להיות חשבונך פחות ממרובעו, הנה הפעמים אשר יהיה בו המורה ההוא יהיה מספרם פחות ממספר המורה בעצמו וגם מספר הפעמים יהיה לו למורה, כי כל דבר הנחלק למספר מה ויצא בחילוק מספר מה ולא נשאר דבר, הנה שניהם לו מורים, כי כאשר יתחלק לאשר יוצא עתה בחילוק, יצא בחלוק אשר נחלקו עליו עתה ולא ישאר דבר ואולם להיות מספר פעמים אלו פחות ממספר מורה המבוקש, הלא הם כאחד המורים הקודמים וא"כ היה לו אחד מהמורים הקודמים ואתה לא מצאתם הרי זה שקר
+
|style="text-align:right;"|הטעם שאם היה לו זה המורה <s>הפשוט</s> הסמוך אשר אתה מבקש ואין צריך לומר אחר גדול ממנו הנה להיות חשבונך פחות ממרובעו הנה הפעמים אשר יהיה בו המורה ההוא יהיה מספרם פחות ממספר המורה בעצמו וגם מספר הפעמים יהיה לו למורה
 
|-
 
|-
 
|
 
|
:*1; 2; 3; …; 16 are not [divisors] of ''a'' → if ''a'' is divided by 17, 17 times or more, then ''a''≥17<sup>2</sup> = 289; and if it is divided by 17, 16 times or less, then one of the numbers smaller than 17 is a [divisor] of ''a'' → contradiction
+
:Since, for any [number] that is divided by any number, so that the result of division is a certain number and nothing remains, both are its divisors. Because, when it is divided by the current result of the division, the result of this division is the former divisor and nothing remains.
|style="text-align:right;"|המשל אם בקשת עד י"ז ולא מצאת ותרצה לבקש אם יש לו י"ז ומספרך שהוא פחות מרפ"ט, שהוא ממרובע י"ז, הנה בידוע שאם היה יוצא לי"ז י"ז, שהפעמים אשר בו י"ז י"ז הם פחות מי"ז, שאם היו י"ז לא או יותר, הרי חשבונך היה כמרובע י"ז, או גדול ממנו והוא קטן<br>
+
|style="text-align:right;"|כי כל דבר הנחלק למספר מה ויצא בחילוק מספר מה ולא נשאר דבר הנה שניהם לו מורים כי כאשר יתחלק לאשר יוצא עתה בחילוק <sup>יצא בחלוק</sup> אשר נחלקו עליו עתה ולא ישאר דבר
ואם הפעמים האלה אשר י"ז בו הם פחות מי"ז, המשל י"ו ומשם ולמטה, הנה היה לו רביעית, או אחד מהמורים הקודמים, שהרי יתחלק למספר פעמים אלו ג"כ ויצא בחילוף הי"ז וזה שקר, שהרי לא מצאת לו אחד מהעוברים
 
 
|-
 
|-
 
|
 
|
*If 1; 2; 3; …; ''n-1''  are not [divisors] of a given number ''a'', and ''a≥n''<sup>''2''</sup>
+
:Yet, since this number of times is less than the required divisor, it is among one of the preceding divisors, therefore it has one of the preceding divisors, but you did not find them as such, so this is a contradiction.
|style="text-align:right;"|ואולם כאשר יהיה חשבונך כמרובע המורה הנמשך אשר תבקש, או גדול ממנו ותרצה לדעת אם תמצא לו זה המורה הסמוך
+
|style="text-align:right;"|ואולם להיות מספר פעמים אלו פחות ממספר מורה המב<sup>ו</sup>קש הלא הם כאחד המורים הקודמים וא"כ היה לו אחד מהמורים הקודמים ואתה לא מצאתם <s>הרי</s> <sup>זה</sup> שקר
 
|-
 
|-
 
|
 
|
:*If there is an integer ''m'', so that ''a÷n=m'' → then ''n'' and ''m'' are [divisors] of ''a''
+
:*Example: if you seek until 17, but you do not find and you want to see if it has a 17th. If your number is less than 289, which is the square of 17, it is known that if it is cast out by 17s, then the number of times that 17 is in it is less than 17. For if it were 17 or more then your number were as the square of 17 or more, but it is smaller. However, if this number of times that 17 is in it is less than 17, for instance 16 and down, then it has a quarter or any of the preceding divisors, for it is divisible also by this number of times, but this is a contradiction, because you did not find any of the preceding [divisors].
|style="text-align:right;"|ואם יתחלק אליו לשלימים מבלי שארית הוא לו למורה צדק גם היוצא בחילוק
+
|style="text-align:right;"|המשל אם בקשת עד י"ז ולא מצאת ותרצה לבקש אם יש לו י"ז ומספרך <s>ש</s>הוא פחות מרפ"ט שהוא <s>מ</s>מרובע י"ז הנה בידוע שאם היה יוצא לי"ז י"ז שהפעמים אשר בו י"ז י"ז הם פחות מי"ז שאם היו י"ז <s>לא</s> <sup>או</sup> יותר הרי חשבונך היה כמרובע י"ז או גדול ממנו והוא קטן<br>
 +
ואם הפעמים האלה אשר י"ז בו הם פחות מי"ז המשל י"ו ומשם ולמטה הנה היה לו רביעית או אחד מהמורים הקודמים שהרי יתחלק למספר פעמים אלו ג"כ ויצא בחילוף הי"ז וזה שקר &#x202B;<ref>20r</ref>שהרי לא מצאת לו אחד מהעוברים
 
|-
 
|-
 
|
 
|
:*Otherwise - ''n'' is not a [divisor] of ''a''
+
*When your number is as the square of the next divisor that you want to examine, or greater than it and you wish to know if this  [potential] next divisor is indeed its divisor:
 +
|style="text-align:right;"|<big>ואולם</big> כאשר יהיה חשבונך כמרובע המורה הנמשך אשר תבקש או גדול ממנו ותרצה לדעת אם תמצא לו זה המורה הסמוך
 +
|-
 +
|
 +
:*If it is divisible by it to integers without a remainder, then it is its true divisor and so is the result of division.
 +
|style="text-align:right;"|ואם {{#annot:term|2187,1225|SD1U}}יתחלק אליו לשלימים מבלי שארית{{#annotend:SD1U}} הוא לו ל{{#annot:term|2135,2134|uyDf}}מורה צדק{{#annotend:uyDf}} גם היוצא בחילוק
 +
|-
 +
|
 +
:*Otherwise - it is not.
 
|style="text-align:right;"|ואם לאו לאו
 
|style="text-align:right;"|ואם לאו לאו
 +
|}
 +
{|
 
|-
 
|-
 
|
 
|
  
=== Repetitive division of a number by its [divisors] ===
+
=== <span style="color:Green>Repetitive division of a number by its [divisors]</span> ===
  
 
|
 
|
 +
|-
 +
|When you know that it has a divisor, divide the whole number by this divisor, and the result of division will be an integer.
 +
|style="width:45%; text-align:right;"|וכאשר ידעת שיש לו שום מורה חלק המספר כולו לזה המורה יתחלק אליו לשלימים והיוצא בחילוק
 +
|-
 +
|If you do not want to seek for more, then these two numbers, i.e. the divisor, by which you divide, and the result of the division are both its divisors.
 +
|style="text-align:right;"|ואם <sup>לא</sup> תרצה לבקש יותר הנה אלו השני מספרים ר"ל המורה אשר חלקת עליו והיוצא בחילוק הם הם מוריו
 +
|-
 +
|If the result of division is a large number and you want to seek its divisor, proceed according to the mentioned methods.
 +
|style="text-align:right;"|אכן אם היוצא בחילוק הוא חשבון גדול ותרצה לבקש לו מורה ג"כ עשה כדרכים הנזכרים
 +
|-
 +
|But, know that [the numbers] you find that are not divisors of the large number, you will find that they are not divisors of the result of division and this is clear. You should not seek for one of [these numbers], only for those that are similar to the one that you have found or greater than it.
 +
|style="text-align:right;"|ואולם דע שהמורים אשר לא מצאת לחשבון הגדול לא תמצאם ג"כ לזה היוצא בחילוק וזה ברור ואין לך לבקש אחד מהם כי אם הדומה לאשר מצאת או למעלה ממנו
 +
|-
 +
|If you find its divisor, divide it by it and the result of division is a third divisor.
 +
|style="text-align:right;"|אם מצאת לו מורה חלקנו עליו והיוצא בחילוק יהיה מורה שלישי
 +
|-
 +
|If this [result] is also a large [number] and you want to seek its divisor also, proceed as mentioned, divide it by the divisor that you have found to be its divisor and the result of division is its fourth divisor.
 +
|style="text-align:right;"|ואם זה ג"כ גדול ותרצה לבקש לו ג"כ מורה אחר עשה כנזכר וחלקנו על המורה אשר ידעת אשר הוא למורה לו והיוצא בחילוק יהיה לו למורה רביעי
 +
|-
 +
|If you want, you can seek also for its fifth, or sixth, or other [divisors].
 +
|style="text-align:right;"|ואם תרצה תוכל ל[...] לבקש עוד חמישי או שישי או זולתם
 +
|-
 +
|
 +
*{{#annot:2447235÷50335084800|157|khi4}}Example: we wish to divide 2447235 by 50335084800.
 +
:<math>\scriptstyle2447235\div50335084800</math>
 +
|style="text-align:right;"|המשל רצינו לחלק 2447235 על 50335084800{{#annotend:khi4}}
 
|-
 
|-
 
|
 
|
*Dividing a number by a known [divisor] and receiving an integer as a result
+
:We extract the divisors of this large number, by which we want to divide.
|style="text-align:right;"|וכאשר ידעת שיש לו שום מורה, חלק המספר כולו לזה המורה ותחלק אליו לשלימים והיוצא בחילוק
+
|style="text-align:right;"|נוציא [....] המורים לזה החשבון הגדול אשר רצינו לחלק עליו
 
|-
 
|-
 
|
 
|
:The [divisor] and the result of the division are both [divisors] of the number
+
:*First, we see if 3, or 6, or 9 are [its divisors]:
|style="text-align:right;"|ואם לא תרצה לבקש יותר, הנה אלו השני מספרים, ר"ל המורה אשר חלקת עליו והיוצא בחילוק הם הם מוריו
+
|style="text-align:right;"|ונראה ראשונה אם יש לו ג' או ששה או ט&#x202B;'
 
|-
 
|-
 
|
 
|
*Dividing the result of division by its [divisor] - this [divisor] must be also a [divisor] of the given number itself
+
::Since the first digit is 0, we know that if 3 or 9 [are its divisors], then 6 is also its [divisor].
|style="text-align:right;"|אכן אם היוצא בחילוק הוא חשבון גדול ותרצה לבקש לו מורה ג"כ, עשה כדרכים הנזכרים
+
|style="text-align:right;"|ואחר שהרושם הראשון הוא 0 ידענו שאם יש לו ג' או ט' יש לו ג"כ ששה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואולם דע שהמורים אשר לא מצאת לחשבון הגדול, לא תמצאם ג"כ לזה היוצא בחילוק וזה ברור ואין לך לבקש אחד מהם כי אם הדומה לאשר מצאת, או למעלה ממנו, אם מצאת לו מורה, חלקנו עליו והיוצא בחילוק יהיה מורה שלישי
+
::To know if 3 or 9 [are its divisors], we sum up all [the digits] as if they were units.
 +
|style="text-align:right;"|ולדעת אם יש לו ג' או ט' נחברם כלם כאלו הם אחדים
 
|-
 
|-
 
|
 
|
*Dividing the second result of division by its divisor, and so on
+
::We say: 8 with 4 is 12. We subtract from it 9; 3 remains.
|style="text-align:right;"|ואם זה ג"כ גדול ותרצה לבקש לו ג"כ מורה אחר, עשה כנזכר וחלקנו על המורה אשר ידעת אשר הוא למורה לו והיוצא בחילוק יהיה לו למורה רביעי
+
::<math>\scriptstyle{\color{blue}{4+8=12\equiv_93}}</math>
 +
|style="text-align:right;"|ונאמ' ח' עם ד' הם י"ב נוציא מהם הט' ישארו [.] ג&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם תרצה תוכל ל[...] לבקש עוד חמישי, או שישי, או זולתם
+
::With 8 it is 11. We subtract the 9; 2 remains.
 +
::<math>\scriptstyle{\color{blue}{3+8=11\equiv_92}}</math>
 +
|style="text-align:right;"|ועם <sup>8</sup> הם י"א נסיר הט' ישארו ב&#x202B;'
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle2447235\div50335084800</math>
+
::With 5 it is 7 and with 3 it is ten. We subtract 9; 1 remains.
|style="text-align:right;"|המשל רצינו לחלק 2447235 על 50335084800
+
::<math>\scriptstyle{\color{blue}{\left(5+2\right)+3=7+3=10\equiv_91}}</math>
 +
|style="text-align:right;"|ועם ה' יהיו ז' &#x202B;<ref>20v</ref>ועם הג' יהיו עשרה נסיר ט' ישארו <s>ב'</s> <sup>א&#x202B;'</sup>
 
|-
 
|-
 
|
 
|
:Are 3, 6, 9 [divisors] of 50335084800?
+
::With 3 it is 4 and with 5 it is 9. So, the number is cast out by nines.
|style="text-align:right;"|נוציא [....] המורים לזה החשבון הגדול אשר רצינו לחלק עליו ונראה ראשונה אם יש לו ג', או ששה, או ט&#x202B;'
+
::<math>\scriptstyle{\color{blue}{\left(1+3\right)+5=4+5=9\equiv_90}}</math>
 +
|style="text-align:right;"|ועם הג' יהיו ד' ועם הה' יהיו כולם <sup>ט'</sup> <s>ט'</s> הרי {{#annot:term|1560,1231|D5Ek}}יצא החשבון לט' ט&#x202B;'{{#annotend:D5Ek}}
 
|-
 
|-
 
|
 
|
::the first digit is 0 &rarr; if 3 or 9 are [divisors] of 50335084800 then 6 is also its [divisor]
+
::<math>\scriptstyle{\color{blue}{5+0+3+3+5+0+8+4+8+0+0\equiv_90}}</math>
|style="text-align:right;"|ואחר שהרושם הראשון הוא 0, ידענו שאם יש לו ג', או ט', יש לו ג"כ ששה
+
|
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\begin{align}&\scriptstyle5+0+3+3+5+0+8+4+8+0+0\\&\scriptstyle=5+3+3+5+8+\left(4+8\right)=5+3+3+5+8+12\equiv_95+3+3+5+\left(8+3\right)\\&\scriptstyle=5+3+3+5+11\equiv_95+3+3+\left(5+2\right)\\&\scriptstyle=5+3+\left(3+7\right)=5+3+10\equiv_95+\left(3+1\right)\\&\scriptstyle=5+4=9\equiv_90\\\end{align}}}</math>
+
:Hence, we know that 9, 3 and 6 are its [divisors] for the reason we have mentioned.
|style="text-align:right;"|ולדעת אם יש לו ג', או ט', נחברם כלם כאלו הם אחדים<br>
+
|style="text-align:right;"|וידענו שיש לו ט' וג' גם ו' לסבה שזכרנו
ונאמ' ח' עם ד' הם י"ב, נוציא מהם הט' ישארו [.] ג&#x202B;'<br>
 
ועם 8 הם י"א, נסיר הט', ישארו ב&#x202B;'<br>
 
ועם ה' יהיו ז' ועם הג' יהיו עשרה, נסיר ט', ישארו א&#x202B;'<br>
 
ועם הג' יהיו ד' ועם הה' יהיו כולם ט' ט', הרי יצא החשבון לט' ט&#x202B;'
 
 
|-
 
|-
 
|
 
|
:&rarr;3, 6, 9 are [divisors] of 50335084800
+
:We take whichever of them we want.
|style="text-align:right;"|וידענו שיש לו ט' וג', גם ו' לסבה שזכרנו ונקח מהם אשר תרצה
+
|style="text-align:right;"|ונקח מהם אשר תרצה
 
|-
 
|-
 
|
 
|
 +
:*For instance, we take 6 as its divisor. We divide it by 6; the result of division is 8389180800.
 
::<math>\scriptstyle{\color{blue}{\frac{50335084800}{6}=8389180800}}</math>
 
::<math>\scriptstyle{\color{blue}{\frac{50335084800}{6}=8389180800}}</math>
|style="text-align:right;"|ועל דרך משל, נקח למורה ו' ונחלקנו על ו' ויצא בחלוקם 8389180800
+
|style="text-align:right;"|ועל דרך משל נקח ל{{#annot:term|604,1239|P3U8}}מורה{{#annotend:P3U8}} ו' ונחלקנו על ו' ויצא בחלוקם 8389180800
 +
|-
 +
|
 +
::Since the result of division is a large number, we seek its divisor. We do as we did with the original number; it is all cast out by nines.
 +
::<math>\scriptstyle{\color{blue}{8+3+8+9+1+8+0+8+0+0\equiv_90}}</math>
 +
|style="text-align:right;"|ואחר שהיוצא בחילוק הוא חשבון גדול נבקש לו מורה ונעשה לזה כאשר לחשבון הראשון ו{{#annot:term|1560,1231|sB7E}}יצא הכל לט' ט{{#annotend:sB7E}}&#x202B;'
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{8+3+8+9+1+8+0+8+0+0\equiv_90}}</math><br>
+
::Since the first digit is a zero and 9 is its divisor, 6 is also its divisor and all the more so is 3.
::the first digit is 0<br>
+
|style="text-align:right;"|ואחר שהרושם הראשון <sup>סיפרא</sup>ויש לו ט' יש לו ג"כ ו' וכ"ש ג&#x202B;'
:&rarr;3, 6, 9 are [divisors] of 8389180800
 
|style="text-align:right;"|ואחר שהיוצא בחילוק הוא חשבון גדול, נבקש לו מורה ונעשה לזה כאשר לחשבון הראשון ויצא הכל לט' ט&#x202B;'<br>
 
ואחר שהרושם הראשון סיפרא<br>
 
ויש לו ט', יש לו ג"כ ו' וכ"ש ג&#x202B;'
 
 
|-
 
|-
 
|
 
|
 +
:*We take 9 as its divisor and divide this number by 9; the result of divison is 932131200.
 
::<math>\scriptstyle{\color{blue}{\frac{8389180800}{9}=932131200}}</math>
 
::<math>\scriptstyle{\color{blue}{\frac{8389180800}{9}=932131200}}</math>
 
|style="text-align:right;"|ונקח ט' למורה ונחלק זה החשבון לט' ויצא בחילו' 932131200
 
|style="text-align:right;"|ונקח ט' למורה ונחלק זה החשבון לט' ויצא בחילו' 932131200
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{9+3+2+1+3+1+2+0+0\equiv_93}}</math><br>
+
::We do with it as we have done with the formers; 3 remains.
::the first digit is 0<br>
+
::<math>\scriptstyle{\color{blue}{9+3+2+1+3+1+2+0+0\equiv_93}}</math>
:&rarr;3, 6 are [divisors] of 8389180800
+
|style="text-align:right;"|ונעשה לזה כאשר עשינו לקודמים וישארו ג&#x202B;'
|style="text-align:right;"|ונעשה לזה כאשר עשינו לקודמים וישארו ג&#x202B;'<br>
+
|-
הנה יש לו ג&#x202B;'<br>
+
|
ג"כ ו' להיות הראשונה סיפרא
+
::So, 3 is its [divisor] and 6 also, since the first [digit] is a zero.
 +
|style="text-align:right;"|הנה יש לו ג' ג"כ ו' להיות הראשונה <sup>סיפרא</sup>
 
|-
 
|-
 
|
 
|
 +
:*We take 3 as its divisor and divide it by it; the result of divison is 310710400.
 
::<math>\scriptstyle{\color{blue}{\frac{932131200}{3}=310710400}}</math>
 
::<math>\scriptstyle{\color{blue}{\frac{932131200}{3}=310710400}}</math>
 
|style="text-align:right;"|ונקח למורה ג' ונחלקנו עליו ויצא בחילוקם 310710400
 
|style="text-align:right;"|ונקח למורה ג' ונחלקנו עליו ויצא בחילוקם 310710400
 
|-
 
|-
 
|
 
|
:Since 9 is not a [divisor] of 8389180800 &rarr; 3 is not a [divisor] of 310710400
+
:Since 9 is not a [divisor] of the former, it is known that even 3 is not [divisor] of this [number].
|style="text-align:right;"|ואחר שהקודם לא היה לו ט', בידוע שלזה אין לו אפי' ג&#x202B;'<br>
+
|style="text-align:right;"|ואחר שהקודם לא היה לו ט' בידוע שלזה אין לו אפי' ג&#x202B;'
הטעם לפי שזה שלישית הקודם ואם לזה היה לו שלישית הקודם ואם לזה היה לו שלישית, הנה שלישיתו, ר"ל שלישית זה שהיה שלישית הראשון, הוא לראשון שלישית שלישית, שהוא תשיעית ולא מצאנוהו
+
|-
 +
|
 +
::The reason is that this [number] is a third of the former [number], so if this [number] had a third, its third, i.e. the third of the [number] that is a third of the former [number], is a third of a third of the former [number], which is a ninth, but we have found that it does not [have a ninth].
 +
|style="text-align:right;"|הטעם לפי שזה שלישית הקודם ואם לזה היה לו שלישית <s>הקודם ואם לזה היה לו שלישית</s> הנה שלישיתו ר"ל שלישית זה שהיה שלישית הראשון הוא לראשון שלישית שלישית שהוא תשיעית ולא מצאנוהו
 
|-
 
|-
 
|
 
|
 +
::So it is truly, when you sum up [the digits], then cast out the nines, 7 remains.
 
::<math>\scriptstyle{\color{blue}{3+1+0+7+1+0+4+0+0\equiv_97}}</math>
 
::<math>\scriptstyle{\color{blue}{3+1+0+7+1+0+4+0+0\equiv_97}}</math>
|style="text-align:right;"|וכן הוא האמת, כאשר תחברם ותוציא הט' ט' ישארו ז&#x202B;'
+
|style="text-align:right;"|וכן הוא האמת כאשר תחברם ותוציא הט' ט' ישארו ז&#x202B;'
 
|-
 
|-
 
|
 
|
:Are 2, 4, 8 [divisors] of 310710400?
+
:We see if 2, 4, or 8 are its [divisors].
|style="text-align:right;"|ונעיין אם יש לו ב' וד', או ח&#x202B;'
+
|style="text-align:right;"|ונעיין אם יש לו ב' וד' או ח&#x202B;'
 
|-
 
|-
 
|
 
|
::the first digit is 0 &rarr; 2 is a [divisor] of 310710400
+
::Since the first [digit] is a zero, it is known that 2 is its [divisor].
|style="text-align:right;"|ואחר שהראשון סיפרא, בידוע שיש לרוב לו ב&#x202B;'
+
|style="text-align:right;"|ואחר שהראשון <sup>סיפרא</sup> בידוע שיש [...] לו <sup>ב&#x202B;'</sup>
 
|-
 
|-
 
|
 
|
::the first digit is 0; the second digit is 0; the third digit is an even number<br>
+
::To know if 4, or 8 are its [divisors], we should take what is in the first rank. We find there only 0, so we take nothing. We take what is in the second [rank]. We find there only 0, so we take nothing. Since the third [rank] is an even [number], we do not have to take anything for it or for the higher [ranks]. So, 8, 4, and 2 are its [divisors].
::<math>\scriptstyle{\color{blue}{0+0+0\equiv_80}}</math><br>
+
::<math>\scriptstyle{\color{blue}{0+0+0\equiv_80}}</math>
:&rarr; 4 and 8 are [divisors] of 310710400
+
|style="text-align:right;"|<sup>ולדעת</sup> אם יש לו <sup>ד'</sup> או ח' היה לנו לקחת אשר [במעלה] הראשונה ולא מצאנו שם כי אם 0 ולא נקח דבר כי אם בשנית היה לנו לכופלו ולא מצאנו שם כי אם 0 לא נקח דבר והשלישית אחר שהוא זוג אין לנו לקחת בעבורה דבר ולא ממנה ולמעלה<br>
|style="text-align:right;"|ולדעת אם יש לו ד', או ח', היה לנו לקחת אשר [במעלה] הראשונה ולא מצאנו שם כי אם 0 ולא נקח דבר כי אם בשנית, היה לנו לכופלו ולא מצאנו שם כי אם 0, לא נקח דבר והשלישית אחר שהוא זוג, אין לנו לקחת בעבורה דבר ולא ממנה ולמעלה<br>
 
 
הנה יש לו ח' וד' וב&#x202B;'
 
הנה יש לו ח' וד' וב&#x202B;'
 
|-
 
|-
 
|
 
|
 +
:We take whichever of them we want as a divisor.
 +
|style="text-align:right;"|ונקח למורה אשר נחפוץ מהם
 +
|-
 +
|
 +
:*For instance, 8. We divide it by 8; the result of division is 38838800.
 
::<math>\scriptstyle{\color{blue}{\frac{310710400}{8}=38838800}}</math>
 
::<math>\scriptstyle{\color{blue}{\frac{310710400}{8}=38838800}}</math>
|style="text-align:right;"|ונקח למורה אשר נחפוץ מהם, המשל ח' ונחלקנו לח' ויצא בחילוק 38838800
+
|style="text-align:right;"|המשל ח' ונחלקנו לח' ויצא <s>בח</s> בחילוק 38838800
 
|-
 
|-
 
|
 
|
::the first digit is 0; the second digit is 0; the third digit is an even number<br>
+
::It also has an eighth, a quarter and a half, for the reason mentioned.
::<math>\scriptstyle{\color{blue}{0+0+0\equiv_80}}</math><br>
+
::<math>\scriptstyle{\color{blue}{0+0+0\equiv_80}}</math>
:&rarr; 4 and 8 are [divisors] of 38838800
 
 
|style="text-align:right;"|ולזאת ג"כ יש לה שמינית ורביעית וחצי לסבה הנזכרת
 
|style="text-align:right;"|ולזאת ג"כ יש לה שמינית ורביעית וחצי לסבה הנזכרת
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\frac{38838800}{4}=9709700}}</math>
+
:We take one of them.
|style="text-align:right;"|ונקח א' מהם, המשל ד' וחלקנו עליו ויצא בחילוק 9709700
+
|style="text-align:right;"|ונקח א' מהם
 
|-
 
|-
 
|
 
|
::the first digit is 0; the second digit is 0; but the third digit is an odd number<br>
+
:*For instance, 4. We divide by it; the result of division is 9709700.
::<math>\scriptstyle{\color{blue}{0+0+4\equiv_84}}</math><br>
+
::<math>\scriptstyle{\color{blue}{\frac{38838800}{4}=9709700}}</math>
:&rarr; only 2 and 4 are [divisors] of 9709700
+
|style="text-align:right;"|המשל ד' וחלקנו עליו ויצא בחילוק 9709700
|style="text-align:right;"|ולזאת אין לה שמינית, כי הראשונה והשנית הם 0 ולא נקח בעבורם דבר והשלישית היא ז' שהוא נפרד ונקח בעבורו ד&#x202B;'<br>
+
|-
 +
|
 +
::It does not have an eighth, because the first [rank] and the second [rank] are 0, so we take nothing for them; but the third [rank] is 7, which is an odd number, so we take 4 for it. Hence, only 4 and 2 are its [divisors].
 +
::<math>\scriptstyle{\color{blue}{0+0+4\equiv_84}}</math>
 +
|style="text-align:right;"|&#x202B;<ref>21r</ref>ולזאת אין לה שמינית כי הראשונה והשנית הם 0 ולא נקח בעבורם דבר והשלישית היא ז' שהוא נפרד ונקח בעבורו ד&#x202B;'<br>
 
הנה שאין לו כי אם ד' וב&#x202B;'
 
הנה שאין לו כי אם ד' וב&#x202B;'
 
|-
 
|-
 
|
 
|
 +
:We take one of them.
 +
|style="text-align:right;"|ונקח אחד מהם
 +
|-
 +
|
 +
:*For instance, 2. We divide it by it; the result of division is 4854850.
 
::<math>\scriptstyle{\color{blue}{\frac{9709700}{2}=4854850}}</math>
 
::<math>\scriptstyle{\color{blue}{\frac{9709700}{2}=4854850}}</math>
|style="text-align:right;"|ונקח אחד מהם, המשל ב' ונחלקנו עליו ויצא בחילוק 4854850
+
|style="text-align:right;"|המשל ב' ונחלקנו עליו ויצא בחילוק 4854850
 
|-
 
|-
 
|
 
|
:Since 8 is not a [divisor] of 9709700 &rarr; 4 is not a [divisor] of 4854850
+
::Since this [number] is half the former [number], it does not have a quarter, because the former [number] does not have an eighth, as a quarter of this [number] is a quarter of half the former, which is an eighth.
|style="text-align:right;"|מאחר שזו היא מחצית הראשונה, אין לנו רביעית, לפי שלא היה לראשונה שמינית, כי רביעית זו היא רביעית חצי הראשונה שהוא שמינית
+
|style="text-align:right;"|מאחר שזו היא מחצית הראשונה אין לנו רביעית לפי שלא היה לראשונה שמינית כי רביעית זו היא רביעית חצי הראשונה שהוא שמינית
 
|-
 
|-
 
|
 
|
 +
::You will also find by examination that it does not have a quarter: since there is no number in the first [rank], the second is ten, and the third is an even number, so we take nothing for it. Therefore, we have only ten. We subtract 8; 2 remains. Hence, it has only a half.
 
::<math>\scriptstyle{\color{blue}{0+\left(2\sdot5\right)+0=10\equiv_82}}</math>
 
::<math>\scriptstyle{\color{blue}{0+\left(2\sdot5\right)+0=10\equiv_82}}</math>
|style="text-align:right;"|וכן תמצאנו בבחינה שאין לו רביעית, כי בראשונה אין מספר וכל השניה היא עשרה והשלישית היא זוג ולא נקח דבר בעבורה, הרי שאין בידינו כי אם עשר, נסיר ח', ישארו ב', הרי שאין לו כי אם חצי
+
|style="text-align:right;"|וכן תמצאנו בבחינה שאין לו רביעית כי בראשונה אין מספר וכל השניה היא עשרה והשלישית היא זוג ולא נקח דבר בעבורה הרי שאין בידינו כי אם <sup>עשר</sup> נסיר ח' ישארו ב' הרי שאין לו כי אם חצי
 
|-
 
|-
 
|
 
|
:Are 5, 10 [divisors] of 4854850?
+
:If you do not want to take it again as a divisor, see if 5 or 10 are its [divisors].
|style="text-align:right;"|ואם לא תרצה לקחתו שנית למורה, [עיין] אם יש לו עשר, או ה&#x202B;'
+
|style="text-align:right;"|ואם לא תרצה לקחתו שנית למורה [עיין] אם יש לו <sup>עשר</sup> או ה&#x202B;'
 
|-
 
|-
 
|
 
|
::the first digit is 0<br>
+
::Since the first [digit] is 0, it is known that 10 as well as 5 are its [divisors].
:&rarr; 5, 10 are [divisors] of 4854850
+
|style="text-align:right;"|ואחר שהראשונה 0 בידוע שיש לו [עשר וגם]&#x202B;<ref>marg.</ref> ה&#x202B;'
|style="text-align:right;"|ואחר שהראשונה 0, בידוע שיש לו [עשר וגם] ה&#x202B;'
 
 
|-
 
|-
 
|
 
|
 +
:We take one of them.
 +
|style="text-align:right;"|ונקח אחד מהם
 +
|-
 +
|
 +
:*For instance, 5. We divide it by it; the result of division is 970970.
 
::<math>\scriptstyle{\color{blue}{\frac{4854850}{5}=970970}}</math>
 
::<math>\scriptstyle{\color{blue}{\frac{4854850}{5}=970970}}</math>
|style="text-align:right;"|ונקח אחד מהם, המשל ה' ונחלקנו עליו ויצא בחילוק 970970
+
|style="text-align:right;"|המשל ה' ונחלקנו עליו ויצא בחילוק 970970
 
|-
 
|-
 
|
 
|
::the first digit is 0<br>
+
::Since the first [digit] is 0, 10 and 5 are its [divisors] also.
:&rarr; 5, 10 are [divisors] of 970970
+
|style="text-align:right;"|וגם זה אחר שהראשונה 0 יש לה י' גם ה&#x202B;'
|style="text-align:right;"|וגם זה, אחר שהראשונה 0, יש לה י', גם ה&#x202B;'
 
 
|-
 
|-
 
|
 
|
 +
:We take the ten, for instance, and divide it by 10; the result of division is 97097.
 
::<math>\scriptstyle{\color{blue}{\frac{970970}{10}=97097}}</math>
 
::<math>\scriptstyle{\color{blue}{\frac{970970}{10}=97097}}</math>
 
|style="text-align:right;"|ונקח עד"מ העשרה ונחלקנו לי' ויצא בחילוק 97097
 
|style="text-align:right;"|ונקח עד"מ העשרה ונחלקנו לי' ויצא בחילוק 97097
 
|-
 
|-
 
|
 
|
::the first digit is not 0<br>
+
::Since the first [digit] is not 5 nor 0, neither 5, nor 10 are its [divisors].
:&rarr; 5, 10 are not [divisors] of 97097
+
|style="text-align:right;"|ואחר שהראשונה אינה לא ה' ולא 0 אין לו לא ה' ולא עשרה
|style="text-align:right;"|ואחר שהראשונה אינה לא ה' ולא 0, אין לו לא ה' ולא עשרה
 
 
|-
 
|-
 
|
 
|
:Is 7 [divisor] of 97097?
+
:We see if it has a seventh.
 
|style="text-align:right;"|ונראה אם יש לו שביעית
 
|style="text-align:right;"|ונראה אם יש לו שביעית
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle9\equiv_72&\scriptstyle\longrightarrow\left(2\sdot3\right)+7=6+7=13\equiv_76\\&\scriptstyle\longrightarrow6\sdot3=18\equiv_74\\&\scriptstyle\longrightarrow4\sdot3=12\equiv_75\\&\scriptstyle\longrightarrow5+9=14\equiv_70\\&\scriptstyle\longrightarrow0+7=7\equiv_70\\\end{align}}}</math><br>
+
::We subtract seven from the last 9; two remains.
:&rarr; 7 is a [divisor] of 97097
+
::<math>\scriptstyle{\color{blue}{9\equiv_72}}</math>
|style="text-align:right;"|ומהט' האחרון נסיר שבעה, ישארו שנים<br>
+
|style="text-align:right;"|ומהט' האחרון נסיר שבעה ישארו שנים
ונכפלהו בג', יהיו ו' ונחברם לז' אשר לפניו, יהיו י"ג, נסיר הז', ישארו ו&#x202B;'<br>
 
נכפלהו בג', יהיו י"ח, נסיר מהם י"ד, שני שביעיות, ישארו ד&#x202B;'<br>
 
ואחר שבמעלה שלפני זאת אין שם חשבון כי אם 0, נכפול אלו הד' בג', יהיו י"ב, נסיר ז', ישארו חמשה<br>
 
נחברם לט' שלפני זאת, יהיו י"ד והם שביעיות, גם הראשונה ז', הנה יצא הכל ז' ז&#x202B;'<br>
 
הנה יש לו שביעית
 
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\frac{97097}{7}=13871}}</math>
+
::We multiply it by 3; it is 6. We add it to the 7 that precedes it; it is 13. We subtract 7; 6 remains.
|style="text-align:right;"|ונקחנו למורה ונחלקנו עליו ויצא בחילוק 13871
+
::<math>\scriptstyle{\color{blue}{\left(2\sdot3\right)+7=6+7=13\equiv_76}}</math>
 +
|style="text-align:right;"|ונכפלהו בג' יהיו ו' ונחברם לז' אשר לפניו יהיו י"ג נסיר הז' ישארו ו&#x202B;'
 
|-
 
|-
 
|
 
|
:Is 7 a [divisor] of 13871?
+
::We multiply it by 3; it is 18. We subtract 14, which are two sevens, from it; 4 remains.
|style="text-align:right;"|ונשוב לראות ונעיין אם יש לזה ג"כ ז&#x202B;'
+
::<math>\scriptstyle{\color{blue}{6\sdot3=18\equiv_74}}</math>
 +
|style="text-align:right;"|נכפלהו בג' יהיו י"ח נסיר מהם י"ד שני שביעיות ישארו ד&#x202B;'
 
|-
 
|-
 
|
 
|
::the remainder 4<br>
+
::Since there is no number in the preceding rank, only 0, we multiply the 4 by 3; it is 12. We subtract 7; five remains.
:&rarr; 7 is not a [divisor] of 13871
+
::<math>\scriptstyle{\color{blue}{4\sdot3=12\equiv_75}}</math>
|style="text-align:right;"|ונמצא שישארו ד&#x202B;'<br>
+
|style="text-align:right;"|ואחר שבמעלה שלפני זאת אין שם חשבון כי אם 0 נכפול אלו הד' בג' יהיו י"ב נסיר ז' ישארו חמשה
הנה אין לו ז&#x202B;'
 
 
|-
 
|-
 
|
 
|
:Is 11 a [divisor] of 13871?
+
::We add it to the preceding [digit]; it is 14, which are sevens. The first [digit] is also 7; so all is cast out by sevens.
|style="text-align:right;"|ונראה אם יש לו י"א
+
::<math>\scriptstyle{\color{blue}{5+9=14\equiv_70}}</math>
 +
::<math>\scriptstyle{\color{blue}{0+7=7\equiv_70}}</math>
 +
|style="text-align:right;"|נחברם לט' שלפני זאת יהיו י"ד והם שביעיות גם הראשונה ז' הנה יצא הכל ז' ז&#x202B;'
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle3-1=2&\scriptstyle\longrightarrow8-2=6\\&\scriptstyle\longrightarrow7-6=1\\&\scriptstyle\longrightarrow1-1=0\\\end{align}}}</math><br>
+
::It has a seventh.
:&rarr; 11 is a [divisor] of 13871
+
|style="text-align:right;"|הנה יש לו שביעית
|style="text-align:right;"|ונחסר הא' האחרון מהג' שלפניו וישארו ב&#x202B;'<br>
 
נסירם מהח' שלפניהם, ישארו ו&#x202B;'<br>
 
נסירם מהז' שלפניהם, ישאר א&#x202B;'<br>
 
נסירם מהא' שלפניו ולא ישאר דבר, הרי יש לו י"א
 
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\frac{13871}{11}=1261}}</math>
+
:*We take it as a divisor and divide it by it; the result of divison is 13871.
|style="text-align:right;"|ונקחנו למורה ונחלקנו עליו ויצא בחילוק 1261
+
::<math>\scriptstyle{\color{blue}{\frac{97097}{7}=13871}}</math>
 +
|style="text-align:right;"|ונקחנו למורה ונחלקנו עליו ויצא בחילוק <s>1261</s> <sup>13871</sup>
 
|-
 
|-
 
|
 
|
:Is 11 a [divisor] of 1261?
+
:We see if 7 is its [divisor] also.
|style="text-align:right;"|ונשוב לראות אם יש לו הי"א
+
|style="text-align:right;"|<s>ונשוב לראות</s> <sup>ונעיין</sup> אם יש לזה &#x202B;<ref>21v</ref>ג"כ ז&#x202B;'
 
|-
 
|-
 
|
 
|
::the remainder 7<br>
+
::We find that 4 remains, so 7 is not its [divisor].
:&rarr; 11 is not a [divisor] of 1261
+
|style="text-align:right;"|ונמצא שישארו ד' הנה אין לו ז&#x202B;'
|style="text-align:right;"|ונמצא שישארו ז&#x202B;'<br>
 
הנה אין לו י"א
 
 
|-
 
|-
 
|
 
|
:Is 13 a [divisor] of 1261?
+
:We see if 11 is its [divisor].
|style="text-align:right;"|ונעיין אם יש לו י"ג
+
|style="text-align:right;"|ונראה אם יש לו י"א
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left(2+13\right)-\left(3\sdot1\right)=15-3=12&\scriptstyle\longrightarrow\left(3\sdot12\right)=36\equiv_{13}10\\&\scriptstyle\longrightarrow\left(6+13\right)-10=19-10=9\\&\scriptstyle\longrightarrow3\sdot9=27\equiv_{13}1\\&\scriptstyle\longrightarrow1-1=0\\\end{align}}}</math><br>
+
::We subtract the last 1 from the 3 that precedes it; 2 remains.
:&rarr; 13 is a [divisor] of 1261
+
::<math>\scriptstyle{\color{blue}{3-1=2}}</math>
|style="text-align:right;"|ונכפול הא' אחרון בג' ולא נוכל להסירם מהב' שלפניהם, לכן נוסיף עליהם י"ג ויהיו ט"ו, נסיר הג', ישארו י"ב<br>
+
|style="text-align:right;"|ונחסר הא' האחרון מהג' שלפניו וישארו ב&#x202B;'
ונכפלם בג' ויהיו ל"ו, נסיר כ"ו שהם י"ג י"ג, ישארו י&#x202B;'<br>
 
[ולא נוכל להסירם מהו' שלפניהם ונוסיף עליהם י"ג ויהיה י"ט, נסיר מהם י', ישארו] ישארו ט&#x202B;'<br>
 
נכפלם בג', יהיו כ"ז, נסיר כ"ו, ישאר א&#x202B;'<br>
 
נסירנו מהא' הראשון ולא ישאר דבר<br>
 
הרי יש לו י"ג
 
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\frac{1261}{13}=97}}</math>
+
::We subtract it from the 8 that precedes it; 6 remains.
|style="text-align:right;"|נקחנו למורה ונחלקנו עליו ויצא בחילוק 97
+
::<math>\scriptstyle{\color{blue}{8-2=6}}</math>
 +
|style="text-align:right;"|נסירם מהח' שלפניהם ישארו ו&#x202B;'
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{97<13^2}}</math><br>
+
::We subtract it from the 7 that precedes it; 1 remains.
::the numbers 1-12 are not [divisors] of 97
+
::<math>\scriptstyle{\color{blue}{7-6=1}}</math>
:&rarr; 13 is not a [divisor] of 97
+
|style="text-align:right;"|נסירם מהז' שלפניהם ישאר א&#x202B;'
|style="text-align:right;"|ואחר שזה החשבון הוא פחות ממרובע י"ג, אינך צריך לעיין עוד אם יש לו [הי"ג] י"ג וכ"ש מורה גדול ממנו ולא אחד מהקודמים, אשחר שלא נמצא לראשונים, לכן נקחנו בעצמו למורה
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|הנה יצאו לנו מורים לזה החשבון והחשבון הקטן אשר רצינו לחלק לזה החשבון הגדול היה 2447235 ונחלקנו לאלו המורים ונשימם זה אחר זה כרצוננו, כי זה לא יזיק, כי אין מוקדם ומאוחר במורים ותחלק כל החשבון למורה האחרון אשר לצד שמאל והנשאר שים תחתיו והיוצא בחילוק חלק לאשר לפניו וכן לעולם, עד אשר יכלה המספר ויגיע למקום שהיוצא בחילוק יהיה פחות מהמורה אשר לפניו, כי אז תשים זה היוצא תחת המורה הזה אשר לפניו וכבר כלית כל מלאכתך
+
::We subtract it from the 1 that precedes it; nothing remains.
 +
::<math>\scriptstyle{\color{blue}{1-1=0}}</math>
 +
|style="text-align:right;"|נסירם מהא' שלפניו ולא ישאר דבר
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם יכלו המורים והמספר לא יכלה וזה יקרה כאשר היה המספר המתחלק גדול מהמספר אשר רצינו לחלק עליו, אשר הורכב מהמורים ההם, פי' שיצאו ממנו המורים ההם, אז היוצא בחילוק בחלקך למורה הראשון תשימנו מבחוץ והם שלמים וכאשר עשינו זה המעש', ר"ל כשחלקנו מספרינו למורים אלו להיות המתחלק קטן מהמספר אשר רצינו לחלק עליו, אשר הוא [מע]ל המורים, יכלה המספר והמה לא יכלו
+
::11 is its [divisor].
 +
|style="text-align:right;"|הרי יש לו י"א
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle2447235\div50335084800&\scriptstyle=\left(\frac{2}{5}\sdot\frac{1}{2}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{3}\sdot\frac{1}{9}\sdot\frac{1}{6}\right)\\&\scriptstyle+\left(\frac{5}{10}\sdot\frac{1}{5}\sdot\frac{1}{2}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{3}\sdot\frac{1}{9}\sdot\frac{1}{6}\right)\\&\scriptstyle+\left(\frac{1}{7}\sdot\frac{1}{10}\sdot\frac{1}{5}\sdot\frac{1}{2}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{3}\sdot\frac{1}{9}\sdot\frac{1}{6}\right)\\&\scriptstyle+\left(\frac{4}{11}\sdot\frac{1}{7}\sdot\frac{1}{10}\sdot\frac{1}{5}\sdot\frac{1}{2}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{3}\sdot\frac{1}{9}\sdot\frac{1}{6}\right)\\&\scriptstyle+\left(\frac{9}{13}\sdot\frac{1}{11}\sdot\frac{1}{7}\sdot\frac{1}{10}\sdot\frac{1}{5}\sdot\frac{1}{2}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{3}\sdot\frac{1}{9}\sdot\frac{1}{6}\right)\\&\scriptstyle+\left(\frac{22}{97}\sdot\frac{1}{13}\sdot\frac{1}{11}\sdot\frac{1}{7}\sdot\frac{1}{10}\sdot\frac{1}{5}\sdot\frac{1}{2}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{3}\sdot\frac{1}{9}\sdot\frac{1}{6}\right)\\\end{align}}}</math>
+
:*We take it as a divisor and divide it by it; the result of divison is 1261.
|style="text-align:right;"|ויצא לנו כי כאשר נחלק 2447235 על 50335084800, שהיוצא בחילוק הוא ש[נ]י חמישיות חצי רביעית שמינית שלישית תשיעית שישית, פי' כי כאשר עשינו האח' השלם ו' חלקים וא' מאלו הו' ט' וא' מאלו ה[.] הט' ג' וא' מאלו הג' ח' וא' מהח' א' ד' וא מהד' ב' וא' מב' אלו חמשה, שיוצא לכל אחד מאחדי המספר הגדול אשר חלקנו עליו, שתי חלקים חלק זה מהחלקים האחרונים האלו ה[.....]<br>
+
::<math>\scriptstyle{\color{blue}{\frac{13871}{11}=1261}}</math>
ועוד יצא בחלוקנו זה ה' עשיריות חלק זה פי'[ה'][עשיריות] ה[חמיש]ית חצי רביעית שמינית שלישית תשיעית שישית<br>
+
|style="text-align:right;"|ונקחנו למורה ונחלקנו עליו ויצא בחילוק 1261
ועוד שביעית עשירית חמישית חצי רביעית וכו&#x202B;'<br>
 
ועוד ד' חלקים מי"א מז' מי' מה' וכו&#x202B;'<br>
 
ועוד [ט' חלקים מי"ג מי"א מז' מי' מה' וכו&#x202B;'<br>
 
ועוד כ"ב] כ"ב חלקים מצ"ז מי"ג מי"א מז' מי' מה' וכו&#x202B;'
 
 
|-
 
|-
 
|
 
|
 +
:We see if 11 is its [divisor].
 +
|style="text-align:right;"|ונשוב לראות אם יש לו הי"א
 +
|-
 
|
 
|
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
+
::We find that 7 remains, so 11 is not its [divisor].
 +
|style="text-align:right;"|ונמצא שישארו ז' הנה אין לו י"א
 
|-
 
|-
| 97 || 13 || 11 || 7 || 10 || 5 || 2 || 4 || 8 || 3 || 9 || 6
+
|
 +
:We see if 13 is its [divisor].
 +
|style="text-align:right;"|ונעיין אם יש לו י"ג
 
|-
 
|-
| 22 || 9 || 4 || 1 || 5 || 2 || colspan=6|
+
|
|}
+
::We multiply the last 1 by 3, but we cannot subtract it from the 2 that precedes it, so we add 13 to it; it is 15. We subtract the 3; 12 remains.
 +
::<math>\scriptstyle{\color{blue}{\left(2+13\right)-\left(3\sdot1\right)=15-3=12}}</math>
 +
|style="text-align:right;"|ונכפול הא' אחרון בג' ולא נוכל להסירם מהב' שלפניהם לכן {{#annot:term|178,1206|fbiZ}}נוסיף עליהם{{#annotend:fbiZ}} י"ג ויהיו ט"ו נסיר הג' ישארו י"ב
 
|-
 
|-
|Receiving reduced fractions from the division operation - both the dividend and the divisor are divided by a common divisor
+
|
|style="text-align:right;"|ואם תרצה שיצאו לך חלקים נאותים יותר, תעיין לעולם כאשר תחלק המספר למורים, אם למספר הזה יש שום אחד מהמורים ההם
+
::We multiply it by 3; it is 36. We subtract 26, which are 13 and 13; 10 remains.
 +
::<math>\scriptstyle{\color{blue}{12\sdot3=36\equiv_{13}10}}</math>
 +
|style="text-align:right;"|ונכפלם בג' ויהיו ל"ו נסיר כ"ו שהם י"ג י"ג ישארו י&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|המשל במספרינו וזה המתחלק שיש לו תשיעית ותשים המורה ההוא האחרון לצד שמאל ותחלק עליו ראשונה ולא ישאר דבר לשום תחתיו וגם ליוצא בחילוק נעיין אם יש לו א' מהמורים הנותרים ונשימנו לפני זה אשר חלקנו עליו ונחלק [עליו ולא ישאר [.] דבר
+
::We cannot subtract it from the 6 that precedes it, so we add 13 to it; it is 19. We subtract the 10 from it; 9 remains.
 +
::<math>\scriptstyle{\color{blue}{\left(6+13\right)-10=19-10=9}}</math>
 +
|style="text-align:right;"|&#x202B;[ולא נוכל להסירם מהו' שלפניהם ונוסיף עליהם י"ג ויהיה י"ט נסיר מהם י' ישארו&#x202B;]&#x202B;<ref>marg.</ref> ישארו ט&#x202B;'
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle2447235\div50335084800&\scriptstyle=\left(\frac{1}{2}\sdot\frac{1}{13}\sdot\frac{1}{11}\sdot\frac{1}{4}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)\\&\scriptstyle+\left(\frac{9}{97}\sdot\frac{1}{10}\sdot\frac{1}{8}\sdot\frac{1}{2}\sdot\frac{1}{13}\sdot\frac{1}{11}\sdot\frac{1}{4}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)\\\end{align}}}</math>
+
::We multiply it by 3; it is 27. We subtract 26; 1 remains.
|style="text-align:right;"|וכן נעשה לעולם בענין שיצא לנו בחלקינו זה] זה המספר הקטן הנזכר לגדול, שהיוצא לכל א' הוא חצי חלק מי"ג מימד' מג' מו' ועוד ט' חלקים מצ"ז מי' מח' מחצי וכו' הכל כמו שהוא בצורה הזאת&#x202B;:
+
::<math>\scriptstyle{\color{blue}{9\sdot3=27\equiv_{13}1}}</math>
 +
|style="text-align:right;"|נכפלם בג' יהיו כ"ז נסיר כ"ו ישאר א&#x202B;'
 
|-
 
|-
 
|
 
|
|
+
::We subtract it from the first 1; nothing remains.
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
+
::<math>\scriptstyle{\color{blue}{1-1=0}}</math>
|-
+
|style="text-align:right;"|נסירנו מהא' הראשון ולא ישאר דבר
| 9 || 5 || 7 || 97 || 10 || 8 || 2 || 13 || 11 || 4 || 3 || 6
 
|-
 
| colspan=3|&nbsp;|| 9 || &nbsp;|| &nbsp;|| 1 || colspan=5|
 
|}
 
|-
 
|Both division procedures are correct - the division that is based on the divisors of the given number and ends with reduced fractions is more proper and therefore is called '''perfect beauty'''
 
|style="text-align:right;"|ואלו שני המעשים הכל אחד, אלא שבמעשה השני חלקים יותר נאותים<br>
 
ולחלוקה על המורים עליו השגחה זו נקרא לו '''כלילת יופי''', לפי שהוא לעשות מהפרטים כללים יפים ונאותים
 
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\frac{2447235}{9}=271915}}</math>
+
:Hence, 13 is its [divisor].
|style="text-align:right;"|וכ[די להרחיב הענין ו]לבארו בפי' אמשול משל לחלוקנו זה והוא כי המספר המתחלק יש לו תשיעית, לכן שמנו הט' האחרון וחלקנוהו עליו ולא נשאר דבר, על כן לא שמנו תחתיו דבר ויצא לנו בחלוק 271915
+
|style="text-align:right;"|הרי יש לו י"ג
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\frac{271915}{5}=54383}}</math>
+
:*We take it as a divisor and divide it by it; the result of divison is 97.
|style="text-align:right;"|ויש לזה היוצא בחילוק חמישית, לכן שמנו הה' לפני הט' וחלקנו עליו ולא נשאר דבר ויצא [לזה] היוצא בחלוק 54383
+
::<math>\scriptstyle{\color{blue}{\frac{1261}{13}=97}}</math>
 +
|style="text-align:right;"|נקחנו למורה ונחלקנו עליו ויצא בחילוק 97
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\frac{54383}{7}=7769}}</math>
+
::Since this number is smaller that the square of 13, you do not need to see if 13 is its [divisor], all the more so a greater divisor, or one of the preceding [divisors], as they are not [divisors] of the former [number], so we take it as a divisor itself.
|style="text-align:right;"|ויש לו שביעית, לכן שמנו מיד ל[פני] המורים הנזכרים הז' וחלקנוהו עליו ולא נשאר דבר ויצא בחילוק [7769]
+
::<math>\scriptstyle{\color{blue}{97<13^2}}</math>
 +
|style="text-align:right;"|ואחר שזה החשבון הוא פחות ממרובע י"ג אינך צריך לעיין עוד אם יש לו [הי"ג] י"ג וכ"ש מורה גדול ממנו ולא אחד מהקודמים א<s>ש</s><sup>ח</sup>ר שלא נמצא לראשונים לכן נקחנו בעצמו למורה
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\frac{7769}{97}=80+\frac{9}{97}}}</math>
+
:We have received the divisors of this number.
|style="text-align:right;"|ואין לו שום אחד מהמורים הנותרים, לכן נשים אשר נרצה ושמנו היותר גדול והוא הצ"ז וחלקנו עליו ונשאר ט' ושמנוהו תחתיו ויצא בחילוק 80
+
|style="text-align:right;"|הנה יצאו לנו מורים לזה החשבון
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\frac{80+\frac{9}{97}}{10}=8+\left(\frac{9}{97}\sdot\frac{1}{10}\right)}}</math>
+
:The smaller number that we want to divide by this greater number is 2447235.
|style="text-align:right;"|ויש לו עשירית לכן שמנו מיד ה10 וחלקנום עליו ולא נשאר דבר ויצא בחלוק ח&#x202B;'
+
|style="text-align:right;"|והחשבון הקטן אשר רצינו לחלק לזה החשבון הגדול היה 2447<sup>2</sup>35
 
|-
 
|-
|
+
|We divide it by these divisors and write them one after another as we wish, for it does not matter, because there is no former and last in the divisors.
::<math>\scriptstyle{\color{blue}{\frac{8+\left(\frac{9}{97}\sdot\frac{1}{10}\right)}{8}=1+\left(\frac{9}{97}\sdot\frac{1}{10}\sdot\frac{1}{8}\right)}}</math>
+
|style="text-align:right;"|ונחלקנו לאלו המורים ונשימם זה אחר זה כרצוננו כי זה לא יזיק כי אין מוקדם ומאוחר במורים
|style="text-align:right;"|ויש לו שמינית, לכן שמנו מיד הח' וחלקנום עליו ולא נשאר דבר ויצא בחלוק
 
 
|-
 
|-
|
+
|Divide the whole number by the last divisor to the left and write the remainder beneath it, then divide the result of divison by the one that precedes it; and so on, until the number is gone, [or] it reaches a phase in which the result of division is smaller than the divisor that precedes it. Then, you write the result beneath this preceding divisor and your procedure is complete.
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\frac{1+\left(\frac{9}{97}\sdot\frac{1}{10}\sdot\frac{1}{8}\right)}{2\sdot13\sdot11\sdot4\sdot3\sdot6}&\scriptstyle=\left(\frac{1}{2}\sdot\frac{1}{13}\sdot\frac{1}{11}\sdot\frac{1}{4}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)\\&\scriptstyle+\left(\frac{9}{97}\sdot\frac{1}{10}\sdot\frac{1}{8}\sdot\frac{1}{2}\sdot\frac{1}{13}\sdot\frac{1}{11}\sdot\frac{1}{4}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)\\\end{align}}}</math>
+
|style="text-align:right;"|ותחלק כל החשבון למורה האחרון אשר לצד שמאל והנשאר שים תחתיו והיוצא בחילוק חלק לאשר לפניו וכן לעולם עד אשר יכלה המספר ויגיע למקום שהיוצא בחילוק יהיה פחות מהמורה אשר לפניו כי אז תשים זה היוצא תחת המורה הזה אשר לפניו וכבר כלית כל מלאכתך
|style="text-align:right;"|ואחר שהוא פחות משום אחד מהמורים הנותרים, אין לנו עוד לחלק, אבל נשימהו תחת המורה אשר נשים מיד לפני המושמים הנזכרים ושמנו הב' ושמנו תחתיו זה הא' אשר יצא באחרונה בחלוק ואחר שמנו המורים הנותרים כאשר הזדמן
 
 
|-
 
|-
|'''The general rule''': dividing the dividend by the divisors of the given divisor [= the number by which the dividend should be divided]
+
|If the divisors are all gone, but the number is not gone, and this happens when the dividend is greater than the number by which we wnat to divide that consists of these divisors, meaning that the divisors are derived from it, then write aside the result of division by the first divisor; these are integers; and as we did in this procedure, i.e. when we divided our number by these divisors, since the dividend is smaller than the number by which we want to divide that is above the divisors, the number is gone, but they are not gone.
|style="text-align:right;"|'''הכלל העולה מהדברים''' הוא שכאשר נרצה לחלק שום מספר גדול, או קטן, על מספר אחר גדול ממנו, או קטן ממנו, שנוציא מורה המספר אשר רצינו לחלק עליו ונשים אותם כפי המזדמן זה אחר זה, או אם ירצה ישגיח בהנחתם, יען יצאו החלקים יותר נאותים כאשר ביארנו ונחלק המספר המתחלק על המורה האחרון אשר לצד שמאל והנשאר נשים תחתיו והיוצא נחלק לאשר לפניו וכן לעולם
+
|style="text-align:right;"|ואם יכלו המורים והמספר לא יכלה וזה יקרה כאשר היה המספר המתחלק גדול &#x202B;<ref>22r</ref>מהמספר אשר רצינו לחלק עליו אשר {{#annot:term|2491,1961|8YuF}}הורכב{{#annotend:8YuF}} מהמורים <sup>ההם</sup> פי' שיצאו ממנו המורים ההם אז <sup>ה</sup>יוצא בחילוק בחלקך למורה הראשון תשימנו מבחוץ והם שלמים וכאשר עשינו זה המעש' ר"ל כשחלקנו מספרינו למורים אלו להיות המתחלק קטן מהמספר אשר רצינו לחלק עליו אשר הוא [מע]ל המורים יכלה המספר והמה לא יכלו
 
|-
 
|-
 
|
 
|
*The dividend is smaller than the divisor
+
:We receive that when we divide 2447235 by [50335084800], the result of division is two-fifths of a half of a quarter of an eighth of a third of a ninth of a sixth, i.e. when we decompose one unit to 6 parts, then 1 of these 6 [parts] to 9, then 1 of these 9 [parts] to 3, then 1 of these 3 [parts] to 8, then 1 of these 8 [parts] to 4, then 1 of these 4 [parts] to 2, then 1 of these 2 [parts] to five, each of the units of the large number, by which we divide, receives two parts of the former parts.
|style="text-align:right;"|ואם היה המתחלק קטן מאשר חלקנו עליו, יכלה המספר והמה לא יכלו
+
|style="text-align:right;"|ויצא לנו <sup>כי</sup> כאשר נחלק 2447235 על 5035<sup>0</sup>800 שהיוצא בחילוק הוא שני חמישיות חצי רביעית שמינית שלישית תשיעית שישית פי' כי כאשר עשינו האח' השלם ו' חלקים וא' מאלו הו' ט' וא' מאלו ה[.] <sup>ה</sup>ט' ג' וא' מאלו הג' ח' וא' מהח' א' ד' וא מהד' ב' וא' מב' אלו חמשה שיוצא לכל אחד מאחדי המספר הגדול אשר חלקנו עליו שתי חלקים חלק זה מהחלקים האחרונים האלו ה[.....]
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכאשר יכלה, יהיה היוצא בחילוק פחות מהמורה אשר לפני המורים אשר חלקנו כבר עליהם, לכן אין לנו לחלק זה היוצא המעט על זה המורה הרב ממנו, אבל שימהו תחתיו
+
:We also get from the division 5-tenths of these parts, i.e. of a fifth of a half of a quarter of an eighth of a third of a ninth of a sixth.
 +
|style="text-align:right;"|ועוד יצא בחלוקנו זה ה' עשיריות חלק זה <sup>פי'</sup> [ה'][עשיריות]&#x202B;<ref>marg.</ref> ה[חמיש]ית חצי רביעית שמינית שלישית תשיעית שישית
 
|-
 
|-
 
|
 
|
*The dividend is larger than the divisor
+
:Also one-seventh of a tenth of a fifth of a half of a quarter etc.
|style="text-align:right;"|ואם היה המספר המתחלק גדול מאשר רצינו לחלק עליו, יכלו המורים והמספר לא יכלה והיוצא מן החלוק האחרון [....] נשימהו חוץ לצורה והם השלמים אשר יצאו בחלוק ואשר בתוך הצורה תחת המורים הם השברים ושברי שברים, אשר יצאו בחלוק מוסף על השלימים הנזכרים
+
|style="text-align:right;"|ועוד שביעית עשירית חמישית חצי רביעית וכו&#x202B;'
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle3123740520\div216</math>
+
:Also 4 parts of 11 of a seventh of a tenth of a fifth etc.
|style="text-align:right;"|וכדי להרחיב הענין אעשה משל אחר, המשל רצינו לחלק 3123740520 על 216
+
|style="text-align:right;"|ועוד ד' חלקים מי"א מז' מי' מה' וכו&#x202B;'
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{216=3\sdot8\sdot9}}</math>
+
:Also 9 parts of 13 of 11 [parts] of a seventh of a tenth of a fifth etc.
|style="text-align:right;"|והנה מורה זה המספר הקטן, אשר רצינו לחלק עליו, הם אלו  | 3 | 8 | 9
+
|style="text-align:right;"|ועוד &#x202B;[ט' חלקים מי"ג מי"א מז' מי' מה' וכו&#x202B;'
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\frac{3123740520}{9}=347082280}}</math>
+
:Also 22 parts of 97 of 13 [parts] of 11 [parts] of a seventh of a tenth of a fifth etc.
|style="text-align:right;"|וחלקנו מספרינו זה הגדול על הט' ולא נשאר דבר ויצא בחילוק 347082280
+
|style="text-align:right;"|ועוד כ"ב&#x202B;]&#x202B;<ref>marg.</ref> כ"ב חלקים מצ"ז מי"ג מי"א מז' מי' מה' וכו&#x202B;'
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\frac{347082280}{8}=43385285}}</math>
+
|
|style="text-align:right;"|וחלקנום [על הח'] ולא נשאר דבר ויצא בחילוק 43385285
+
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| 97 || 13 || 11 || 7 || 10 || 5 || 2 || 4 || 8 || 3 || 9 || 6
 +
|-
 +
| 22 || 9 || 4 || 1 || 5 || 2 || colspan=6|
 +
|}
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle2447235\div50335084800&\scriptstyle=\left(\frac{2}{5}\sdot\frac{1}{2}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{3}\sdot\frac{1}{9}\sdot\frac{1}{6}\right)+\left(\frac{5}{10}\sdot\frac{1}{5}\sdot\frac{1}{2}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{3}\sdot\frac{1}{9}\sdot\frac{1}{6}\right)+\left(\frac{1}{7}\sdot\frac{1}{10}\sdot\frac{1}{5}\sdot\frac{1}{2}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{3}\sdot\frac{1}{9}\sdot\frac{1}{6}\right)\\&\scriptstyle+\left(\frac{4}{11}\sdot\frac{1}{7}\sdot\frac{1}{10}\sdot\frac{1}{5}\sdot\frac{1}{2}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{3}\sdot\frac{1}{9}\sdot\frac{1}{6}\right)+\left(\frac{9}{13}\sdot\frac{1}{11}\sdot\frac{1}{7}\sdot\frac{1}{10}\sdot\frac{1}{5}\sdot\frac{1}{2}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{3}\sdot\frac{1}{9}\sdot\frac{1}{6}\right)\\&\scriptstyle+\left(\frac{22}{97}\sdot\frac{1}{13}\sdot\frac{1}{11}\sdot\frac{1}{7}\sdot\frac{1}{10}\sdot\frac{1}{5}\sdot\frac{1}{2}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{3}\sdot\frac{1}{9}\sdot\frac{1}{6}\right)\\\end{align}}}</math>
 +
{|
 +
|-
 +
|If you wish to receive more proper fractions, always see, when you divide the [divisor] into divisors, if the [dividend] has any of these divisors.
 +
|style="width:45%; text-align:right;"|<big>ואם</big> תרצה שיצאו לך חלקים נאותים יותר תעיין לעולם כאשר תחלק המספר ל{{#annot:term|604,1239|Qr95}}מורים{{#annotend:Qr95}} אם למספר הזה יש שום אחד מהמורים ההם
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\frac{43385285}{3}=14461761+\frac{2}{3}}}</math>
+
::Example in our number: the dividend has a ninth. Write this divisor last to the left and divide by it first; nothing remains to write beneath it.
|style="text-align:right;"|[וחלקנום על הג' ויצא לנו בחלוק הזה האחרון 14461761 והם] והם השלמים ונשארו ב' ושמנום תחת הג' והם השברים היוצאים בחילוק, הנוספים על השלמים
+
|style="text-align:right;"|המשל <s>כאומרנו</s> במספרינו וזה המתחלק שיש לו תשיעית ותשים המורה ההוא האחרון לצד שמאל ותחלק עליו ראשונה ולא ישאר דבר לשום תחתיו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם גם עתה בזה החילוק האחרון לא היה נשאר דבר, לא היינו שמים תחתיו דבר וכיון שלא נמצא דבר תחת המורים, לא היו יוצאים בחילוק שברים כלל, כי אם השלמים לבד וזה יקרה כאשר החשבון אשר חלקנו עליו יהיה ראוי להיות מורה לחשבון המתחלה
+
::We see if the result of division has also one of the remaining divisors. Write it before the one by which we have divided and divide by it; nothing remains.
 +
|style="text-align:right;"|וגם ליוצא בחילוק נעיין אם יש לו א' מהמורים הנותרים ונשימנו לפני זה אשר חלקנו עליו ונחלק &#x202B;[עליו ולא ישאר [.] דבר
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{3123740520\div216=14461761+\frac{2}{3}}}</math>
+
:Thus we always do in this matter, so that we get, when we divide the mentioned small number by the greater number, the result that each unit receives a half part of 13 of [a part of] 11 of a quarter of a third of a sixth, plus 9 parts of 97 of a tenth of an eighth of a half etc. as it is in this diagram: 
|style="text-align:right;"|ואולם במשלנו זה אח' אשר נשארו בחלוק האחרון ב', יש לו ג"כ שברים ושמנום תחת הג' ויצא לנו כי כאשר חלקנו 3123740520 על 216 שיות עד שיגיע לכל אחד מהם 14461761 שלמים וב' שלישיות, כאשר בא בזאת הצורה
+
|style="text-align:right;"|וכן נעשה לעולם בענין שיצא לנו בחלקינו זה&#x202B;]&#x202B;<ref>marg.</ref> זה המספר הקטן הנזכר לגדול שהיוצא לכל א' הוא חצי חלק מי"ג מי"א מד' מג' מו' ועוד ט' חלקים &#x202B;<ref>22v</ref>מצ"ז מי' מח' מחצי וכו' הכל כמו שהוא בצורה הזאת
 
|-
 
|-
 
|
 
|
Line 2,657: Line 3,159:
 
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
|-
 
|-
| 9 || 8 || 3 || &nbsp;
+
| 9 || 5 || 7 || 97 || 10 || 8 || 2 || 13 || 11 || 4 || 3 || 6
 
|-
 
|-
| colspan=2 |&nbsp;|| 2 || 14461761
+
| colspan=3|&nbsp;|| 9 || &nbsp;|| &nbsp;|| 1 || colspan=5|
 +
|}
 
|}
 
|}
 +
:<math>\scriptstyle{\color{blue}{2447235\div50335084800=\left(\frac{1}{2}\sdot\frac{1}{13}\sdot\frac{1}{11}\sdot\frac{1}{4}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)+\left(\frac{9}{97}\sdot\frac{1}{10}\sdot\frac{1}{8}\sdot\frac{1}{2}\sdot\frac{1}{13}\sdot\frac{1}{11}\sdot\frac{1}{4}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)}}</math>
 +
{|
 +
|-
 +
|These two [division] procedures are the same, yet the second procedure that is based on division by the divisors [of the given number] involves more proper fractions and this reduction is called '''perfect beauty''', as it means making the units nice and proper general amounts.
 +
|style="width:45%; text-align:right;"|ואלו שני המעשים הכל אחד אלא שבמעשה השני חלקים יותר נאותים ולחלוקה על המורים עליו השגחה זו נקרא לו <big>{{#annot:term|1555,2488|ea69}}כלילת יופי{{#annotend:ea69}}</big> לפי שהוא לעשות מהפרטים כללים יפים ונאותים
 
|-
 
|-
|Checking the extraction the divisors: multiplying them one by one
+
|In order to elaborate the matter and explain it in detail, I give an example for our division:
|style="text-align:right;"|ואם רצית לבחון הוצאת המורים ההיתה כתקנה, כפול הראשון בשני והעולה בשלישי והעולה ברביעי וכן לכלם עד כלותם ואם יצא לך מזה החשבון המספר הראשון בלי תוספת ומגרעת, תדע שיצאו כתקנם ואם לאו לאו
+
|style="text-align:right;"|וכ[די להרחיב הענין ו]לבארו בפי' אמשול משל לחלוקנו זה
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{9\sdot8\sdot3=72\sdot3=216}}</math>
+
::The dividend has a ninth, therefore we place the 9 last and divide by it; nothing remains, so we do not write any thing beneath it. The result of division is 271915.
|style="text-align:right;"|המשל בצורה הנזכרת: אם רצינו לידע אם המורי' יצאו על היושר, נכפול ט' בח', יהיו ע"ב, נכפלים בג', יעלו 216 והנה כלו המורים ויצא החשבון בעל המורים בעינו
+
::<math>\scriptstyle{\color{blue}{\frac{2447235}{9}=271915}}</math>
 +
|style="text-align:right;"|והוא כי המספר המתחלק יש לו תשיעית לכן שמנו הט' האחרון וחלקנוהו עליו ולא נשאר דבר על כן לא שמנו תחתיו דבר ויצא לנו בחלוק 271915
 
|-
 
|-
|Checking the division by the divisors: multiplying the result by the divisors
+
|
|style="text-align:right;"|ואם תרצה לידע אם חלקת המספר על המורים על היוש&#x202B;'
+
::This result of division has a fifth, therefore we place the 5 before the 9 and divide by it; nothing remains. The result of division is 54383.
 +
::<math>\scriptstyle{\color{blue}{\frac{271915}{5}=54383}}</math>
 +
|style="text-align:right;"|ויש לזה היוצא בחילוק חמישית לכן שמנו הה' לפני הט' וחלקנו עליו ולא נשאר דבר ויצא [לזה] היוצא בחלוק 54383
 
|-
 
|-
 
|
 
|
*There are integers in the final result
+
::It has a seventh, therefore we place the 7 immediately before the mentioned divisors and divide by it; nothing remains. The result of division is 7769.
|style="text-align:right;"|אם יש שם שלמים כפול השלמים במורה הא' ההוא וכל המקובץ כפלהו במורה השני והוסף על העולה אשר תמצא תחתיו וכפול הכל על המורה [..] השלישי והוסף עליו אשר תמצא תחתיו וכן תעשה לעולם עד כלותם ואם ככלות המורים יצא לנו המספר המתחלק, הלא מעשיך אמת ויציב ואם לאו לאו
+
::<math>\scriptstyle{\color{blue}{\frac{54383}{7}=7769}}</math>
 +
|style="text-align:right;"|ויש לו שביעית לכן שמנו מיד ל[פני] המורים הנזכרים הז' וחלקנוהו עליו ולא נשאר דבר ויצא בחילוק &#x202B;[7769]&#x202B;<ref>marg.</ref>
 
|-
 
|-
 
|
 
|
*There are no integers in the final result
+
::It has none of the remaining divisors, therefore we place whichever we want. We place the greater, which is 97, and divide by it; 9 remains. We place it beneath and the result of division is 80.
|style="text-align:right;"|ואם אין שם שלמים, קח אשר תמצא ראשונה תחת המורה הקודם אשר תמצא תחתיו דבר וכפלהו במורה הסמוך לו לצד שמאל וחבר הנמצא תחתיו עם העולה וכפול הכל על המורה הנמשך הנמשך והוסף אשר תחתיו וכן לעולם עד כלותם ואם אז יצא החשבון המתחלק בעינו, הנה [נכון] ואם לאו לאו
+
::<math>\scriptstyle{\color{blue}{\frac{7769}{97}=80+\frac{9}{97}}}</math>
 +
|style="text-align:right;"|ואין לו שום אחד מהמורים הנותרים לכן נשים אשר נרצה ושמנו היותר גדול והוא הצ"ז וחלקנו עליו ונשאר ט' ושמנוהו תחתיו ויצא בחילוק 80
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left(14461761+\frac{2}{3}\right)\sdot3\sdot8\sdot9&\scriptstyle=\left[\left(14461761\sdot3\right)+2\right]\sdot8\sdot9\\&\scriptstyle=\left(43385283+2\right)\sdot8\sdot9\\&\scriptstyle=43385285\sdot8\sdot9\\&\scriptstyle=347082280\sdot9=3123740520\\\end{align}}}</math>
+
::It has a tenth, therefore we place the 10 immediately and divide by it; nothing remains. The result of division is 8.
|style="text-align:right;"|ונכפול השלמים בג' שהוא המורה הראשון ויעלה 43385283<br>
+
::<math>\scriptstyle{\color{blue}{\frac{80+\frac{9}{97}}{10}=8+\left(\frac{9}{97}\sdot\frac{1}{10}\right)}}</math>
נחבר לזה הב' אשר תחת המורה הזה ויעלה הכל 43385285<br>
+
|style="text-align:right;"|ויש לו עשירית לכן שמנו מיד ה10 וחלקנום עליו ולא נשאר דבר ויצא בחלוק ח&#x202B;'
נכפלם על הח' שהוא המורה השני ויעלה 347082280<br>
 
ואחר שלא נמצא תחת זה המורה דבר, לא נוסיף עליהם דבר<br>
 
ונשוב ונכפלם בט' שהוא המורה השלישי ויצא לנו החשבון המתחלק בעינו שהוא 3123740520
 
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle2447235\div50335084800</math>
+
::It has an eighth, therefore we place the 8 immediately and divide by it; nothing remains.
|style="text-align:right;"|עוד אמשול זה בדרך קצרה בצורה הקודמת לזאת, אשר אין שם שלמים ביוצא בחילוק כי אם שברים לבד&#x202B;:
+
::<math>\scriptstyle{\color{blue}{\frac{8+\left(\frac{9}{97}\sdot\frac{1}{10}\right)}{8}=1+\left(\frac{9}{97}\sdot\frac{1}{10}\sdot\frac{1}{8}\right)}}</math>
 +
|style="text-align:right;"|ויש לו שמינית לכן שמנו מיד הח' וחלקנום עליו ולא נשאר דבר ויצא בחלוק
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|המשל בתמונה זו
+
::Since it is smaller than any of the remaining divisors, we should not divise further, but we write it beneath the divisor that we write immediately after the mentioned written [divisors]: We write 2 and beneath it the 1 that results lastly in the division. Then: we write the remaining divisors randomly.
 +
|style="text-align:right;"|ואחר שהוא פחות משום אחד מהמורים הנותרים אין לנו עוד לחלק אבל נשימהו תחת המורה אשר נשים מיד לפני המושמים הנזכרים ושמנו הב' ושמנו תחתיו זה הא' אשר יצא באחרונה בחלוק ואחר שמנו המורים הנותרים כאשר הזדמן
 +
|}
 +
::<math>\scriptstyle{\color{blue}{\frac{1+\left(\frac{9}{97}\sdot\frac{1}{10}\sdot\frac{1}{8}\right)}{2\sdot13\sdot11\sdot4\sdot3\sdot6}=\left(\frac{1}{2}\sdot\frac{1}{13}\sdot\frac{1}{11}\sdot\frac{1}{4}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)+\left(\frac{9}{97}\sdot\frac{1}{10}\sdot\frac{1}{8}\sdot\frac{1}{2}\sdot\frac{1}{13}\sdot\frac{1}{11}\sdot\frac{1}{4}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)}}</math>
 +
{|
 
|-
 
|-
|
+
|The rule that follows from this discussion: when we wish to divide any great or small number by another number, greater or smaller than it, we extract the divisors of the number by which we want to divide and write them randomly one after the other, or if one wishes, he can write them intentionally, in order to get more proper fractions, as we explained. Then, we divide the dividend by the last divisor to the left and write the remainder beneath it and we divide the result by the one that precedes it and so on.
|
+
|style="width:45%; text-align:right;"|<big>הכלל</big> העולה מהדברים הוא שכאשר נרצה לחלק &#x202B;<ref>23r</ref>שום מספר גדול או קטן על מספר אחר גדול ממנו או קטן ממנו שנוציא מורה המספר אשר רצינו לחלק עליו ונשים אותם כפי המזדמן זה אחר זה או אם ירצה ישגיח בהנחתם יען יצאו החלקים יותר נאותים כאשר ביארנו ונחלק המספר המתחלק על המורה האחרון אשר לצד שמאל והנשאר נשים תחתיו והיוצא נחלק לאשר לפניו וכן לעולם
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
 
|-
 
|-
| 9 || 5 || 7 || 97 || 10 || 8 || 2 || 13 || 11 || 4 || 3 || 6
+
|If the dividend is smaller than the one by which we divide it, the number is completely consumed, but [the divisors] are not gone.
 +
|style="text-align:right;"|ואם היה המתחלק קטן מאשר חלקנו עליו יכלה המספר והמה לא יכלו
 
|-
 
|-
| colspan=3|&nbsp;|| 9 || colspan=2|&nbsp;|| 1 || colspan=5|
+
|When it is consumed, the result of division is smaller than the divisor that precedes the divisors by which we have already divided, therefore we should not divide this smaller result by the divisor that is greater than it, but write it beneath it.
|}
+
|style="text-align:right;"|וכאשר יכלה יהיה היוצא בחילוק פחות מהמורה אשר לפני המורים אשר חלקנו כבר עליהם לכן אין לנו לחלק זה היוצא המעט על זה המורה הרב ממנו אבל שימהו תחתיו
 
 
 
|-
 
|-
|
+
|If the dividend is greater than the one by which we want to divide it, the divisors are all gone, but the number is not completely consumed. We write the result of the last divison aside the diagram and they are the integers resulting from the division. What is in the diagram beneath the divisors are the fractions and the fractions of fractions resulting from the division that are added to the mentioned integers.
::<math>\scriptstyle{\color{blue}{\begin{align}&\scriptstyle\left[\left(\frac{1}{2}\sdot\frac{1}{13}\sdot\frac{1}{11}\sdot\frac{1}{4}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)+\left(\frac{9}{97}\sdot\frac{1}{10}\sdot\frac{1}{8}\sdot\frac{1}{2}\sdot\frac{1}{13}\sdot\frac{1}{11}\sdot\frac{1}{4}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)\right]\sdot50335084800\\&\scriptstyle=\left[\left(1\sdot8\sdot10\sdot97\right)+9\right]\sdot7\sdot5\sdot9\\&\scriptstyle=\left[\left(8\sdot10\sdot97\right)+9\right]\sdot7\sdot5\sdot9\\&\scriptstyle=\left[\left(80\sdot97\right)+9\right]\sdot7\sdot5\sdot9\\&\scriptstyle=\left(7760+9\right)\sdot7\sdot5\sdot9\\&\scriptstyle=7769\sdot7\sdot5\sdot9\\&\scriptstyle=54383\sdot5\sdot9\\&\scriptstyle=271915\sdot9=2447235\\\end{align}}}</math>
+
|style="text-align:right;"|<big>ואם</big> היה המספר המתחלק גדול מאשר רצינו לחלק עליו יכלו המורים והמספר לא יכלה והיוצא מן החלוק האחרון [....] נשימהו חוץ לצורה והם השלמים אשר יצאו בחלוק ואשר בתוך הצורה תחת המורים הם השברים ושברי שברים אשר יצאו בחלוק מוסף על השלימים הנזכרים
|style="text-align:right;"|ונקח הראשון אשר תחת הב' שהוא המורה הראשון אשר נמצא תחתיו דבר ונכפלהו בח' שהוא המורה הסמוך ויעלה ח' ואחר שאין תחתיו דבר, לא נוסיף עליהם דבר ונכפלם בי' שהוא המורה הסמוך ויעלה פ' ואחר שלא נמצא תחתיו דבר, נשוב ונכפלם בלי תוספת על הצד שהוא המורה הסמוך ויעלה 7760, נחבר אליהם הט' אשר תמצא תחתיו ויעלה 7769 ונכפלם בז' ויעלה 54383 ונשוב ונכפלם בה' ויעלה 271915 ונכפלם בט' שהוא המורה האחרון ויצא לנו החשבון המתחלק בעינו והוא 2447235 והנה [נכון הנה אמת]
 
 
|-
 
|-
|'''The reason for dividing the dividend by the divisors of the divisor''': since the divisor by which the dividend should be divided is a product of all its divisors
+
|In order to elaborate the matter, I present another example:
|style="text-align:right;"|['''וטעם הוצאת המורים וחלקנו עליהם המספר כנזכר''' הוא כי אחר שהמספר] עליהם המספר כנזכר הוא כי אחר שהמספר אשר רצינו לחלק עליו הוא מורכב מאלו המורים כמוהו כמוהם
+
|style="text-align:right;"|וכדי להרחיב הענין אעשה משל אחר
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle1\div100</math>
+
*{{#annot:3123740520÷216|157|Z5A9}}We wish to divide 3123740520 by 216.
|style="text-align:right;"|ר"ל כי מי שיחלק א' על מאה עד"מ, הנה יגיע ממנו לכל א' מהמאה חלק עליו ממאה שבו, פי' שנעשה הא' השלם אשר רצינו לחלק [מאה חלקים שוים ויגיע לכל א' מהמאה אשר רצינו לחלק עליהם] עליהם הא' הראשון חלק א' מהם
+
:<math>\scriptstyle3123740520\div216</math>
 +
|style="text-align:right;"|<big>המשל</big> רצינו לחלק 3123740520 על 216{{#annotend:Z5A9}}
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{1\div100=\frac{1}{20}\sdot\frac{1}{5}}}</math>
+
::The divisors of the smaller number, by which we want to divide, are 9, 8, 3.
|style="text-align:right;"|ואחר שחשבון הק' אשר רצינו לחלק [עליהם] הא' חלק א' מהם ואחר שחשבון יש לו חמישית וחמישיתו הוא כ', נמצא שכל א' מהמאה הוא חלק א' מכ' מחמישית שבמאה וכאשר נעשה א' שלם ק' אקלימים חלקים, הנה כל אחד מהם הוא חלק אחד מק' שבשלם שבשלם וגם הוא חלק א' מעשרים מחמישית השלם, הרי שאמרנו חלק א' מק' שבשלם כאומרנו חלק אחד מכ' מחמישית שבשלם
+
::<math>\scriptstyle{\color{blue}{216=3\sdot8\sdot9}}</math>
 +
|style="text-align:right;"|והנה מורה זה המספר הקטן אשר רצינו לחלק עליו הם אלו  | 3 | 8 | 9
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{1\div20=\frac{1}{4}\sdot\frac{1}{5}}}</math>
+
::We divide our greater number by 9; nothing remains and the result of division is 347082280.
|style="text-align:right;"|ולסבה זו בעינה יהיה אומרנו רביעית חמישית כאומרנו חלק א' מכ', לפי שעשרים יש לו חמישית וחמישיתו ד', נמצא שעשרים מורכב מה' וד' ושהאחד הוא חמישית רביעית, או רביעית חמישית, כי הכל א', הרי לנו ש שאמרנו רביעית חמישית כאומרנו חלק א' מכ' שבשלם
+
::<math>\scriptstyle{\color{blue}{\frac{3123740520}{9}=347082280}}</math>
 +
|style="text-align:right;"|וחלקנו מספרינו זה הגדול על הט' ולא נשאר דבר ויצא בחילוק 347082280
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{1\div100=\frac{1}{20}\sdot\frac{1}{5}=\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}}}</math>
+
::We divide it by 8; nothing remains and the result of division is 43385285.
|style="text-align:right;"|[ואולם אמרנו חלק אחד מכ' מה' שבשלם הוא כאמרנו חלק א' מק' שבשלם כאשר] כאשר ביארנו, הנה יצא לנו שאומרנו רביעית חמישית חמישית הוא כאומרנו חלק א' מק' שבשלם
+
::<math>\scriptstyle{\color{blue}{\frac{347082280}{8}=43385285}}</math>
 +
|style="text-align:right;"|וחלקנום [על הח']&#x202B;<ref>marg.</ref> ולא נשאר דבר ויצא בחילוק 43385285
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ובדמיון זה בכל חשבון מורכב ממורים כמה שיהיו
+
::We divide it by 3; the result of division of the last [number] is 14461761, which are the integers and 2 remain.
 +
|style="text-align:right;"|&#x202B;[וחלקנום על הג' ויצא לנו בחלוק הזה האחרון 14461761 והם]&#x202B;<ref>marg.</ref> והם השלמים ונשארו ב&#x202B;'
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{1\div100=\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}}}</math>
+
::We write it beneath the 3 and these are the fractions resulting from the division that are added to the integers.
|style="text-align:right;"|ואם כאשר חלקנו א' שלם לק', הגיע לכל א' מהם חלק אחד מק' שבשלם, שהוא רביעית חמישית החמישית
+
::<math>\scriptstyle{\color{blue}{\frac{43385285}{3}=14461761+\frac{2}{3}}}</math>
 +
|style="text-align:right;"|ושמנום תחת הג' והם השברים היוצאים בחילוק הנוספים על השלמים
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle2\div100</math>
+
:If now in this last division nothing would have remained also, we would not have written anything beneath it, and since nothing would have been found beneath the divisors, no fractions would have been resulted in division at all, only integers.
|style="text-align:right;"|ואם חלקנו על ק' ב' שלמים
+
|style="text-align:right;"|ואם <sup>גם</sup> עתה בזה הח<sup>י</sup>לוק האחרון &#x202B;<ref>23v</ref>לא היה נשאר דבר לא היינו שמים תחתיו דבר וכיון שלא נמצא דבר תחת המורים לא היו יוצאים בחילוק שברים כלל כי אם השלמים לבד
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{2\div100=\frac{2}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}}}</math>
+
:This happen when the number by which we divide is a divisor of the original number.
|style="text-align:right;"|יגיע לכל א' ב' רביעיות חמישיות חמישית
+
|style="text-align:right;"|וזה יקרה כאשר החשבון אשר חלקנו עליו יהיה ראוי להיות מורה לחשבון המתחלה
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle3\div100</math><br>
+
:But, in our example, since 2 remains in the last division, it have also fractions.
:<math>\scriptstyle{\color{blue}{3\div100=\frac{3}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}}}</math>
+
:<math>\scriptstyle{\color{blue}{3123740520\div216=14461761+\frac{2}{3}}}</math>
|style="text-align:right;"|ואם ג' ג&#x202B;'
+
|style="text-align:right;"|ואולם במשלנו זה אח' אשר נשארו בחלוק האחרון ב' יש לו ג"כ שברים
|-
 
|
 
*<math>\scriptstyle n\div100</math><br>
 
:<math>\scriptstyle{\color{blue}{n\div100=\frac{n}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}}}</math>
 
|style="text-align:right;"|הרי [הרי] כי מספר השלמים אשר נחלק אל ק' מספר הרביעיות חמישיות חמישית שיגיעו לכל אחד מהם וזה ברור
 
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle70\div100</math>
+
:We write it beneath the 3 and we get that when we divide 3123740520 by 216, each unit receives 14461761 integers and 2-thirds, according to the following diagram:
|style="text-align:right;"|ולזה אם רצינו לחלק ע' על ק&#x202B;'
+
|style="text-align:right;"|ושמנום תחת הג' ויצא לנו כי כאשר חלקנו 3123740520 על 216 <s>שיות</s> עד שיגיע לכל אחד מהם 14461761 שלמים וב' שלישיות כאשר בא בזאת הצורה
|-
 
|
 
:<math>\scriptstyle{\color{blue}{70\div100=\frac{70}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}}}</math>
 
|style="text-align:right;"|ידענו שיגיע לכל אחד מהם ע' רביעיות חמישיות חמישית והרי הוא כאלו שמנו המורים כזה הסדר, ושמנו הע' רביעיות תחת המורה האחרון&#x202B;:
 
 
|-
 
|-
 
|
 
|
Line 2,765: Line 3,275:
 
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
|-
 
|-
| 4 || 5 || 5
+
| 9 || 8 || 3 || &nbsp;
 
|-
 
|-
| 70 || colspan=2|
+
| colspan=2 |&nbsp;|| 2 || 14461761
 
|}
 
|}
 +
|-
 +
!<span style="color:Green>Check</span>
 +
|
 +
|-
 +
|When you want to check if the extraction of the divisors was correct: multiply the first by the second, then the product by the third, then by the fourth and so on until they are gone. If you receive the original number no more and no less from this calculation, know that the [divisors] are correct, and if not, they are not.
 +
|style="text-align:right;"|<big>ואם</big> רצית לבחון הוצאת המורים ההיתה כתקנה כפול הראשון בשני והעולה בשלישי והעולה ברביעי וכן לכלם עד כלותם ואם יצא לך מזה החשבון המספר הראשון בלי תוספת ומגרעת תדע שיצאו כתקנם ואם לאו לאו
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{70\div100=\frac{70}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}=\left(\frac{17}{5}\sdot\frac{1}{5}\right)+\left(\frac{2}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}\right)}}</math>
+
:In the mentioned example, if we want to know if the resulting divisors are correct: we multiply 9 by 8; it is 72. We multiply it by 3; the product is 216. So, the divisors are all gone and the result is the number itself that have these divisors.
|style="text-align:right;"|ואחר שיש בידיך 70 רביעיות חמשיות חמשית, אם בקשנו לדעת כמה חמשיות חמישית הם, הרי הוא כאלו היו בידינו ע' רביעיות ורצינו לדעת כמה שלמים הם וזה יודע בחלקנו אותם לד', לפי שכל ד' רביעיות הם א' שלם וכן כל ד' רביעיות חמישית [חמישית חמישית הם חמישית חמישית שלם, לכן נחלק אלו הע' רביעיות חמישית] חמישית והנשאר יהיה מהמין הראשון, ר"ל רביעיות חמישיות חמישית ולזה ראוי לנו לשים היוצא בחלוק, שהוא י"ז, תחת הה' אשר הוא המורה אשר לפניו והנשאר שהוא תחת הד' שהוא המורה אשר לפניו והנשאר, שהוא ב', תחת הד' שהוא המורה האחרון אשר חלקנו עליו כזה&#x202B;:<br>
+
:<math>\scriptstyle{\color{blue}{9\sdot8\sdot3=72\sdot3=216}}</math>
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
+
|style="text-align:right;"|<big>המשל</big> בצורה הנזכרת אם רצינו לידע אם המורי' יצאו על היושר נכפול ט' בח' יהיו ע"ב נכפלים בג' יעלו 216 והנה כלו המורים ויצא החשבון בעל המורים בעינו
 +
|-
 +
|When you want to know if you divide the number by the divisors correctly:
 +
|style="text-align:right;"|<big>ואם</big> תרצה לידע אם חלקת המספר על המורים על היוש&#x202B;'
 +
|-
 +
|If there are integers [in the final result], multiply the integers by the first divisor, then multiply the whole product by the second divisor and add what you find beneath it to the product, then multiply the sum by the third divisor and add to it what you find beneath it. Continue like this until they are gone. If, when the divisors are gone, we get the dividend, your calculation is correct, and if not, it is not.
 +
|style="text-align:right;"|אם יש שם שלמים כפול השלמים במורה הא' ההוא וכל {{#annot:term|241,1217|F3u6}}המקובץ{{#annotend:F3u6}} כפלהו במורה השני והוסף על העולה אשר תמצא תחתיו וכפול הכל על המורה [..] השלישי והוסף עליו אשר תמצא תחתיו וכן תעשה לעולם עד כלותם ואם ככלות המורים יצא לנו המספר המתחלק הלא מעשיך אמת ויציב ואם לאו לאו
 
|-
 
|-
| 4 || 5 || 5
+
|If there are no integers [in the final result], take what you find first beneath the first divisor that you find something beneath it and multiply it by the divisor that is next to it to the left. Add what is beneath it to the product and multiply the sum by the divisor that follows. Add what is beneath it and so on until they are gone. If the result is the dividend itself [the calculation] is correct, if not, it is not.
 +
|style="text-align:right;"|ואם אין שם שלמים קח אשר תמצא ראשונה תחת המורה הקודם אשר תמצא תחתיו דבר וכפלהו במורה הסמוך לו לצד שמאל &#x202B;<ref>24r</ref>וחבר הנמצא תחתיו עם העולה וכפול הכל על המורה הנמשך <s>הנמשך</s> והוסף אשר תחתיו וכן לעולם עד כלותם ואם אז יצא החשבון המתחלק בעינו הנה [נכון] ואם לאו לאו
 
|-
 
|-
| 2 || 17 || &nbsp;
+
|
|}<br>
+
*Example in the following diagram:
הנה ידענו כי כאשר חלקנו ע' על ק', שהגיע לכל אחד מהם י"ז חמישיות חמישית וב' רביעיות חמשית חמישית
+
|style="text-align:right;"|<big>המשל</big> בתמונה הזו
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{70\div100=\frac{70}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}=\left(\frac{17}{5}\sdot\frac{1}{5}\right)+\left(\frac{2}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}\right)=\frac{3}{5}+\left(\frac{2}{5}\sdot\frac{1}{5}\right)+\left(\frac{2}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}\right)}}</math>
+
|
|style="text-align:right;"|ואחר שיש בידינו י"ז חמישיות חמישית, ידענו שהם שלשה חמישיות שלמות ויותר, לפי שכל חמש חמשיות חמישית הם חמישית אחד, כמו שחמש חמשיות שלם הן שלם וראוי לנו לידע כמה חמישיות שלמות הן, לכן נחלקם על הה' ויצא לנו בחלוק ג', שהוא ג' חמישיות שלימות, לכן נשימם תחת הה' הראשון והב' השני והנשארים הם ממין במינם כבתחלה, ר"ל חמישיות חמישית, לכן שמנום תחת הה' השני כזה&#x202B;:<br>
 
 
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
|-
 
|-
| 4 || 5 || 5
+
| 9 || 5 || 7 || 97 || 10 || 8 || 2 || 13 || 11 || 4 || 3 || 6
 
|-
 
|-
| 2 || 2 || 3
+
| colspan=3|&nbsp;|| 9 || colspan=2|&nbsp;|| 1 || colspan=5|
 
|}
 
|}
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם אלו הג' אשר תחת המורה הראשון היה כמותו, או גדול ממנו, ר"ל שהיה ה' או יותר, היה העולה לשלם, או לשלימים, כי כל חמש חמשיות הן שלם אחד והיה ראוי לנו לחלק אותן על ה' והיוצא בחילוק היו שלימים והנשאר היה חמישיות כאשר בתחלה
+
::We multiply the integers by 3, which is the first divisor; the result is 43385283.
 +
|style="text-align:right;"|ונכפול השלמים בג' שהוא המורה הראשון ויעלה 43385283
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|אכן אחר שהוא קטן מהמורה, ר"ל שהוא פחות מה' שהוא המורה שהוא המורה הראשון, אין כאן שלם כלל ואין לנו לעשות שום חלוק, אבל כבר השגנו מבוקשנו והוא כי כאשר חלקנו ע' על ק', שהגיע לכל אחד מהם ג' חמישיות וב' חמישיות חמישית וב' רביעיות חמישית חמישית
+
::We add to it the 2 that is beneath this divisor; the total is 43385285.
 +
|style="text-align:right;"|נחבר לזה הב' אשר תחת המורה הזה ויעלה הכל 43385285
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|הכלל העולה מאלו מהדברים שהמחלק ע' על ק' יגיע לכל אחד ע' חלקים מק' חלקים בשלם
+
::We multiply it by 8, which is the second divisor; the result is 347082280.
 +
|style="text-align:right;"|נכפלם על הח' שהוא המורה השני ויעלה 347082280
 
|-
 
|-
|Checking the extraction of the divisors<br>
+
|
:<math>\scriptstyle{\color{blue}{5\sdot5\sdot4=25\sdot4=100}}</math>
+
::Since we do not find anything beneath this divisor, we do not add anything to it.
|style="text-align:right;"|ואחר שמאה הוא מורכב מאלו השלשה מספרים, ר"ל מה' וה' וד' וזה כי כאשר כפלנו הא' בחבירו והעולה בנשאר, עולה ק', פי' כי כפל ה' בה' הוא כ"ה וכאשר כפלנום בד', יעלו ק' וזאת היא בחינת הוצאת המורים אשר הזכרנו למעלה, כי בכפול זה בזה והעולה באחר וכן לעולם עד כלותם ויצא לנו החשבון הראשון, ידענו שהחשבון ההוא מורכב מאלו ה[ב'] מספרים
+
|style="text-align:right;"|ואחר שלא נמצא תחת זה המורה דבר לא נוסיף עליהם דבר
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{\frac{1}{100}=\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}=\frac{1}{5}\sdot\frac{1}{5}\sdot\frac{1}{4}}}</math>
+
::We multiply it again by 9, which is the third divisor; we receive the dividend itself, which is 3123740520.
|style="text-align:right;"|ואחר היות הק' מורכב מה' הד', כך הוא אומרנו חלק מק' שבשלם כאומרנו רביעית חמישית חמישית רביעית חמישית, או כאומרנו חמישית חמישית רביעית, כי הכל אחד
+
|style="text-align:right;"|ונשוב ונכפלם בט' שהוא המורה השלישי ויצא לנו החשבון המתחלק בעינו שהוא 31237<sup>4</sup>0520
 +
|}
 +
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left(14461761+\frac{2}{3}\right)\sdot3\sdot8\sdot9&\scriptstyle=\left[\left(14461761\sdot3\right)+2\right]\sdot8\sdot9=\left(43385283+2\right)\sdot8\sdot9=43385285\sdot8\sdot9\\&\scriptstyle=347082280\sdot9=3123740520\\\end{align}}}</math>
 +
{|
 
|-
 
|-
|The arrangement of the fractions of the division result can be changed - in order to receive proper reduced fractions
+
|
|style="text-align:right;"|ומטעם אחר על זה אמרנו שבידינו לסדר המורים זה אחר זה כפי המזדמן, אם בהשגחה, כדי שיצאו השברים היותר שלמים שיוכל והיותר נאותים
+
*I shall present it briefly in the example that precedes this one, in which there are no integers in the result of division, only fractions:
 +
:<math>\scriptstyle2447235\div50335084800</math>
 +
|style="width:45%; text-align:right;"|<big>עוד</big> אמשול זה בדרך קצרה בצורה הקודמת לזאת אשר אין שם שלמים ביוצא בחילוק כי אם שברים לבד
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{70\div100=\frac{70}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}=\frac{70}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{70}{5}\sdot\frac{1}{5}\sdot\frac{1}{4}}}</math>
+
::We take the one that is beneath the 2, which is the first divisor beneath which there is something, and we multiply it by 8, which is the next divisor; the result is 8.
|style="text-align:right;"|וזה כי כאשר אמרנו שהמחלק ע' על המאה יגיע לכל אחד ע' רביעיות חמישית חמישית, היינו יכולים לומר ע' חמשיות רביעית חמישית, או ע' חמישיות חמישית רביעית
+
|style="text-align:right;"|ונקח הראשון אשר תחת הב' שהוא המורה הראשון אשר נמצא תחתיו דבר ונכפלהו בח' שהוא המורה הסמוך ויעלה ח&#x202B;'
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{70\div100=\frac{70}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{14}{4}\sdot\frac{1}{5}=\frac{3}{5}+\left(\frac{2}{4}\sdot\frac{1}{5}\right)}}</math>
+
::Since there is nothing beneath it, we do not add anything to it and multiply it by 10, which is the next divisor; the result is 80.
|style="text-align:right;"|ואחר שבידינו לסדרם כחפצנו, ראוי לסדרם ולהשגיח בסדורו<br>
+
|style="text-align:right;"|ואחר שאין תחתיו דבר לא נוסיף עליהם דבר ונכפלם בי' שהוא המורה הסמוך ויעלה פ&#x202B;'
וזה כי כאשר רצינו לחלק אלו הע' לאלו המורים, אחר שהעין יש לו חמישית שהוא א' מאלו המורים, ראוי לנו לחלקם ראשונה על הה' ונשימנו אחרון, כדי שלא ישאר דבר לשים תחתנו ויצא בחילוק י"ד<br>
 
ואם היה להם רביעית, היה ראוי לחלקם על ד' ולשומו לפני האחרון<br>
 
ואם היה לו ה' לה&#x202B;'<br>
 
אכן שאין לו אחד מהם, נסדר אלו השני המורים הנשארים כפי המזדמן<br>
 
וע'ד'מ' נחלק אלו היד לד' ונשימהו לפני האחרון ויצא בחילוק ג' ואחר שהוא פחות מהה' שהוא המורה האח', נשימהו תחתיו והב' הנשארים נשימם תחת הד' שהוא המורה השני [אשר] נחלקנו עליו כזה&#x202B;:
 
 
|-
 
|-
 
|
 
|
 +
::Since nothing is found beneath it, we multiply it without adding by 97, which is the next divisor; the result is 7760.
 +
|style="text-align:right;"|ואחר שלא נמצא תחתיו דבר נשוב ונכפלם בלי תוספת על הצ"ז שהוא המורה <sup>ה</sup>סמוך ויעלה 7760
 +
|-
 
|
 
|
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
+
::We add to it the 9 that is beneath it; the result is 77[69].
 +
|style="text-align:right;"|נחבר אליהם הט' אשר תמצא תחתיו ויעלה 77669
 
|-
 
|-
| 5 || 4 || 5
+
|
 +
::We multiply it by 7; the result is 54383.
 +
|style="text-align:right;"|ונכפלם בז' ויעלה 54383
 
|-
 
|-
| &nbsp;|| 2 || 3
+
|
|}
+
::We multiply it by 5; the result is 271915.
 +
|style="text-align:right;"|ונשוב ונכפלם בה' ויעלה 271915
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{70\div100=\frac{3}{5}+\left(\frac{2}{5}\sdot\frac{1}{5}\right)+\left(\frac{2}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}\right)=\frac{3}{5}+\left(\frac{2}{4}\sdot\frac{1}{5}\right)=\frac{3}{5}+\left(\frac{1}{2}\sdot\frac{1}{5}\right)}}</math>
+
::We multiply it by 9, which is the last divisor; we receive the dividend itself, which is 2447235, so it is correct.
|style="text-align:right;"|והנה יצאו לנו חלקים יותר נאותים, כי יותר נאות הוא לומר ג' חמישיות [ושני רביעיות חמישית], שהן חצי חמישית, כאשר בא בצורה הזאת, מאומרנו ג' חמישיות ושני חמישיות חמישית וב' רביעיות חמישית חמישית
+
|style="text-align:right;"|ונכפלם בט' שהוא המורה האחרון ויצא לנו החשבון המתחלק בעינו והוא 2447235 והנה &#x202B;[נכון הנה אמת
|-
+
|}
|Check: converting the fractions
+
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left[\left(1\sdot8\sdot10\sdot97\right)+9\right]\sdot7\sdot5\sdot9&\scriptstyle=\left[\left(8\sdot10\sdot97\right)+9\right]\sdot7\sdot5\sdot9=\left[\left(80\sdot97\right)+9\right]\sdot7\sdot5\sdot9=\left(7760+9\right)\sdot7\sdot5\sdot9\\&\scriptstyle=7769\sdot7\sdot5\sdot9=54383\sdot5\sdot9=271915\sdot9=2447235\\\end{align}}}</math>
|style="text-align:right;"|וידוע הוא כי בחינת זה הוא להשיבם כלם מהמין הראשון, ר"ל חמישיות רביעית חמישית, כפי צורה זו האחרונה, או רביעית חמישית חמישית, כפי הצורה הקודמת וזה יקרא פריטה כאשר יתבאר בחלק השני
+
::<math>\scriptstyle{\color{blue}{\left[\left(\frac{1}{2}\sdot\frac{1}{13}\sdot\frac{1}{11}\sdot\frac{1}{4}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)+\left(\frac{9}{97}\sdot\frac{1}{10}\sdot\frac{1}{8}\sdot\frac{1}{2}\sdot\frac{1}{13}\sdot\frac{1}{11}\sdot\frac{1}{4}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)\right]\sdot50335084800=2447235}}</math>
 +
{|
 
|-
 
|-
 +
!
 +
==== <span style="color:Green>reason</span> ====
 +
 
|
 
|
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\frac{3}{5}+\left(\frac{2}{4}\sdot\frac{1}{5}\right)&\scriptstyle=\frac{\left(3\sdot4\right)+2}{4}\sdot\frac{1}{5}\\&\scriptstyle=\frac{12+2}{4}\sdot\frac{1}{5}\\&\scriptstyle=\frac{14}{4}\sdot\frac{1}{5}\\&\scriptstyle=\frac{14\sdot5}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\\&\scriptstyle=\frac{70}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}=70\div100\\\end{align}}}</math>
 
|style="text-align:right;"|ואחר שיש לו חמישיות שלמות, גם רביעיות חמישית, נשיבם כלם ראשונה רביעיות חמישית<br>
 
וידוע כי כל חמישית שלמה היא ד' רביעיותיה, פי' ד' רביעית חמישית, כמו שכל שלם ד' רביעיות שלם, הרי לנו כי כל אחד מאלו הג' חמישיות שלימות היא ד' רביעיות חמישית ולדעת כמה הם נכפול ג', שהוא מספר החמישיות, בד' שהוא המורה הבא אחריו ויעלה י"ב, הרי לנו שהג' חמישיות הם י"ב רביעיות חמישית<br>
 
ומצאנו תחתיו שנים שהם מזה המין, פי' שהם רביעיות חמישיות, נחברם אליהם ויהיו י"ד רביעיות חמישית<br>
 
וכאש' נרצה לדעת כמה חמישיות רביעית חמישית הם, נכפלם בה' שהוא המורה הבא אחריהם ויעלו כלם ע&#x202B;'<br>
 
ואם תחת זה המורה היה נמצא דבר, זה היה ג"כ חמישיות רביעית חמישית והיינו מחברים אותם אליהם<br>
 
אכן אחר שלא נמצא תחתיו דבר וכבר כלו המורים, כבר כלינו מעשינו<br>
 
ואחר שעלה לחשבוננו הראשון, פי' לעין [ע'], שהוא החשבון הקטן אשר רצינו לחלק על הק' שהוא בעל אלו המורים מבלי תוספת ומגרעת, ידענו כי כל מעשינו בצדק ובמשפט
 
 
|-
 
|-
|Division of a large number by a smaller number, with a result of integers and fractions
+
|The reason for extracting the divisors and dividing the [dividend] by them: because the number by which we want to divide consists of these divisors.
|style="text-align:right;"|הרי לנו מבוארים טעמי' כל הנזכר, גם המעשה, גם הבחינות וביאור הכל בכלל ובפרט
+
|style="width:45%; text-align:right;"|וטעם הוצאת המורים וחלקנו עליהם המספר כנזכר הוא כי אחר שהמספר&#x202B;]&#x202B;<ref>marg.</ref> <s>עליהם המספר כנזכר הוא כי אחר שהמספר</s> אשר רצינו לחלק עליו הוא מורכב מאלו &#x202B;<ref>24v</ref>המורים כמוהו כמוהם
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכדי להתלמד, אביא משל אחר, שיהיה המתחלק על אלו הק' גדול מהם, כדי שיצאו שם שברים גם שלמים&#x202B;:
+
*I.e. if 1 is divided by one hundred, for instance, each 1 receives from the hundred one part of the hundred that is in it.
 +
:<math>\scriptstyle1\div100</math>
 +
|style="text-align:right;"|ר"ל כי מי שיחלק א' על מאה עד"מ הנה יגיע ממנו לכל א' מהמאה חלק עליו ממאה שבו
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle140\div100</math>
+
::Meaning, we decompose the one unit that we want to divide to one hundred equal parts and each 1 of the hundred, by which we want to divide the original 1, receives one part of them.
|style="text-align:right;"|המשל רצינו לחלק ק"מ על ק&#x202B;'
+
|style="text-align:right;"|פי' שנעשה הא' השלם אשר רצינו לחלק [מאה חלקים שוים ויגיע לכל א' מהמאה אשר רצינו לחלק עליהם&#x202B;]&#x202B;<ref>marg.</ref> עליהם <sup>הא'</sup> הראשון חלק א' מהם
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{140\div5=28}}</math>
+
::Since the 100, by which we want to divide, has a fifth and its fifth is 20, we find that each 1 of the hundred is one part of 20 of a fifth of a hundred.
|style="text-align:right;"|ואחר שאלו הק"מ, שהם החשבון אש' רצינו לחלק, יש לה כל אלו המורים, נשים אשר נחפוץ אחרון ונחלקנו עליו, המשל על הה' ויצא ושבא בחילוק כ"ח ולא נשאר דבר
+
|style="text-align:right;"|ואחר שחשבון הק' אשר רצינו לחלק <s>[עליהם] הא' חלק א' מהם ואחר שחשבון</s> יש לו חמישית וחמישיתו הוא כ' נמצא שכל א' מהמאה הוא חלק א' מכ' מחמישית שבמאה
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{28\div4=7}}</math>
+
:When we decompose the whole unit to 100 parts, each one of them is one part of 100 of the whole and it is also one part of twenty of a fifth of the whole. So our saying one part of 100 of the whole is as our saying one part of 20 of a fifth of the whole.
|style="text-align:right;"|ואחר שיש להם רביעית, נחלקם על הד' ונשימנו לפני האחרון ויצא בחילוק ז&#x202B;'
+
:<math>\scriptstyle{\color{blue}{1\div100=\frac{1}{20}\sdot\frac{1}{5}}}</math>
 +
|style="text-align:right;"|וכאשר נעשה א' שלם ק' <s>אקלימים</s> חלקים הנה כל אחד מהם הוא חלק אחד <sup>מק'</sup> <s>שבשלם</s> <sup>שבשלם</sup> וגם הוא חלק א' מעשרים מחמישית השלם הרי שאמרנו חלק א' מק' שבשלם כאומרנו חלק אחד מכ' מחמישית שבשלם
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{7\div5=1+\frac{2}{5}}}</math>
+
::For this reason itself, our saying a quarter of a fifth is as our saying one part of 20. Since the twenty has a fifth and its fifth is 4. We find that twenty consists of 5 and 4 and one [part of twenty] is a fifth of a quarter, or a quarter of a fifth, because it is the same. Hence, our saying a quarter of a fifth is as our saying one part of 20 of the whole.
|style="text-align:right;"|ואחר שהם כמורה הנשאר וגדול ממנו, נחלקם עליו ויצא בחילוק א', שהוא א' שלם, כי כבר שלמו המורים ונשימנו מחוץ והב' הנשארים נשימם תחתיו כזה&#x202B;:
+
::<math>\scriptstyle{\color{blue}{1\div20=\frac{1}{4}\sdot\frac{1}{5}}}</math>
 +
|style="text-align:right;"|ולסבה זו בעינה יהיה אומרנו רביעית חמישית כאומרנו חלק א' מכ' לפי שעשרים יש לו חמישית וחמישיתו ד' נמצא שעשרים מורכב מה' וד' ושהאחד הוא חמישית רביעית או רביעית חמישית כי הכל א' הרי לנו ש שאמרנו רביעית חמישית כאומרנו חלק א' מכ' שבשלם
 
|-
 
|-
 
|
 
|
|
+
:But, our saying one part of 20 of a fifth of the whole is as our saying one part of 100 of the whole, as we have explained. So, we get that our saying a quarter of a fifth of a fifth is as our saying one part of 100 of the whole.
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
+
:<math>\scriptstyle{\color{blue}{1\div100=\frac{1}{20}\sdot\frac{1}{5}=\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}}}</math>
 +
|style="text-align:right;"|&#x202B;[ואולם אמרנו חלק אחד מכ' מה' שבשלם הוא כאמרנו חלק א' מק' שבשלם כאשר&#x202B;]&#x202B;<ref>marg.</ref> כאשר ביארנו הנה יצא לנו שאומרנו רביעית חמישית חמישית הוא כאומרנו חלק א' מק' שבשלם
 
|-
 
|-
| 5 || 4 || 5
+
|Likewise for any number consisting of divisors, as many as they may be.
|-
+
|style="text-align:right;"|ובדמיון זה בכל חשבון מורכב ממורים כמה שיהיו
| &nbsp; || &nbsp; || 2
 
|}
 
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{140\div100=\frac{140}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{28}{4}\sdot\frac{1}{5}=\frac{7}{5}=1+\frac{2}{5}}}</math>
+
:Thus, if we divide the whole unit by 100, each 1 of them receives one part of 100 of the whole, which is a quarter of a fifth of a fifth.
|style="text-align:right;"|הרי לנו כי כאשר חלקנו ק"מ על ק', שעולה לכל 1 ואחד מהמאה ק"מ חלקים ממאה שבשלם, שהם ק"מ חמישיות רביעית חמישית, שהם כ"ח רביעיות חמישיות, שהם ז' חמישיות שלמות, שהם א' שלם וב' חמישיות
+
:<math>\scriptstyle{\color{blue}{1\div100=\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}}}</math>
 +
|style="text-align:right;"|ואם כאשר חלקנו א' שלם לק' הגיע לכל א' מהם חלק אחד מק' שבשלם שהוא רביעית חמישית החמישית
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{140\div100=\left(2\sdot70\right)\div100}}</math>
+
*If we divide 2 integers by 100.
|style="text-align:right;"|וכמו שזה החשבון המתחלק הזה כפל החשבון המתחלק ראשונה
+
:<math>\scriptstyle2\div100</math>
 +
|style="text-align:right;"|ואם חלקנו על ק' ב' שלמים
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{1+\frac{2}{5}=\frac{7}{5}=2\sdot\left[\frac{3}{5}+\left(\frac{2}{4}\sdot\frac{1}{5}\right)\right]=2\sdot\left[\frac{3}{5}+\left(\frac{1}{2}\sdot\frac{1}{5}\right)\right]}}</math>
+
:Each one receives 2-quarters of a fifth of a fifth.
|style="text-align:right;"|כן היוצא בחילוק, שהוא א' שלם וב' חמישיות, שהם ז' חמישיות, הוא כפל היוצא בחילוק ראשונה, שהיה ג' חמישיות וב' רביעיות חמישית פי' ג' חמישיות וב' רביעיות חמישית פי' שלשה חמישיות וחצי חמישית
+
:<math>\scriptstyle{\color{blue}{2\div100=\frac{2}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}}}</math>
 +
|style="text-align:right;"|יגיע לכל א' ב' רביעיות חמישיות חמישית
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle1+\frac{2}{5}&\scriptstyle=\frac{\left(1\sdot5\right)+2}{5}=\frac{7}{5}\\&\scriptstyle=\frac{7\sdot4}{4}\sdot\frac{1}{5}\\&\scriptstyle=\frac{28}{4}\sdot\frac{1}{5}=\frac{28\sdot5}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\\&\scriptstyle=\frac{140}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}=140\div100\\\end{align}}}</math>
+
*If 3, 3.
|style="text-align:right;"|הנה כל המעשה ברור ומבורר, גם הבחינה והיא להשיב הכל לקדמותו וזה כי האחד נשיבהו חמשיות שלמות וזה בכופלנו אותו בה', שהוא המורה על החמישיות, ויהיו ה' ונחבר אליהם הב' הנמצא תחתיו שהם ג"כ חמישיות שלימות וזה בכפלנו אותו בה' שהוא המורה על החמישיות ויהיו ה' ונחבר אליהם הב' הנמצא תחתיו, שהם ג"כ חמשיות שלמות, [יהיו כלם ז' חמישיות שלמות]<br>
+
:<math>\scriptstyle3\div100</math>
וכאשר נרצה להשיבם רביעיות חמישית, נכפלם בד' ויהיו כ"ח רביעיות חמישית ואחר שלא נמצא תחתיו דבר, לא נחבר אליהם דבר<br>
+
:<math>\scriptstyle{\color{blue}{3\div100=\frac{3}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}}}</math>
עוד נשיבם חמישיות רביעית חמישית וזה בכפלנו אותו בה' ויעלה ק"מ חמישיות רביעית חמישית והנה כלו המורים ואין תחתיו דבר לחבר על העולה
+
|style="text-align:right;"|ואם ג' ג&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ויצא לנו כחשבוננו הראשון שוה בשוה וב[דרך זה] תעשה כפל המספרי' הנשארים, הן למעשה, הן לבחינה
+
*Thus, as the number of integers divided by 100, so is the number of quarters of a fifth of a fifth that each of them receives, and this is clear.
 +
:<math>\scriptstyle n\div100</math>
 +
:<math>\scriptstyle{\color{blue}{n\div100=\frac{n}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}}}</math>
 +
|style="text-align:right;"|הרי [הרי&#x202B;]&#x202B;<ref>marg.</ref> כי מספר השלמים אשר נחלק אל ק' מספר הרביעיות חמישיות חמישית שיגיעו לכל אחד מהם וזה ברור
 
|-
 
|-
 
|
 
|
|}
+
*{{#annot:70÷100|157|rm2i}}If we wish to divide 70 by 100.
 
+
:<math>\scriptstyle70\div100</math>
{|
+
|style="text-align:right;"|ולזה אם רצינו לחלק <sup>ע'</sup> על ק&#x202B;'{{#annotend:rm2i}}
 
|-
 
|-
 
|
 
|
 
+
:We know that each of them receives 70 quarters of a fifth of a fifth. It is as if we write the denominators by this order and place the 70 beneath the last denominator.
== Chapter Five: Proportions ==
+
:<math>\scriptstyle{\color{blue}{70\div100=\frac{70}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}}}</math>
!style="text-align:right;"|<big>הפרק הה&#x202B;'</big>
+
|style="text-align:right;"|ידענו שיגיע לכל אחד מהם ע' רביעיות חמישיות חמישית והרי הוא כאלו שמנו המורים כזה הסדר ושמנו הע' <s>רביעיות</s> תחת המורה האחרון
 
|-
 
|-
 
|
 
|
=== Rule of Four ===
 
 
|
 
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
|-
 
|-
|Finding the number whose ratio to a given number is the same ratio of the given number to another known number
+
| 4 || 5 || 5
|style="text-align:right;"|אם תרצה לדעת הערך שיש למספר ידוע למספר ידוע אחר, אצל איזה מספר יש לו אותו הערך בעצמו
 
 
|-
 
|-
|
+
| 70 || colspan=2|
*<math>\scriptstyle5:b=c:d</math>
+
|}
|style="text-align:right;"|המשל הערך לה', אצל איזה מספר יש לו אותו הערך בעצמו
 
 
|-
 
|-
 
|
 
|
:*<math>\scriptstyle5:7=10:x</math>
+
:Since you have 70 quarters of a fifth of a fifth, if we want to know how many fifths of a fifth they are, it is as if we have 70 quarters and we want to know how many integers they are.
|style="text-align:right;"|המשל הערך שיש לה' אצל ז', אצל מי יש לי' זה הערך
+
|style="text-align:right;"|ואחר שיש בידיך 70 &#x202B;<ref>25r</ref>רביעיות חמשיות חמשית אם בקשנו לדעת כמה חמשיות חמישית הם הרי הוא כאלו היו בידינו ע' רביעיות ורצינו לדעת כמה שלמים הם
 
|-
 
|-
 
|
 
|
:*<math>\scriptstyle5:7=x:14</math>
+
:This is known by dividing them into 4, because every 4 quarters are one integer and also every 4 quarters of a fifth of a fifth are one-fifth of a fifth. So, we divide these 70 quarters of a fifth of a fifth and the remainder is of the first type, i.e. quarters of a fifth of a fifth.
|style="text-align:right;"|או אצל י"ד למי שיש לו זה הערך
+
|style="text-align:right;"|וזה יודע בחלקנו אותם לד' לפי שכל ד' רביעיות הם א' שלם וכן כל ד' רביעיות חמישית [חמישית חמישית הם חמישית חמישית שלם לכן נחלק אלו הע' רביעיות חמישית&#x202B;]&#x202B;<ref>marg.</ref> חמישית והנשאר יהיה מהמין הראשון ר"ל רביעיות חמישיות חמישית
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וכדי להבינו בקוצר, אשים להם סדר והוא כי כאשר נאמ' הערך שיש לה' אצל ז', נקרא הה' ראשון והז' שני, לפי שהה' הוא הנערך אצל ז&#x202B;'
+
:Therefore, we should write the result of division, which is 17, beneath the 5, which is the preceding divisor and the remainder, which is 2, beneath the 4, which is the last divisor by which we divide, like this:
 +
:<math>\scriptstyle{\color{blue}{70\div100=\frac{70}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}=\left(\frac{17}{5}\sdot\frac{1}{5}\right)+\left(\frac{2}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}\right)}}</math>
 +
|style="text-align:right;"|ולזה ראוי לנו לשים היוצא בחלוק שהוא י"ז תחת הה' אשר הוא המורה אשר לפניו <s>והנשאר שהוא תחת הד' שהוא המורה אשר לפניו</s> והנשאר שהוא ב' תחת הד' שהוא המורה האחרון אשר חלקנו עליו כזה
 
|-
 
|-
 
|
 
|
:*<math>\scriptstyle5:7=10:x</math>
 
|style="text-align:right;"|והנה אם תאמר אצל מי יש ערך זה לי', יחסר אשר אליו אנו מעריכים, שהוא השני מהאחרים
 
|-
 
 
|
 
|
:*<math>\scriptstyle5:7=x:14</math>
+
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
|style="text-align:right;"|ואם נאמר למי יש זה הערך אצל י"ד, יחסר הנערך, שהוא הראשון מהאחרים
 
 
|-
 
|-
|<math>\scriptstyle a_1:a_2=a_3:a_4</math>
+
| 4 || 5 || 5
|style="text-align:right;"|זה הכלל כי לנערך, הן מן הראשונים, הן מן האחרונים, נקרא ראשון ולאשר מעריך אצלו נקרא שני
 
 
|-
 
|-
|
+
| 2 || 17 || &nbsp;
*<math>\scriptstyle a_4=\frac{a_2\sdot a_3}{a_1}</math>
+
|}
|style="text-align:right;"|וכאשר תרצה לדעת הנעלם, אם יש בידך הראשון מן השנים האחרונים ונעלם השני שבאחרונים, נכפול אותו הראשון [בשני] מן השנים הראשונים הידועים וחלקנו לנשאר מהג' הידועים, ר"ל לראשון שבראשונים והיוצא בחילוק הוא הנעלם
 
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle a_3=\frac{a_4\sdot a_1}{a_2}</math>
+
:We know that when we divide 70 by 100, each one of them receives 17 fifths of a fifth and 2-quarters of a fifth of a fifth.
|style="text-align:right;"|ואם היה בידך השני שבאחרונים ונעלם הראשון, כפול אותו השני הידוע בראשון שבראשונים והעולה חלקהו לשני שבראשונים והיוצא בחילוק הוא הנעלם המבוקש
+
|style="text-align:right;"|הנה ידענו כי כאשר חלקנו ע' על <sup>ק'</sup> שהגיע לכל אחד מהם י"ז חמישיות חמישית וב' רביעיות חמשית חמישית
|-
 
|The general rule: multiply the first number of one of the two ratios by the second number of the other ratio and divide the product by the third known number - the result will be the fourth unknown number
 
|style="text-align:right;"|וכאשר תחלק העולה על השני שבראשונים, או על הראשון, אם תרצה תוציא המורים, אם זה הראשון, או השני אשר תחלק עליו, הוא חשבון גדול והיוצא בין שלמים ושברים הוא המבוקש הנעלם
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|זה הכלל לעולם תכפול הראשון מאלו בשני מאלו והעולה תחלק על הנשאר מהידועים והיוצא בחילוק הוא הנעלם
+
:Since we have 17 fifths of a fifth, we know that they are three-fifths and more, because every five fifths of a fifth are one-fifth, as five-fifths are one integer.
 +
|style="text-align:right;"|ואחר שיש בידינו י"ז חמישיות חמישית ידענו שהם שלשה חמישיות שלמות ויותר לפי שכל חמש חמשיות חמישית הם חמישית אחד כמו שחמש חמשיות שלם הן שלם
 
|-
 
|-
 
|
 
|
:*<math>\scriptstyle3:7=5:x</math>
+
:We should know how many fifths they are, so we divide them by 5; the result of division is 3, which is 3-fifths, so we write it beneath the first 5, and the 2, [which is the] remainder is of the same type as the first, i.e. fifths of a fifth, so we write it beneth the second 5; like this:
|style="text-align:right;"|המשל אם אמרנו הערך שיש לג' אצל הז', לה' אצל מי יש לו זה הערך בעצמו
+
|style="text-align:right;"|וראוי לנו לידע כמה חמישיות שלמות הן לכן נחלקם על הה' ויצא לנו בחלוק ג' שהוא ג' חמישיות שלימות לכן נשימם תחת הה' הראשון והב' השני והנשארים הם ממין במינם כבתחלה ר"ל חמישיות חמישית לכן שמנום תחת הה' השני כזה
|-
+
|}
|
+
:<math>\scriptstyle{\color{blue}{70\div100=\frac{70}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}=\left(\frac{17}{5}\sdot\frac{1}{5}\right)+\left(\frac{2}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}\right)=\frac{3}{5}+\left(\frac{2}{5}\sdot\frac{1}{5}\right)+\left(\frac{2}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}\right)}}</math>
|style="text-align:right;"|ונשימם לו על זה כזה&#x202B;:
+
{|
 
|-
 
|-
 
|
 
|
Line 2,970: Line 3,499:
 
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
|-
 
|-
| 7 || 3
+
| 4 || 5 || 5
 
|-
 
|-
| &nbsp;|| 5
+
| 2 || 2 || 3
 
|}
 
|}
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{x=\frac{5\sdot7}{3}=\frac{35}{3}=11+\frac{2}{3}}}</math>
+
:If this 3 that is beneath the first divisor was the same as it or greater, i.e. if it was 5 or more, the result would have been an integer, for every five fifths are one integer, so we should divide them by 5; the result of division would have been an integer and the remainder would have been fifths as at first.
|style="text-align:right;"|הנה ידענו הנערך שבאחרונים והוא הנקרא ראשון והוא הה' ונכפלנו בשני שבראשונים והוא הז' ויעלו ל"ה ונחלקנו לנשאר מהידועים והוא הג' ויצא בחילוק י"א שלמים [וב' שלישיות וזהו הנעלם המבוקש
+
|style="width:45%; text-align:right;"|ואם אלו הג' אשר תחת המורה הראשון היה כמותו או גדול ממנו ר"ל שהיה ה' או יותר היה העולה לשלם או לשלימים כי כל חמש חמשיות הן שלם אחד והיה ראוי לנו לחלק אותן על ה' והיוצא בחילוק היו שלימים והנשאר היה חמישיות כאשר בתחלה
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{3:7=5:\left(11+\frac{2}{3}\right)}}</math>
+
:Since it is smaller than the divisor, i.e. it is less than 5, which is the first divisor, there is no integer at all and we should not divide [further], as we already achieved our goal, that is, when we divide 70 by 100, each one of them receives 3-fifths, 2-fifths of a fifth, and 2-quarters of a fifth of a fifth.
|style="text-align:right;"|פי' כי הערך אשר לג' אצל הז' הוא הערך בעצמו אשר לה' אצל י"א וב' שלישיות] וב' שלישיות
+
|style="text-align:right;"|אכן אחר שהוא קטן מהמורה ר"ל שהוא פחות מה' שהוא המורה שהוא המורה הראשון אין כאן שלם כלל ואין לנו לעשות שום חלוק אבל כבר השגנו מבוקשנו והוא כי כאשר &#x202B;<ref>25v</ref>חלקנו ע' על ק' שהגיע לכל אחד מהם ג' חמישיות וב' חמישיות חמישית וב' רביעיות חמישית חמישית
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{7=3\sdot\left(2+\frac{1}{3}\right)=\left(2\sdot3\right)+\left(\frac{1}{3}\sdot3\right)=\left(2\sdot3\right)+1}}</math>
+
:The rule that follows from this discussion is that if 70 is divided by 100, each one receives 70 parts of 100 parts of the whole.
|style="text-align:right;"|וזה ברור שכמו שז' הוא כפל ג' ועוד שלישיתם שהוא א&#x202B;'
+
|style="text-align:right;"|הכלל העולה <s>מאלו</s> <sup>מ</sup>הדברים שהמחלק ע' על ק' יגיע לכל אחד ע' חלקים מק' חלקים בשלם
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{11+\frac{2}{3}=5\sdot\left(2+\frac{1}{3}\right)=\left(2\sdot5\right)+\left(\frac{1}{3}\sdot5\right)=\left(2\sdot5\right)+\left(1+\frac{2}{3}\right)}}</math>
+
:Since one hundred consists of these three numbers, i.e. from 5, 5, and 4. This is because when we multiply the one by the other and the product by the remaining, the result is 100, meaning the product of 5 by 5 is 25 and when we multiply it by 4, the result is 100.
|style="text-align:right;"|כן י"א וב' שלישיות הוא כפל ה' ועוד שלישיתו שהוא א' וב' שלישיות
+
:<math>\scriptstyle{\color{blue}{5\sdot5\sdot4=25\sdot4=100}}</math>
 +
|style="text-align:right;"|ואחר שמאה הוא מורכב מאלו השלשה מספרים ר"ל מה' וה' וד' וזה כי כאשר כפלנו הא' בחבירו והעולה בנשאר עולה ק' פי' כי כפל ה' בה' הוא כ"ה וכאשר כפלנום בד' יעלו ק&#x202B;'
 
|-
 
|-
|
+
|This is the check of the extraction of the divisors that we mentioned above, for when multiplying one by the other, then the product by another and so on until they end and we get the original number, we know that this number consists of these numbers.
:*<math>\scriptstyle3:7=x:\left(11+\frac{2}{3}\right)</math>
+
|style="text-align:right;"|וזאת היא בחינת הוצאת המורים אשר הזכרנו למעלה כי בכפול זה בזה והעולה באחר וכן לעולם עד כלותם ויצא לנו החשבון הראשון ידענו שהחשבון ההוא מורכב מאלו ה[ב'&#x202B;]&#x202B;<ref>marg.</ref> מספרים
|style="text-align:right;"|ואם אמרו הערך אשר לג' אצל ז', אצל י"א וב' שלישיות למי יש לו זה הערך נשימם בצורה הזאת&#x202B;:
 
 
|-
 
|-
 
|
 
|
|
+
:Since 100 consists of 5 and 4, our saying one part of 100 of the whole is as our saying a quarter of a fifth of a fifth, or our saying a fifth of a fifth of a quarter, because all is the same.
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
+
:<math>\scriptstyle{\color{blue}{\frac{1}{100}=\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}=\frac{1}{5}\sdot\frac{1}{5}\sdot\frac{1}{4}}}</math>
 +
|style="text-align:right;"|ואחר היות הק' מורכב מה' הד' כך הוא אומרנו חלק מק' שבשלם כאומרנו רביעית חמישית חמישית רביעית חמישית או כאומרנו חמישית חמישית רביעית כי הכל אחד
 
|-
 
|-
| &nbsp;|| 7 || 3
+
|For another reason we say that we can arrange the divisors randomly one after the other, or intentionally, in order to receive reduced fractions that are as proper as possible.
 +
|style="text-align:right;"|ומטעם אחר על זה אמרנו שבידינו לסדר המורים זה אחר זה כפי המזדמן אם בהשגחה כדי שיצאו השברים היותר שלמים שיוכל והיותר נאותים
 
|-
 
|-
| 3 || &nbsp;|| &nbsp;
+
|
 +
:Because, when we say that if 70 is divided by one hundred, each one receives 70 quarters of a fifth of a fifth, we could say 70 fifths of a quarter of a fifth, or 70 fifths of a fifth of a quarter.
 +
:<math>\scriptstyle{\color{blue}{70\div100=\frac{70}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}=\frac{70}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{70}{5}\sdot\frac{1}{5}\sdot\frac{1}{4}}}</math>
 +
|style="text-align:right;"|וזה כי כאשר אמרנו שהמחלק ע' על המאה יגיע לכל אחד ע' רביעיות חמישית חמישית היינו יכולים לומר ע' חמשיות רביעית חמישית או ע' חמישיות חמישית רביעית
 
|-
 
|-
| 2 || 11 || &nbsp;
+
|Since we can arrange them as we wish, it is appropriate to arrange them and keep them in order.
|}
+
|style="text-align:right;"|ואחר שבידינו לסדרם כחפצנו ראוי לסדרם ולהשגיח בסדורו
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{x=\frac{\left(11+\frac{2}{3}\right)\sdot3}{7}=\frac{35}{7}=5}}</math>
+
:This is because when we want to divide the 70 by these divisors, since 70 has a fifth, which is one of these divisors, we should divide it first by 5 and place it last, so that nothing is left to write beneath it. The result of division is 14.
|style="text-align:right;"|הנה הנעלם הוא הנערך, שהוא הראשון שבאחרונים והידוע שבהם הי"א וב' שלישיות והוא השני שבהם, לכן נכפלנו בראשון שבראשונים שהוא הג' ויעלה ל"ה ונחלקם לנשאר מהידועי' והוא הז' ויצא בחלוקה
+
|style="text-align:right;"|וזה כי כאשר רצינו לחלק אלו הע' לאלו המורים אחר שהעין יש לו חמישית שהוא א' מאלו המורים ראוי לנו לחלקם ראשונה על הה' ונשימנו אחרון כדי שלא ישאר דבר לשים תחתנו ויצא בחילוק י"ד
|-
 
|Written calculation
 
|style="text-align:right;"|זה הכלל נקרא להם שם ונסדרם מין תחת מינו ונכפלם מין בשאינו מינו, שהם האלכסונים, ונחלקנו למינו, היוצא בחילוק הוא הנעלם המבוקש
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם הם בעצמם היה להם שינוי בשמות אשר בהם נודע איזה מינו, או שאינו מינו, לא נצטרך לקרוא להם שם חדש
+
::If it would have had a quartet, it would have been appropriate to divide it by 4 and place it before the last.
 +
|style="text-align:right;"|ואם היה להם רביעית היה ראוי לחלקם על ד' ולשומו לפני האחרון
 
|-
 
|-
 
|
 
|
:Examples - two word problems:
+
::If a fifth, by 5.
|
+
|style="text-align:right;"|ואם היה לו ה' לה&#x202B;'
 
|-
 
|-
 
|
 
|
*'''Exchange Problem - Currencies''': If 3 golden dinar are worth 50 silver dinar, how many silver dinar will 11 golden dinar be worth?<br>
+
:Since it does not have one of them, we arrange the remaining divisors randomly.
:<math>\scriptstyle3:50=11:x</math>
+
|style="text-align:right;"|אכן &#x202B;<ref>26r</ref>שאין לו אחד מהם נסדר אלו השני המורים הנשארים כפי המזדמן
|style="text-align:right;"|המשל אם ג' דינרי זהב שוים נ' דינרי כסף, י"א דינרי זהב כמה דינרי כסף שוים
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נסדרם מין תחת מינו, הזהב תחת הזהב כזה&#x202B;:
+
:For instance, we divide the 14 by 4 and place it before the last; the result of division is 3. Since it is less than the 5, which is the other divisor, we write it beneath it and we write the remaining 2 beneath the 4, which is the second divisor by which we divide. Like this:
 +
:<math>\scriptstyle{\color{blue}{70\div100=\frac{70}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{14}{4}\sdot\frac{1}{5}=\frac{3}{5}+\left(\frac{2}{4}\sdot\frac{1}{5}\right)}}</math>
 +
|style="text-align:right;"|וע'ד'מ' נחלק אלו הי"ד לד' ונשימהו לפני האחרון ויצא בחילוק ג' ואחר שהוא פחות מהה' שהוא המורה האח' נשימהו תחתיו והב' הנשארים נשימם תחת הד' שהוא המורה השני [אשר&#x202B;]&#x202B;<ref>marg.</ref> נחלקנו עליו כזה
 
|-
 
|-
 
|
 
|
Line 3,032: Line 3,565:
 
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
|-
 
|-
| 50 || 3
+
| 5 || 4 || 5
 
|-
 
|-
| &nbsp;|| 11
+
| &nbsp;|| 2 || 3
 
|}
 
|}
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{x=\frac{11\sdot50}{3}=\frac{550}{3}=183+\frac{1}{3}}}</math>
+
:Thus, we get more proper fractions, because it is more appropriate to say 3-fifths and two-quarters of a fifth, which is half a fifth, as appears in this diagram, than saying 3-fifths, two-fifths of a fifth, and 2-quarters of a fifth of a fifth.
|style="text-align:right;"|ונכפול למין בשאינו מינו, שהם הזהב והכסף, והם הי"א בנ', שהם האלכסונים, ויעלה 550 ונחלקם על מינו, פי' על ג' של זהב ויצא בחילוק 183 ושליש, שהם הדינרי כסף הנעלמים
+
:<math>\scriptstyle{\color{blue}{70\div100=\frac{3}{5}+\left(\frac{2}{5}\sdot\frac{1}{5}\right)+\left(\frac{2}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}\right)=\frac{3}{5}+\left(\frac{2}{4}\sdot\frac{1}{5}\right)=\frac{3}{5}+\left(\frac{1}{2}\sdot\frac{1}{5}\right)}}</math>
 +
|style="text-align:right;"|והנה יצאו לנו חלקים יותר נאותים כי יותר נאות הוא לומר ג' חמישיות [ושני רביעיות חמישית&#x202B;]&#x202B;<ref>marg.</ref> שהן חצי חמישית כאשר בא בצורה הזאת מאומרנו ג' חמישיות ושני חמישיות חמישית וב' רביעיות חמישית חמישית
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{3:50=11:\left(183+\frac{1}{3}\right)}}</math>
+
:It is known that the check of this is to convert all of them to the first type, i.e. fifths of a quarter of a fifth, as the last diagram, or quarters of a fifth of a fifth, as the preceding diagram, and this is called "decomposing to a fraction", as will be explained in the second section.
|style="text-align:right;"|הרי לנו שאם שלשה דינרי זהב שוים נ' של כסף, י"א דינרי זהב שוים 183 דינרי כסף ועוד שליש דינר כזה&#x202B;:
+
|style="text-align:right;"|וידוע הוא כי בחינת זה הוא להשיבם כלם מהמין הראשון ר"ל חמישיות רביעית חמישית כפי צורה זו האחרונה או רביעית חמישית חמישית כפי הצורה הקודמת וזה יקרא פריט<sup>ה</sup> כאשר יתבאר בחלק השני
 
|-
 
|-
 
|
 
|
 +
:Since it has whole fifths and also quarters of a fifth, we convert all of them first to quarters of a fifth.
 +
|style="text-align:right;"|ואחר שיש לו חמישיות שלמות גם רביעיות חמישית נשיבם כלם ראשונה רביעיות חמישית
 +
|-
 
|
 
|
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
+
:It is known that every whole fifth is 4-quarters, meaning 4-quarters of a fifth, as every integer is 4-quarters of the whole.
 +
|style="text-align:right;"|וידוע כי כל חמישית שלמה היא ד' רביעיותיה פי' ד' רביעית חמישית כמו שכל שלם ד' רביעיות שלם
 
|-
 
|-
| colspan=2 |&nbsp;|| 5<s>5</s>0 || 3
+
|
 +
:We get that each one of these 3 whole fifths is 4-quarters of a fifth.
 +
|style="text-align:right;"|הרי לנו כי כל אחד מאלו הג' חמישיות שלימות היא ד' רביעיות חמישית
 
|-
 
|-
| 3 || ו || 183 || 11
+
|
 +
:To know how many are they, we multiply 3, which is the number of the fifths, by 4, which is the next divisor; the result is 12. We get that 3-fifths are 12 quarters of a fifth.
 +
|style="text-align:right;"|ולדעת כמה הם נכפול ג' שהוא מספר החמישיות בד' שהוא המורה הבא אחריו ויעלה י"ב הרי לנו שהג' חמישיות הם י"ב רביעיות חמישית
 
|-
 
|-
| 1 || &nbsp;|| &nbsp;|| &nbsp;
+
|
|}
+
:We find two beneath it, which is of this type, meaning quarters of fifths. We add it to them; they are 14 quarters of a fifth.
 +
|style="text-align:right;"|ומצאנו תחתיו שנים שהם מזה המין פי' שהם רביעיות חמישיות נחברם אליהם ויהיו י"ד רביעיות חמישית
 
|-
 
|-
 
|
 
|
*'''Exchange Problem - Currencies''': If 3 golden dinar are worth 50 silver dinar, how many [golden dinar] will 183⅓ silver dinar be worth?<br>
+
:When we want to know how many fifths of a quarter of a fifth are they, we multiply them by 5, which is the divisor that follows them; the total result is 70.
:<math>\scriptstyle3:50=x:\left(183+\frac{1}{3}\right)</math>
+
|style="text-align:right;"|וכאש' נרצה לדעת כמה חמישיות רביעית חמישית הם נכפלם בה' שהוא המורה הבא אחריהם ויעלו כלם <sup>ע&#x202B;'</sup>
|style="text-align:right;"|ואם השאלה היתה להפך, שנעלם לנו הזהב, כאומרנו ואם ג' דינרי זהב שוים נ' של כסף, 183 דינרי כסף ושליש דינר כמה שוים
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|נשימם מין על מינו כזה&#x202B;:
+
:If there was anything beneath this divisor, it would have been also fifths of a quarter of a fifth and we would have add it to them.
 +
|style="text-align:right;"|ואם תחת זה המורה היה נמצא דבר זה היה ג"כ חמישיות רביעית חמישית &#x202B;<ref>26v</ref>והיינו מחברים אותם אליהם
 
|-
 
|-
 
|
 
|
 +
:Since nothing is found beneath it and the divisors are all gone, we have completed our procedure
 +
|style="text-align:right;"|אכן אחר שלא נמצא תחתיו דבר וכבר כלו המורים כבר כלינו מעשינו
 +
|-
 
|
 
|
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
+
:Since the result is our original number, meaning 70, which is the small number that we wanted to divide by 100, which has these divisors no more and no less, we know that our procedure is right.
 +
|style="text-align:right;"|ואחר שעלה לחשבוננו הראשון פי' לעין [ע']&#x202B;<ref>marg.</ref> שהוא החשבון הקטן אשר רצינו לחלק על הק' שהוא בעל אלו המורים מבלי תוספת ומגרעת ידענו כי כל מעשי<sup>נ</sup>ו בצדק ובמשפט
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\frac{3}{5}+\left(\frac{2}{4}\sdot\frac{1}{5}\right)=\frac{\left(3\sdot4\right)+2}{4}\sdot\frac{1}{5}=\frac{12+2}{4}\sdot\frac{1}{5}=\frac{14}{4}\sdot\frac{1}{5}=\frac{14\sdot5}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{70}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}=70\div100}}</math>
 +
{|
 
|-
 
|-
| 3 || 50 || 3
+
|Thus, the reasons of the all that was mentioned - the procedure as well as the examinations - are clear, and all is explained generally and particularly.
 +
|style="width:45%; text-align:right;"|הרי לנו מבוארים טעמי' כל הנזכר גם המעשה גם הבחינות וביאור הכל בכלל ובפרט
 
|-
 
|-
| 1 || 183 || 11
+
!<span style="color:Green>Division of a large number by a smaller number, with a result of integers and fractions</span>
|}
+
|
|-
 
|
 
:<math>\scriptstyle{\color{blue}{x=\frac{\left(183+\frac{1}{3}\right)\sdot3}{50}=\frac{550}{50}=11}}</math>
 
|style="text-align:right;"|ונכפול מין בשאינו מינו, פי' הכסף בזהב, שהם האלכסונים ויעלו 550 ונחלקם על מינו, שהוא הכסף הנשאר והוא הנ' ויצא בחילוק י"א והם דינרי זהב הנעלמים והכל עולה לענין אחד
 
 
|-
 
|-
|'''The reason for the solution of the first example:''' <math>\scriptstyle3:7=5:x</math>
+
|In order to train I bring another example, in which the divided by the 100 is greater than it, so the result are fractions as well as integers.
|style="text-align:right;"|'''הטעם''' כי כאשר אמרנו הערך שיש לג' אצל ז', לה' אצל מי שיש לו זה הערך
+
|style="text-align:right;"|<big>וכדי להתלמד</big> אביא משל אחר שיהיה <sup>ה</sup>מתחלק על אלו הק' גדול מהם כדי שיצאו שם שברים גם שלמים
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{3:7=\left(\frac{1}{3}\sdot3\right):\left(\frac{1}{3}\sdot7\right)=1:\left(\frac{1}{3}\sdot7\right)=1:\frac{7}{3}=5:\left(\frac{7}{3}\sdot5\right)=5:\frac{5\sdot7}{3}}}</math>
+
*{{#annot:140÷100|157|ftSN}}We wish to divide 140 by 100.
|style="text-align:right;"|הנה ידענו שהערך שיש לג' אצל ז', יש לאחד, שהוא שליש הג', אצל שליש [הז', פי' שאם הג' על דרך משל שליש הז', הנה האחד הוא שליש שלישית הז' וזה ברור ואחר שידענו שערך א' אצל שליש ז' הוא] ז' הוא כערך ג' אצל ז', שהוא הערך הנשאל ושליש ז' הוא ז' שלישיות, הנה ידענו שזה הערך בעצמו יש לה' אצל ה' פעמים ז' שלישיות ולדעת כמה שלישיות הם, יש לנו לכפול ה' בז' והעולה הם שלישיות ולדעת כמה שלמים הם, חלקנום על הג&#x202B;'
+
:<math>\scriptstyle140\div100</math>
|-
+
|style="text-align:right;"|<big>המשל</big> רצינו לחלק ק"מ על ק&#x202B;'{{#annotend:ftSN}}
|'''The reason for the solution of the second example:''' <math>\scriptstyle3:7=x:\left(11+\frac{2}{3}\right)</math>
 
|style="text-align:right;"|וכן בדמיון השני, כי אחר שידענו ערך ג' אצל ז' ורצינו לידע למי יש לו זה הערך בעצמו אצל י"א וב' שלישיות, הרי הוא כאלו ידענו ערך ז' אצל ג' ונרצה לידע לי"א וב' שלישיות אצל מי יש לו זה הערך והנה הטעם ברור, שהרי שב כדמיון הראשון בעינו, אכן כדי להרחיב ביאור אבארנו בעודו בעינו
 
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{3:7=\left(\frac{1}{3}\sdot3\right):\left(\frac{1}{3}\sdot7\right)=1:\frac{7}{3}\longrightarrow\left(11+\frac{2}{3}\right):\frac{7}{3}=\frac{\left(11+\frac{2}{3}\right)\sdot3}{7}=\frac{35}{7}=5}}</math>
+
:*Since the 140, which is the number that we want to divide, has all these divisors, we place whichever we want last and divide by it; by 5, for instance. The result of division is 28 and nothing remains.
|style="text-align:right;"|ואומר כי אחר שידענו שהערך שיש לג' אצל ז' הוא הערך בעצמו שיש לאחד, שהוא שליש הג', אצל ז' שלישיות, שהם שליש הז' כאשר ביארנו, א"כ לכל שבעה שלישיות אשר בי"א וב' שלישיות הנערך אליהם הוא א' וכמספר כמה ז' שלישיות יש בהם, כך הוא המספר אחדי הנערך אליהם הנעלם ולדעת כמה שלמים ז' שלישיות יש בי"א וב' שלישיות, נדע תחלה כמה שלישיות הוא וזה יודע בכפלהו אותם בג', לכן כפלנום בג' ועלה ל"ה, הנה ידענו שיש בהם [ל"ה] שלישיות ולדעת כמה פעמים יש בהם ז' שלישיות, חלקנום על ז' ויצא לנו ה' והוא המספר הפעמים אשר יש ז' שלישיות בי"א וב' שלישיות
+
::<math>\scriptstyle{\color{blue}{140\div5=28}}</math>
 +
|style="text-align:right;"|ואחר שאלו הק"מ שהם החשבון אש' רצינו לחלק יש לה כל אלו המורים נשים אשר נחפוץ אחרון ונחלקנו עליו המשל על הה' <sup>ויצא</sup> <s>ושבא</s> בחילוק כ"ח ולא נשאר דבר
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{3:7=1:\frac{7}{3}=5:\left(\frac{7}{3}\sdot5\right)=5:\left(11+\frac{2}{3}\right)}}</math>
+
:*Since it has a quarter, we divide it by 4 and place it before the last. The result of division is 7.
|style="text-align:right;"|וכבר ידענו שהנערך אצל כל ז' שלישיות הוא א' שלם, א"כ הנערך אצל ה' פעמים ז' שלישיות הוא ה' שלמים ואולם ידענו שהי"א וב' שלישיות הוא ה' פעמים ז' שלישיות, א"כ הנערך אליהם הוא ה' שלמים
+
::<math>\scriptstyle{\color{blue}{28\div4=7}}</math>
|-
+
|style="text-align:right;"|ואחר שיש להם רביעית נחלקם על הד' ונשימנו לפני האחרון ויצא בחילוק ז&#x202B;'
|'''The reasons for the solutions of the exchange problems:'''
 
|style="text-align:right;"|'''ועוד במשלי הדינרים'''
 
 
|-
 
|-
 
|
 
|
*The first problem: <math>\scriptstyle3:50=11:x</math>
+
:*Since it is greater than the remaining divisor, we divide it by it; the result of division is 1, which is an integer, as the divisors are gone, we write it aside and beneath it we write the remaining 2. Like this:
|style="text-align:right;"|כי כאשר ידענו שג' דינרי זהב שוים נ' של כסף
+
::<math>\scriptstyle{\color{blue}{7\div5=1+\frac{2}{5}}}</math>
 +
|style="text-align:right;"|ואחר שהם כמורה הנשאר וגדול מ<s>ו</s>מנו נחלקם עליו ויצא בחילוק א' שהוא א' שלם כי כבר שלמו המורים ונשימנו מחוץ והב' הנשארים נשימם תחתיו כזה
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{3:50=1:\left(\frac{1}{3}\sdot50\right)=1:\frac{50}{3}=11:\left(11\sdot\frac{50}{3}\right)=11:\frac{11\sdot50}{3}=11:\frac{550}{3}=11:\left(183+\frac{1}{3}\right)}}</math>
 
|style="text-align:right;"|נודע שדינר זהב אחד, שהוא שוה שליש נ' דינרים של כסף, שהוא חמישים שלישי דינר ונודע מזה שהי"א דינרי זהב שוים י"א פעמים נ' שלישי דינר כסף ולדעת כמה שלישים הם, כפלנו הי"א בנ' ועלה 550, הנה ידענו שהי"א דינרי זהב שוים 550 שלישי דינר כסף ולדעת כמה דינרי כסף הם, חלקנום על ג' ויצא 183 ושליש והם הדינרי כסף ששוים הי"א דינרי זהב וזה ברור
 
|-
 
 
|
 
|
*The second problem: <math>\scriptstyle3:50=x:\left(183+\frac{1}{3}\right)</math>
+
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
|style="text-align:right;"|ועוד אבארנו במשל השני והוא כי ביודעינו שג' דינרי זהב שוים נ' דינרי כסף, כל דינרי זהב שוה נ' שלישי דינר כסף, כמו שביארנו
 
 
|-
 
|-
|
+
| 5 || 4 || 5
:<math>\scriptstyle{\color{blue}{\left(183+\frac{1}{3}\right):\frac{50}{3}=\frac{\left(183+\frac{1}{3}\right)\sdot3}{50}=\frac{550}{50}=11}}</math>
 
|style="text-align:right;"|וא"כ כל נ' שלישי דינר, אשר בק'פ'ג' ושליש, שוה דינר זהב ולדעת כמה פעמים יש בהם נ' שלישי דינר, נדע תחלה כמה שלישי דינר הם וזה יודע בכפלנו אותם בג' כאש' עשינו ועלו 550 והם שלישי דינר וכל נ' מהם שוים דינר זהב, א"כ בחלקנום אותם על נ' כאשר עשינו, נדע כמה דינרי זהב שוים, שהוא כמספר היוצא בחלוקו, הוא י"א וכל זה ברור
 
 
|-
 
|-
|<math>\scriptstyle a_1:a_2=a_3:a_4\longrightarrow a_1\sdot a_4=a_2\sdot a_3</math>
+
| &nbsp; || &nbsp; || 2
|style="text-align:right;"|והנה יתבאר מכל הנזכר במעט עיון כי כל ד' מספרים נערכים, כפל הראשון מאלו בשני מן האחרים ככפל השני בראשון מן האחרים
+
|}
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{3:7=5:\left(11+\frac{2}{3}\right)\longrightarrow5\sdot7=35=3\sdot\left(11+\frac{2}{3}\right)}}</math>
+
:Hence, when we divide 140 by 100, each one of the one-hundred is 140 parts of one-hundred, which are 140-fifths of a quarter of a fifth, which are 28-quarters of a fifth, which are 7-fifths, which are 1 integer and 2-fifths.
|style="text-align:right;"|כי בדמיון הראשון כפל הה' בז', שהוא ל"ה, ככפל הג' בי"א וב' שלישיות, אשר היה הנעלם
+
:<math>\scriptstyle{\color{blue}{140\div100=\frac{140}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{28}{4}\sdot\frac{1}{5}=\frac{7}{5}=1+\frac{2}{5}}}</math>
|-
+
|style="text-align:right;"|הרי לנו כי כאשר חלקנו ק"מ על ק' שעולה לכל 1 ואחד מהמאה ק"מ חלקים ממאה שבשלם שהם ק"מ חמישיות רביעית חמישית שהם כ"ח רביעיות חמישיות שהם ז' חמישיות שלמות שהם א' שלם וב' חמישיות
|Therefore, when one of the numbers is unknown, the product of the first number of one of the two ratios by the second number of the other ratio is equal to the product of the unknown number by the remaining known number<br>
 
:<math>\scriptstyle a_1:a_2=a_3:a_4\longrightarrow a_1\sdot a_4=a_2\sdot a_3</math>
 
|style="text-align:right;"|ולזה, כאש' נעלם אחד מהם, איזה מהם שיהיה, כפלנו מהנודעים הראשון מאלו בשני מאלו וידענו שזה בעצמו הוא כפל הנעלם בנשאר מהנודעים ולזה בחלקנו אותו לנודע, יצא הנעלם
 
 
|-
 
|-
 
|
 
|
=== Rule of Three ===
+
:As this dividend is double the former dividend, so the result of division, which is 1 integer and 2-fifths, which are 7-fifths, is double the former result of division, which is 3-fifths, 2-quarters of a fifth and half a fifth.
|
+
:<math>\scriptstyle{\color{blue}{140=2\sdot70}}</math>
 +
:<math>\scriptstyle{\color{blue}{1+\frac{2}{5}=\frac{7}{5}=2\sdot\left[\frac{3}{5}+\left(\frac{2}{4}\sdot\frac{1}{5}\right)\right]=2\sdot\left[\frac{3}{5}+\left(\frac{1}{2}\sdot\frac{1}{5}\right)\right]}}</math>
 +
|style="text-align:right;"|וכמו שזה החשבון המתחלק הזה כפל החשבון המתחלק ראשונה כן היוצא בחילוק שהוא א' שלם וב' חמישיות שהם ז' חמישיות הוא כפל היוצא בחילוק ראשונה שהיה ג' חמישיות וב' רביעיות חמישית פי' ג' &#x202B;<ref>27r</ref>חמישיות <s>וב' רביעיות חמישית פי' שלשה חמישיות</s> וחצי חמישית
 
|-
 
|-
!<math>\scriptstyle a_1:a_2=a_2:a_3</math>
+
|The whole procedure is clear and explained also by checking, which is to restore everything to its former state.
|style="text-align:right;"|ולפעמים לא יהיו המספרים הנערכים כי אם ג', פי' שהאמצעי יהיה ראשון לאחרונים ושני לראשונים
+
|style="text-align:right;"|הנה כל המעשה ברור ומבורר גם הבחינה והיא להשיב הכל לקדמותו
 
|-
 
|-
|<math>\scriptstyle a_1:a_2=a_3:a_4\longrightarrow a_1\sdot a_4=a_2\sdot a_3</math>
+
|
|style="text-align:right;"|ואולם כבר ביארנו שכל ד' מספרים נערכים כפל הראשון מאלו בשני מאלו ככפל הראשון מאלו בשני מאלו, פי' כפל הראשון באחרון ככפל הב' האמצעיים זה בזה
+
:Because, we decompose the one to fifths by multiplying it by 5, which is the denominator of the fifths; it is 5.
|-
+
|style="text-align:right;"|וזה כי האחד נשיבהו חמשיות שלמות וזה בכופלנו אותו בה' שהוא המורה על החמישיות ויהיו ה&#x202B;'
|<math>\scriptstyle a_1:a_2=a_2:a_3\longrightarrow a_1\sdot a_3=\left(a_2\right)^2</math>
 
|style="text-align:right;"|ואולם כשהם ג' לבד, האמצעי עומד במקום השנים האמצעיי', שהוא שני לראשונים וראשון לאחרונים, א"כ כפל הראשון בשלישי, שהוא השני מהאחרונים, ככפל האמצעי בעצמו, שהוא ראשון ושני כאשר ביארנו
 
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle a_1=\frac{\left(a_2\right)^2}{a_3}</math><br>
+
:We add to it the 2 that is beneath it, which are also fifths.
*<math>\scriptstyle a_3=\frac{\left(a_2\right)^2}{a_1}</math>
+
|style="text-align:right;"|<s>ונחבר אליהם הב' הנמצא תחתיו שהם ג"כ חמישיות שלימות וזה בכפלנו אותו בה' שהוא המורה על החמישיות ויהיו ה'</s> ונחבר אליהם הב' הנמצא תחתיו שהם ג"כ חמשיות שלמות [יהיו כלם ז' חמישיות שלמות&#x202B;]&#x202B;<ref>marg.</ref>
|style="text-align:right;"|ולזה בהודע האמצעי ואחד מן האחרים יודע הנעלם, כי נכפול האמצעי בעצמו ונחלקנו לאחר הנודע ויצא הנעלם
 
 
|-
 
|-
 
|
 
|
:*<math>\scriptstyle\left(a_2\right)^2=a_1\sdot a_3</math>
+
:When we want to decompose them to quarters of a fifth, we multiply them by 4; they are 28 quarters of a fifth, and since there is nothing beneath them, we do not add to them anything.
|style="text-align:right;"|גם בהודע השנים יודע האמצעי וזה בהכפל השנים הנודעים והעולה הוא ככפל האמצעי בעצמו, פי' שהוא כמרובע
+
|style="text-align:right;"|וכאשר נרצה להשיבם רביעיות חמישית נכפלם בד' ויהיו כ"ח רביעיות חמישית ואחר שלא נמצא תחתיו דבר לא נחבר אליהם דבר
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle a_2=\sqrt{a_1\sdot a_3}</math>
+
:We decompose them to fifths of a quarter of a fifth by multiplying them by 5; the result is 140 fifths of a quarter of a fifth. The divisors are all gone and there is nothing beneath them to add to the result.
|style="text-align:right;"|והאמצעי הוא השרש ונוציא שורש זה המספר, שהוא לבקש מספר שכפלו על עצמו עולה כפי החשבון, והשרש אשר יצא הוא האמצעי הנעלם
+
|style="text-align:right;"|עוד נשיבם חמישיות רביעית חמישית וזה בכפלנו אותו בה' ויעלה ק"מ חמישיות רביעית חמישית והנה כלו המורים ואין תחתיו דבר לחבר על העולה
 +
|}
 +
:<math>\scriptstyle{\color{blue}{1+\frac{2}{5}=\frac{\left(1\sdot5\right)+2}{5}=\frac{7}{5}=\frac{7\sdot4}{4}\sdot\frac{1}{5}=\frac{28}{4}\sdot\frac{1}{5}=\frac{28\sdot5}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{140}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}=140\div100}}</math>
 +
{|
 
|-
 
|-
 
|
 
|
The author states that the extraction of roots is difficult and that there are numbers that do not have real roots only approximate roots
+
:We get the same result as our original number.
|style="text-align:right;"|ודרך הוצאת השרשים הוא קשה מאד ויש מספרים אשר לא יודע בהם שרש אמיתי לעולם כי בקירוב, על זה הקצתי לו פרק לעצמו והוא הפרק הבא אחר זה
+
|style="width: 45%; text-align:right;"|ויצא לנו כחשבוננו הראשון שוה בשוה
 
|-
 
|-
|Example for the rule of three:
+
|Multiply the rest of the numbers by this method in the procedure or in the check.
|style="text-align:right;"|דמיון הג' מספרים נערכים
+
|style="text-align:right;"|וב[דרך זה] תעשה כפל המספרי' הנשארים הן למעשה הן לבחינה
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle2:4=4:8</math>
+
|}
|style="text-align:right;"|הוא כאומרנו הערך אשר לב' אצל הד' כערך ד' אצל ח', שהד' האמצעי הוא במקום שנים, שהוא שני מן הראשונים וראשון מן האחרונים
+
 
 +
{|
 
|-
 
|-
 
|
 
|
:*<math>\scriptstyle x:4=4:8</math>
+
 
|style="text-align:right;"|ואם הנעלם מהקצוות, המשל הב' ונודע הד' והח', כלומר ששאל השואל למי יש ערך אצל ד' כערך אשר לד' אצל שמונה
+
== Chapter Five: <span style="color:Green>Proportions</span> ==
|-
+
|style="width:45%; text-align:right;"|<big>הפרק הה&#x202B;'</big>
|'''Exchange Problem - Currencies''': How many golden dinar are worth 4 silver dinar, if 4 golden dinar are worth [8] silver dinar?
 
|style="text-align:right;"|או שאמ' כמה דינרי זהב שוים ד' דינרי כסף, אם ד' דינרי זהב שוים אחד דינרי כסף
 
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{4\sdot4=16=8\sdot x\longrightarrow x=\frac{4\sdot4}{8}=\frac{16}{8}=2}}</math>
+
=== <span style="color:Green>Rule of Three</span> ===
|style="text-align:right;"|הנה ידענו שכפל ד' בד', שהוא האמצעי, שהוא שהם י"ו, שהוא ככפל ח' הידוע בנעלם, לכן נחלקם על הח' והיוצא והוצרך בחלוק והוא ב' הוא הנעלם
 
|-
 
 
|
 
|
:*<math>\scriptstyle2:4=4:x</math>
 
|style="text-align:right;"|וכן אם נודעו השנים והד' ונעלם הח', ששאל השואל הערך אשר לב' אצל ד' אצל מי יש לד' זה הערך
 
 
|-
 
|-
|'''Exchange Problem - Currencies''': If 2 golden dinar are worth 4 silver dinar, how many silver dinar will 4 golden dinar be worth?
+
|For the ratio that a known number is to [a known number], if you want to know for another known number, to which number it has this same ratio:
|style="text-align:right;"|או ששאל אם שני דינרי זהב שוים ד' דינרי כסף, ד' דינרי זהב כמה דינרי כסף שוים
+
:<math>\scriptstyle{\color{OliveGreen}{a_1:a_2=a_3:a_4}}</math>
 +
|style="text-align:right;"|אם תרצה לדעת הערך שיש למספר ידוע למספר ידוע אחר אצל איזה מספר יש לו אותו הערך בעצמו
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{x=\frac{4\sdot4}{{\color{red}{2}}}=\frac{16}{{\color{red}{2}}}={\color{red}{8}}}}</math>
+
|style="text-align:right;"|<s><big>המשל</big> הערך לה' אצל איזה מספר יש לו אותו הערך בעצמו</s>
|style="text-align:right;"|נכפול הד' בעצמו ויעלה י"ו ונחלקם על '''הח'''' ויצא בחילוק '''ב'''' והוא הנעלם
 
 
|-
 
|-
 
|
 
|
:*<math>\scriptstyle2:x=x:8</math>
+
:*{{#annot:5÷7=10÷X|567|rfV6}}Example: For the ratio that 5 is to 7, 10 has the same ratio to which number?
|style="text-align:right;"|ואם היה הנעלם הד', שהוא האמצעי העומד במקום שנים והנודעים הב' והח', ראשון ואחרון
+
::<math>\scriptstyle{\color{blue}{5:7=10:x}}</math>
 +
|style="text-align:right;"|המשל הערך שיש לה' אצל ז' אצל מי יש לי' זה הערך{{#annotend:rfV6}}
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{x^2=2\sdot8=16\longrightarrow x=\sqrt{2\sdot8}=\sqrt{16}=4}}</math>
+
:*Or, which number has the same ratio to 14?
|style="text-align:right;"|נכפול הב' בח' ויעלה י"ו וזה כפל האמצעי הנעלם בעצמו כמו שביארנו ואלו הי"ו הם מרובע האמצעי והאמצעי הוא שרושם ושרש י"ו הוא ד&#x202B;'
+
::<math>\scriptstyle{\color{blue}{5:7=x:14}}</math>
|-
+
|style="text-align:right;"|או אצל י"ד למי שיש לו זה הערך
|
 
|style="text-align:right;"|והכל מבואר בדמיונות אלו
 
 
|-
 
|-
|The next chapter will present the extraction of the root for difficult cases, and approximation of roots
+
|To understand it briefly I will give them an order:
|style="text-align:right;"|ואם זה הי"ו היה החשבון, אשר יקשה עלינו בקשת שרשו, או שהוא נמנע בחקנו לידע שרשו האמיתי כי אם בקרוב, נדרוך בבקשת השרש ההוא כמו שיתבאר בפרק ו' זה אשר הקציתי לו
+
|style="text-align:right;"|וכדי להבינו בקוצר אשים להם סדר
|-
 
|}
 
 
 
{|
 
 
|-
 
|-
|
+
|When we say: the ratio that 5 is to 7 - the 5 is called "first" [<math>\scriptstyle{\color{OliveGreen}{a_1}}</math>] and the 7 [is called] "second" [<math>\scriptstyle{\color{OliveGreen}{a_2}}</math>], since the 5 is related to 7.
 
+
|style="text-align:right;"|והוא כי כאשר נאמ' הערך שיש לה' אצל ז' נקרא הה' ראשון והז' שני לפי שהה' הוא הנערך אצל ז&#x202B;'
== Chapter Six: Roots ==
 
!style="text-align:right;"|<big>הפרק השישי בהוצאת השרשים</big>
 
 
|-
 
|-
 
|
 
|
=== written extraction of roots ===
+
:*If you say: to which number does 10 has this ratio? What we relate to it is missing, which is the second of the others.
|
+
::<math>\scriptstyle{\color{blue}{5:7=10:x}}</math>
 +
|style="text-align:right;"|והנה אם תאמר אצל מי יש ערך זה לי' יחסר אשר אליו אנו מעריכים שהוא השני מהאחרים
 
|-
 
|-
 
|
 
|
==== description of the procedure ====
+
:*If we say: which number has this ratio to 14? the related is missing, which is the first of the others.
|
+
::<math>\scriptstyle{\color{blue}{5:7=x:14}}</math>
 +
|style="text-align:right;"|ואם נאמר למי יש זה הערך אצל י"ד יחסר הנערך שהוא הראשון מהאחרים
 
|-
 
|-
|
+
|This is the rule: the related of those that are first and of those that are last is called first, and that to which it is related, is called second.
|style="text-align:right;"|כאשר תרצה להוציא שורש שום מספר, תמנה מספר מעלות ההוא, אם זוג ואם נפרד
+
|style="text-align:right;"|זה הכלל כי לנערך &#x202B;<ref>27v</ref>הן מן הראשונים הן מן האחרונים נקרא ראשון ולאשר מעריך אצלו נקרא שני
 
|-
 
|-
 
|
 
|
*The highest rank of the number is odd
+
*When you wish to know the unknown:
|style="text-align:right;"|ואם הם נפרד, עיין הרושם האחרון כאלו היא אם אחדים, איזה מספר נכפול על עצמו ויצא כל זה הרושם האחרון, או היותר שנוכל ונשימנו תחתיו
+
|style="text-align:right;"|וכאשר תרצה לדעת הנעלם
 
|-
 
|-
 
|
 
|
:The remainder from subtracting the square of the leftmost digit of the root from the leftmost digit of the given number
+
:*If you have the first of the two that are last, but the second of those that are last is unknown: we multiply the first [of those that are last] by the second of the first two that are known, then divide by that which remains of the three that are known, i.e. by the first of those that are first; the result of division is the unknown.
|style="text-align:right;"|ואם ישאר שום דבר מזה החשבון האחרון העליון, אחר הוצאת כפל המספר אשר שמת תחתיו בעצמו, תשים הנשאר ההוא על המספר האחרון
+
::<math>\scriptstyle{\color{OliveGreen}{a_4=\frac{a_2\sdot a_3}{a_1}}}</math>
 +
|style="text-align:right;"|אם יש בידך הראשון מן השנים האחרונים ונעלם השני שבאחרונים נכפול אותו הראשון [בשני]&#x202B;<ref>marg.</ref> מן השנים הראשונים הידועים וחלקנו לנשאר מהג' הידועים ר"ל לראשון שבראשונים והיוצא בחילוק הוא הנעלם
 
|-
 
|-
 
|
 
|
*The highest rank of the number is even
+
:*If you have the second of those that are last, but the first is unknown: multiply the second [of those that are last], which is known, by the first of those that are first, then divide the product by the second of those that are first; and the result of division is the required unknown.
|style="text-align:right;"|ואם מספר מעלות החשבון אשר רצית לדעת שרשו יהיה זוג, תקח האות האחרון לעשרות ואשר תמצא במעלה אשר לפניה לאחדים ותבקש מספר שיהיה מרובעו בכל אלו העשרות והאחדים אשר לקחת, או היותר שתוכל להוציאו מהם וזה המספר אשר מצאת תשימהו תחת המעלה אשר לפני המעלה האחרונה
+
::<math>\scriptstyle{\color{OliveGreen}{a_3=\frac{a_4\sdot a_1}{a_2}}}</math>
 +
|style="text-align:right;"|ואם היה בידך השני שבאחרונים ונעלם הראשון כפול אותו השני הידוע בראשון שבראשונים והעולה חלקהו לשני שבראשונים והיוצא בחילוק הוא הנעלם המבוקש
 
|-
 
|-
 
|
 
|
:The remainder from subtracting the square of the leftmost digit of the root from the two leftmost digits of the given number
+
::When you divide the product by the second of those that are first, or by the first [of those that are second], if you want, extract the divisors, if this first or second, by which you divide, is a large number. The result, whether integers or fractions, is the required unknown.
|style="text-align:right;"|ואשר ישאר אחר הוצאת מרובע המספר אשר מצאת מאלו האחדים והעשרות אשר מצאת בשתי המעלות האחרונו', אם ישאר שום עשרת, שימהו על האות האחרון ואם אחדים, תשימם אשר לפני האות האחרון
+
|style="text-align:right;"|וכאשר תחלק העולה על השני שבראשונים או על הראשון אם תרצה תוציא המורים אם זה הראשון או השני אשר תחלק עליו הוא חשבון גדול והיוצא בין שלמים ושברים הוא המבוקש הנעלם
 
|-
 
|-
|Doubling the leftmost digit of the root
+
|This is the rule: always multiply the first of these by the second of the others and divide the product by what remains of those that are known; the result of division is the unknown.
|style="text-align:right;"|ואחר עשותך כל זה, הן במספר אשר מעלותיו זוג, הן באשר הן מעלותיו מספר נפרד, תכפול זה המספר אשר שמת תחת המספר העליון
+
|style="text-align:right;"|זה הכלל לעולם תכפול הראשון מאלו בשני מאלו והעולה תחלק על [הנשאר] מהידועים והיוצא בחילוק הוא הנעלם
 
|-
 
|-
 
|
 
|
*The result are units
+
:*{{#annot:3÷7=5÷X|567|Mvdt}}Example: if we say: the ratio that 3 is to 7 - to whom does 5 have this ratio?
|style="text-align:right;"|ואם לא יעלה מזה הכפל שום עשר, תשים אחדי הכפל הזה תחת המעלה אשר לפני המעלה אשר שמת אותו בתחלה
+
::<math>\scriptstyle{\color{blue}{3:7=5:x}}</math>
 +
|style="text-align:right;"|<big>המשל</big> אם אמרנו הערך שיש לג' אצל הז' לה' אצל מי יש לו זה הערך בעצמו{{#annotend:Mvdt}}
 
|-
 
|-
 
|
 
|
*The result are units and tens
+
::We write them as follows:
|style="text-align:right;"|ואם עלה לעשר או יותר, תשים העשר תחת המעלה אשר היה שם המספר הזה בתחלה והאחדים במעלה אשר לפניו
+
|style="text-align:right;"|ונשימם לו על זה כזה
 
|-
 
|-
 
|
 
|
*The result are tens
+
|
|style="text-align:right;"|ואם לא יהיו שם אחדים, תשים במעלה אשר לפניו
+
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
|-
 
|-
|The second leftmost digit of the root
+
| 7 || 3
|style="text-align:right;"|ותעבור הקולמוס על המספר הראשון אשר כפלת ואחר כך תבקש מספ' אשר תשים במעלה אשר לפני אלו הנזכרות אשר בכפול אותו במספר, או מספרים, אשר שמת עתה שנתחדשו מכפל הראשון וגם בעצמו והוציא כל כפל וכפל מהם מהמעלה אשר כנגדו ויצא הכל, או היותר שתוכל, ותשימנו במעלה הנזכרת, ר"ל במעלה הנזכרת ר"ל במעלה שלפני המעלות אשר שמת בהם כפל המספר הראשון ותכפלנו במספרים הראשונים, מלבד אשר שמת ראשון שעבר עליו הקולמוס, ואשר יעלה, תוציאנו מהרשמים אשר על ראשם ותכפלנו המספרים הראשונים מלבד אשר שמת ראשון שעבר עליו הקולמוס על עצמו ותוציאנו מהמעלה אשר על ראשו והנשאר בשום מקום, תשימנו על הרושם אשר ממנו נותר
+
|-
 +
| &nbsp;|| 5
 +
|}
 
|-
 
|-
 
|
 
|
*The remainder of the given number in corresponding ranks is not enough for subtracting the subtrahend from it - shifting the subtrahend to a lower rank
+
::We know the related of those that are last, which is called first, it is 5. We multiply it by the second of those that are first, which is 7; the result is 35. We divide it by what remains of those that are known, which is 3; the result of division is 11 integers and 2-thirds and this is the required unknown.
|style="text-align:right;"|ואם כאשר כפלת המספר ושמת כפלו במעלה אשר לפניו, אם אין ברשמים אשר עליהם כדי להוציאם אפי' פעם אחת ושישאר במעלה אשר לפניהם אחד להוציא ממנו כפל האחר בעצמו, אז תשים 0 לפניהם ותורידם מעלה אחת, גם ל0, גם לכל רושם מהם, ותבקש מספר שתשים לפניהם ותכפלנו בכל אחד מהם ובעצמו ותוציא כל דבר מאשר על ראשו
+
::<math>\scriptstyle{\color{blue}{x=\frac{5\sdot7}{3}=\frac{35}{3}=11+\frac{2}{3}}}</math>
 +
|style="text-align:right;"|הנה ידענו הנערך שבאחרונים והוא הנקרא ראשון והוא הה' ונכפלנו בשני שבראשונים והוא הז' ויעלו ל"ה ונחלקנו לנשאר מהידועים והוא הג' ויצא בחילוק י"א שלמים &#x202B;[וב' שלישיות וזהו הנעלם המבוקש
 
|-
 
|-
|Placing the remainder and the subtrahend
+
|
|style="text-align:right;"|והנותר תשים על הרושם אשר על ראשו ותורידם עוד מעלה אחרת ובלבד שתורידם לעולם, בכל הורדה שתורידם, שיורדו כמות שהם, בלי כפל כלל, זולתי המספר האחרון שנתחדש בפעם ההיא שתכפלנו
+
::Meaning: the ratio that 3 is to 7 is this same ratio that 5 is to 11 and 2-thirds.
 +
::<math>\scriptstyle{\color{blue}{3:7=5:\left(11+\frac{2}{3}\right)}}</math>
 +
|style="text-align:right;"|פי' כי הערך אשר לג' אצל הז' הוא הערך בעצמו אשר לה' אצל י"א וב' שלישיות&#x202B;]&#x202B;<ref>marg.</ref> וב' שלישיות
 
|-
 
|-
 
|
 
|
*Doubling the interim rightmost digit of the root - the result are units alone
+
::It is clear that as 7 is twice 3 plus its third, which is 1, so is 11 and 2-thirds twice 5 plus its third, which is 1 and 2-thirds.
|style="text-align:right;"|ואם לא נתחדש שם עשר, תשימנו במעלה שלפני המעלות אשר תשים הרשמי' האחרים בהורדתם
+
::<math>\scriptstyle{\color{blue}{7=3\sdot\left(2+\frac{1}{3}\right)=\left(2\sdot3\right)+\left(\frac{1}{3}\sdot3\right)=\left(2\sdot3\right)+1}}</math>
 +
::<math>\scriptstyle{\color{blue}{11+\frac{2}{3}=5\sdot\left(2+\frac{1}{3}\right)=\left(2\sdot5\right)+\left(\frac{1}{3}\sdot5\right)=\left(2\sdot5\right)+\left(1+\frac{2}{3}\right)}}</math>
 +
|style="text-align:right;"|וזה ברור שכמו שז' הוא כפל ג' ועוד שלישיתם שהוא א&#x202B;'<br>
 +
כן י"א וב' שלישיות הוא כפל ה' ועוד שלישיתו שהוא א' וב' שלישיות
 +
|-
 +
|
 +
:*{{#annot:3÷7=X÷11⅔|567|SYHL}}If it is said: the ratio that 3 is to 7 - to 11 and 2-thirds who has this ratio?
 +
::<math>\scriptstyle3:7=x:\left(11+\frac{2}{3}\right)</math>
 +
|style="text-align:right;"|ואם אמרו הערך אשר לג' אצל ז' אצל י"א וב' שלישיות למי יש לו זה הערך{{#annotend:SYHL}}
 
|-
 
|-
 
|
 
|
*Doubling the interim rightmost digit of the root - the result are units and tens
+
::We write them in this diagram:
|style="text-align:right;"|ואם מהכפל ההוא יתחדש עשר, תחברנו עם הרושם אשר שמת ראשון לצד ימין ואם מהכפל ההוא יתחדש עשר תחברנו עם הרושם אשר שמת ראשון לצד ימין ואם לא היה כי אם 0, תסירנה ותשים הא', ר"ל העשר, במקומה והאחדים אשר נתחדשו מהכפל עם זה העשרה שימם במעלה שלפניהם
+
|style="text-align:right;"|נשימם בצורה הזאת
 
|-
 
|-
 
|
 
|
*Doubling the interim rightmost digit of the root - the result are tens alone
+
|
|style="text-align:right;"|ואם לא נתחדשו שם אחדים, כגון שהרושם האחרון היה חמשה וכפלו יהיה עשרה שלם בלתי אחדים, תשים הי' כאשר אמרתי במקום ה0', או תחברנו עם אשר תמצא במעלה לצד ימין, ואחר שאין אחדים שם, תשים 0' לפני המעלות ההם
+
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
|-
 
|-
|Repeating the process
+
| &nbsp;|| 7 || 3
|style="text-align:right;"|ותבקש עוד מספר כמו שנזכר וכן תעשה עד תומם
 
 
|-
 
|-
|The final root
+
| 3 || &nbsp;|| &nbsp;
|style="text-align:right;"|והשרש הוא כל המספרים אשר בקשת בכל עת בלי כפל
 
 
|-
 
|-
 +
| 2 || 11 || &nbsp;
 
|}
 
|}
{|
 
 
|-
 
|-
 
|
 
|
 
+
::The unknown is the related term that is first of the latter and the known of them is 11 and 2-thirds, which is the second of them. So we multiply it by the first of the formers, which is 3; the result is 35. We divide it by the remaining of the knowns, which is 7; the result of division [is 5].
==== examples ====
+
::<math>\scriptstyle{\color{blue}{x=\frac{\left(11+\frac{2}{3}\right)\sdot3}{7}=\frac{35}{7}=5}}</math>
 +
|style="text-align:right;"|&#x202B;<ref>28r</ref>הנה הנעלם הוא הנערך שהוא הראשון שבאחרונים והידוע שבהם הי"א וב' שלישיות והוא השני שבהם לכן נכפלנו בראשון שבראשונים שהוא הג' ויעלה ל"ה ונחלקם לנשאר מהידועי' והוא הז' ויצא בחלוקה
 +
|-
 +
!<span style="color:Green>Written calculation</span>
 
|
 
|
 
|-
 
|-
 +
|This is the rule: we call them by their names and arrange each type beneath its own type, then we multiply each type by the one that is not of its type, which are the diagonals, and divide by its type. The result of division is the required unknown.
 +
|style="text-align:right;"|זה הכלל נקרא להם שם ונסדרם מין תחת מינו ונכפלם מין בשאינו מינו שהם האלכסונים ונחלקנו למינו היוצא בחילוק הוא הנעלם המבוקש
 +
|-
 +
|?
 +
|style="text-align:right;"|ואם הם בעצמם היה להם שינוי בשמות אשר בהם נודע איזה מינו או שאינו מינו לא נצטרך לקרוא להם שם חדש
 +
|-
 +
!<span style="color:Green>Exchange Problem - Currencies</span>
 
|
 
|
*<math>\scriptstyle\sqrt{344680129066}</math>
 
|style="text-align:right;"|'''המשל''' רצינו לבקש שרש 344680129066
 
 
|-
 
|-
 
|
 
|
 +
*{{#annot:two currencies|632|R34u}}Example: If 3 gold dinar are worth 50 silver dinar, how many silver dinar will 11 gold dinar be worth?
 +
:<math>\scriptstyle3:50=11:x</math>
 +
|style="text-align:right;"|<big>המשל</big> אם ג' דינרי זהב שוים נ' דינרי כסף י"א דינרי זהב כמה דינרי כסף שוים{{#annotend:R34u}}
 +
|-
 
|
 
|
{|class="wikitable" style="margin-left: auto; margin-right: 0px; text-align:center;"
+
::We arrange them, each type beneath its own type, the gold beneath the gold, as follows:
 +
|style="text-align:right;"|נסדרם מין תחת מינו הזהב תחת הזהב כזה
 
|-
 
|-
 
|
 
|
{|style="margin-left: auto; margin-right: 0px;"
+
|
| style="text-align: left;" | &#8199;&#8199;&#8199;&#8199;117
+
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
|-
 
|-
| style="text-align: left;" | &#8199;&#8199;&#8199;1250642
+
| 50 || 3
 
|-
 
|-
| style="text-align: left;" | &#8199;1151248513
+
| &nbsp;|| 11
 +
|}
 
|-
 
|-
| style="text-align: left;" | <u>&#8199;98261861540</u>
+
|
 +
::We multiply each type by the one that is not of its type, which are the gold and the silver, i.e. the diagonals, 11 by 50; the product is 550. We divide it by 3 that is of the gold type; the result of division is 183 and one-third that are the unknown silver dinar.
 +
::<math>\scriptstyle{\color{blue}{x=\frac{11\sdot50}{3}=\frac{550}{3}=183+\frac{1}{3}}}</math>
 +
|style="text-align:right;"|ונכפול למין בשאינו מינו שהם הזהב והכסף והם הי"א בנ' שהם האלכסונים ויעלה 550 ונחלקם על מינו פי' על ג' של זהב ויצא בחילוק 183 ושליש שהם הדינרי כסף הנעלמים
 
|-
 
|-
| style="text-align: left;" | <u>344680129066</u>
+
|
 +
::We receive that if 3 gold dinar are worth 50 silver [dinar], then 11 gold dinar are worth 183 silver dinar and one-third of a dinar, like this:
 +
::<math>\scriptstyle{\color{blue}{3:50=11:\left(183+\frac{1}{3}\right)}}</math>
 +
|style="text-align:right;"|הרי לנו שאם שלשה דינרי זהב שוים נ' של כסף י"א דינרי זהב שוים 183 דינרי כסף ועוד שליש דינר כזה
 
|-
 
|-
| style="text-align: left;" | &#8199;5
+
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
|-
 
|-
| style="text-align: left;" | &#8199;108
+
| colspan=2 |&nbsp;|| 5<s>5</s>0 || 3
 
|-
 
|-
| style="text-align: left;" | &#8199;&#8199;1167
+
| 3 || ו || 183 || 11
|-
 
| style="text-align: left;" | &#8199;&#8199;&#8199;11740
 
|-
 
| style="text-align: left;" | &#8199;&#8199;&#8199;&#8199;117409
 
|-
 
| style="text-align: left;" | &#8199;&#8199;&#8199;&#8199;&#8199;1174184
 
|}
 
 
|-
 
|-
 +
| 1 || &nbsp;|| &nbsp;|| &nbsp;
 
|}
 
|}
 
|-
 
|-
 +
!<span style="color:Green>Exchange Problem - Currencies:</span>
 
|
 
|
:{|
 
 
|-
 
|-
| ||rowspan="6"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{34>5^2}}\\&\scriptstyle{\color{red}{34-{\color{blue}{5}}^2=}}{\color{green}{9}}\\&\scriptstyle{\color{red}{2\times5=}}{\color{blue}{10}}\\\end{align}}</math>||&nbsp;||rowspan="6"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{9-\left(1\times{\color{blue}{8}}\right)=}}{\color{green}{1}}\\&\scriptstyle{\color{red}{{\color{blue}{8}}^2=}}{\color{YellowOrange}{64}}\\&\scriptstyle{\color{red}{6-{\color{YellowOrange}{4}}=}}{\color{green}{2}}\\&\scriptstyle{\color{red}{14-{\color{YellowOrange}{6}}=}}{\color{green}{8}}\\&\scriptstyle{\color{red}{2\sdot8=}}{\color{blue}{16}}\\\end{align}}</math>||&#8199;<span style="color:LimeGreen><s>1</s></span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|If the question is vice versa, that the gold is unknown to us, as our saying:
 +
|style="text-align:right;"|<big>ואם השאלה</big> היתה לה<sup>פ</sup>ך שנעלם לנו הזהב כאומרנו
 
|-
 
|-
| ||&#8199;<span style="color:LimeGreen>9</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;||&#8199;9<span style="color:LimeGreen>82</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
*{{#annot:two currencies|632|VOY0}}If 3 gold dinar are worth 50 silver dinar, how many [gold dinar] will 183⅓ silver dinar be worth?
 +
:<math>\scriptstyle3:50=x:\left(183+\frac{1}{3}\right)</math>
 +
|style="text-align:right;"|ואם <sup>ג'</sup> דינרי זהב שוים נ' של כסף 183 דינרי כסף ושליש דינר כמה שוים{{#annotend:VOY0}}
 
|-
 
|-
|<span style="color:red">34</span>4680129066||<s>3</s>4<span style="color:red">46</span>80129066||<s>3</s>446<span style="color:red">80</span>129066
+
|
 +
::We write them each type above its own type, as follows:
 +
|style="text-align:right;"|נשימם מין על מינו כזה
 
|-
 
|-
| ||&#8199;<span style="color:#0000FF><s>5</s></span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;||&#8199;<s>5</s>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
|-
 
|-
| ||&#8199;<span style="color:#0000FF>10</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;||&#8199;10<span style="color:#0000FF>8</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
| 3 || 50 || 3
 
|-
 
|-
| ||&nbsp;||&#8199;&#8199;<span style="color:#0000FF>116</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
| 1 || 183 || 11
 
|}
 
|}
|style="text-align:right;"|והנה מעלות מספר זה הם י"ב והם זוג, נקח השני רשמים האחרונים, האחרון אחרון לעשרות ואשר לפניו לאחדים ויהיו 34<br>
 
ונבקש מספר שנכפלנו על עצמו ויוציא כל ה34, או היותר שאפשר, והוא ה' ונשימנו תחת הד' ונאמר ה' פעמים ה' הם כ"ה, נוציאם מהל"ד, ישארו ט' ונעביר קולמוס על הג' ונשים הט' על הד&#x202B;'<br>
 
ונכפול הה' ואחר שאין ונעביר עליו הקולמוס והנה כופלו הוא י', נשים א' תחת הה' ואחר שאין עם עשר זה אחדים כלל, נשים לפני זה האחד 0<br>
 
ונבקש מספר נשימהו במעלה שלפני ה0' ונכפלנו ב בא' ובעצמו ונוציא כל היותר שנוכל מאשר נשאר על הד', גם מהמ"ו אשר לפניו, שהם השלימות המעלות אשר עליהן, ויהיה ח' ונשימנו לפניהם ונכפול ח' בא', יהיו ח', נוציאם מהט' אשר עליו, ישאר אחד, נשימנו עליו<br>
 
עוד נכפול ח' על עצמו ויעלה ס"ד ונוציא הד' האחדים מהו' אשר על ראשו, ישארו ב', נשימם על הו&#x202B;'<br>
 
והס' שהם ו' עשרות לא נוכל להוציאם מהד' שאחר הו' שהוא עשרות נגדו ונקרא הא' אשר אחריהם ונעביר עליו הקולמוס ויהיה עשר במעלת הד' הנזכר ונחבר אליהם הד' עצמו, יהיו כלם י"ד, נוציא מהם הס' אשר הם ו' עשרות, נשארו ח' ונשימנו על הד&#x202B;'<br>
 
אחר זה נורידם מעלה אחת ונכפול הח' אשר נתחדש בפעם הזאת ואחר אשר נתחדש מכפלו אחדים ועשר, לא נשים ה0', אבל נשים א' בעד העשר במקומה ונשים הו' אחדים לפניו
 
 
|-
 
|-
 
|
 
|
:{|
+
::We multiply each type by the one that is not of its type, meaning the silver and the gold that are the diagonals; the product is 550. We divide it by the remaining of the silver type, which is 50; the result of division is 11 and they are the unknown gold dinar.
 +
::<math>\scriptstyle{\color{blue}{x=\frac{\left(183+\frac{1}{3}\right)\sdot3}{50}=\frac{550}{50}=11}}</math>
 +
|style="text-align:right;"|ונכפול מין בשאינו מינו פי' הכסף בזהב שהם האלכסונים ויעלו 550 ונחלקם על מינו שהוא הכסף הנשאר והוא הנ' ויצא בחילוק י"א והם דינרי זהב הנעלמים
 
|-
 
|-
|rowspan="8"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{8-\left(1\times{\color{blue}{7}}\right)=}}{\color{green}{1}}\\&\scriptstyle{\color{red}{12-\left(1\times{\color{blue}{7}}\right)=}}{\color{green}{5}}\\&\scriptstyle{\color{red}{6\times{\color{blue}{7}}=}}{\color{YellowOrange}{42}}\\&\scriptstyle{\color{red}{8-{\color{YellowOrange}{2}}=}}{\color{green}{6}}\\&\scriptstyle{\color{red}{5-{\color{YellowOrange}{4}}=}}{\color{green}{1}}\\&\scriptstyle{\color{red}{6-{\color{YellowOrange}{5}}=}}{\color{green}{1}}\\&\scriptstyle{\color{YellowOrange}{50-49}}={\color{green}{1}}\\&\scriptstyle{\color{red}{{\color{blue}{7}}^2=}}{\color{YellowOrange}{49}}\\&\scriptstyle{\color{red}{2\sdot7=}}{\color{blue}{{\color{YellowOrange}{1}}4}}\\&\scriptstyle{\color{red}{6+{\color{YellowOrange}{1}}=}}{\color{blue}{7}}\\\end{align}}</math>||&#8199;&#8199;&#8199;<span style="color:LimeGreen>1</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|It all comes down to the same thing.
 +
|style="text-align:right;"|והכל עולה לענין אחד
 
|-
 
|-
|&#8199;<span style="color:LimeGreen><s>1</s>151</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|
 +
==== <span style="color:Green>Reasons</span> ====
 +
 
 +
|
 
|-
 
|-
|&#8199;982<span style="color:LimeGreen>61</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
!<span style="color:Green>The reason for the solution of the first example:</span>
 +
|
 
|-
 
|-
|<s>3</s>44680129066
+
|The reason is that when we say: the ratio that 3 has to 7 - to whom does 5 have this ratio?
 +
:<math>\scriptstyle3:7=5:x</math>
 +
|style="text-align:right;"|&#x202B;<ref>28v</ref><big>הטעם</big> כי כאשר אמרנו הערך שיש לג' אצל ז' לה' אצל מי שיש לו זה הערך
 
|-
 
|-
|&#8199;<s>5</s>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|We know that as the ratio that 3 is to 7, one, which is a third of 3, is to a third of 7, meaning that if 3 is, for instance, a third of 7, then one is a third of a third of 7, and this is clear.
 +
|style="text-align:right;"|הנה ידענו שהערך שיש לג' אצל ז' יש לאחד שהוא שליש הג' אצל שליש &#x202B;[הז' פי' שאם הג' על דרך משל שליש הז' הנה האחד הוא שליש שלישית הז' וזה ברור
 
|-
 
|-
|&#8199;108&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|Since we know that the ratio that 1 is to a third of 7 is as the ratio that 3 is to 7, which is the required ratio, and that a third of 7 is 7-thirds, then we know that 5 has that same ratio to 5 times 7-thirds.
 +
:<math>\scriptstyle{\color{blue}{3:7=\left(\frac{1}{3}\sdot3\right):\left(\frac{1}{3}\sdot7\right)=1:\left(\frac{1}{3}\sdot7\right)=1:\frac{7}{3}=5:\left(\frac{7}{3}\sdot5\right)=5:\frac{5\sdot7}{3}}}</math>
 +
|style="text-align:right;"|ואחר שידענו שערך א' אצל שליש ז' הוא&#x202B;]&#x202B;<ref>marg.</ref> ז' הוא כערך ג' אצל ז' שהוא הערך הנשאל ושליש ז' הוא ז' שלישיות הנה ידענו שזה הערך בעצמו יש לה' אצל ה' פעמים ז' שלישיות
 
|-
 
|-
|&#8199;&#8199;116<span style="color:#0000FF>7</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
+
|To know how many thirds they are, we have to multiply 5 by 7 and the result are thirds
 +
|style="text-align:right;"|ולדעת כמה שלישיות הם יש לנו לכפול ה' בז' והעולה הם שלישיות
 
|-
 
|-
|&#8199;&#8199;&#8199;11<span style="color:#0000FF>74</span>&#8199;&#8199;&#8199;&#8199;&#8199;
+
|To know how many integers they are, we divide them by 3.
|}
+
|style="text-align:right;"|ולדעת כמה שלמים הם חלקנום על הג&#x202B;'
|style="text-align:right;"|ונבקש מספר שנשים לפניהם שנכפלנו בהם ובעצמו ונוציא היותר שאפש' מאשר עליהם ויהיה ז' ונשימנו לפניהם ונאמ' שבעה פעמים א' הם ז', נוציאם מהח' אשר על ראשו וישאר א' ונשימנו עליו<br>
 
עוד נאמר ז' פעמים א' על הא' אשר לפניו הם ז' ולא נוכל להוציאם מהב' אשר על ראשם, נקח הא' אשר שמנו עתה על הח' ונעביר עליו הקולמוס ויהיו לעשרה ועם הב' יהיו י"ב, נוציא מהם הז', ישארו ה', נשימם על הב&#x202B;'<br>
 
עוד נכפול הז' בו', יעלו מ"ב, נסיר הב' מהח' ואש' עליהם ישארו ו', נשימם עליהם ונסיר הד' עשרות מהה' אשר במעלה שאחריהם וישאר א' ונשימנו עליו<br>
 
עוד נכפול הז' על עצמו ויעלה מ"ט ומה0 אשר עליו לא נוכל להסיר אפילו האחדים, לכן נסיר מהו' שאחרי הה' וישאר א' ויהיה נ' במעלתם ה0', נסיר מהם המ"ט וישארו א' ונשימנו עליהם<br>
 
עוד נורידם מעלה אחת ונכפול הז' אשר נתחדש בזאת הפעם ויהיו י"ד ונחבר העשר לא' עם הו' אשר אחריו לצד שמאל ויהיו ז', אחרי כן נשים הד' שהם האחדים לפני הז&#x202B;'
 
 
|-
 
|-
 +
!<span style="color:Green>The reason for the solution of the second example:</span>
 
|
 
|
:the next digit of the root to the right is 0
 
|style="text-align:right;"|ונבקש מספר לכפול על כולם ועל עצמו כבשאר הפעמים ולא נמצא, כי אין גם אחד, לפי שלא יוכלו לצאת מאשר על ראשם אפי' פעם אחת, לכן נשים [סיפרא] לפניהם ונורידם עוד מעלה אחת ולא נכפול שום מספר, כי לא נתחדש מספ' בפעם הזאת וה0' אינה מספר לכפלה
 
 
|-
 
|-
|
+
|Likewise in the second example: we know the ratio that 3 is to 7 and we wish to know who has this same ratio to 11 and 2-thirds.
:the next digit of the root to the right is 9 - the procedure is not detailed
+
:<math>\scriptstyle3:7=x:\left(11+\frac{2}{3}\right)</math>
|style="text-align:right;"|ונבקש מספר שנשים לפניהם ויהיה ט' ונכפלנו בכל אחד ונוציאנו מאשר ימצא על ראשו וגם בעצמו ונוציאנו מאשר על ראשו, כאשר תראה בצורה הרשומה, עוד נורידם ונכפול הט' שנתחדש עתה בפעם הזאת ויהיו י"ח ואחר שנתחדש כאן עשר עם האחדים, לא נשים ה0' בהורדה זו, אבל נשים א' לעשר במקומה ונשים הח' שהם אחדים לפניו
+
|style="text-align:right;"|וכן בדמיון השני כי אחר שידענו ערך ג' אצל ז' ורצינו לידע למי יש לו זה הערך בעצמו אצל י"א וב' שלישיות
 
|-
 
|-
|
+
|It is as if we know the ratio that 7 is to 3 and we wish to know to whom does 11 and 2-thirds has this ratio.
:the next digit of the root to the right is 4 - the procedure is not detailed
+
:<math>\scriptstyle7:3=\left(11+\frac{2}{3}\right):x</math>
|style="text-align:right;"|ונבקש מספר, נשים לפניהם כפעם בפעם ויהיו ד' ונכפלנו בכל אחד גם בעצמו ונוציא כל דבר ממקומו הראוי לו כנזכר והנה הגענו למעלה הראשונה, לכן אין לנו להורידם
+
|style="text-align:right;"|הרי הוא כאלו ידענו ערך ז' אצל ג' ונרצה לידע לי"א וב' שלישיות אצל מי יש לו זה הערך
 
|-
 
|-
|
+
|The reason is clear, because it becomes as the first example it self.
::<math>\scriptstyle\longrightarrow{\color{Violet}{\begin{align}&\scriptstyle587094\ the\ root\\&\scriptstyle764230\ the\ remainder\\\end{align}}}</math>
+
|style="text-align:right;"|והנה הטעם ברור שהרי שב כדמיון הראשון בעינו
|style="text-align:right;"|ויהיה השרש המספר שחדשנו בכל פעם אחד והם 587094<br>
 
ואם לא היה נשאר דבר, היה זה השרש אמיתי, אבל אחר שנשאר דבר והוא 764230, אין השרש הזה אמיתי כי אם בקרוב
 
 
|-
 
|-
|
+
|In order to elaborate the explanation I will explain from the beginning:
|style="text-align:right;"|ועוד נתבאר אחר זה איך נתקרב יותר אל האמת ואם האמת נעדרת
+
|style="text-align:right;"|אכן כדי להרחיב ביאור אבארנו בעודו בעינו
 
|-
 
|-
|
+
|I say that we know that the ratio that 3 is to 7 is the same ratio that one, which is a third of 3, is to 7-thirds, which are a third of 7, as we explained.
*<math>\scriptstyle\sqrt{10375}</math>
+
:<math>\scriptstyle{\color{blue}{3:7=\left(\frac{1}{3}\sdot3\right):\left(\frac{1}{3}\sdot7\right)=1:\frac{7}{3}}}</math>
|style="text-align:right;"|'''משל''' אחר רצינו לדעת שרש מספר זה 10375
+
|style="text-align:right;"|ואומר כי אחר שידענו שהערך שיש לג' אצל ז' הוא הערך בעצמו שיש לאחד שהוא שליש הג' אצל ז' שלישיות שהם שליש הז' כאשר ביארנו
 
|-
 
|-
|
+
|Hence, for every seven-thirds that are in 11 and 2-thirds, one is the related and as the number of 7-thirds that are in them, so is the number of units of the unknown that is related to them.
:{|
+
|style="text-align:right;"|א"כ לכל שבעה שלישיות אשר בי"א וב' שלישיות הנערך אליהם הוא א' וכמספר כמה <sup>ז'</sup> שלישיות יש בהם כך הוא המספר אחדי הנערך אליהם הנעלם
 
|-
 
|-
| ||rowspan="4"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{1-{\color{blue}{1}}^2=}}{\color{green}{0}}\\&\scriptstyle{\color{red}{2\times1=}}{\color{blue}{2}}\\\end{align}}</math>||&nbsp;||rowspan="4"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{3-\left(2\times{\color{blue}{1}}\right)=}}{\color{green}{1}}\\&\scriptstyle{\color{red}{5-{\color{blue}{1}}^2=}}{\color{green}{4}}\\\end{align}}</math>||&#8199;&#8199;<span style="color:LimeGreen>1</span>&#8199;<span style="color:LimeGreen>4</span>
+
|To know how many whole 7-thirds there are in 11 and 2-thirds, we should know first how many thirds are they and this is known by multiplying them by 3. We multiply them by 3; the result is 35, so we know that there are 35 thirds in them.
 +
|style="text-align:right;"|ולדעת כמה שלמים ז' שלישיות יש בי"א וב' שלישיות נדע תחלה כמה שלישיות הוא <sup>וזה</sup> יודע בכפלהו אותם בג' לכן כפלנום בג' ועלה ל"ה הנה ידענו שיש בהם [ל"ה&#x202B;]&#x202B;<ref>marg.</ref> שלישיות
 
|-
 
|-
|<span style="color:red">1</span>0375||10<span style="color:red">3</span>7<span style="color:red">5</span>||10375
+
|To know how many times 7-thirds are in them, we divide them by 7; we get 5 and this is the number of times that 7-thirds are in 11 and 2-thirds.
 +
:<math>\scriptstyle{\color{blue}{\left(11+\frac{2}{3}\right):\frac{7}{3}=\frac{\left(11+\frac{2}{3}\right)\sdot3}{7}=\frac{35}{7}=5}}</math>
 +
|style="text-align:right;"|ולדעת כמה פעמים יש בהם ז' שלישיות חלקנום על ז' ויצא לנו ה' והוא המספר הפעמים אשר יש ז' שלישיות בי"א וב' שלישיות
 
|-
 
|-
| ||<span style="color:#0000FF><s>1</s>20</span>&#8199;&#8199;||<s>1</s>20&#8199;&#8199;
+
|We already know that 1 integer is the related to every 7-thirds, so the related to 5 times 7-thirds is 5 integers.
 +
|style="text-align:right;"|וכבר ידענו שהנערך אצל כל ז' שלישיות הוא א' שלם א"כ הנערך אצל ה' פעמים ז' שלישיות הוא ה' שלמים
 
|-
 
|-
| ||&nbsp;||&#8199;&#8199;<span style="color:#0000FF>2</span>01
+
|But, we know that 11 and 2-thirds is 5 times 7-thirds, so the related to them is 5 integers.
|}<br>
+
:<math>\scriptstyle{\color{blue}{3:7=1:\frac{7}{3}=5:\left(\frac{7}{3}\sdot5\right)=5:\left(11+\frac{2}{3}\right)}}</math>
::<math>\scriptstyle\longrightarrow{\color{Violet}{\begin{align}&\scriptstyle101\ the\ root\\&\scriptstyle174\ the\ remainder\\\end{align}}}</math>
+
|style="text-align:right;"|ואולם ידענו שהי"א וב' שלישיות הוא ה' &#x202B;<ref>29r</ref>פעמים ז' שלישיות א"כ הנערך אליהם הוא ה' שלמים
|style="text-align:right;"|ואחר שמספר המעלות נפרד, שהן ה', נקח הא' אשר נמצא במעלה האחרונה ונבקש מספר שנכפלנו בעצמו ונוציאנו כלו, או היותר שאיפשר, ויהיה א' ונשימנו תחתיו ונכפול לא' זה על עצמו ונוציאנו מהא' אשר על אשר על ראשו ונעביר עליו קולמוס<br>
+
|-
ונכפלנו ונורידנו ולא נוכל להוציאם מה0' אשר עליהם אפי' פעם אחת, גם על האחד לא נותר דבר, לכן נשים 0 לפניו, עוד נורידם ולא נכפול דבר, כי לא נתחדש מספר בזה הפעם<br>
+
!<span style="color:Green>The reasons for the solutions of the exchange problems:</span>
ונבקש מספר אשר נשים לפניהם כנזכר ויהיה א' ונשימנו לפניהם ונכפול הא' על הב' ויהיו ב', נסירם מהג' אשר עליהם, ישאר א' ונשימנו עליו ונכפול הא' על עצמו ויעלה א', נסירנו מהה' אשר עליו וישארו ד', נשימם עליו<br>
+
|
וכבר שלמו המעלות ולא נוריד עוד והנה האותיות, והם שנתחדשו פעם בפעם, הם השרש והוא 101<br>
+
|-
{|class="wikitable" style="margin-left: auto; margin-right: 0px; text-align:center;"
+
|In the examples of the dinar:
 +
|style="text-align:right;"|<big>ועוד</big> במשלי הדינרים
 
|-
 
|-
 
|
 
|
{|style="margin-left: auto; margin-right: 0px;"
+
*We know that 3 gold dinar are worth 50 silver [dinar].
| style="text-align: left;" | &#8199;&#8199;1&#8199;4
+
:<math>\scriptstyle3:50=11:x</math>
 +
|style="text-align:right;"|כי כאשר ידענו שג' דינרי זהב שוים נ' של כסף
 
|-
 
|-
| style="text-align: left;" | 10375
+
|It is known that one gold dinar is worth one-third of 50 silver dinar, which is fifty-thirds of a dinar.
 +
|style="text-align:right;"|נודע שדינר זהב אחד שהוא שוה שליש נ' דינרים של כסף שהוא חמישים שלישי דינר
 
|-
 
|-
| style="text-align: left;" | 120
+
|It is known from this that 11 gold dinar are worth 11 times 50-thirds of a silver dinar.
 +
|style="text-align:right;"|ונודע מזה שהי"א דינרי זהב שוים י"א פעמים נ' שלישי דינר כסף
 
|-
 
|-
| style="text-align: left;" | &#8199;&#8199;201
+
|To know how many thirds they are, we multiply 11 by 50; the result is 550, so we know that 11 gold dinar are worth 550-thirds of a silver dinar.
|}
+
|style="text-align:right;"|ולדעת כמה שלישים הם כפלנו הי"א בנ' ועלה 550 הנה ידענו שהי"א דינרי זהב שוים 550 שלישי דינר כסף
 
|-
 
|-
 +
|To know how many silver dinar they are, we divide them by 3; the result is 183 and one-third and they are the silver dinar that are worth 11 gold dinar and this is clear.
 +
|style="text-align:right;"|ולדעת כמה דינרי כסף הם חלקנום על ג' ויצא 183 ושליש והם הדינרי כסף ששוים הי"א דינרי זהב וזה ברור
 
|}
 
|}
 +
:<math>\scriptstyle{\color{blue}{3:50=1:\left(\frac{1}{3}\sdot50\right)=1:\frac{50}{3}=11:\left(11\sdot\frac{50}{3}\right)=11:\frac{11\sdot50}{3}=11:\frac{550}{3}=11:\left(183+\frac{1}{3}\right)}}</math>
 +
{|
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ולפי שנשאר ולפי שנשאר שם מספר מה, אין זה שרש אמיתי, אבל הקרוב ועוד נתבאר איך נתקרב יותר אל האמת
+
*I will explain it also in the second example: since we know that 3 gold dinar are worth 50 silver dinar, each gold dinar is worth 50-thirds of a silver dinar, as we explained.
 +
:<math>\scriptstyle3:50=x:\left(183+\frac{1}{3}\right)</math>
 +
|style="width:45%; text-align:right;"|<big>ועוד</big> אבארנו במשל השני והוא כי ביודעינו שג' דינרי זהב שוים נ' דינרי כסף כל דינרי זהב שוה נ' שלישי דינר כסף כמו שביארנו
 
|-
 
|-
|
+
|Therefore, every 50-thirds of a dinar that is in 183 and one-third is worth one gold dinar.
 
+
|style="text-align:right;"|וא"כ כל נ' שלישי דינר אשר בק'פ'ג' ושליש שוה דינר זהב
==== reason: procedure ====
+
|-
|
+
|To know how many 50-thirds of a dinar there are in them, we should know first how many thirds of a dinar they are and this is known by multiplying them by 3 as we did; the result is 550, which are thirds of a dinar.
 +
:<math>\scriptstyle{\color{blue}{\left(183+\frac{1}{3}\right):\frac{50}{3}=\frac{\left(183+\frac{1}{3}\right)\sdot3}{50}=\frac{550}{50}=11}}</math>
 +
|style="text-align:right;"|ולדעת כמה פעמים יש בהם נ' שלישי דינר נדע תחלה כמה שלישי דינר הם וזה יודע בכפלנו אותם בג' כאש' עשינו ועלו 550 והם שלישי דינר
 
|-
 
|-
|'''The reason for distinguishing between an odd number or an even number of ranks for the beginning of the procedure''': the rank of the units of <math>\scriptstyle a^2</math> in the multiple of a product of tens by itself <math>\scriptstyle\left(a\sdot10^n\right)^2</math> is always an odd number ''(2n-1)''
+
|Every 50 of them are worth one gold dinar, so when we divide them by them, as we did, we know how many gold dinar they are worth and this is as the result of division, which is 11. All this is clear.
|style="text-align:right;"|'''וטעם''' אמרנו שאם מספר מעלות החשבון נפרד, שנקח האחרון לבד ונבקש מספר נשים תחתיו וכו' ואם הם זוג שנקח השני רשמים האחרונים, האחרון לעשרות ושלפניו לאחדים, הוא לפי שכל כפל כלל בעצמו, הנה מעלת האחדים העולים בכפל ההוא היא נפרד לעולם
+
|style="text-align:right;"|וכל נ' מהם שוים דינר זהב א"כ בחלקנום אותם על נ' כאשר עשינו נדע כמה דינרי זהב שוים שהוא כמספר היוצא בחלוקו הוא י"א וכל זה ברור
 
|-
 
|-
|Since the rank of the units in the product of two digits of the multiplied numbers is equal to the sum of the ranks of both digits minus 1
+
|It becomes clear from all that is mentioned with a little investigation that for every four proportional numbers, the product of the first of the formers by the second of the latter is as the product of the second of the formers by the first of the latter.
|style="text-align:right;"|לפי שמקום הנחת כפל כל שני מספרים, ר"ל שמדרגת הכפל ההוא כמדרגות שני המספרים יחד חסר אחד, כמו שביארנו בפרק הג' ולזה מדרגת אחדי מספר כפל מספר על עצמו והיא כפל מדרגותיו חסר אחד והנה הם הנפרדים לעולם
+
:<math>\scriptstyle{\color{OliveGreen}{a_1:a_2=a_3:a_4\longrightarrow a_1\sdot a_4=a_2\sdot a_3}}</math>
 +
|style="text-align:right;"|והנה יתבאר מכל הנזכר במעט עיון כי כל ד' מספרים נערכים כפל הראשון מאלו בשני מן האחרים ככפל השני בראשון מן האחרים
 
|-
 
|-
 
|
 
|
*If the number of ranks of the given number is odd - the square of the leftmost digit of the root will be subtracted from the highest rank of the given number
+
:*Because, in the first example, the product of 5 by 7, which is 35, is as the product of 3 by 11 and 2-thirds, which is the unknown.
|style="text-align:right;"|ולזה כשהמספר מעלות המספר נפרד, אנו מוציאים מהמעלה האחרונה, שהיא נפרדת, מרובע השרש, ר"ל מרובע המספרים אשר שמנו תחתיו שהוא חלק השרש
+
::<math>\scriptstyle{\color{blue}{3:7=5:\left(11+\frac{2}{3}\right)\longrightarrow5\sdot7=35=3\sdot\left(11+\frac{2}{3}\right)}}</math>
 +
|style="text-align:right;"|כי בדמיון הראשון כפל הה' בז' שהוא ל"ה ככפל הג' בי"א וב' שלישיות אשר היה הנעלם
 +
|-
 +
|Therefore, when one of them is unknown, whichever it may be, we multiply the knowns, first of these by the second of those, and we know that it is itself the product of the unknown by the one that remains of the knowns. Therefore, when we divide it by the known, the result is the unknown.
 +
|style="text-align:right;"|ולזה כאש' נעלם אחד מהם איזה מהם שיהיה כפלנו מהנודעים הראשון מאלו בשני מאלו וידענו שזה בעצמו הוא כפל הנעלם בנשאר מהנודעים ולזה בחלקנו אותו לנודע יצא הנעלם
 
|-
 
|-
 
|
 
|
*If the number of ranks of the given number is even - the square of the leftmost digit of the root will be subtracted from the highest rank of the given number together with its preceding rank as units and tens, for the units of the product will always be placed in an odd rank and the tens in an even rank
+
 
|style="text-align:right;"|ואם הם זוג, לקחנו השתים האחרונות זו לעשרות וזו לאחדי', בענין שלעולם אחדי כפל כל מספר בעצמו יצאו ממעלה נפרדת והעשרות ממעלת זוג וזה ברור
+
=== <span style="color:Green>Proportional Triad</span> ===
 +
|
 
|-
 
|-
|For every rank added to the ranks of the root, two ranks are added to the ranks of its square, therefore, for every two ranks of the given number one rank is added to the ranks of its root
+
|Sometimes the proportional numbers are only three, i.e. the mean is the first of those that are last and the second of those that are first.
|style="text-align:right;"|ואחר שביארנו שמדרגות אחדי הכפל הם כפל מעלות השרש, שהוא המספר שכפלנוהו על עצמו, חסר אחת, נמצא שאם השרשם הוא בראשונה, [הכפל ג"כ בראשונה] ואם השרש בשנית, המרובע בשלישית ואם בשלישית בחמישית ואם ברביעית בשביעית וכן לעולם, הנה כי תוספת מעלה אחת בשרש יחייב תוספת א"כ ב' מעלות במרובע וכן נעשה במעשה, כ כי לכל ב' מעלות מתוספת בחשבון אנו מוסיפים אחד בשרש וזה שאנו מורידין השרש מעלה אחת בכל פעם ומוסיפים עליו מעלה אחת והוא המספר אשר אנו שמים לפניהם בכל פעם
+
:<math>\scriptstyle{\color{OliveGreen}{a_1:a_2=a_2:a_3}}</math>
 +
|style="text-align:right;"|&#x202B;<ref>29v</ref><big>ולפעמים</big> לא יהיו המספרים הנערכים כי אם ג' פי' שהאמצעי יהיה ראשון לאחרונים ושני לראשונים
 
|-
 
|-
|The number of the shifting phases in the procedure is equal to the number of the even ranks in the given number as well as to the number of ranks of the root
+
|We have already explained that for every four proportional numbers the product of the first of those by the second of those is as the product of the first of those by the second of thos, i.e. the product of the first by the last is as the product of the two means by each other.
|style="text-align:right;"|נמצא שכמספר פעמי ההורדה כך הוא מספר זוגי מעלות החשבון על מקום ההנחה הראשונה וכמספר זה הוא זהו מספר מעלות השרש על המעלה האחת הראשונה וכל זה תראה מפורש בצורה
+
:<math>\scriptstyle{\color{OliveGreen}{a_1:a_2=a_3:a_4\longrightarrow a_1\sdot a_4=a_2\sdot a_3}}</math>
 +
|style="text-align:right;"|ואולם כבר ביארנו שכל ד' מספרים נערכים כפל הראשון מאלו בשני מאלו <s>בשני מ </s>ככפל הראשון מאלו בשני מאלו פי' כפל הראשון באחרון ככפל הב' האמצעיים זה בזה
 
|-
 
|-
|'''The reason for shifting the subtrahend one rank to the right each phase''': in each phase the preceding rank of the root is added. So if the highest rank of the given number indicates the rank of the leftmost digit of its root, then the preceding rank of the given number indicates the rank of the product of the leftmost digit of the root by its preceding digit
+
|When they are only three, the mean stands instead of the two means, which are the second of those that are first and the first of those that are last, so the product of the first by the third, which is the second of those that are last, is as the product of the mean by itself, which is both first [of those that are last] and second [of those that are first], as we explained.
|style="text-align:right;"|'''והטעם''' '''הורדת מעלה אחת בכל פעם''' הוא לפי שהמתוסף בשרש בפעם הזאת הוא מעלה אחת פחות מאשר נתוסף בתחלה וא"כ מעלת הכפל יהיה גמעלה אחת פחות, ר"ל כפול זה המתוסף עתה בשרש באשר היה כבר המונח לשרש בפעם או בפעמים העוברים<br>
+
:<math>\scriptstyle{\color{OliveGreen}{a_1:a_2=a_2:a_3\longrightarrow a_1\sdot a_3=\left(a_2\right)^2}}</math>
כי ע'ד'מ' המושם בתחלה הוא מכפל המספר בעצמו וכאשר אנחנו מוסיפים עתה בשרש זה המתוסף הוא פחות מעלה אחת מהראשון וכאש' כפלנוהו בראשון יגרע זאת המעלה אשר גרע זה ממנו
+
|style="text-align:right;"|ואולם כשהם ג' לבד האמצעי עומד במקום השנים האמצעיי' שהוא שני לראשונים וראשון לאחרונים אכפל הראשון בשלישי שהוא השני מהאחרונים ככפל האמצעי בעצמו שהוא ראשון ושני כאשר ביארנו
 
|-
 
|-
 
|
 
|
:Example: if the leftmost digit of the root is subtracted from the fifth rank of given number, then the rank of that digit in the root is the third rank (5=(3+3)-1)<br>
+
*When the mean and one of the others are known, the unknown is extracted, for we multiply the mean by itself , then divide [the product] by the other that is known and the result is the unknown.
:<math>\scriptstyle\left(a00\right)^2=\left(a^2\right)0000</math>
+
:*<math>\scriptstyle{\color{OliveGreen}{a_1=\frac{\left(a_2\right)^2}{a_3}}}</math>
|style="text-align:right;"|כי המשל אם כפל השרש הראשון בעצמו היה לוקח מהמעלה החמישית, הוא היה מן המעלה השלישית ולזה לקח מהחמישית, שהוא כפל מעלותיו חסר אחת
+
:*<math>\scriptstyle{\color{OliveGreen}{a_3=\frac{\left(a_2\right)^2}{a_1}}}</math>
 +
|style="text-align:right;"|ולזה בהודע האמצעי ואחד מן האחרים יודע הנעלם כי נכפול האמצעי בעצמו ונחלקנו לאחר הנודע ויצא הנעלם
 
|-
 
|-
 
|
 
|
:The preceding digit of the root will be in the second rank, and therefore double the product of the leftmost two digits of the root will be represented in the given number in the fourth rank - i.e. the number of both ranks minus 1 (4=(3+2)-1) &rarr; therefore the subtrahend was shifted one rank to the right, from the fifth to the fourth rank
+
*When the two [extremes] are known, the mean is extracted, by multiplying the two that are known [one by the other] and the product is as the product of the mean by itself, i.e. as its square.
|style="text-align:right;"|וכאשר נוסיף זה עתה בשרש, יהיה המתוסף מהמעלה השנית וכאשר כפלנו אשר מהמעלה השנית על אשר במעלה הג', ר"ל כאשר אנו כופלים זה המתחדש עתה, שהוא במעלה הב', באשר היה בתחלה שהוא מהמעלה הג', יהיה מדרגת זה הכפל במדרגת הד', שהם מספר מעלות שני המספרים חסר אחת ולזה שמנו אשר בתחלה מעלה אחת למטה, כי משם הוא ראוי לקחתו
+
:*<math>\scriptstyle{\color{OliveGreen}{\left(a_2\right)^2=a_1\sdot a_3}}</math>
 +
|style="text-align:right;"|גם בהודע השנים יודע האמצעי וזה בהכפל השנים הנודעים והעולה הוא ככפל האמצעי בעצמו פי' שהוא כמרובע
 
|-
 
|-
 
|
 
|
:The product of the digit in the second rank of the root by itself is subtracted from the third rank of the given number, for the rank of this product is twice the rank of this digit in the root minus 1 (3=(2+2)-1) &rarr; so, again the subtrahend is shifted one rank to the right from the fourth to the third rank<br>
+
:The mean is the root - we extract the root of this number by finding a number whose product by itself is as this product and the resulting root is the unknown mean.
:<math>\scriptstyle\left(ab0\right)^2=\left(a^2\right)0000+\left[2\sdot\left[\left(a\sdot b\right)000\right]\right]+\left(b^2\right)00</math>
+
:*<math>\scriptstyle{\color{OliveGreen}{a_2=\sqrt{a_1\sdot a_3}}}</math>
|style="text-align:right;"|השרש המתוסף כאשר כפלנוהו בעצמו יגרע מעלה אחרת ואין לו לקח' כי אם מהמעלה השלישית, כי כפל בעל שתי מעלות בבעל שתי מעלות יש לו לקחת מהשלישית, שהוא כמדרגות שני המספרים חסר אחת, לכן שמנוהו מעלה אחת לפניהם, כי משם ראוי לו לקחת וכן בכל פעם יחסר מעלה ממקום הראוי לקחת עתה בכפל המתחדש בראשונים מאשר היה מכפל המתחדש בפעם העובר עמהם וכפלו בעצמו יחסר שתים וכל זה מבואר בטעם ובצורה
+
|style="text-align:right;"|והאמצעי הוא השרש ונוציא שורש זה המספר שהוא לבקש מספר שכפלו על עצמו עולה כפי החשבון והשרש אשר יצא הוא האמצעי הנעלם
 
|-
 
|-
|When the subtrahend cannot be subtracted from a certain rank of the given number it is shifted another rank to the right - for this means that the preceding digit in the root is two ranks to the right of the present digit, and hence the product of this digit by itself will be subtracted from the fourth rank to the right of the present rank
+
|The method of extracting the roots is very difficult and there are numbers whose real root is never known only approximately, so I have assigned a special chapter to this and it is the next chapter.
|style="text-align:right;"|וכאשר אין אנו יכולים להוציאם אפי' פעם אחת, אנו שמים ומורידים אותם פעם אחרת, כי כאשר תוסף בשרש יהיה פחות ב' מעלות מאשר בתחלה, לכן הורדנום ב' מעלות שיקחו מב' מעלות פחות וכפל השרש המתוסף בעצמו יקח מד' מעלות פחות, לפי שירד שני מעלות
+
|style="text-align:right;"|ודרך הוצאת השרשים הוא קשה מאד ויש מספרים אשר לא יודע בהם שרש אמיתי לעולם כי בקירוב על זה הקצתי לו פרק לעצמו והוא הפרק הבא אחר זה
 +
|-
 +
|Example for the three proportional numbers:
 +
|style="text-align:right;"|<big>דמיון</big> זה ג' מספרים נערכים
 
|-
 
|-
 
|
 
|
:Example: if the leftmost digit of the root is in the fourth rank, its product by itself  is subtracted from the seventh rank of given number, then if the digit in the preceding rank of the root is a zero, its preceding digit will be in the second rank and its product by itself will be subtracted from the third rank of the given number, which is four ranks to the right of its seventh rank<br>
+
*{{#annot:2÷4=4÷8|567|wusI}}As we say: the ratio of 2 to 4 is as the ratio of 4 to 8
:<math>\scriptstyle\left(a0b0\right)^2=\left(a^2\right)000000+\left[2\sdot\left[\left(a\sdot b\right)00000\right]\right]+\left(b^2\right)00</math>
+
:<math>\scriptstyle{\color{blue}{2:4=4:8}}</math>
|style="text-align:right;"|כי המשל אם הראשון היה ברביעית, היה לו ליקח כפלתו בעצמו מהמעלה השביעית ואשר מתוסף עתה כשהיה 0 בפעם אשר בנתים יהיה בשנית וראוי לקחת כפלו בעצמו מהשלישית, הרי כשנגרע ד' מעלות גם כל זה הוא מבואר בטעם ובצורה
+
|style="text-align:right;"|הוא כאומרנו הערך אשר לב' אצל הד' כערך ד' אצל ח&#x202B;'{{#annotend:wusI}}
 
|-
 
|-
|'''The reason for doubling the digits of the root''': in every phase of the procedure the digit that is added is multiplied by itself and by double the subsequent digit of the root, since every thing that is added to the root is added to both sides [= multiplicands] of the square
+
|
|style="text-align:right;"|'''וטעם''' '''הכפל השרש''': ר"ל שבכל הולדה אנו כופלים אשר הו נתחדש אז ונמצא שאנו כופלים המתחדש בכפל השרש הראשון ובעצמו, הוא לפי שכאשר ניתוסף דבר בשרש הוא ניתוסף בשתי צלעות המרובע
+
:*4 is the mean, instead of the two [means], which is the second of those that are first and the first of those that are last.
 +
|style="text-align:right;"|שהד' האמצעי הוא במקום שנים שהוא שני מן הראשונים וראשון מן האחרונים
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle{\color{blue}{\left(30\right)^2=900}}</math>
+
:*If one of the extremes is unknown, such as 2, whereas 4 and 8 are known:
|style="text-align:right;"|ר"ל שאם מתחלה היה השרש 30, הנה המרובע היה 900
+
::<math>\scriptstyle{\color{blue}{x:4=4:8}}</math>
 +
|style="text-align:right;"|ואם הנעלם מהקצוות המשל הב' ונודע הד' והח&#x202B;'
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle{\color{blue}{\left(30+5\right)^2=\left(35\right)^2=35\sdot35=\left(30\sdot30\right)+\left(5\sdot30\right)+\left(30\sdot5\right)+\left(5\sdot5\right)=\left(30\right)^2+\left[\left[2\sdot\left(5\sdot30\right)+5^2\right]\right]}}</math>
+
::*Meaning that one asks: Who has the ratio to 4, as the ratio of 4 to 8?
|style="text-align:right;"|ואם אנו מוסיפים עליו ה' יהיוה ל"ה ומרובעו הוא כפל ל"ה על ל"ה, שהוא כאומרנו לכפל ל' בל' וכפל ה' [בל' וכפל ל' בה' וכפל ה'] בה', נמצא שנתוסף בסבת תוספת הה' כפל ה' על ל' פעמים, ר"ל ה' בה' פעם אחת ובעצמו פעם אחת
+
|style="text-align:right;"|כלומר ששאל השואל למי יש ערך אצל ד' כערך אשר לד' אצל שמונה
 
|-
 
|-
|Each digit is multiplied by double the subsequent digit only, as all the other digits are already doubled, therefore they should not be doubled again
+
!<span style="color:Green>Exchange Problem - Currencies:</span>
|style="text-align:right;"|ולזה אנו כופלים השרש וכשאנו מורידים, אין אנו כופלים אלא אשר מתוסף בפעם העובר בסמוך שלא נכפל, אבל כל אחדים כבר נכפלו, לכן אין אנו כופלים אותו פעם אחרת כלל ומכל זה תדע כי השרש הוא המספרים המתחדשים בכל פעם פשוטים בלי כפל כלל
+
|
 
|-
 
|-
|}
+
|
{|
+
::*{{#annot:two currencies|632|AGlb}}Or if he says: How many golden dinar are worth 4 silver dinar, if 4 golden dinar are worth [8] silver dinar?
 +
|style="text-align:right;"|או שאמ' כמה דינרי זהב שוים ד' דינרי כסף אם ד' דינרי זהב שוים אחד דינרי כסף{{#annotend:AGlb}}
 
|-
 
|-
 
|
 
|
 
+
::We know that the product of 4 by 4, which is the mean, that is 16 is as the product of the known 8 by the unknown
=== Approximations ===
+
::<math>\scriptstyle{\color{blue}{4\sdot4=16=8\sdot x}}</math>
 +
|style="text-align:right;"|הנה ידענו שכפל ד' בד' שהוא האמצעי <s>שהוא</s> שהם י"ו שהוא ככפל <sup>ח'</sup> הידוע &#x202B;<ref>30r</ref>בנעלם
 +
|-
 
|
 
|
|-
+
::Thus, we divide it by 8 and the result of division, which is 2, is the unknown.
|When the extraction process ends with a remainder: <math>\scriptstyle a^2+b</math>
+
::<math>\scriptstyle{\color{blue}{x=\frac{16}{8}=2}}</math>
|style="text-align:right;"|וכאשר נשאר שם דבר מה אחר אשר השלמת להוציא השרש ותרצה להתקרב עוד אל האמת, עיין אשר נשאר
+
|style="text-align:right;"|לכן נחלקם על הח' <sup>והיוצא</sup> <s>והוצרך</s> בחלוק והוא ב' הוא הנעלם
 
|-
 
|-
 
|
 
|
*First approximation<br>
+
:*If 2 and 4 are known, and 8 is unknown:
:*<math>\scriptstyle b<a\longrightarrow\sqrt{a^2+b}\approx a+\frac{b}{2a}</math>
+
::<math>\scriptstyle2:4=4:x</math>
|style="text-align:right;"|ואם הוא פחות מהשרש, כפול השרש והוצא את מוריו וחלק השארית ההיא עליהם והיוצא הוא העודף בשרש על השלמים ההם
+
|style="text-align:right;"|וכן אם נודעו השנים והד' ונעלם הח&#x202B;'
 
|-
 
|-
 
|
 
|
:*<math>\scriptstyle b\ge a\longrightarrow\sqrt{a^2+b}\approx a+\frac{b}{2a+1}</math>
+
::*That is, one asks: the ratio of 2 to 4 - 4 has this ratio to whom?
|style="text-align:right;"|ואם השארית היתה גדולה מהשרש או כמותו ואין דעתך להתקרב עוד אל השרש כי אם מה שתתקרב אליו בפעם זו לבד, תכפול השרש ותוסיף עליו א' ותחלק עליהם זאת השארית והיוצא הם השברים הנוספים בשרש על השלמי' אשר יצאו ראשונה
+
|style="text-align:right;"|ששאל השואל הערך אשר לב' אצל ד' אצל מי יש לד' זה הערך
|-
 
|Reference to a certain proof by Euclid according to which reaching the accurate root [of irrational number] is impossible
 
|style="text-align:right;"|ואם תרצה להתקרב עוד אל האמת, ואם האמת נעלמה מעיני כל חי כאשר ביאר '''אוקלידס''' במופת
 
 
|-
 
|-
 +
!<span style="color:Green>Exchange Problem - Currencies:</span>
 
|
 
|
*Second approximation
 
|style="text-align:right;"|כפול אלו השלמים והשברים על עצמם כאשר אבאר בחלק השברים בפרק הכפל ויעלה פחות או יותר מהחשבון הראשון
 
 
|-
 
|-
 
|
 
|
:*<math>\scriptstyle\left(a+\frac{b}{2a}\right)^2>a^2+b\longrightarrow\sqrt{a^2+b}\approx\left(a+\frac{b}{2a}\right)-\frac{\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)}{2\sdot\left(a+\frac{b}{2a}\right)}</math>
+
::*{{#annot:two currencies|632|eMkS}}Or, if he asks: If 2 golden dinar are worth 4 silver dinar, how many silver dinar will 4 golden dinar be worth?
|style="text-align:right;"|וכפול השרש כאשר אמרנו וחלק אליו זה העודף או חסרון<br>
+
|style="text-align:right;"|או ששאל אם שני דינרי זהב שוים ד' דינרי כסף ד' דינרי זהב כמה דינרי כסף שוים{{#annotend:eMkS}}
והיוצא הוציאנו מהשברים הראשונים, אם המספר היה פחות ממרובע השרש אשר הוצאת בפעם הקודמת
 
 
|-
 
|-
 
|
 
|
:*<math>\scriptstyle\left(a+\frac{b}{2a}\right)^2<a^2+b\longrightarrow\sqrt{a^2+b}\approx\left(a+\frac{b}{2a}\right)+\frac{\left(a^2+b\right)-\left(a+\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}</math>
+
::We multiply 4 by itself; the result is 16. We divide it by [2]; the result of division is [8] and this is the unknown.
|style="text-align:right;"|ואם היה המרובע פחות מהמספר, תוסיף זה היוצא על השברים הראשונים
+
::<math>\scriptstyle{\color{blue}{x=\frac{4\sdot4}{{\color{red}{2}}}=\frac{16}{{\color{red}{2}}}={\color{red}{8}}}}</math>
 +
|style="text-align:right;"|נכפול הד' בעצמו ויעלה י"ו ונחלקם על הח' ויצא בחילוק ב' והוא הנעלם
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|והעולה או הנותר יהיו השברים העודפי' בשרש על השלמים הראשונים
+
:*If the unknown is 4, which is the mean that stands instead of the two [means], whereas 2 and 8, the first and the last, are known:
 +
::<math>\scriptstyle2:x=x:8</math>
 +
|style="text-align:right;"|ואם היה הנעלם הד' שהוא האמצעי העומד במקום שנים והנודעים הב' והח' ראשון ואחרון
 
|-
 
|-
 
|
 
|
:*<math>\scriptstyle\sqrt{10375}</math><br>
+
::We multiply 2 by 8; the result is 16 and it is the product of the unknown mean by itself, as we have explained; the 16 is the square of the mean.
::*First approximation<br>
+
::<math>\scriptstyle{\color{blue}{x^2=2\sdot8=16}}</math>
:::<math>{\color{blue}{\begin{align}\scriptstyle174>101\longrightarrow\sqrt{10375}&\scriptstyle\approx101+\frac{174}{\left(2\sdot101\right)+1}\\&\scriptstyle=101+\frac{174}{202+1}\\&\scriptstyle=101+\frac{174}{203}\\&\scriptstyle=101+\frac{174}{7\sdot209}=101+\frac{6}{7}\\\end{align}}}</math>
+
|style="text-align:right;"|נכפול הב' בח' ויעלה יוזה כפל האמצעי הנעלם בעצמו כמו שביארנו ואלו הי"ו הם מרובע האמצעי
|style="text-align:right;"|המשל בזה הוא בצורה השנית 174<br>
 
ואם היה פחות מהשרש, היינו מחלקים אותו לכפל השרש שהוא 202 בלי תוספת אחד<br>
 
וכן עתה שהוא יותר מהשרש, נכפול השרש שהנו 101 ויהא 202 ונוסיף עליו א' ויהיו 203<br>
 
ונוציא מוריו ונמצא שיש לו שביעית ושביעיתו 29 ואלו הם מוריו, ר"ל ז' כ"ט<br>
 
ונחלק אליהם השארית שהוא 174 ויצא בחילוק ו' שביעיות שלמות ואלו הם השברים העודפים בשרש על הק"א השלמים הראשונים
 
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle10375-\left(101+\frac{6}{7}\right)^2&\scriptstyle=10375-\left[10374+\frac{6}{7}+\left(\frac{1}{7}\sdot\frac{1}{7}\right)\right]\\&\scriptstyle=\frac{6}{7}\sdot\frac{1}{7}\\&\scriptstyle\longrightarrow\left(101+\frac{6}{7}\right)^2<10375\\\end{align}}}</math>
+
::The mean is its root - the root of 16 is 4.
|style="text-align:right;"|ואם נרצה להתקרב עוד אל האמת, נכפול זה השרש, ר"ל ק"א שלמים וו' שביעיות על עצמו: 10374 שלמים וו' שביעיות שלימות ושביעית שביעית, כאשר יתבאר בחלק הב' בפרק הג' וזהו פחות מהחשבון הנשאל בו' שביעיות שביעית
+
::<math>\scriptstyle{\color{blue}{x=\sqrt{16}=4}}</math>
 +
|style="text-align:right;"|והאמצעי הוא שרושם ושרש י"ו הוא ד&#x202B;'
 
|-
 
|-
|
+
|Everything is explained in these examples.
::*Second approximation<br>
+
|style="text-align:right;"|והכל מבואר בדמיונות אלו
:::<math>\scriptstyle{\color{blue}{\left(101+\frac{6}{7}\right)^2<10375\longrightarrow\sqrt{10375}\approx\left(101+\frac{6}{7}\right)+\frac{\frac{6}{7}\sdot\frac{1}{7}}{2\sdot\left(101+\frac{6}{7}\right)}}}</math>
 
|style="text-align:right;"|לכן אם אתה רוצה להתקרב עוד אל האמת, יש לך לכפול השרש, ר"ל הק"א שלימים וו' שביעיות שלימות ולחלק אליהם אלו הו' שביעיות שביעית לכן אם אתה רוצה להתקרב עוד אל האמת יש לך לכפול השרש ר"ל הק"א שלימים וו' שביעיות שלמות ולחלק אליהם אלו הו' שביעיות שביעית והיוצא היה לך להוסיף אותו על השרש הקודם שהיה ק"א שלימים וו' שביעיות וכן לעולם
 
 
|-
 
|-
|The rule [of approximating the root]:
+
|If 16 is a number, whose root extraction is difficult for us, or it is impossible for us to know its real root, only by approximation, we proceed in the extraction of the root as explained in chapter six that is assigned to it.
|style="text-align:right;"|זה הכלל&#x202B;:
+
|style="text-align:right;"|ואם זה הי"ו היה החשבון אשר יקשה עלינו בקשת שרשו או שהוא נמנע בחקנו לידע שרשו האמיתי כי אם בקרוב נדרוך בבקשת השרש ההוא כמו שיתבאר בפרק ו' זה אשר הקציתי לו
 
|-
 
|-
|
+
|}
:::<math>\scriptstyle b\ge a\longrightarrow\sqrt{a^2+b}\approx a+\frac{b}{2a+1}</math>
+
 
|style="text-align:right;"|ראשונה תחלק הנשאר לכפל השרש עם תוספת א', אם הנשאר גדול מהשרש או כמותו
+
{|
 
|-
 
|-
 
|
 
|
:::<math>\scriptstyle b<a\longrightarrow\sqrt{a^2+b}\approx a+\frac{b}{2a}</math>
+
 
|style="text-align:right;"|ואם פחות לא תוסיף א' והיוצא תוסיפנו על השרש
+
== Chapter Six: Roots ==
 +
|style="text-align:right;"|<big>הפרק השישי</big> בהוצאת השרשים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ותכפול אותו השרש על עצמו שלמים ונשברים
+
=== <span style=color:Green>written extraction of roots</span> ===
|-
 
 
|
 
|
:*<math>\scriptstyle\left(a+\frac{b}{2a}\right)^2>a^2+b\longrightarrow\sqrt{a^2+b}\approx\left(a+\frac{b}{2a}\right)-\frac{\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)}{2\sdot\left(a+\frac{b}{2a}\right)}</math>
 
|style="text-align:right;"|ואם יעלה יותר מהחשבון הראשון, תחלק העודף ההוא על כפל השרש ותחסרנו ממנו
 
 
|-
 
|-
 
|
 
|
:*<math>\scriptstyle\left(a+\frac{b}{2a}\right)^2<a^2+b\longrightarrow\sqrt{a^2+b}\approx\left(a+\frac{b}{2a}\right)+\frac{\left(a^2+b\right)-\left(a+\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}</math>
+
==== <span style=color:Green>description of the procedure</span> ====
|style="text-align:right;"|ואם היה העולה פחות מהחשבון, תראה בכמה הוא ותחלקנו לכפל השרש ג"כ ותוסיפנו על השרש הקודם וכן לעולם
 
|-
 
 
|
 
|
|style="text-align:right;"|ולעולם תתקרב יותר אל האמת ולא תשיגנה לעולם
 
 
|-
 
|-
!Shortcuts
+
|When you wish to extract the root of a certain number, count the number of the ranks, whether it is even or odd.
|style="text-align:right;"|וכאשר תעיין הטב, תראה שתוכל לעשותו בלי כ"כ יגיעה והוא שתעיין השברים שנתחדשו בעת ההיא
+
|style="width:45%; text-align:right;"|כאשר תרצה להוציא שורש שום מספר תמנה מספר מעלות ההוא אם זוג ואם נפרד
 
|-
 
|-
 
|
 
|
:*The approximation <math>\scriptstyle\sqrt{a^2+b}\approx a+\frac{b}{2a+1}</math>
+
*If it is odd, consider the last digit [= leftmost digit] as if it is units, [then seek] a number such that when we multiply it by itself that product is the last digit or as close to it as possible and we write it beneath it.
|style="text-align:right;"|ואם היו לתוספת ונעשה בתוספת א' על כפל השרש
+
|style="text-align:right;"|ואם הם נפרד עיין הרושם האחרון כאלו היא <s>אם</s> אחדים איזה מספר נכפול על עצמו ויצא כל זה הרושם האחרון או היותר שנוכל ונשימנו תחתיו
 
|-
 
|-
 
|
 
|
:::The error of the approximation<math>\scriptstyle\left(a^2+b\right)-\left(a+\frac{b}{2a+1}\right)^2=\frac{b}{2a+1}\sdot\left(1-\frac{b}{2a+1}\right)</math>
+
:If something remains from the last upper digit after subtracting the product of the number that you wrote beneath it by itself, write this remainder above the last digit.
|style="text-align:right;"|ראה כמה כפל השברים המתחדשים ההם בפעם ההיא במה שיש מהשברים ההם עד תשלום והעולה הוא אשר יחסר, כאשר תכפול השרש בעצמו מהחשבון הראשון
+
|style="text-align:right;"|ואם ישאר שום דבר מזה החשבון האחרון העליון אחר {{#annot:term|155,1462|Ktg3}}הוצאת{{#annotend:Ktg3}} כפל המספר אשר שמת תחתיו בעצמו תשים הנשאר ההוא על המספר האחרון
 
|-
 
|-
 
|
 
|
::The second approximation<br>
+
*If the number of the ranks of the number, whose root you wish to know, is even, consider the last digit as tens and what you find in the preceding rank as units.
::<math>\scriptstyle\sqrt{a^2+b}\approx\left(a+\frac{b}{2a+1}\right)+\frac{\frac{b}{2a+1}\sdot\left(1-\frac{b}{2a+1}\right)}{2\sdot\left(a+\frac{b}{2a+1}\right)}</math>
+
|style="text-align:right;"|ואם מספר מעלות החשבון אשר רצית לדעת שרשו יהיה זוג תקח האות האחרון לעשרות ואשר תמצא במעלה אשר לפניה לאחדים
|style="text-align:right;"|והוא אשר יש לך לחלק עוד על כפל השרש בעצמו ולהוסיפו עליו
 
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{10375-\left(101+\frac{6}{7}\right)^2=\frac{6}{7}\sdot\left(1-\frac{6}{7}\right)=\frac{6}{7}\sdot\frac{1}{7}}}</math>
+
:Then seek a number whose square is the same as these tens and units or as great as possible to be subtract from them and write this number you find beneath the rank that precedes the last rank.
|style="text-align:right;"|וזה תוכל לראות ברור בדמיון שעבר שהיה לתוספת ובתוספת א' והשברים ההם שהיו ששה שביעיות והנה השלמתם לשלם הוא שביעית אחת וכאשר תכפלם בהשלמה זו, יעלה ו' שביעיות שביעית וזה בעצמו הוא שמצינו חסר בכפל השרש מהחשבון [הא] וצוינו לחלקו לכפל השרש ולהוסיפו על השרש
+
|style="text-align:right;"|ותבקש מספר שיהיה מרובעו בכל אלו העשרות והאחדים אשר לקחת או היותר שתוכל להוציאו מהם וזה המספר אשר מצאת תשימהו &#x202B;<ref>30v</ref>תחת המעלה אשר לפני המעלה האחרונה
 
|-
 
|-
 
|
 
|
:*The approximation <math>\scriptstyle\sqrt{a^2+b}\approx a+\frac{b}{2a}</math>
+
:If tens remain after subtracting the square of the number you find from the units and tens that are found in the last two ranks, write them above the last digit; if units [remain], write them above [the digit] that precedes the last digit.
|style="text-align:right;"|אך אם היה לתוספת בלי תוספת א' שהיו למגרעת
+
|style="text-align:right;"|ואשר ישאר אחר הוצאת מרובע המספר אשר מצאת מאלו האחדים והעשרות אשר מצאת בשתי המעלות האחרונו' אם ישאר ש<s>ו</s>ם עשרת שימהו על האות האחרון ואם אחדים תשימם אשר לפני האות האחרון
 +
|-
 +
|After doing all that, both for a number whose number of ranks is even and for [a number] whose number of ranks is odd, double the number that you placed beneath the upper digit.
 +
|style="text-align:right;"|ואחר עשותך כל זה הן במספר אשר מעלותיו זוג הן באשר הן מעלותיו מספר נפרד תכפול זה המספר אשר שמת תחת המספר העליון
 
|-
 
|-
 
|
 
|
:::The error of the approximation <math>\scriptstyle\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)=\left(\frac{b}{2a}\right)^2</math>
+
*If no tens result from this doubling, place the units of the double [the number] beneath the rank that precedes the rank in which you placed [that number] at first.
|style="text-align:right;"|נראה כפל השברים אשר נתחדשו על עצמם ונחלקם לכפול השרש, לפי שזהו בעצמו אשר יהיה כפל השרש בעצמו יותר על החשבון
+
|style="text-align:right;"|ואם לא יעלה מזה הכפל שום עשר תשים אחדי הכפל הזה תחת המעלה אשר לפני המעלה אשר שמת אותו בתחלה
 
|-
 
|-
 
|
 
|
::The second approximation<br>
+
*If tens or more result, place the tens beneath the rank in which the number was at the beginning, and the units in the rank that precedes it.
::<math>\scriptstyle\sqrt{a^2+b}\approx\left(a+\frac{b}{2a}\right)-\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}</math>
+
|style="text-align:right;"|ואם עלה לעשר או יותר תשים העשר תחת המעלה אשר היה שם המספר הזה בתחלה והאחדים במעלה אשר לפניו
|style="text-align:right;"|והיוצא נחסרנו לעולם מהשרש הקודם וכן לעולם
 
 
|-
 
|-
|Repeating the approximation procedure brings closer to the real root, but the real root can never be obtained at the end
+
|
|style="text-align:right;"|ולזה אם רצונך להכפל זה המעשה, כדי להתקרב אל האמת, כי כל מה שתוסיף להכפל זה הענין תוסיף להתקרב אל האמת ואם לא תשיגנה לעולם כמו שביארנו
+
*If there are no units there, ?
 +
|style="text-align:right;"|ואם לא יהיו שם אחדים תשים במעלה אשר לפניו
 
|-
 
|-
|In the repetitive procedure one should always use this approximation <math>\scriptstyle a+\frac{b}{2a}</math> instead of the previous approximation <math>\scriptstyle a+\frac{b}{2a+1}</math>, even if b≥a, in order to avoid confusion
+
|Cross the first number you doubled with a pen.
|style="text-align:right;"|לא תוסיף א' לעולם על כפל השרש [ואף אם יהיה הנשאר הרבה מאד על השורש], כדי שלא יבלבל עליך, כי לא ציויתיו אלא למסתפק בפעם אחת
+
|style="text-align:right;"|ותעבור הקולמוס על המספר הראשון אשר כפלת
 
|-
 
|-
|Indeed the previous approximation <math>\scriptstyle a+\frac{b}{2a+1}</math> brings closer to the real root, but if the approximation <math>\scriptstyle a+\frac{b}{2a}</math> is repeated more than once it brings very close to the real root, therefore adding 1 to the denominator is not needed
+
|Thereafter, seek a number to place in the rank that precedes the mentioned one, such that when multiplying it by the number or numbers, which you have just placed that resulted from the first doubling, and also by itself, then subtracting each product from the corresponding rank, all is gone or as much as possible.
|style="text-align:right;"|ובתוספת הא' כשהנשאר בשרש או יותר הוא מתקרב יותר כמו שכתבתי, אבל המכפיל פעמי המעשה אינך צריך לתוספת זה, כי בהכפל המעשה יתקרב מאד מאד, אף מבלי תוספת הא' וטוב שלא נוסיפנו, כדי שיהיה כל מעשהו בסגנון אחד ולא יתבלבל
+
|style="text-align:right;"|ואחר כך תבקש מספ' אשר תשים במעלה אשר לפני אלו הנזכרות אשר בכפול אותו במספר או מספרים אשר שמת עתה שנתחדשו מכפל הראשון וגם בעצמו והוציא כל כפל וכפל מהם מהמעלה אשר כנגדו ויצא הכל או היותר שתוכל
 
|-
 
|-
|'''The reason for dividing the remainder by double the [approximate] root, if the remainder is smaller than the [approximate] root''':
+
|
|style="text-align:right;"|'''וטעם אומרנו שאם ישאר דבר והוא פחו' מהשרש, שנחלקנו לכפל השרש'''
+
:Write it in the mentioned rank, i.e. in the rank that precedes the ranks in which you wrote the double of the first number.
|-
+
|style="text-align:right;"|ותשימנו במעלה הנזכרת <s>ר"ל במעלה הנזכרת</s> ר"ל במעלה שלפני המעלות אשר שמת בהם כפל המספר הראשון
|<math>\scriptstyle\left(a+b\right)^2-a^2=2ab+b^2</math>
 
|style="text-align:right;"|הוא לפי שאש' יתוסף בשורש יוסיף במרובע כפלו בשורש הראשון פעמים גם כפלו בעצמו כאשר ביארנו בשלמים
 
 
|-
 
|-
 
|
 
|
:*The excess of the first approximation:<br>
+
:Multiply it by the first numbers, except the the one you wrote first that is crossed by a pen.
::<math>\scriptstyle\left(a+\frac{b}{2a}\right)^2\approx a^2+\left[2\sdot\left(a\sdot\frac{b}{2a}\right)\right]=a^2+b</math>
+
|style="text-align:right;"|ותכפלנו במספרים הראשונים מלבד אשר שמת ראשון שעבר עליו הקולמוס
|style="text-align:right;"|ואנו עושים מעשינו כאלו אינו מוסיף כי אם כפלו בשרש פעמים<br>
 
ואם היה זה האמת, ר"ל שהמתוסף על השרש לא היה מוסיף על המרובע כי אם כפל זה המתוסף בכפל השרש לבד, הנה היה בידינו המספר העולה מהכפל הזה והוא השארית הנזכרת שהיא נוספת בחשבון על מרובע השלימים
 
 
|-
 
|-
 
|
 
|
:::<math>\scriptstyle2a\sdot\frac{b}{2a}=b</math>
+
:Subtract the product from the digits that above them.
|style="text-align:right;"|וכאשר נוסיף בשרש דבר מה שיהיה שוה כפלו בכפל השרש כזה התוספת בעצמו הגענו אל מבוקשנו
+
|style="text-align:right;"|וא<sup>ש</sup>ר יעלה תוציאנו מהרשמים אשר על ראשם
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ועם היות שנעלם ממנו תוספת זה ומ"מ אחר שידענו העולה מהכפל ההוא והיא השארית הנזכרת, גם ידענו אחד מהנכפלים והוא כפל השרש, [הנה בחלקנו זה העולה לכפל השורש יצא] יצא הנעלם שהוא התוספת, ר"ל כי בכפול זה התוספת בכפול השרש יעלה כנשאר הנזכר וזה ברור
+
:Multiply [the number] by itself and subtract [the product] from the rank above it.
 +
|style="text-align:right;"|ותכפלנו <s>המספרים הראשונים מלבד אשר שמת ראשון שעבר עליו הקולמוס</s> על עצמו ותוציאנו &#x202B;<ref>31r</ref>מהמעלה אשר על ראשו
 
|-
 
|-
 
|
 
|
:::<math>\scriptstyle\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)=\left(\frac{b}{2a}\right)^2</math>
+
:Wherever there is a remainder, write it above the digit from which it remains.
|style="text-align:right;"|אכן לפי שהמתוסף על השרש מוסיף עוד במרובע כפלו בעצמו, ר"ל כפל התוספת הזה בעצמו, לכן כאשר נכפול השרש בעצמו אחר הוסיף עליו זה התוספת, יעלה המרובע מוסף על החשבון הראשון כפל התוספת הזה בעצמו וכן ביארנוהו למעלה
+
|style="text-align:right;"|והנשאר בשום מקום תשימנו על הרושם אשר ממנו נותר
|-
 
|The second approximation <math>\scriptstyle\sqrt{a^2+b}\approx\left(a+\frac{b}{2a}\right)-\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}</math>
 
|style="text-align:right;"|ואם היינו רוצים להתקרב עוד ואנו מחלקים זה התוספת לכפל השרש הזה והיוצא יחסר מזה השרש כאשר ביארנו למעלה
 
 
|-
 
|-
 
|
 
|
:*The excess of the second approximation: <math>\scriptstyle\left(a+\frac{b}{2a}\right)^2-\left[\left(a+\frac{b}{2a}\right)-\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]^2=\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\sdot\left[\left[2\sdot\left(a+\frac{b}{2a}\right)\right]-\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]</math>
+
*When you double the number and write its double in the preceding rank, if the digit that is above it is not enough to subtract [the double] even once, and that enough remains in the preceding rank to subtract from it the product of the other digit by itself, write 0 before it and lower it by one rank, whether there is a 0 there or any other digit. Then seek a number to write before it, so that you multiply it by each of the [digits of the root] and by itself and subtract every [product] from what is above it.
|style="text-align:right;"|הנה זה שאנו מחסרים היה מוסיף על המרובע ככפלו על כפל השרש המחוסר הזה לאחר חסרונו וכפלו על עצמו בלי כפל
+
|style="text-align:right;"|ואם כאשר כפלת המספר ושמת כפלו במעלה אשר לפניו אם אין ברשמים אשר עליהם כדי להוציאם אפי' פעם אחת ושישאר במעלה אשר לפניהם אחד להוציא ממנו כפל האחר בעצמו אז תשים 0 לפניהם ותורידם מעלה אחת גם ל0 גם לכל רושם מהם ותבקש מספר שתשים לפניהם ותכפלנו בכל אחד מהם ובעצמו ותוציא כל דבר מאשר על ראשו
 
|-
 
|-
 
|
 
|
:::<math>\scriptstyle\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}=\frac{\left(\frac{b}{2a}\right)^2}{\left[2\sdot\left[\left(a+\frac{b}{2a}\right)-\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]\right]+\left[2\sdot\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]}</math>
+
:Write the remainder above the digit that is above it and lower again the [digits of the root] by one rank, as long as you lower them, whenever you lower them, as they are, without doubling, except for the last digit that is generated at that same phase that you double it.
|style="text-align:right;"|ואולם התוספת אשר היה לנו חלקנוהו על כפל כל השרש טרם טרם החסרו והוא כמו שחלקנוהו על כפל השרש הזה המחוסר ועל כפל החסרון זה
+
|style="text-align:right;"|והנותר תשים על הרושם אשר על ראשו ותורידם עוד מעלה אחרת ובלבד שתורידם לעולם בכל הורדה שתורידם שיורדו כמות שהם בלי כפל כלל זולתי המספר האחרון שנתחדש בפעם ההיא שתכפלנו
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle\left[\left(a+\frac{b}{2a}\right)-\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]^2-\left(a^2+b\right)=\left[\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]^2</math>
+
*If no tens are generated [in double the digit of the root], write it in the rank that precedes the ranks in which you write the other digits as they are lowered.
|style="text-align:right;"|ואולם הוא לא היה מוסיף כי אם כפלו על כפל השרש הזה המחוס' וכפלו על עצמו בלי כפל, נמצא שלא חסרנו בכל הצורך, אבל עוד ישאר במרובע זה השרש המחוסר תוספת על החשבון הראשון ככפל זה החסרון על עצמו וזה ברור וכן יהיה לעולם
+
|style="text-align:right;"|ואם לא נתחדש שם עשר תשימנו במעלה שלפני המעלות אשר תשים הרשמי' האחרים בהורדתם
|-
 
|Hence, when using a repetitive procedure for extracting the root the square of the fractions that are added to the previous [approximate] root from the second phase and onwards should be divided by twice the previous [approximate] root and the result should always be subtracted from the previous [approximate] root
 
|style="text-align:right;"|לכן כאשר לא נוסיף א' ונרצה להתקרב אל האמת, אין לנו להוסיף על השרש כי אם השברים הראשונים אשר נתחדשו בפעם הראשון מאשר נשאר לנו, אבל מכאן ואילך לעולם יש לנו לחלק כפל השברים המתחדשים בפעם ההיא על כפל השרש הקודם לו והיוצא נחסרהו לעולם מהשרש הקודם לו
 
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle\sqrt{7}</math>
+
*If a ten is generated, add it to the digit that you write first to the right, and if this digit is only 0, write the 1, i.e. the ten instead of it. Write the units that are generated with the ten from this double, in the preceding rank.
|style="text-align:right;"|המשל בקשנו שרש ז&#x202B;'
+
|style="text-align:right;"|ואם מהכפל ההוא יתחדש עשר תחברנו עם הרושם אשר שמת ראשון לצד ימין <s>ואם מהכפל ההוא יתחדש עשר תחברנו עם הרושם אשר שמת ראשון לצד ימין</s> ואם לא היה כי אם <sup>0</sup> תסירנה ותשים הא' ר"ל העשר במקומה והאחדים אשר נתחדשו מהכפל עם זה העשרה שימם במעלה שלפניהם
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{\sqrt{7}\approx2+\frac{7-4}{2\sdot2}=2+\frac{3}{4}}}</math>
+
*If no tens are generated [in double the digit of the root], as when the last digit is a five and its double is a ten without units, write the ten as I said instead of the 0, or add it to what you find in the rank to the right, and since there are no units, write 0 before these ranks.
|style="text-align:right;"|הנה השלמי' אשר בשרשו הם ב' ונשארו ג&#x202B;'<br>
+
|style="text-align:right;"|ואם לא נתחדשו שם אחדים כגון שהרושם האחרון היה חמשה וכפלו יהיה עשרה שלם בלתי אחדים תשים הי' כאשר אמרתי במקום ה0 או תחברנו עם אשר תמצא במעלה לצד ימין ואחר שאין אחדים שם תשים 0 לפני המעלות ההם
ואם חלקנום לכפל השרש, יצא בחילוק ג' רביעיות
 
 
|-
 
|-
|
+
|<span style=color:Green>Repeating the process:</span> seek for another number as stated and proceed like this until their end.
:::<math>\scriptstyle{\color{blue}{\left(2+\frac{3}{4}\right)^2-2^2=3+\left(\frac{3}{4}\right)^2}}</math>
+
|style="text-align:right;"|ותבקש עוד מספר כמו שנזכר וכן תעשה עד תומם
|style="text-align:right;"|והנה זה התוספת, כאשר נחברהו אל הב' השלמים ונעשה מהכל שרש אחת, הנה יתוסף במרובעו יותר על מרובע הב, שיהיה ד' שלמים, ככפל שלש רביעיות אלו בעצמם
 
 
|-
 
|-
|
+
|The root consists of all the numbers you seek for in all the phases without their doubling.
:::<math>\scriptstyle{\color{blue}{3=4\sdot\frac{3}{4}=2^2\sdot\frac{3}{4}}}</math>
+
|style="text-align:right;"|&#x202B;<ref>31v</ref>והשרש הוא כל המספרים אשר בקשת בכל עת בלי כפל
|style="text-align:right;"|ואולם שאריתנו לא היה כי אם ככפל הג' רביעיות בד' השלמים, אשר הם כפל השרש הראשון
 
 
|-
 
|-
 
|
 
|
:::<math>\scriptstyle{\color{blue}{\left(2+\frac{3}{4}\right)^2-7=\left[7+\left(\frac{3}{4}\right)^2\right]-7=\left(\frac{3}{4}\right)^2=\frac{9}{4}\sdot\frac{1}{4}=\frac{2}{4}+\left(\frac{1}{4}\sdot\frac{1}{4}\right)}}</math>
+
 
|style="text-align:right;"|נמצא שנתוספו בשרשנו זה שברים יותר מדאי, עד שמרובע הכל יהיה יותר על הז' שלמים ככפל הג' רביעיות בעצמם, שהם ט' רביעיות רביעית, שהם ב' רביעיות שלמות ורביעית רביעית<br>
+
==== <span style=color:Green>examples</span> ====
וזה ברור, כי כפל ב' וג' רביעיות עולה ז' שלמים וב' רביעיות רביעית כאשר יתבאר בחלק הב' בפרק הג' ממנו
 
|-
 
 
|
 
|
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\sqrt{7}&\scriptstyle\approx\left(2+\frac{3}{4}\right)-\frac{\frac{2}{4}+\left(\frac{1}{4}\sdot\frac{1}{4}\right)}{2\sdot\left(2+\frac{3}{4}\right)}\\&\scriptstyle=\left(2+\frac{3}{4}\right)-\frac{\frac{2}{4}+\left(\frac{1}{4}\sdot\frac{1}{4}\right)}{5+\frac{2}{4}}\\&\scriptstyle=\left(2+\frac{3}{4}\right)-\frac{\frac{2}{4}+\left(\frac{1}{4}\sdot\frac{1}{4}\right)}{5+\frac{1}{2}}\\&\scriptstyle=\left(2+\frac{3}{4}\right)-\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\\&\scriptstyle=2+\frac{2}{4}+\left(\frac{1}{2}\sdot\frac{1}{4}\right)+\left(\frac{2}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\\\end{align}}}</math>
 
|style="text-align:right;"|ולזה ראוי לנו לחלק תוספת זה על כפל השרש כאשר ביארנו. והנה כפל השרש הוא ה' שלמים וב' רביעיות, שהם חצי שלם<br>
 
וכאשר נחלק עליהם ב' רביעיות ורביעית רביעית, יצא בחילוק ט' חלקים מי"א מחצי רביעית<br>
 
וכאשר נסירם מהשרש הקודם, ישאר ב' שלמים וב' רביעיות שלמות וחצי רביעית וב' חלקים מי"א מחצי רביעית וכל זה יתבאר מעשהו בחלק הב&#x202B;'
 
 
|-
 
|-
 
|
 
|
:::<math>\scriptstyle{\color{blue}{\left(2+\frac{3}{4}\right)^2-\left[2+\frac{2}{4}+\left(\frac{1}{2}\sdot\frac{1}{4}\right)+\left(\frac{2}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\right]^2=\left[\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\sdot\left[2\sdot\left(2+\frac{3}{4}\right)\right]\right]-\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)^2}}</math>
+
*{{#annot:√344680129066|439|lfu5}}We wish to seek the root of 344680129066.
|style="text-align:right;"|והנה יחסר מרובע השרש הזה, ר"ל הב' שלמים וב' רביעיות וחצי רביעית וב' חלקים מי"א מחצי רביעית, אחרי החסרו מאשר לפניו, ככפל החסרון הזה, ר"ל הט' חלקים מי"א מחצי רביעית, על כפל השרש המחוסר, וככפלו לעצמו
+
:<math>\scriptstyle\sqrt{344680129066}</math>
 +
|style="text-align:right;"|<big>המשל</big> רצינו לבקש שרש 344680129066{{#annotend:lfu5}}
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואולם התוספת הראשו', אשר היה במרובע על החשבון, היה ככפל החסרון זה בכפל השרש הראשון, ר"ל בכפל השרש הזה המחוסר ובכפל החסרון הזה, שהרי כאשר חלקנו התוספת על כפל השרש הקודם, ר"ל על כפל השרש המחוסר ועל כפל זה החסרון, [יצא בחלוק זה החסרון]
 
|-
 
 
|
 
|
:::<math>\scriptstyle{\color{blue}{\begin{align}&\scriptstyle\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\sdot\left[2\sdot\left(2+\frac{3}{4}\right)\right]\\&\scriptstyle=\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\sdot\left(5+\frac{1}{2}\right)\\&\scriptstyle=\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\sdot\left[\left[2\sdot\left[2+\frac{2}{4}+\left(\frac{1}{2}\sdot\frac{1}{4}\right)\left(\frac{2}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\right]\right]+\left[2\sdot\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\right]\right]\\&\scriptstyle=\frac{2}{4}+\left(\frac{1}{4}\sdot\frac{1}{4}\right)\\\end{align}}}</math>
+
{|class="wikitable" style="margin-left: auto; margin-right: 0px; text-align:center;"
|style="text-align:right;"|נמצא שכפל זה החסרון, ר"ל הט' חלקים מי"א מחצי רביעית, בכפל השרש הראשון, שהוא ב' שלמים וג' רביעיות, שכפלו ה' שלימים וחצי, שהוא כמו כפל השרש המחוסר הזה, ר"ל הב' שלימים וב' רביעיות וב' חלקים מי"א מחצי רביעית וכפל זה החסרון, שהוא הט' חלקים מי"א מחצי רביעית וכפל זה החסרון שהוא הט' חלקים מי"א הוא כמו התוספת אשר היה לנו, שהוא הב' רביעיות ורביעית רביעית שחלקנו עליהם
 
|-
 
|<math>\scriptstyle a\sdot\left(b_1+b_2+\ldots+b_n\right)=\left(a\sdot b_1\right)+\left(a\sdot b_2\right)+\ldots+\left(a\sdot b_n\right)</math>
 
|style="text-align:right;"|כי ידוע הוא במעט התבוניות, כי כפל מספר על מספר הוא ככפלו בכל חלקי המספר האחד כל אחד בפני עצמו והוא הטעם שכפל מספר ידוע על כפל מספר ידוע אחר
 
 
|-
 
|-
 
|
 
|
:::<math>\scriptstyle{\color{blue}{4^2=\left(4\sdot1\right)+\left(4\sdot3\right)}}</math>
+
{|style="margin-left: auto; margin-right: 0px;"
|style="text-align:right;"|המשל על כפל ד' הוא ככפלו על כפל כל חלקיו כל אחד בפני עצמו<br>
+
| style="text-align: left;" | &#8199;&#8199;&#8199;&#8199;117
המשל על כפל ג' ועל כפל א&#x202B;'
 
 
|-
 
|-
|
+
| style="text-align: left;" | &#8199;&#8199;&#8199;1250642
:::<math>\scriptstyle{\color{blue}{\begin{align}&\scriptstyle\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\sdot\left[2\sdot\left(2+\frac{3}{4}\right)\right]\\&\scriptstyle=\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\sdot\left[2\sdot\left[\left[2+\frac{2}{4}+\left(\frac{1}{2}\sdot\frac{1}{4}\right)\left(\frac{2}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\right]\right]+\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\right]\\\end{align}}}</math>
 
|style="text-align:right;"|וזהו כאומרנו שכפל הט' חלקים מי"א מחצי רביעית בכפל השרש הראשון שהוא הב' שלמים וג' רביעיות הוא כמו כפלו בכל חלקיו כל אחד בפני עצמו, ר"ל בכפל השרש המחוסר ובכפל החסרון, שהם חלקי השרש הקודם וזה ברור
 
 
|-
 
|-
|
+
| style="text-align: left;" | &#8199;1151248513
:*<math>\scriptstyle\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)=\left(\frac{b}{2a}\right)^2=\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\sdot\left[2\sdot\left(a+\frac{b}{2a}\right)\right]</math>
 
|style="text-align:right;"|ואחר שהמרובע הקודם היה מוסיף על החשבון, אשר רצינו לידע שרשו, ככפל החסרון על כפל כל השורש הקודם, שהרי כשחלקנו אותו על כפל השורש הקודם, [יצא זה החסרון, הנה כאשר נכפול זה החסרון בכפל השורש הקודם], שהוא כפל היוצא בחילוק במספר אשר חלקנו עליו, יעלה כמספר המתחלק שהוא התוספת שהיה לנו
 
 
|-
 
|-
|
+
| style="text-align: left;" | <u>&#8199;98261861540</u>
:*<math>\scriptstyle\left(a+\frac{b}{2a}\right)^2-\left[\left(a+\frac{b}{2a}\right)-\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]^2=\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\sdot\left[\left[2\sdot\left(a+\frac{b}{2a}\right)\right]-\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]</math>
 
|style="text-align:right;"|ואולם בשביל זה החסרון, אשר אנו מחסרים עתה מהשרש, לא יחסר המרובע הזה מהראשון כי בכפל זה החסרון בכפל המחוסר ובעצמו בלי כפל
 
 
|-
 
|-
|
+
| style="text-align: left;" | <u>344680129066</u>
:*<math>\scriptstyle\left[\left(a+\frac{b}{2a}\right)-\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]^2-\left(a^2+b\right)=\left[\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]^2</math>
 
|style="text-align:right;"|א"כ ישאר עוד מהתוספת כפל זה החסרון בעצמו
 
 
|-
 
|-
|And so on repeatedly: the excess of the subtracted over the given number <math>\scriptstyle a^2+b</math> is the square of the subtrahend
+
| style="text-align: left;" | &#8199;5
|style="text-align:right;"|הנה ביארנו כי בעשותינו זה כמה פעמים, לעולם ישאר במרובע תוספת מרובע השברים שיצאו בחילוק בעת ההיא, שהם אשר עלינו להוסיף על השרש במעשה הראשון, או לחסרו מן השרש בשאר הפעמים כלם, אם לא נעשנו בתוספת אחד, ר"ל אם לא נוסיף אחד על כפל השרש לחלק על הכל, אם יהיה התוספת גדול מהשרש, אלא שנחלק התוספת על כפל השרש לבד, בלי תוספת אחד כלל
 
 
|-
 
|-
|
+
| style="text-align: left;" | &#8199;108
|style="text-align:right;"|ולזה אמרנו כי כאשר לא נעשה בתוספת אחד, לעולם נקח מרובע השברים אשר יצאו בפעם האחרונה, הן לתוספת, או למגרעת ונחלקם על כפל השרש המחוסר והיוצא נחסרנו מהשרש וכן נעשה לעולם וכל זה ברור בטעם
 
 
|-
 
|-
|'''The reason for dividing the remainder by double the [approximate] root plus 1, if the remainder is equal to or greater than the [approximate] root''':<br>
+
| style="text-align: left;" | &#8199;&#8199;1167
<math>\scriptstyle b\ge a\longrightarrow\sqrt{a^2+b}\approx a+\frac{b}{2a+1}</math>
 
|style="text-align:right;"|'''וטעם אומרנו כי כאשר הנשאר הוא כשורש, או יותר ממנו, שיש לנו לחלקו על כפל השרש בתוספת אחד, אם אין דעתינו להכפיל המעשה להתקרב עוד אל האמת זולתי בפעם הזאת לבד'''
 
 
|-
 
|-
|
+
| style="text-align: left;" | &#8199;&#8199;&#8199;11740
:<math>\scriptstyle b\ge a\longrightarrow\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)=\left(\frac{b}{2a}\right)^2\ge\frac{1}{4}</math>
 
|style="text-align:right;"|הוא לפי שאם לא היינו מוסיפים אחד, היה מרובע השרש המקובץ מהשלמים והשברים עודף על החשבון ככפל השברים אשר יצאו בחילוק וזה יהיה רביעית אחת או יותר
 
 
|-
 
|-
|
+
| style="text-align: left;" | &#8199;&#8199;&#8199;&#8199;117409
:::<math>\scriptstyle b=a\longrightarrow\left(\frac{b}{2a}\right)^2=\left(\frac{a}{2a}\right)^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}</math>
 
|style="text-align:right;"|לפי שאם יהיה כשורש בעינו ונחלקנו על כפל השרש, יצא בחלוק חצי ומרובעו, ר"ל כפלו בעצמו, שהוא התוספת, שיהיה רביעית שלמה
 
 
|-
 
|-
|
+
| style="text-align: left;" | &#8199;&#8199;&#8199;&#8199;&#8199;1174184
:::<math>\scriptstyle b>a\longrightarrow\left(\frac{b}{2a}\right)^2>\left(\frac{a}{2a}\right)^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}</math>
+
|}
|style="text-align:right;"|ואם יהיה השארית יותר גדול מהשרש, כשנחלקנו על כפל השרש, יהיה היוצא יותר מחצי ומרובעו יותר מרביעית
 
 
|-
 
|-
|
+
|}
:*<math>\scriptstyle\sqrt{6}</math>
+
|}
|style="text-align:right;"|והמשל: בקשנו לידע שרש ו&#x202B;'
+
::<span style=color:Green>[Illustration of the procedure:]</span>
 +
::{|
 
|-
 
|-
|
+
| ||rowspan="6"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{34>5^2}}\\&\scriptstyle{\color{red}{34-{\color{blue}{5}}^2=}}{\color{green}{9}}\\&\scriptstyle{\color{red}{2\times5=}}{\color{blue}{10}}\\\end{align}}</math>||&nbsp;||rowspan="6"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{9-\left(1\times{\color{blue}{8}}\right)=}}{\color{green}{1}}\\&\scriptstyle{\color{red}{{\color{blue}{8}}^2=}}{\color{YellowOrange}{64}}\\&\scriptstyle{\color{red}{6-{\color{YellowOrange}{4}}=}}{\color{green}{2}}\\&\scriptstyle{\color{red}{14-{\color{YellowOrange}{6}}=}}{\color{green}{8}}\\&\scriptstyle{\color{red}{2\sdot8=}}{\color{blue}{16}}\\\end{align}}</math>||&#8199;<span style="color:LimeGreen><s>1</s></span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
::<math>\scriptstyle{\color{blue}{\sqrt{6}\approx2+\frac{6-4}{2\sdot2}=2+\frac{2}{4}=2+\frac{1}{2}}}</math>
+
|-
|style="text-align:right;"|הנה השלמים אשר יצאו בשרש הם ב' וישארו ב', שהוא כמו השרש בעצמו<br>
+
| ||&#8199;<span style="color:LimeGreen>9</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;||&#8199;9<span style="color:LimeGreen>82</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
ואם חלקנום על כפל השרש בלי תוספת אחת, יתחלק לד' שהוא כפל השרש ויצא בחילוק חצי ויהיה כל השרש ב' שלמים וחצי
+
|-
 +
|<span style="color:red">34</span>4680129066||<s>3</s>4<span style="color:red">46</span>80129066||<s>3</s>446<span style="color:red">80</span>129066
 +
|-
 +
| ||&#8199;<span style="color:#0000FF><s>5</s></span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;||&#8199;<s>5</s>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
 +
|-
 +
| ||&#8199;<span style="color:#0000FF>10</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;||&#8199;10<span style="color:#0000FF>8</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
 +
|-
 +
| ||&nbsp;||&#8199;&#8199;<span style="color:#0000FF>116</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
 +
|}
 +
{|
 
|-
 
|-
 
|
 
|
:::<math>\scriptstyle{\color{blue}{\left(2+\frac{1}{2}\right)^2=6+\frac{1}{4}}}</math>
+
:The ranks of this number are 12 and it is an even number. We take the two last digits - the last as tens and the one that precedes it as units; they are 34.
|style="text-align:right;"|ומרובעם ו' שלמים ורביע
+
|style="width:45%; text-align:right;"|והנה מעלות מספר זה הם י"ב והם זוג נקח השני רשמים האחרונים האחרון אחרון לעשרות ואשר לפניו לאחדים ויהיו 34
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle b\ge a\longrightarrow\left(a^2+b\right)-\left(a+\frac{b}{2a+1}\right)^2=\frac{b}{2a+1}\sdot\left(1-\frac{b}{2a+1}\right)<\frac{1}{2}\sdot\left(1-\frac{1}{2}\right)=\frac{1}{4}</math>
+
:*We seek for a number, such that when we multiply it by itself, it will consume the whole 34, or as much as possible of it; it is 5. We write it beneath the 4.
|style="text-align:right;"|ואם היינו מוסיפים א', הנה יחסר מהמרובע ככפל היוצא בחילוק, שיהיה פחות מחצי בהשלמתו לאחד וזה יהיה פחות מרביע, הנה א"כ הוא קרוב אל האמת, כי לא יחסר רביע במרובע מהחשבון
+
|style="text-align:right;"|ונבקש מספר שנכפלנו על עצמו ויוציא כל ה34 או היותר שאפשר והוא ה' ונשימנו תחת הד&#x202B;'
ואם לא נוסיף א', נוסיף רביע<br>
 
וכ"ש אם היה גדול מהשרש
 
 
|-
 
|-
 
|
 
|
:::<math>\scriptstyle b>a\longrightarrow\left(\frac{b}{2a}\right)^2>\left(\frac{1}{2}\right)^2=\frac{1}{4}</math>
+
::We say: 5 times 5 is 25. We subtract it from 34; 9 remains.
|style="text-align:right;"|כי כאשר נחלקנו לכפול השרש, יצא בחילוק יותר מחצי ומרובעו יותר מרביע כאשר תראה במשל הקודם לזה
+
:::<math>\scriptstyle{\color{blue}{34-5^2=34-25=9}}</math>
 +
|style="text-align:right;"|ונאמר ה' פעמים <sup>ה'</sup> הם כ"ה {{#annot:term|181,1232|F2P9}}נוציאם מ{{#annotend:F2P9}}הל"ד ישארו ט&#x202B;'
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle b\ge a\longrightarrow\left(a^2+b\right)-\left(a+\frac{b}{2a+1}\right)^2=\frac{b}{2a+1}\sdot\left(1-\frac{b}{2a+1}\right)<\frac{1}{2}\sdot\left(1-\frac{1}{2}\right)=\frac{1}{4}</math>
+
::We cross the 3 with a pen and write 9 above the 4.
|style="text-align:right;"|ואם תחלקנו על כפל השרש בתוספת א', יחסר מרובע השרש המקובץ מהחשבון הנשאל ככפל היוצא בחלוק בהשלמתו לאחד ולא יהיה אפי' רביע בשום פנים
+
|style="text-align:right;"|ונעביר קולמוס על הג' ונשים הט' על הד&#x202B;'
 
|-
 
|-
 
|
 
|
:::The product of a portion of a line by its remaining portion will never exceed one quarter
+
::We double the 5 and cross it with a pen. Its double is 10. We write 1 beneath the 5 and since there are no units with the ten at all, we write 0 before the one.
|style="text-align:right;"|כי כאשר תכפול קצת הקו, או המספר, בקצתו האחר, לא יעלה לעולם לרביע
+
|style="text-align:right;"|ונכפול הה' <s>ואחר שאין</s> ונעביר עליו הקולמוס והנה כופלו הוא י' נשים א' תחת הה' ואחר שאין עם עשר זה אחדים כלל נשים לפני זה האחד 0
 
|-
 
|-
 
|
 
|
:::<math>\scriptstyle{\color{blue}{\frac{1}{2}\sdot\frac{1}{2}=\frac{1}{4}}}</math>
+
:*We seek for a number to write in the rank that precedes the 0, multiply by 1 and by itself, and to subtract as much as we can from what remains above the 4 and from the 48 before it that are the ranks that are above [this number]. It is 8. We write it before them.
|style="text-align:right;"|שאם תכפול חציו בחציו יהיה רביע
+
|style="text-align:right;"|ונבקש מספר נשימהו במעלה שלפני ה0' ונכפלנו <s>ב</s> בא' ובעצמו ונוציא כל היותר שנוכל מאשר נשאר על הד' <sup>גם</sup> מהמ"ו אשר לפניו שהם <s>השלימות</s> המעלות אשר עליהן ויהיה ח' ונשימנו לפניהם
 
|-
 
|-
 
|
 
|
:::<math>\scriptstyle\left(1-\frac{n}{m}\right)>\frac{n}{m}\longrightarrow\frac{1}{4}-\left[\frac{n}{m}\sdot\left(1-\frac{n}{m}\right)\right]=\left(\frac{1}{2}-\frac{n}{m}\right)^2</math>
+
::*We multiply 8 by 1; it is 8. We subtract it from the 9 that is above it; one remains. We write it above it.
|style="text-align:right;"|ואם תכפול מעוטו ברובו, לא יהיה רביע וזה ברור, אבל יחסר ממנו כמרובע מרחקם מחצי הקו, או המספר
+
:::<math>\scriptstyle{\color{blue}{9-\left(1\times8\right)=9-8=1}}</math>
 +
|style="text-align:right;"|ונכפול ח' בא' יהיו ח' נוציאם מהט' אשר עליו ישאר אחד נשימנו עליו
 
|-
 
|-
 
|
 
|
:::dividing a line to ¼ and ¾<br>
+
::*We also multiply 8 by itself; the result is 64.
:::<math>\scriptstyle{\color{blue}{\frac{1}{2}\sdot\frac{1}{2}=4\sdot\left(\frac{1}{4}\sdot\frac{1}{4}\right)}}</math>
+
:::<math>\scriptstyle{\color{blue}{8^2=64}}</math>
|style="text-align:right;"|כי ע'מ' אם חלקנו הקו לרביע הקו וג' רביעיות, הנה אם תכפול החצי בחצי הוא כאלו תכפול רביע הקו עם ברביע הקו ד' פעמים
+
|style="text-align:right;"|עוד נכפול ח' על עצמו ויעלה &#x202B;<ref>32r</ref>ס"ד
 
|-
 
|-
 
|
 
|
:::<math>\scriptstyle{\color{blue}{\frac{1}{4}\sdot\left(1-\frac{1}{4}\right)=\frac{1}{4}\sdot\frac{3}{4}=3\sdot\left(\frac{1}{4}\sdot\frac{1}{4}\right)}}</math>
+
:::We subtract the 4 units from the 6 that is above it; 2 remains. We write it above the 6.
|style="text-align:right;"|ואם תכפול רביע הקו בג' רביעיות המשלימות אותו לאחד שלם, לא יהיה כי אם כפל רביע הקו ברביע הקו ג' פעמים
+
:::<math>\scriptstyle{\color{blue}{6-4=2}}</math>
 +
|style="text-align:right;"|ונוציא הד' האחדים מהו' אשר על ראשו ישארו ב' נשימם על הו&#x202B;'
 
|-
 
|-
 
|
 
|
:::<math>\scriptstyle{\color{blue}{\left(\frac{1}{2}\sdot\frac{1}{2}\right)-\left[\frac{1}{4}\sdot\left(1-\frac{1}{4}\right)\right]=\frac{1}{4}\sdot\frac{1}{4}}}</math>
+
:::We cannot subtract the 6 tens from the 4 that is after the 6, which is tens with respect to it. We take the 1 that is after it and cross it with a pen; it becomes ten in the rank of the mentioned 4. We add to it the 4 itself; they are 14 all together. We subtract from it the 60, which are 6 tens; 8 remains. We write it above the 4.
|style="text-align:right;"|הנה יחסר מחצי על חצי ככפל רביע על רביע, שהוא מרחק כל אחד מחלקי הקו מהחצי
+
:::<math>\scriptstyle{\color{blue}{14-6=8}}</math>
 +
|style="text-align:right;"|והס' שהם ו' עשרות לא נוכל להוציאם מהד' שאחר הו' שהוא עשרות נגדו ונקרא הא' אשר אחריהם ונעביר עליו הקולמוס ויהיה עשר במעלת הד' הנזכר ונחבר אליהם הד' עצמו יהיו כלם י"ד {{#annot:term|181,1232|J2LS}}נוציא מהם{{#annotend:J2LS}} הס' אשר הם ו' עשרות נשארו ח' ונשימנו על הד&#x202B;'
 
|-
 
|-
 
|
 
|
:::<math>\scriptstyle{\color{blue}{\left(\frac{1}{2}\sdot12\right)\sdot\left(\frac{1}{2}\sdot12\right)=6\sdot6=36=30+6=\left(6\sdot5\right)+\left(6\sdot1\right)}}</math>
+
::Then, we lower it by one rank and double the 8 that is generated at that phase. Since units and a ten result from its double, we do not write 0, but we write 1 for the ten instead of it and the 6 units before it.
|style="text-align:right;"|ואם תכפול ע'ד'מ' חצי מספר י"ב בחציו, שהוא ו' בו', יעלה ל"ו, שהוא כפל ו' בה' שהם ל' וכפלו ו' בא', שהם ו&#x202B;'
+
:::<math>\scriptstyle{\color{OliveGreen}{2\times8=16}}</math>
 +
|style="text-align:right;"|אחר זה נורידם מעלה אחת ונכפול הח' אשר נתחדש בפעם הזאת ואחר אשר נתחדש מכפלו אחדים ועשר לא נשים ה0' אבל נשים א' בעד העשר במקומה ונשים הו' אחדים לפניו
 +
|}
 +
::<span style=color:Green>[Illustration of the procedure:]</span>
 +
:{|
 +
|-
 +
|rowspan="8"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{8-\left(1\times{\color{blue}{7}}\right)=}}{\color{green}{1}}\\&\scriptstyle{\color{red}{12-\left(1\times{\color{blue}{7}}\right)=}}{\color{green}{5}}\\&\scriptstyle{\color{red}{6\times{\color{blue}{7}}=}}{\color{YellowOrange}{42}}\\&\scriptstyle{\color{red}{8-{\color{YellowOrange}{2}}=}}{\color{green}{6}}\\&\scriptstyle{\color{red}{5-{\color{YellowOrange}{4}}=}}{\color{green}{1}}\\&\scriptstyle{\color{red}{6-{\color{YellowOrange}{5}}=}}{\color{green}{1}}\\&\scriptstyle{\color{YellowOrange}{50-49}}={\color{green}{1}}\\&\scriptstyle{\color{red}{{\color{blue}{7}}^2=}}{\color{YellowOrange}{49}}\\&\scriptstyle{\color{red}{2\sdot7=}}{\color{blue}{{\color{YellowOrange}{1}}4}}\\&\scriptstyle{\color{red}{6+{\color{YellowOrange}{1}}=}}{\color{blue}{7}}\\\end{align}}</math>||&#8199;&#8199;&#8199;<span style="color:LimeGreen>1</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
 +
|-
 +
|&#8199;<span style="color:LimeGreen><s>1</s>151</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
 +
|-
 +
|&#8199;982<span style="color:LimeGreen>61</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
 +
|-
 +
|<s>3</s>44680129066
 +
|-
 +
|&#8199;<s>5</s>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
 
|-
 
|-
|
+
|&#8199;108&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
:::<math>\scriptstyle{\color{blue}{\left(6-1\right)\sdot\left(6+1\right)=5\sdot7=35=30+5=\left(5\sdot6\right)+\left(5\sdot1\right)}}</math>
 
|style="text-align:right;"|ואולם אם תכפול ה' בז', שהם השלמתו לאחד, לא יהיה כי אם ל"ה, לפי שהוא ככפל ה' בו', שהם ל', וכפל ה' בא', שהם ה&#x202B;'
 
 
|-
 
|-
|
+
|&#8199;&#8199;116<span style="color:#0000FF>7</span>&#8199;&#8199;&#8199;&#8199;&#8199;&#8199;
|style="text-align:right;"|וכל מה שיתחלקו יותר החלקים, יחסר יותר
 
 
|-
 
|-
|
+
|&#8199;&#8199;&#8199;11<span style="color:#0000FF>74</span>&#8199;&#8199;&#8199;&#8199;&#8199;
:::<math>\scriptstyle\left(1-\frac{n}{m}\right)>\frac{n}{m}\longrightarrow\frac{1}{4}-\left[\frac{n}{m}\sdot\left(1-\frac{n}{m}\right)\right]=\left(\frac{1}{2}-\frac{n}{m}\right)^2</math>
+
|}
|style="text-align:right;"|וזה שהחסרון מרביע הוא כמרובע הרחקתם מחצי
+
{|
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|כבמשלנו זה שהיה כמרובע האחד, אשר נתרחקו מו', שהוא החצי
+
:*We look for a number to place before them, to multiply by them and by itself and subtract as much as possible from what is above them; it is 7. We write it before them.
 +
|style="width:45%; text-align:right;"|ונבקש מספר שנשים לפניהם שנכפלנו בהם ובעצמו ונוציא היותר שאפש' מאשר עליהם ויהיה ז' ונשימנו לפניהם
 
|-
 
|-
 
|
 
|
:::<math>\scriptstyle{\color{blue}{\left[\left(\frac{1}{2}\sdot12\right)\sdot\left(\frac{1}{2}\sdot12\right)\right]-\left[3\sdot\left(12-3\right)\right]=\left(6\sdot6\right)-\left(3\sdot9\right)=36-27=9=3^2}}</math>
+
::*We say: seven times 1 is 7. We subtract it from the 8 that is above it; 1 remains. We write it above it.
|style="text-align:right;"|ואם היינו כופלים ג' בהשלמתו לי"ב, שהוא ט', הנה לא יעלה כי אם כ"ז ויחסר כמרובע ג' שנתרחקו מהחצי, שהוא ט&#x202B;'
+
:::<math>\scriptstyle{\color{blue}{8-\left(1\times7\right)=8-7=1}}</math>
 +
|style="text-align:right;"|ונאמ' שבעה פעמים א' הם ז' נוציאם מהח' אשר על ראשו וישאר א' ונשימנו עליו
 
|-
 
|-
 
|
 
|
::::<math>\scriptstyle{\color{blue}{\left(\frac{1}{2}\sdot12\right)\sdot\left(\frac{1}{2}\sdot12\right)=6\sdot6=\left(6\sdot3\right)+\left(6\sdot3\right)=\left[2\sdot\left(3\sdot3\right)\right]+\left[2\sdot\left(3\sdot3\right)\right]}}</math>
+
::*We also say: 7 times 1, by the 1 that is before it, is 7.
|style="text-align:right;"|וזה כי כפל ו' בו' הוא ככפל ו' בג' וככפלו ו' בג', שהוא כפל ג' בג' פעמים
+
:::<math>\scriptstyle{\color{blue}{1\times7=7}}</math>
 +
|style="text-align:right;"|עוד נאמר ז' פעמים א' על הא' אשר לפניו הם ז&#x202B;'
 
|-
 
|-
 
|
 
|
:::<math>\scriptstyle{\color{blue}{3\sdot\left(12-3\right)=3\sdot9=\left(3\sdot6\right)+\left(3\sdot3\right)}}</math>
+
:::We cannot subtract it from the 2 that is above it. We take the 1 that we wrote above the 8 just now, and cross it with a pen; it becomes ten and with the 2 it is 12. We subtract the 7 from it; 5 remains. We write it above the 2.
|style="text-align:right;"|ואולם כפל ג' בט' אינו כי אם כפל ג' בו' וכפל ג' בג' פעם אחת לבד
+
:::<math>\scriptstyle{\color{blue}{12-7=5}}</math>
 +
|style="text-align:right;"|ולא נוכל להוציאם מהב' אשר על ראשם נקח הא' אשר שמנו עתה על הח' ונעביר עליו הקולמוס ויהיו לעשרה ועם הב' יהיו י"ב נוציא מהם הז' ישארו ה' נשימם על הב&#x202B;'
 
|-
 
|-
 
|
 
|
:::<math>\scriptstyle\frac{1}{4}n^2-\left[m\sdot\left(n-m\right)\right]=\left[\left(\frac{1}{2}n\right)\sdot\left(\frac{1}{2}n\right)\right]-\left[m\sdot\left(n-m\right)\right]=\left[\left(\frac{1}{2}n\right)-m\right]^2</math>
+
::*We also multiply 7 by 6; the result is 42.
|style="text-align:right;"|לכן יחסר מרביע מרובע המספר ככפל ריחוקם מהחצי בעצמו והוא רביע רביע
+
:::<math>\scriptstyle{\color{blue}{6\times7=42}}</math>
 +
|style="text-align:right;"|עוד נכפול הז' בו' יעלו מ"ב
 
|-
 
|-
 
|
 
|
:::<math>\scriptstyle{\color{blue}{\left[\left(\frac{1}{2}\sdot12\right)\sdot\left(\frac{1}{2}\sdot12\right)\right]-\left[3\sdot\left(12-3\right)\right]=3^2=\left(\frac{1}{4}\sdot12\right)^2}}</math>
+
:::We subtract the 2 from the 8 that is above it; 6 remains. We write it above it.
|style="text-align:right;"|לפי שרחוקם היה ג', שהוא רביע הי"ב, דוק ותשכח
+
:::<math>\scriptstyle{\color{blue}{8-2=6}}</math>
|-
+
|style="text-align:right;"|נסיר הב' מהח' ואש' עליהם ישארו ו' נשימם עליהם
|'''The reason for''':<br>
 
:<math>\scriptstyle\left(a^2+b\right)-\left(a+\frac{b}{2a+1}\right)^2=\frac{b}{2a+1}\sdot\left(1-\frac{b}{2a+1}\right)</math>
 
|style="text-align:right;"|ואולם אומרנו שכאשר נחלקנו לכפל השרש בתוספת אחד, שיהיה החסרון אשר במרובע השרש המקובץ מהחשבון ככפל היוצא בחילוק בהשלמתו
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|אבארנו תחלה במשלים העוברים וא'ח'כ' אבארנו בטעם&#x202B;:
+
:::We subtract the 4 tens from the 5 that is in the rank that follows; 1 remains. We write it above it.
 +
:::<math>\scriptstyle{\color{blue}{5-4=1}}</math>
 +
|style="text-align:right;"|ונסיר הד' עשרות מהה' אשר במעלה שאחריהם וישאר א' ונשימנו עליו
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle\sqrt{7}</math>
+
::*We also multiply 7 by itself; the result is 49.
|style="text-align:right;"|המשל כאשר בקשנו שרש ז&#x202B;'
+
:::<math>\scriptstyle{\color{blue}{7^2=49}}</math>
 +
|style="text-align:right;"|עוד נכפול הז' על עצמו ויעלה מ"ט
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{\sqrt{7}\approx2+\frac{7-4}{\left(2\sdot2\right)+1}=2+\frac{3}{5}}}</math>
+
:::We cannot subtract even the units from the 0 that is above it. So, we take [5] from the 6 that is after the 5; 1 remains and [the 5] becomes 50 in the rank of the 0. We subtract from it the 49; 1 remains. We write it above it.
|style="text-align:right;"|והיה ב שלמים ונשארו ג', שהם יותר מהשרש וחלקנום לכפל השרש בתוספת א', ר"ל על ה', יצא בחילוק ג' חמישיות
+
:::<math>\scriptstyle{\color{blue}{50-49=1}}</math>
 +
|style="text-align:right;"|ומה0 אשר עליו לא נוכל להסיר אפילו האחדים לכן נסיר מהו' שאחרי הה' וישאר א' ויהיה נ' במעלתם ה0' נסיר מהם המ"ט וישארו א' ונשימנו עליהם
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle7-\left(2+\frac{3}{5}\right)^2&\scriptstyle=7-\left[6+\frac{3}{5}+\left(\frac{4}{5}\sdot\frac{1}{5}\right)\right]\\&\scriptstyle=\frac{1}{5}+\left(\frac{1}{5}\sdot\frac{1}{5}\right)\\&\scriptstyle=\frac{6}{5}\sdot\frac{1}{5}\\&\scriptstyle=\frac{3}{5}\sdot\frac{2}{5}\\&\scriptstyle=\frac{3}{5}\sdot\left(1-\frac{3}{5}\right)\\\end{align}}}</math>
+
::We lower them again by one rank and double the 7 that is generated at that phase; it is 14. We add the ten to the 1 with the 6 that follows it to the left; it is 7. Then, we write the 4, which is the units, before the 7.
|style="text-align:right;"|וכאשר נכפול שני שלמים וג' חמישיות על עצמו, יהיה מרובעו ו' שלמים וג' חמישיות וד' חמישיות חמישית<br>
+
:::<math>\scriptstyle{\color{OliveGreen}{2\times7=14}}</math>
והחשבון הנשאל היה ז' שלימים, הנה יחסר זה המרובע מז' שלמים חמישית [אחת שלמה וחמישית חמישית<br>
+
|style="text-align:right;"|עוד נורידם מעלה אחת ונכפול הז' אשר נתחדש בזאת הפעם ויהיו י"ד ונחבר העשר לא' עם הו' אשר אחריו לצד שמאל ויהיו ז' אחרי כן נשים הד' שהם האחדים לפני הז&#x202B;'
וזה] וזה בעצמו הוא כפל הג' חמישיות אשר יצאו בחלוק על השלמתם לאחד שלם, שהוא ב' חמישיות<br>
 
כי כפל ג' חמישיות בב' חמישיות הוא ו' חמישיות חמישית, שהן חמישית אחד שלם וחמישית חמישית
 
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle\sqrt{6}</math>
+
:*We look for a number to multiply by all of them and by itself, as in the other phases. We do not find even one, as they cannot be subtracted from what is above them even once. So, we write a zero before them.
|style="text-align:right;"|ובמשל בשני
+
|style="text-align:right;"|&#x202B;<ref>32v</ref>ונבקש מספר לכפול על כולם ועל עצמו כבשאר הפעמים ולא נמצא כי אין גם אחד לפי שלא יוכלו לצאת מאשר על ראשם אפי' פעם אחת לכן נשים [סיפרא]&#x202B;<ref>marg.</ref> לפניהם
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{\sqrt{6}\approx2+\frac{6-4}{\left(2\sdot2\right)+1}=2+\frac{2}{5}}}</math>
+
::We lower them by one rank again, but we do not double any number, since no number is generated at this phase and the 0 is not a number to be doubled.
|style="text-align:right;"|אם בקשנו שרש והנה יצאו ב' שלמים ונשארו ב', שהוא כמו השרש, אם חלקנום על כפל השרש בתוספת א', ר"ל על ה', יצא בחילוק ב' חמישיות
+
|style="text-align:right;"|ונורידם עוד מעלה אחת ולא נכפול שום מספר כי לא נתחדש מספ' בפעם הזאת וה0' אינה מספר לכפלה
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle6-\left(2+\frac{2}{5}\right)^2&\scriptstyle=6-\left[5+\frac{3}{5}+\left(\frac{4}{5}\sdot\frac{1}{5}\right)\right]\\&\scriptstyle=\frac{1}{5}+\left(\frac{1}{5}\sdot\frac{1}{5}\right)\\&\scriptstyle=\frac{6}{5}\sdot\frac{1}{5}\\&\scriptstyle=\frac{2}{5}\sdot\frac{3}{5}\\&\scriptstyle=\frac{2}{5}\sdot\left(1-\frac{2}{5}\right)\\\end{align}}}</math>
+
:*We look for a number to place before them; it is 9.
|style="text-align:right;"|וכאשר כפלנו שני שלמים וב' חמישיות על עצמם יעלה ה' מרובעו ה' שלמים וג' [חמישיות] וד' חמישיות חמישית<br>
+
|style="text-align:right;"|ונבקש מספר שנשים לפניהם ויהיה ט&#x202B;'
ואולם החשבון הנשאל אשר בקשנו שרשו היה ו' שלמים, הנה יחסר זה המרובע מהחשבון ההוא חמישית אחת שלימה וחמישית חמישית<br>
 
והוא ככפל הב' חמישיות אשר יצאו בחילוק בהשלמתם לאחד, שהוא ג' חמישיות<br>
 
כי כפל ב' חמישיות בג' חמישיות הוא ו' חמישיות חמישית, שהן חמישית אחד שלמה וחמישית חמישית כאשר ביארנו
 
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle b=\frac{b}{2a+1}\sdot\left(2a+1\right)=\left(\frac{b}{2a+1}\sdot2a\right)+\left(\frac{b}{2a+1}\sdot1\right)</math>
+
::*We multiply it by each of them and subtract [the product] from what is above it, also by itself and subtract [the product] from what is above it; as you see in the written diagram.
|style="text-align:right;"|והטעם הוא לפי שהשארית היה ככפל זה היוצא בחילוק בכפל השרש הראשון ובאחד, שהרי בחלקנו השארית לכפל השרש בתוספת א' יצא זה בחלוק, נמצא שהשארית היה ככפל זה היוצא בחלוק בכפל השרש הקודם [ובא&#x202B;']
+
|style="text-align:right;"|ונכפלנו בכל אחד ונוציאנו מאשר ימצא על ראשו וגם בעצמו ונוציאנו מאשר על ראשו כאשר תראה בצורה הרשומה
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle\left(a+b\right)^2-a^2=\left(2\sdot a\sdot b\right)+b^2</math>
+
::We lower them again and double the 9 that is generated at that phase; it is 18. Since a ten is generated here with the units, we do not write the 0, in this lowering, but we write 1 for the ten instead of it. We write the 8 that are the units before it.
|style="text-align:right;"|ואולם תוספת זה היוצא בשרש הקודם לא יוסיף במרובע כי אם ככפלו בכפל השרש הקודם ובכפלו בעצמו
+
:::<math>\scriptstyle{\color{OliveGreen}{2\times9=18}}</math>
 +
|style="text-align:right;"|עוד נורידם ונכפול הט' שנתחדש עתה בפעם הזאת ויהיו י"ח ואחר שנתחדש כאן עשר עם האחדים לא נשים ה0' בהורדה זו אבל נשים א' לעשר במקומה ונשים הח' שהם אחדים לפניו
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle\left(b\sdot1\right)-b^2=b\sdot\left(1-b\right)</math>
+
:*We look for a number to place before them as in the previous phases; it is 4.
|style="text-align:right;"|וכפלו בעצמו יחס' מכפלו בא' כפלו בהשלמתו לאחד
+
|style="text-align:right;"|ונבקש מספר נשים לפניהם כפעם בפעם ויהיו ד&#x202B;'
 
|-
 
|-
 
|
 
|
:::<math>\scriptstyle{\color{blue}{\left(\frac{1}{3}\sdot1\right)=\left(\frac{1}{3}\sdot\frac{1}{3}\right)+\left(\frac{2}{3}\sdot\frac{1}{3}\right)=\left(\frac{1}{3}\sdot\frac{1}{3}\right)+\left[\frac{1}{3}\sdot\left(1-\frac{1}{3}\right)\right]}}</math>
+
::*We multiply it by each of them and by itself and subtract [each product] from its corresponding place as mentioned.
|style="text-align:right;"|כי המשל: כפל שליש באחד הוא ככפלו בכל חלקיו, ר"ל ככפלו בשליש, ר"ל בעצמו, וככפלו בשתי שלישים, אשר הם המשלים אותו כאחד וזה ברור
+
|style="text-align:right;"|ונכפלנו בכל אחד גם בעצמו ונוציא כל דבר ממקומו הראוי לו כנזכר
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle b\ge a\longrightarrow\left(a^2+b\right)-\left(a+\frac{b}{2a+1}\right)^2<\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)</math><br>
+
::Now, we reached the first rank, so we should not lower them.
:&rarr; <math>\scriptstyle a+\frac{b}{2a+1}</math> is a closer approximation
+
|style="text-align:right;"|והנה הגענו למעלה הראשונה לכן אין לנו להורידם
|style="text-align:right;"|הנה ביארנו כי כאשר השארית היה כשרש או יותר ממנו, כי בחלקנו אותו לכפל השרש בתוספת א' יתקרב אל האמת לחסרון מאשר יתקרב אל האמת לתוספת בחלקנו אותו לכפל השרש בלי תוספת אחד
 
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle b<a\longrightarrow\left(a^2+b\right)-\left(a+\frac{b}{2a+1}\right)^2>\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)</math><br>
+
:The root are the digits that are generated in each phase, and they are: 587094.
:&rarr; <math>\scriptstyle a+\frac{b}{2a}</math> is a closer approximation
+
|style="text-align:right;"|ויהיה השרש המספר שחדשנו בכל פעם אחד והם 587094
|style="text-align:right;"|ואולם אם השארית פחות מהשרש, יהיה להפך
 
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle\sqrt{29}</math>
+
:If nothing were left, this root would have been a proper root, but since something remains, which is 764230, this root is not a proper root, but approximate.
|style="text-align:right;"|המשל: אם בקשנו שרש כ"ט
+
|style="text-align:right;"|ואם לא היה נשאר דבר היה זה השרש אמיתי אבל אחר שנשאר דבר והוא 764230 אין השרש הזה אמיתי כי אם בקרוב
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{\sqrt{29}\approx5+\frac{29-25}{2\sdot5}=5+\frac{4}{10}}}</math>
+
::<math>\scriptstyle\longrightarrow{\color{Violet}{\begin{align}&\scriptstyle587094\ the\ root\\&\scriptstyle764230\ the\ remainder\\\end{align}}}</math>
|style="text-align:right;"|הנה השלמים אשר יצאו בשרש הם ה' ונשארו ד&#x202B;'<br>
+
|
ואם חלקנום לכפל השרש בלי תוספת, שהוא י', יצאו ד' עשיריות
+
|-
 +
|It will be explained afterwards how we come closer to the truth, even if the truth is absent.
 +
|style="text-align:right;"|ועוד נתבאר אחר זה איך {{#annot:term|1612,1874|Odqz}}נתקרב יותר אל האמת{{#annotend:Odqz}} ואם האמת נעדרת
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\left(5+\frac{4}{10}\right)^2-29=\frac{16}{10}\sdot\frac{1}{10}=\frac{16}{100}}}</math>
+
*{{#annot:√10375|439|WnAI}}Another example: we wish to know the root of the number 10375.
|style="text-align:right;"|וריחוקו מן האמת לתוספת הוא ככפל זה היוצא בעצמו, שהוא י"ו עשיריות עשירית, ר"ל י"ו חלקים מק' שבשלם
+
:<math>\scriptstyle\sqrt{10375}</math>
 +
|style="text-align:right;"|<big>משל</big> אחר רצינו לדעת שרש מספר זה 10375{{#annotend:WnAI}}
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{\sqrt{29}\approx5+\frac{29-25}{\left(2\sdot5\right)+1}=5+\frac{4}{11}}}</math>
+
:{|
|style="text-align:right;"|ואם חלקנום בתוספת א', שהוא י"א, יצאו בחלוק ד' חלקים מי"א בשלם
 
 
|-
 
|-
 +
| ||rowspan="4"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{1-{\color{blue}{1}}^2=}}{\color{green}{0}}\\&\scriptstyle{\color{red}{2\times1=}}{\color{blue}{2}}\\\end{align}}</math>||&nbsp;||rowspan="4"|<math>\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{3-\left(2\times{\color{blue}{1}}\right)=}}{\color{green}{1}}\\&\scriptstyle{\color{red}{5-{\color{blue}{1}}^2=}}{\color{green}{4}}\\\end{align}}</math>||&#8199;&#8199;<span style="color:LimeGreen>1</span>&#8199;<span style="color:LimeGreen>4</span>
 +
|-
 +
|<span style="color:red">1</span>0375||10<span style="color:red">3</span>7<span style="color:red">5</span>||10375
 +
|-
 +
| ||<span style="color:#0000FF><s>1</s>20</span>&#8199;&#8199;||<s>1</s>20&#8199;&#8199;
 +
|-
 +
| ||&nbsp;||&#8199;&#8199;<span style="color:#0000FF>2</span>01
 +
|}<br>
 +
::<math>\scriptstyle\longrightarrow{\color{Violet}{\begin{align}&\scriptstyle101\ the\ root\\&\scriptstyle174\ the\ remainder\\\end{align}}}</math>
 
|
 
|
::<math>\scriptstyle{\color{blue}{29-\left(5+\frac{4}{11}\right)^2=\frac{4}{11}\sdot\left(1-\frac{4}{11}\right)=\frac{4}{11}\sdot\frac{7}{11}=\frac{28}{11}\sdot\frac{1}{11}=\frac{28}{121}>\frac{1}{5}}}</math>
 
|style="text-align:right;"|ויתרחק מן האמת בכפל והיוצא בהשלמתו לאחד, שהוא ז' חלקים מי"א כאשר ביארנו והוא כ"ח חלקים מי"א מחלק אחד עשר בשלם, ר"ל כ"ח חלקים מקכ"א בשלם והוא יותר מחמישית שלם
 
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\left(5+\frac{4}{10}\right)^2-29=\frac{16}{10}\sdot\frac{1}{10}=\frac{16}{100}<\frac{1}{6}}}</math>
+
:Since the number of the ranks is odd, which is 5, we take the 1 that is in the last rank.
|style="text-align:right;"|ואולם הראשונים לא היו אפי' שישית אחת והקש על זה
+
|style="text-align:right;"|ואחר שמספר המעלות נפרד שהן ה' נקח הא' אשר נמצא במעלה האחרונה
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle\left(a^2+b\right)-\left(a+\frac{b}{2a+1}\right)^2=\frac{1}{4}-\left(\frac{1}{2}-\frac{b}{2a+1}\right)^2</math>
+
:*We seek for a number to multiply by itself so that all of it will be cast out, or as much as possible of it; it is 1. We write it beneath it.
|style="text-align:right;"|והטעם כי זה יחסר רחוקו מן האמת מרביעיתו ככפל מרחקו מחצי בעצמו
+
|style="text-align:right;"|ונבקש מספר שנכפלנו בעצמו ונוציאנו כלו או היותר שאיפשר ויהיה א' ונשימנו תחתיו
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)=\frac{1}{4}-\left[\left(\frac{1}{2}-\frac{b}{2a}\right)^2+\left[2\sdot\frac{b}{2a}\sdot\left(\frac{1}{2}-\frac{b}{2a}\right)\right]\right]</math>
+
::We multiply 1 by itself and subtract it from the 1 that is above it. We cross it with a pen.
|style="text-align:right;"|וזה יחסר רחוקו מן האמת ככפל רחוקו מחצי בעצמו וככפל זה הריחוק פעמים בזה השרש המתוסף
+
:::<math>\scriptstyle{\color{blue}{1-1^2}}</math>
 +
|style="text-align:right;"|ונכפול לא' זה על עצמו ונוציאנו מהא' &#x202B;<ref>33r</ref>אשר על אשר על ראשו ונעביר עליו קולמוס
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{29-\left(5+\frac{4}{11}\right)^2=\frac{4}{11}\sdot\frac{7}{11}=\frac{1}{4}-\frac{2+\frac{1}{4}}{11^2}=\frac{1}{4}-\left[\left(1+\frac{1}{2}\right)\sdot\frac{1}{11}\right]^2=\frac{1}{4}-\left(\frac{1}{2}-\frac{4}{11}\right)^2}}</math>
+
::We double it and lower it, but we cannot subtract it even once from the 0 that is above it and above the 1 there is nothing left. So we write 0 before it and lower it again, but we do not double anything, since no number is generated at this phase.
|style="text-align:right;"|המשל במשלנו הקודם כי כאשר יעשה [בתוספת א', המשל שחלקנו הד' על י"א ויצאו ד'י"א, הנה] י"א הנה יתרחק מן האמת ככפל אלו הד' בז' כנזכר<br>
+
|style="text-align:right;"|ונכפלנו ונורידנו ולא נוכל להוציאם מה0' אשר עליהם אפי' פעם אחת גם על האחד לא נותר דבר <sup>לכן</sup> נשים 0 לפניו עוד נורידם ולא נכפול דבר כי לא נתחדש מספר בזה הפעם
ויחסר מרביע ככפל חלק אחד וחצי<br>
 
שהוא מרחקו מחצי הי"א בעצמו<br>
 
שהוא מרובע מרחקו, שהוא ב' ורביע
 
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\left(5+\frac{4}{10}\right)^2-29=\left(\frac{4}{10}\right)^2=\frac{16}{100}=\frac{1}{4}-\frac{9}{100}=\frac{1}{4}-\left[\left(\frac{1}{2}-\frac{4}{10}\right)^2+\left[2\sdot\frac{4}{10}\sdot\left(\frac{1}{2}-\frac{4}{10}\right)\right]\right]}}</math>
+
:*We seek for a number to write before it as mentioned; it is 1. We write it before it.
|style="text-align:right;"|ואולם כאשר חלקנוהו מבלי תוספת, המשל על י', הנה עלה בחלוק ד' עשיריות<br>
+
|style="text-align:right;"|ונבקש מספר אשר נשים לפניהם כנזכר ויהיה א' ונשימנו לפניהם
ויתרחק מן האמת ככפלו בעצמו<br>
 
שהוא פחות מרביע כמרובע מרחקו מחצי, שהוא האחד, וכפל זה האחד בכפל זה השרש<br>
 
שעולה הכל ט&#x202B;'
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ועם היות שאין הריחוקים שוים ולא החלקים מ"מ אין הקומץ משביע את הארי ולא חששתי לדקדק יותר כי די באשר דקדקתי בזה המקום
+
::*We multiply 1 by 2; it is 2. We subtract it from the 3 that is above it; 1 remains. We write it above it.
 +
:::<math>\scriptstyle{\color{blue}{3\left(1\times2\right)=3-2=1}}</math>
 +
|style="text-align:right;"|ונכפול הא' על הב' ויהיו ב' נסירם מהג' אשר עליהם ישאר א' ונשימנו עליו
 
|-
 
|-
|Additional emphasis: in the repetitive procedure one should always use this approximation <math>\scriptstyle a+\frac{b}{2a}</math> instead of the previous approximation <math>\scriptstyle a+\frac{b}{2a+1}</math>, even if b≥a, in order to avoid confusion
+
|
|style="text-align:right;"|ועוד שכבר אמרנו שהרוצה להכפיל המעשים, שאין לו צורך להוסיף אחד, אף אם יהיה השארית גדול מהשרש, כי בהכפל יתקרב אל האמת בכל מאויו ולא יתבלבל במעשיו בתוספת אחד, אבל לעולם יעשה בלי תוספת ואין לו לעיין כי אם לקחת מרובע השברים היוצאים בחלוק בפעם ההיא ולחלקו לכפל השרש והיוצא יחסרהו משרשו וכן לעולם<br>
+
::*We multiply 1 by itself; the result is 1. We subtract it from the 5 that is above it; 4 remains. We write it above it.
כי לא ציויתי להוסיף אחד כאשר השארית כשרש, או יותר, אלא למסתפק בפעם אחת<br>
+
:::<math>\scriptstyle{\color{blue}{5-1^2=5-1=4}}</math>
אבל הרוצה לידע להתקרב מאד ולהכפיל המעשים לא יוסיף ולא יתבלבל
+
|style="text-align:right;"|ונכפול הא' על עצמו ויעלה א' נסירנו מהה' אשר עליו וישארו ד' נשימם עליו
 
|-
 
|-
|Another approximation:<br>
+
|
*<math>\scriptstyle\sqrt{a^2+b}\approx a+\frac{2\sdot a\sdot b}{\left(2a\right)^2+b}</math>
+
:The ranks are completed, so we do not lower again.
|style="text-align:right;"|ואם תרצה להתקרב אל האמת ברגע במעט עמל, חבר הנשאר למרובע כפל השרש שבידיך וחלק עליו כפל הנשאר בכפל השרש והיוצא חברהו לשרש שבידיך ויהיה שרש קרוב מאד אל האמת
+
|style="text-align:right;"|וכבר שלמו המעלות ולא נוריד <sup>עוד</sup>
|-
 
|The second approximation:<br>
 
*<math>\scriptstyle\sqrt{a^2+b}\approx\left[a+\frac{2\sdot a\sdot b}{\left(2a\right)^2+b}\right]+\frac{2\sdot\left[a+\frac{2\sdot a\sdot b}{\left(2a\right)^2+b}\right]\sdot\frac{b^3}{\left[\left(2a\right)^2+b\right]^2}}{\left[2\sdot\left[a+\frac{2\sdot a\sdot b}{\left(2a\right)^2+b}\right]\right]^2+\frac{b^3}{\left[\left(2a\right)^2+b\right]^2}}</math>
 
|style="text-align:right;"|ואם תרצה להתקרב יותר אל האמת, קח מעוקב הנשאר הנזכר מהמורה כפול
 
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle\sqrt{3}</math>
+
:The digits that are generated in each phase are the root, which is: 101.
|style="text-align:right;"|ר"ל שאם רצינו לדעת שרש
+
|style="text-align:right;"|והנה ה{{#annot:term|204,1332|PBaR}}אותיות{{#annotend:PBaR}} והם שנתחדשו פעם בפעם הם השרש והוא 101
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{\sqrt{3}\approx1+\frac{2\sdot1\sdot\left(3-1\right)}{\left(2\sdot1\right)^2+\left(3-1\right)}=1+\frac{2\sdot1\sdot2}{\left(2\sdot1\right)^2+2}=1+\frac{4}{6}}}</math>
 
|style="text-align:right;"|והיה כפל השרש מחובר עם הנשאר היה הכל ששה והנשאר בתחלה היו שתים
 
|-
 
 
|
 
|
::<math>\scriptstyle{\color{blue}{3-\left(1+\frac{4}{6}\right)^2=\frac{2^3}{\left[\left(2\sdot1\right)^2+2\right]^2}=\frac{8}{6}\sdot\frac{1}{6}}}</math>
+
{|class="wikitable" style="margin-left: auto; margin-right: 0px; text-align:center;"
|style="text-align:right;"|תקח מעוקב השנים, שהוא שמונה, ותקרא לו שם משישית שישית, ר"ל ח' ששמה שישית, וזה יהיה הנשאר במרובע על כפל השרש האחרון
 
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{\sqrt{3}\approx\left(1+\frac{4}{6}\right)+\frac{2\sdot\left(1+\frac{4}{6}\right)\sdot\left(\frac{8}{6}\sdot\frac{1}{6}\right)}{\left[2\sdot\left(1+\frac{4}{6}\right)\right]^2+\left(\frac{8}{6}\sdot\frac{1}{6}\right)}=1+\frac{112}{153}}}</math>
+
{|style="margin-left: auto; margin-right: 0px;"
|style="text-align:right;"|ותעשה ממנו עם זה השרש האחרון כמו שעשית לשארית הראשון עם השרש הראשון ויעלה כל השרש א' שלם וקי"ב חלקים מקנ"ג בשלם
+
| style="text-align: left;" | &#8199;&#8199;1&#8199;4
 
|-
 
|-
|
+
| style="text-align: left;" | 10375
::<math>\scriptstyle{\color{blue}{\left(1+\frac{112}{153}\right)^2=3-\frac{2}{153^2}}}</math>
 
|style="text-align:right;"|שמרובעו הוא ג' שלימים חסר ב' חלקים ממרובע קנ"ג בשלם
 
 
|-
 
|-
|
+
| style="text-align: left;" | 120
|style="text-align:right;"|וראה גם ראה גם נתקרבת אל האמת, שאין ממרובע השרשך למרובע הנשאל אחד מרבבה בשלם ודי
 
 
|-
 
|-
 +
| style="text-align: left;" | &#8199;&#8199;201
 
|}
 
|}
{|
 
 
|-
 
|-
|
+
|}
 
 
= Section Two: Fractions =
 
!style="text-align:right;"|<big>החלק השני בשברים</big>
 
 
|-
 
|-
 
|
 
|
== Introduction ==
+
:Since a number is left there, this is not a proper root, but approximate.
|
+
|style="text-align:right;"|ולפי שנשאר ולפי שנשאר שם מספר מה אין זה שרש אמיתי אבל הקרוב
 
|-
 
|-
|Introduction consists of three principles:
+
|It will be explained how we come closer to the truth.
|style="text-align:right;"|לפני הפרקים אקדים הקדמה אחת ובה שלשה פרקים&#x202B;:
+
|style="text-align:right;"|ועוד נתבאר איך נתקרב יותר אל האמת
 
|-
 
|-
 
|
 
|
*First principle - fractionalization
+
 
|style="text-align:right;"|השער הא' בפריטה
+
==== <span style=color:Green>reason: procedure</span> ====
 +
|
 +
|-
 +
|The reason we say that if the number of the ranks is an odd number we take the last digit alone and seek a number to put beneath it and if it is an even number we take the two last digits, the last as tens and the one that precedes it as units: because for every product of a non-units rank by itself, the rank of the units of this product [<math>\scriptstyle{\color{OliveGreen}{\left(a\sdot10^n\right)^2}}</math>] is always an odd number [<math>\scriptstyle{\color{OliveGreen}{\left(2n-1\right)}}</math>].
 +
|style="text-align:right;"|<big>וטעם</big> אמרנו שאם מספר מעלות החשבון נפרד שנקח האחרון לבד ונבקש מספר נשים תחתיו וכו' ואם הם זוג שנקח השני רשמים האחרונים האחרון לעשרות ושלפניו לאחדים הוא לפי שכל כפל כלל בעצמו הנה מעלת האחדים העולים בכפל ההוא היא נפרד לעולם
 
|-
 
|-
|
+
|Since the decimal place of the product of every two digits, i.e. the rank of this product is as [the sum of] the ranks of both digits minus one, as we have explained in chapter three.
*Second principle - multiplication [= fractions of fractions, fractions of integers]
+
|style="text-align:right;"|לפי שמקום הנחת כפל כל שני מספרים ר"ל שמדרגת הכפל ההוא כמדרגות שני המספרים יחד חסר אחד כמו שביארנו בפרק הג&#x202B;'
|style="text-align:right;"|השער הב' בהכאה
 
 
|-
 
|-
|
+
|Hence, the rank of the units of the product of every number by itself is double its rank minus one, and this is always an odd number.
*Third principle - equalization
+
|style="text-align:right;"|ולזה מדרגת אחדי מספר כפל מספר על עצמו והיא כפל מדרגותיו חסר אחד והנה הם הנפרדים לעולם
|style="text-align:right;"|השער השלישי בהשואה
 
 
|-
 
|-
|
+
|So, when the number of ranks of the number is odd, we subtract from the last rank [= the leftmost rank] the square of the root, i.e. the square of the digit that we write beneath it, which is part of the root.
=== Fractionalization ===
+
|style="text-align:right;"|ולזה כשהמספר מעלות המספר נפרד אנו מוציאים מהמעלה האחרונה שהיא נפרדת מרובע השרש ר"ל מרובע המספרים אשר שמנו תחתיו שהוא חלק השרש
!style="text-align:right;"|<big>השער הראשון בפריטה</big>
 
 
|-
 
|-
|
+
|But, if the number [of ranks] is even, we subtract [the square of the last rank of the root from] the two last ranks [of the number] one as tens and the other as units. For the units of the product of a number by itself is always placed in an odd rank and the tens in an even rank, and this is clear.
*Converting integers to fractions
+
|style="text-align:right;"|ואם הם זוג לקחנו השתים האחרונות זו לעשרות וזו לאחדי' &#x202B;<ref>33v</ref>בענין שלעולם אחדי כפל כל מספר בעצמו יצאו ממעלה נפרדת והעשרות ממעלת זוג וזה ברור
|style="text-align:right;"|הפריטה היא חזרת השלימים לחלקים מהמין אשר תרצה
 
 
|-
 
|-
|
+
|Since we have explained that the rank of the units of the product [of a number by itself] is double the ranks of the root, which is the number that we multiply by itself, minus one, we find that if the root is in the first [rank], the product is also in the first [rank]; if the root is in the second [rank] the square is in the third [rank]; if [the root is in] the third, [the square is] in the fifth; if [the root is in] the fourth, [the square is] in the seventh; and so on.
*Converting integers and fractions to fractions
+
|style="text-align:right;"|ואחר שביארנו שמדרגות אחדי הכפל הם כפל מעלות השרש שהוא המספר שכפלנוהו על עצמו חסר אחת נמצא שאם השרש<s>ם</s> הוא בראשונה [הכפל ג"כ בראשונה]&#x202B;<ref>marg.</ref> ואם השרש בשנית המרובע בשלישית ואם בשלישית בחמישית ואם ברביעית בשביעית וכן לעולם
|style="text-align:right;"|ואם יש בידיך שלמים ושברים להשיב הכל ממין השברי' ההם
 
 
|-
 
|-
|
+
|Thus, the addition of one rank in the root requires an addition of two ranks in the square.
*Converting fractions and fractions of fractions to lower fractions
+
|style="text-align:right;"|הנה כי תוספת מעלה אחת בשרש יחייב תוספת א"כ ב' מעלות במרובע
|style="text-align:right;"|וכן אם יש לך שברים ושברי שברים כמו שיהיו להשיב כלם מהמין הקטן מהם
 
 
|-
 
|-
|'''Converting integers to fractions'''<br>
+
|We do accordingly in the procedure: for every two ranks added to the number, we add one [rank] to the root, by lowering the root each time by one rank and adding one rank to it.
:<math>\scriptstyle n+\frac{a}{b}=\frac{\left(n\sdot b\right)+a}{b}</math>
+
|style="text-align:right;"|וכן נעשה במעשה <s>כ</s> <sup>כי</sup> לכל ב' מעלות מתוספת בחשבון אנו מוסיפים אחד בשרש וזה שאנו מורידין השרש מעלה אחת בכל פעם ומוסיפים עליו מעלה אחת והוא המספר אשר אנו שמים לפניהם בכל פעם
|style="text-align:right;"|המשל שלימים בשברים&#x202B;:
 
 
|-
 
|-
|
+
|We find that tnumber of the shifting phases [in the procedure] is as the number of the even ranks of the [given] number from the first decimal position as well as the number of ranks of the root from the first rank. You will see all this explained in the diagram.
*<math>\scriptstyle3+\frac{5}{7}</math>
+
|style="text-align:right;"|נמצא שכמספר פעמי ההורדה כך הוא מספר זוגי מעלות החשבון על מקום ההנחה הראשונה וכמספר <sup>זה הוא</sup> <s>זהו</s> מספר מעלות השרש על המעלה האחת הראשונה וכל זה תראה מפורש בצורה
|style="text-align:right;"|אם היו בידיך ג' שלמים וה' שביעיות
 
 
|-
 
|-
 +
!<span style=color:Green>The reason for shifting the subtrahend one rank to the right each phase:</span>
 
|
 
|
:<math>\scriptstyle{\color{blue}{3+\frac{5}{7}=\frac{\left(3\sdot7\right)+5}{7}=\frac{21+5}{7}=\frac{26}{7}}}</math>
 
|style="text-align:right;"|הנה השילימים ישובו שביעיות, שהוא מין שברים שעמו, בהכפל אלו השלשה שלימים במורה השביעיות שהוא הז' ויעלו כ"א ובחברך אליהם הה' שביעיות אשר עמהם, יהיו הכל כ"ו שלימים שביעיות
 
 
|-
 
|-
|The reason is explained in chapter four on division within the discussion on [divisors]  
+
|The reason for lowering by one rank each time is that what is added in the root at that time is one rank lower than what was [before], therefore, the rank of the [square] is also lower by one rank, i.e. what is added now in the root multiplied by what is already given to the root in the previous phase or phases.
|style="text-align:right;"|וכל זה תראה ברור ומפורש בטעם בבחינת המתחלק למורים כמו שנתבאר בפרק הד' והוא הדין והוא הטעם
+
|style="text-align:right;"|<big>והטעם</big> הורדת מעלה אחת בכל פעם הוא לפי שהמתוסף בשרש בפעם הזאת הוא מעלה אחת פחות מאשר {{#annot:term|2510,178|cJCp}}נתוסף{{#annotend:cJCp}} בתחלה וא"כ מעלת הכפל יהיה ג"כ מעלה אחת פחות ר"ל כפול זה המתוסף עתה בשרש באשר היה כבר המונח לשרש בפעם או <sup>ב</sup>פעמים העוברים
 
|-
 
|-
|'''Converting fractions and fractions of fractions to fractions'''<br>
+
|Because if what is given at first is, for instance, a product of the digit by itself,  what we add now in the root is less than the former by one rank, and when we multiply it by the former, [the product] is subtracted from the rank that [the former] is subtracted.
:<math>\scriptstyle\frac{g}{b}+\left(\frac{a}{b}\sdot\frac{c}{d}\right)=\frac{\left(g\sdot d\right)+\left(a\sdot c\right)}{b}\sdot\frac{1}{d}</math>
+
|style="text-align:right;"|כי ע'ד'מ' המושם בתחלה הוא מכפל המספר בעצמו וכאשר אנחנו מוסיפים עתה בשרש זה המתוסף הוא פחות מעלה אחת מהראשון וכאש' כפלנוהו בראשון יגרע זאת המעלה אשר גרע זה ממנו
|style="text-align:right;"|כי אם אין בידיך כי אם שברים ושברי שברים, שתכפול השברים במורה השברי שברים ושבר שברים שתכפול ותחבר אליהם השברי שברים וכן לעולם
 
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle3+\left(\frac{2}{4}\sdot\frac{1}{5}\right)+\left(\frac{4}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)+\left(\frac{2}{3}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)</math>
+
:Example: if the product of [the last digit of the root] is subtracted from the fifth rank, then the rank of [that digit] is in the third rank, and therefore [its product] is subtracted from the fifth rank, which is double its rank minus one [5=(3+3)-1].
|style="text-align:right;"|ואביא משל א' לכל זה המשל אם היו לך ג' שלימים וב' רביעיות חמישית וד' שמיניות רביעית חמישית כזה&#x202B;:
+
:<math>\scriptstyle{\color{OliveGreen}{\left(a00\right)^2=\left(a^2\right)0000}}</math>
 +
|style="text-align:right;"|כי המשל אם כפל השרש הראשון בעצמו היה לוקח מהמעלה החמישית הוא היה מן המעלה השלישית ולזה לקח &#x202B;<ref>34r</ref>מהחמישית שהוא כפל מעלותיו חסר אחת
 
|-
 
|-
 
|
 
|
 +
:When we add now to the root, what is added is in the second rank, and when we multiply what is in the second rank by what is in the third rank, the rank of this product is in the fourth rank, which is the number of the ranks of both digits minus one [4=(3+2)-1]. Therefore, we shift what was first one rank lower, as it should be subtracted from there.
 +
|style="text-align:right;"|וכאשר נוסיף זה עתה בשרש יהיה המתוסף מהמעלה השנית וכאשר כפלנו אשר מהמעלה השנית על אשר במעלה הג' ר"ל כאשר אנו כופלים זה המתחדש עתה שהוא במעלה הב' באשר היה בתחלה שהוא מהמעלה הג' יהיה מדרגת זה הכפל במדרגת הד' שהם מספר מעלות שני המספרים חסר אחת ולזה שמנו אשר בתחלה מעלה אחת למטה כי משם הוא ראוי לקחתו
 +
|-
 
|
 
|
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
+
:When we multiply the added root by itself, [the product] is subtracted from the third rank only, for the product of [a digit in the second rank] by [a digit in the second rank] should be subtracted from the third [rank], which is as [the sum of] the ranks of the two digits minus one [3=(2+2)-1]. Therefore, we shift [the former digit of the root] one rank lower, as [its product] should be subtracted from there.
 +
:<math>\scriptstyle{\color{OliveGreen}{\left(ab0\right)^2=\left(a^2\right)0000+\left[2\sdot\left[\left(a\sdot b\right)000\right]\right]+\left(b^2\right)00}}</math>
 +
|style="text-align:right;"|השרש המתוסף כאשר כפלנוהו בעצמו יגרע מעלה אחרת ואין לו לקח' כי אם מהמעלה השלישית כי כפל בעל שתי מעלות בבעל שתי מעלות יש לו לקחת מהשלישית שהוא כ{{#annot:term|203,1344|LiSQ}}מדרגות{{#annotend:LiSQ}} שני המספרים חסר אחת לכן שמנוהו מעלה אחת לפניהם כי משם ראוי לו לקחת
 
|-
 
|-
| 3 || 9 || 8 || 4 || 5
+
|In each phase, the rank, from which the product of [the digit added in the root] by the former [digits] is to be subtracted, is lower by one than [the rank of] the product of [the digit added in the root] in the previous phase by the [former digits], and [the rank of] its product by itself is lower by two.
 +
|style="text-align:right;"|וכן בכל פעם יחסר מעלה ממקום הראוי לקחת עתה בכפל המתחדש בראשונים מאשר היה מכפל המתחדש בפעם העובר עמהם וכפלו בעצמו יחסר שתים
 
|-
 
|-
| 2 || &nbsp;|| 4 || 2 || &nbsp;
+
|All this is explained in reason and in diagram.
|}
+
|style="text-align:right;"|וכל זה מבואר בטעם ובצורה
 
|-
 
|-
|
+
|When we cannot subtract [the product] even once, we shift [the digit added in the root] once, and what is added in the root is lower by two ranks from [the former digit], so we lower it by two ranks, to be subtracted from the rank that is lower by two and the product of what is added in the root by itself is subtracted from the rank that is lower by four ranks [from where the product of the former digit was subtracted], since [the added digit] is lower by two ranks.
:*First we convert the 3 integers to fifths by multiplying them by 5, which is their denominator. This is because each integer is 5 fifths. Hence, they are 15 fifths.
+
|style="text-align:right;"|וכאשר אין אנו יכולים להוציאם אפי' פעם אחת אנו שמים ומורידים אותם פעם אחרת כי כאשר תוסף בשרש יהיה פחות ב' מעלות מאשר בתחלה לכן הורדנום ב' מעלות שיקחו מב' מעלות פחות וכפל השרש המתוסף בעצמו יקח מד' מעלות פחות לפי שירד שני מעלות
::<math>\scriptstyle{\color{blue}{3=\frac{3\sdot5}{5}=\frac{15}{5}}}</math>
 
|style="text-align:right;"|נשיב ראשונה הג' שלמים לחמישיות והוא בכפלנו אותם בה' שהוא המורה עליהם וזה כי כל שלם הוא ה' חמישיות ויהיה ט"ו חמישיות
 
 
|-
 
|-
 
|
 
|
::If there was a number beneath it [as the numerator of the 5] we would have add it to them, so they are also fifths.
+
:Example: if the first [digit of the root] is in the fourth [rank], its product by itself  is subtracted from the seventh rank, and if [the preceding digit of the root] is a zero, what is added [after it in the root] is in the second [rank] and its product by itself should be subtracted from the third [rank], so we subtract four ranks.
|style="text-align:right;"|ואם היה תחתיו מספר היינו מחברים אותו עליהם שהיו ג"כ חמישיות
+
:<math>\scriptstyle{\color{OliveGreen}{\left(a0b0\right)^2=\left(a^2\right)000000+\left[2\sdot\left[\left(a\sdot b\right)00000\right]\right]+\left(b^2\right)00}}</math>
 +
|style="text-align:right;"|כי המשל אם הראשון היה ברביעית היה לו ליקח כפלתו בעצמו מהמעלה השביעית ואשר מתוסף עתה כשהיה 0 בפעם אשר בנתים יהיה בשנית וראוי לקחת כפלו בעצמו מהשלישית הרי כשנגרע ד' מעלות
 
|-
 
|-
|
+
|All this is also explained in reason and in diagram.
:*Since there is no [number beneath the 5], we further convert them to quarters of a fifth, which is the denominator of the 2, by multiplying them by 4. Because each fifth is 4 quarters of a fifth. The result is 60 quarters of a fifth. We add them to the two that is beneath [the 4], which is also of the same type, i.e. quarters of a fifth. The total is 62.
+
|style="text-align:right;"|גם כל זה הוא מבואר בטעם ובצורה
::<math>\scriptstyle{\color{blue}{\frac{15}{5}+\left(\frac{2}{4}\sdot\frac{1}{5}\right)=\frac{\left(15\sdot4\right)+2}{4}\sdot\frac{1}{5}=\frac{60+2}{4}\sdot\frac{1}{5}=\frac{62}{4}\sdot\frac{1}{5}}}</math>
 
|style="text-align:right;"|אכן אחר אשר לא נמצא שם נשיבם עוד רביעיות חמישית [שהוא המורה הב' וזה שנכפלם בד' כי כל חמישית שלמה היא ד' רביעיות החמישית ויעלו ס' רביעיות חמישית ונחבר] ונחבר אליהם השנים אשר תחתיו שהם ג"כ מזה המין ר"ל רביעיות חמישית ויעלו ס' רביעיות חמישית ונחבר אליהם הב' אשר תחתיו שהם ג"כ מזה המין ר"ל רביעיות חמישית יעלה הכל ס"ב
 
 
|-
 
|-
 +
!<span style=color:Green>The reason for doubling the digits of the root:</span>
 
|
 
|
:*We convert them to eighths of quarters of a fifth by multiplying them by 8, the result is 496. We add to them the 4 that is beneath [the 8], which is of their type. The total is 500.
 
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left(\frac{62}{4}\sdot\frac{1}{5}\right)+\left(\frac{4}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)&\scriptstyle=\frac{\left(62\sdot8\right)+4}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\\&\scriptstyle=\frac{496+4}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{500}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\\\end{align}}}</math>
 
|style="text-align:right;"|נשיבם שמיניות רביעיות חמישית וזה בשנכפלם בח' יעלה תצ"ו נחבר להם הד' אשר תחתיו שהם ממינם יעלה הכל ת"ק
 
 
|-
 
|-
|
+
|The reason for doubling the root, i.e. that in every [phase of the procedure] we multiply [the digit that is added to the root] by double the former [digit of the] root and by itself, is because every thing that is added to the root is added to both sides [= multiplicands] of the square.
::<math>\scriptstyle{\color{blue}{\frac{500}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{500\sdot9}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{4500}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}}}</math>
+
|style="text-align:right;"|<big>וטעם</big> הכפל השרש ר"ל שבכל הולדה אנו כופלים אשר <s>הו</s> נתחדש אז ונמצא &#x202B;<ref>34v</ref>שאנו כופלים המתחדש בכפל השרש הראשון ובעצמו הוא לפי שכאשר {{#annot:term|2510,178|ELza}}ניתוסף{{#annotend:ELza}} דבר בשרש הוא ניתוסף בשתי צלעות המרובע
|style="text-align:right;"|נשיבם תשיעיות שמינית רביעית חמישית וזה בשנכפלם בט' יעלו 4500 ואחרי שלא נמצא תחתיו דבר לא נחבר אליהם דבר
 
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left(\frac{4500}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)+\left(\frac{2}{3}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)&\scriptstyle=\frac{\left(4500\sdot3\right)+2}{3}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\\&\scriptstyle=\frac{13500+2}{3}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\\&\scriptstyle=\frac{13502}{3}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\\\end{align}}}</math>
+
:I.e. if the root at the beginning is 30, the square is 900.
|style="text-align:right;"|אבל נשיבם שלישיות תשיעית שמינית רביעית חמישית והוא שנכפלם בג' יעלו 13500 נחבר אליהם הב' אשר תחתיו שהוא ממינם יעלה הכל 13502 וכלינו כל מלאכתנו
+
:<math>\scriptstyle{\color{blue}{\left(30\right)^2=900}}</math>
 +
|style="text-align:right;"|ר"ל שאם מתחלה היה השרש 30 הנה המרובע היה 900
 
|-
 
|-
 
|
 
|
*If there are no integers there at all.
+
:If we add 5 to it, it becomes 35 and its square is 35 by 35, which is as saying: the product of 30 by 30, the product of 5 by 30, the product of 30 by 5, and the product of 5 by 5.
:<math>\scriptstyle{\color{red}{\left(\frac{2}{4}\sdot\frac{1}{5}\right)+\left(\frac{4}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)+\left(\frac{2}{3}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)}}</math>
+
|style="text-align:right;"|ואם אנו מוסיפים עליו ה' יהיוה ל"ה ומרובעו הוא כפל ל"ה על ל"ה שהוא כאומרנו לכפל ל' בל' וכפל ה' [בל' וכפל ל' בה' וכפל ה']&#x202B;<ref>marg.</ref> בה&#x202B;'
|style="text-align:right;"|ואם לא היה שם שלמים כלל
 
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left(\frac{2}{4}\sdot\frac{1}{5}\right)+\left(\frac{4}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)+\left(\frac{2}{3}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)&\scriptstyle=\frac{\left[\left[\left(2\sdot8\right)+4\right]\sdot9\sdot3\right]+2}{4\sdot5\sdot8\sdot9\sdot3}\\&\scriptstyle=\frac{\left[\left(16+4\right)\sdot9\sdot3\right]+2}{4\sdot5\sdot8\sdot9\sdot3}\\&\scriptstyle=\frac{\left(20\sdot9\sdot3\right)+2}{4\sdot5\sdot8\sdot9\sdot3}\\&\scriptstyle=\frac{\left(180\sdot3\right)+2}{4\sdot5\sdot8\sdot9\sdot3}\\&\scriptstyle=\frac{540+2}{4\sdot5\sdot8\sdot9\sdot3}\\&\scriptstyle=\frac{542}{4\sdot5\sdot8\sdot9\sdot3}\\\end{align}}}</math>
+
:We find that because of the addition of 5 [to the root], [the square] increases by twice the product of 5 by 30, and once the product of 5 by 5.
|style="text-align:right;"|היה לנו להתחיל מהב' אשר תחת המורה הראשון אשר תחתיו מספר מה ואם הוא שני לחשבון המורים והיה לנו לכפלם בח' שהוא המורה הסמוך ויעלו י"ו ולחבר להם הד' אשר תחתיו ויעלו כ' ונכפלם עוד בט', יהיו ק"פ, נכפלם עוד בג', יעלו 540, נחבר להם הב' אשר תחתיו ויעלה הכל 542
+
|style="text-align:right;"|נמצא שנתוסף בסבת תוספת הה' כפל ה' על ל' פעמים ר"ל ה' בה' פעם אחת ובעצמו פעם אחת
 +
|}
 +
*<math>\scriptstyle{\color{blue}{\left(30+5\right)^2=\left(35\right)^2=35\sdot35=\left(30\sdot30\right)+\left(5\sdot30\right)+\left(30\sdot5\right)+\left(5\sdot5\right)=\left(30\right)^2+\left[\left[2\sdot\left(5\sdot30\right)+5^2\right]\right]}}</math>
 +
{|
 
|-
 
|-
|
+
|Therefore, we double the root, but when we lower [the digits of the root], we double only the [digit] the was added in the preceding phase that was not doubled yet, as all the [other digits] are already doubled, therefore we do not double them again, since the root consists of the digits that are added in each phase that are not doubled at all.
|style="text-align:right;"|הרי לנו הכל מפורש במעשה ובטעם איך ישוב הכל מהמין האחרון, בין אם יש שלמים עם שברים, בין אם אין שם שלמים והיוצא באחרונה הם מהמין האחרון, ר"ל כי אלו אשר יצאו לנו במשלנו הנזכר הם שלישיות תשיעית שמינית רביעית חמישית
+
|style="width:45%; text-align:right;"|ולזה אנו כופלים השרש וכשאנו מורידים אין אנו כופלים אלא אשר מתוסף בפעם העובר בסמוך שלא נכפל אבל כל אחדים כבר נכפלו לכן אין אנו כופלים אותו פעם אחרת <sup>כלל</sup> ומכל זה תדע כי השרש הוא המספרים המתחדשים בכל פעם פשוטים בלי כפל כלל
 
|-
 
|-
 
|}
 
|}
Line 4,100: Line 4,659:
 
|
 
|
  
=== Compound Fractions ===
+
=== <span style=color:Green>Approximations</span> ===
!style="text-align:right;"|<big>השער השני בהכאה
+
|
 
|-
 
|-
|Fractions of integers or fractions of fractions
+
|When something remains there after you have completed the extraction of the root, and you wish to come closer to the truth, consider this remainder.
|style="text-align:right;"|ההכאה היא כאשר השברים אינם שברים משלם אחד, או משבר אחד, אבל הם ממספר שלמים, או ממספר שברים
+
:<math>\scriptstyle{\color{OliveGreen}{a^2+b}}</math>
 +
|style="width:45%; text-align:right;"|וכאשר נשאר שם דבר מה אחר אשר השלמת להוציא השרש ותרצה להתקרב עוד אל האמת עיין אשר נשאר
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle\frac{2}{5}\sdot\frac{3}{4}\sdot5</math>
+
*<span style=color:Green>First approximation:</span>
|style="text-align:right;"|ר"ל כאומרנו שתי חמישיות משלש רביעיות מה' שלמים כזה&#x202B;:
+
:*If it is less than the root, double the root and set it as a denominator to divide the remainder. The result is the addition to the integer [received through the algorithm] in the [new approximate] root.
 +
::<math>\scriptstyle{\color{OliveGreen}{b<a\longrightarrow\sqrt{a^2+b}\approx a+\frac{b}{2a}}}</math>
 +
|style="text-align:right;"|ואם הוא פחות מהשרש כפול השרש והוצא את מוריו וחלק השארית ההיא עליהם והיוצא הוא העודף בשרש על השלמים ההם
 
|-
 
|-
 
|
 
|
 +
:*If the remainder is greater or equal to the root, and you do not intend to come closer to the root except by this time alone, then double the root, add one, and divide the remainder by [the sum]. The result is the fractions added in the root to the initial integer.
 +
::<math>\scriptstyle{\color{OliveGreen}{b\ge a\longrightarrow\sqrt{a^2+b}\approx a+\frac{b}{2a+1}}}</math>
 +
|style="text-align:right;"|ואם השארית היתה גדולה מהשרש או כמותו ואין דעתך {{#annot:term|1612,1874|blCK}}להתקרב עוד אל השרש{{#annotend:blCK}} כי אם מה שתתקרב אליו בפעם זו לבד תכפול השרש ותוסיף עליו א' ותחלק עליהם זאת השארית והיוצא הם השברים הנוספים בשרש על השלמי' אשר יצאו ראשונה
 +
|-
 
|
 
|
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
+
*<span style=color:Green>Second approximation:</span>
 +
:If you wish to come closer to the truth, even if the truth is hidden from the eyes of all living [Job 28, 21], as '''Euclid''' proved, multiply the integer and fractions by themselves, as I will explain in the chapter on multiplication, in the section on fractions and the result will exceed or fall short of the initial number [whose root is being extracted].
 +
|style="text-align:right;"|ואם תרצה להתקרב עוד אל האמת ואם האמת ''נעלמה מעיני כל חי''&#x202B;<ref group=note>איוב כח, כא</ref> כאשר ביאר אוקלידס במופת כפול אלו השלמים והשברים על עצמם כאשר אבאר בחלק השברים בפרק הכפל ויעלה פחות או יותר מהחשבון הראשון
 
|-
 
|-
| colspan=2 |&nbsp;|| 5
+
|
 +
:Double the root, as stated, and divide the excess or deficit by [the result].
 +
|style="text-align:right;"|וכפול השרש כאשר אמרנו וחלק אליו זה העודף &#x202B;<ref>35r</ref>או חסרון
 
|-
 
|-
| &nbsp;|| 4
+
|
 +
:*Subtract the result from the preceding fractions if the number [whose root is being extracted] is less than the square of the root that you extracted in the previous stage.
 +
|style="text-align:right;"|והיוצא הוציאנו מהשברים הראשונים אם המספר היה פחות ממרובע השרש אשר הוצאת בפעם הקודמת
 +
|}
 +
::<math>\scriptstyle{\color{OliveGreen}{\left(a+\frac{b}{2a}\right)^2>a^2+b\longrightarrow\sqrt{a^2+b}\approx\left(a+\frac{b}{2a}\right)-\frac{\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)}{2\sdot\left(a+\frac{b}{2a}\right)}}}</math>
 +
{|
 
|-
 
|-
| 5 || 3
+
|
|-
+
:*If the square is less than the [given] number, add the result to the preceding fractions.
| 2
+
|style="width:45%; text-align:right;"|ואם היה המרובע פחות מהמספר תוסיף זה היוצא על השברים הראשונים
 
|}
 
|}
 +
 +
::<math>\scriptstyle{\color{OliveGreen}{\left(a+\frac{b}{2a}\right)^2<a^2+b\longrightarrow\sqrt{a^2+b}\approx\left(a+\frac{b}{2a}\right)+\frac{\left(a^2+b\right)-\left(a+\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}}}</math>
 +
{|
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|והנה אומרנו שני חמישיו' מג' רביעיות מה' שלמים הוא כאומרנו שלקחנו ה' שלמים ועשינו מהם ד' חלקי' שוים ולקחנו הג' מהם, שזהו ג' רביעיות מה' שלמים<br>
+
:The sum or the remainder will be the fraction added in the root to the initial integer.
וחלקנו עוד אלו הג' חלקים לה' חלקים שוים ולקחנו הב' מהם, שזהו פי' ב' חמשיות מג' רביעיות מה' שלמים
+
|style="width:45%; text-align:right;"|והעולה או הנותר יהיו השברים העודפי' בשרש על השלמים הראשונים
 
|-
 
|-
|No need for fractionalization only multiplication<br>
+
|
:<math>\scriptstyle\frac{a}{b}\sdot\frac{c}{d}=\frac{a\sdot c}{b}\sdot\frac{1}{d}</math><br>
+
:*The example for this is 174 in the second diagram.
:<math>\scriptstyle\frac{a}{b}\sdot\frac{c}{d}\sdot n=\frac{a\sdot c\sdot n}{b}\sdot\frac{1}{d}</math>
+
::<math>\scriptstyle{\color{OliveGreen}{\sqrt{10375}}}</math>
|style="text-align:right;"|ואין כאן שברים כי אם ממין אחד ואינך צריך לעשות פריטה כלל
+
|style="text-align:right;"|המשל בזה הוא בצורה השנית 174
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\frac{2}{5}\sdot\frac{3}{4}\sdot5&\scriptstyle=\left[\left(\frac{2}{5}\sdot\frac{1}{4}\right)+\left(\frac{2}{5}\sdot\frac{1}{4}\right)+\left(\frac{2}{5}\sdot\frac{1}{4}\right)\right]\sdot5\\&\scriptstyle=\frac{2\sdot3}{5}\sdot\frac{1}{4}\sdot5\\&\scriptstyle=\frac{6}{5}\sdot\frac{1}{4}\sdot5\\&\scriptstyle=\frac{6\sdot5}{5}\sdot\frac{1}{4}\\&\scriptstyle=\frac{30}{5}\sdot\frac{1}{4}\\\end{align}}}</math>
+
::*<span style=color:Green>First approximation:</span>
|style="text-align:right;"|אבל אתה צריך לעשות הכאה והוא כי אומרנו ב' חמישיות מג' רביעיות הרי הוא כאומרנו ב' חמישיות רביעית וב' חמישיות רביעית וב' חמישיות רביעית ולזה נכה הב' בג', שהוא מספר הרביעיות, יעלו ו', הנה ידענו שהב' חמישיות מג' רביעיות הם ו' חמישיות רביעיות והוא ברור במעשה ובטעם<br>
+
::If it were less than the root, we would have divide it by double the root, which is 202, without adding one.
ולפי שאמרנו מה' שלמים, הוא כאלו יש לנו בידינו ו' חמישיות רביעית משלם וכן עד ה' פעמים, לכן נכה הו', שהוא מספר השברים אשר בידינו, בה' שהוא מספר השלמים, שהוא כמספר הפעמים אשר ישנך בידינו ויעלו ל', הרי לנו שהבב' חמישיו' מג' רביעיות מה' שלמים הם ל' חמישיות רביעית והקש על זה
+
|style="text-align:right;"|ואם היה פחות מהשרש היינו מחלקים אותו לכפל השרש שהוא 202 בלי תוספת אחד
 
|-
 
|-
|Combined fractionalization and multiplication of fractions and fractions of fractions
+
|
|style="text-align:right;"|ולפעמים יהיה כמספר שברים ושברי שברים משבר אחת גם ממספר שברים או שלמים ולזה תצטרך לעשות שני המעשים דברים, ר"ל הפריטה והכאה
+
::Since it is more than the root, we double the root, which is 101; so it is 202. We add one to it; they are 203.
 +
::<math>{\color{blue}{\scriptstyle174>101\longrightarrow\left(2\sdot101\right)+1=202+1=203}}</math>
 +
|style="text-align:right;"|וכן עתה שהוא יותר מהשרש נכפול השרש שהנו 101 ויהא 202 ונוסיף עליו א' ויהיו 203
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle\left[\frac{2}{4}+\left(\frac{3}{5}\sdot\frac{1}{4}\right)\right]\sdot\left[\left(\frac{3}{7}\sdot\frac{1}{8}\right)+\left(\frac{4}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left(\frac{3}{9}\sdot\frac{1}{10}\sdot4\right)</math>
+
::We extract its denominators: we find that it is divisible by seven and its seventh is 29. Hence, these are its denominators, i.e. 7 and 29.
|style="text-align:right;"|המשל: שני רביעיות וג' חמישיות רביעית מג' שביעיות שמינית וד' חמישיות שביעית שמינית מג' תשיעיות עשירית מד' שלמים, תעשה הצורה כזה&#x202B;:
+
::<math>\scriptstyle{\color{blue}{203=7\sdot29}}</math>
 +
|style="text-align:right;"|ונוציא מוריו ונמצא שיש לו שביעית ושביעיתו 29 ואלו הם מוריו ר"ל ז' כ"ט
 
|-
 
|-
 
|
 
|
 +
::We divide the remainder, which is 174, by them; the result of division is 6 sevenths and these are the fractions that are added to 101, which are the first integers, in the root.
 +
::<math>\scriptstyle{\color{blue}{\sqrt{10375}\approx101+\frac{174}{203}\approx101+\frac{6}{7}}}</math>
 +
|style="text-align:right;"|ונחלק אליהם השארית שהוא 174 ויצא בחילוק ו' שביעיות שלמות ואלו הם השברים העודפים בשרש על הק"א השלמים הראשונים
 +
|-
 
|
 
|
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
+
::*<span style=color:Green>Second approximation:</span>
 +
::If we wish to come closer to the truth, we multiply this root, i.e. 101 integers and 6 sevenths, by itself; they are 10374 integers, 6 sevenths and a seventh of a seventh; as will be explained in the third chapter of the second section.
 +
::<math>\scriptstyle{\color{blue}{\left(101+\frac{6}{7}\right)^2=10374+\frac{6}{7}+\left(\frac{1}{7}\sdot\frac{1}{7}\right)}}</math>
 +
|style="text-align:right;"|ואם נרצה להתקרב עוד אל האמת נכפול זה השרש ר"ל ק"א שלמים וו' שביעיות על עצמו 10374 שלמים וו' שביעיות שלימות ושביעית שביעית כאשר יתבאר בחלק הב' בפרק הג&#x202B;'
 
|-
 
|-
| rowspan=3 colspan=2 |&nbsp;|| rowspan=2 colspan=3 |&nbsp;|| colspan=2 |&nbsp;|| 4
+
|
 +
::This is less than the requested number by 6 sevenths of a seventh.
 +
::<math>\scriptstyle{\color{blue}{10375-\left(101+\frac{6}{7}\right)^2=\frac{6}{7}\sdot\frac{1}{7}}}</math>
 +
|style="text-align:right;"|וזהו פחות מהחשבון הנשאל בו' שביעיות שביעית
 
|-
 
|-
| 9 || 10
+
|
 +
::Therefore, if you wish to come closer to the truth, you have to double the root, i.e. the 101 integers and 6 sevenths, and divide the 6 sevenths of a seventh by [this product]; then you should add the result to the previous root, which is 101 integers and 6 sevenths and so on.
 +
::<math>\scriptstyle{\color{blue}{\left(101+\frac{6}{7}\right)^2<10375\longrightarrow\sqrt{10375}\approx\left(101+\frac{6}{7}\right)+\frac{\frac{6}{7}\sdot\frac{1}{7}}{2\sdot\left(101+\frac{6}{7}\right)}}}</math>
 +
|style="text-align:right;"|לכן אם אתה רוצה להתקרב עוד אל האמת יש לך לכפול השרש ר"ל הק"א שלימים וו' שביעיות שלימות ולחלק אליהם אלו הו' שביעיות שביעית <s>לכן אם אתה רוצה להתקרב עוד אל האמת יש לך לכפול השרש ר"ל הק"א שלימים וו' שביעיות שלמות ולחלק אליהם אלו הו' שביעיות שביעית</s> והיוצא היה לך להוסיף אותו על השרש הקודם שהיה ק"א שלימים וו' שביעיות וכן לעולם
 
|-
 
|-
| 5 || 7 || 8 || 3
+
|This is the rule [of approximating the root]:
 +
|style="text-align:right;"|זה הכלל
 
|-
 
|-
| 5 || 4 || 4 || 3
+
|
 +
:First, divide the remainder by double the root plus 1, if the remainder is greater than the root or equal to it.
 +
|style="text-align:right;"|ראשונה תחלק הנשאר לכפל השרש עם תוספת א' אם הנשאר גדול מהשרש או כמותו
 
|-
 
|-
|3
+
|
|}
+
:If it is less, do not add 1.
 +
|style="text-align:right;"|&#x202B;<ref>35v</ref>ואם פחות לא תוסיף א&#x202B;'
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ועשה הפריטה לכל אחד מהם תחלה&#x202B;:
+
:Add the result to the root.
 +
|style="text-align:right;"|והיוצא תוסיפנו על השרש
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left(\frac{3}{7}\sdot\frac{1}{8}\right)+\left(\frac{4}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)&\scriptstyle=\frac{\left(3\sdot5\right)+4}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\\&\scriptstyle=\frac{15+4}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\\&\scriptstyle=\frac{19}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\\\end{align}}}</math>
+
:*<math>\scriptstyle{\color{OliveGreen}{b\ge a\longrightarrow\sqrt{a^2+b}\approx a+\frac{b}{2a+1}}}</math>
|style="text-align:right;"|ונעשה פריטה לג' שביעיות שמינית שהן נקשרות בשנכפול זו בזו וזה בשנכפול הג' שהם מספ' השברים בה' שהוא המורה הסמוך ויעלו ט"ו ונחבר להם הד' אשר תחתיו שהם ממין זה יהיו כלם י"ט
+
:*<math>\scriptstyle{\color{OliveGreen}{b<a\longrightarrow\sqrt{a^2+b}\approx a+\frac{b}{2a}}}</math>
 +
|
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\frac{2}{4}+\left(\frac{3}{5}\sdot\frac{1}{4}\right)&\scriptstyle=\frac{\left(2\sdot5\right)+3}{5}\sdot\frac{1}{4}\\&\scriptstyle=\frac{10+3}{5}\sdot\frac{1}{4}\\&\scriptstyle=\frac{13}{5}\sdot\frac{1}{4}\\\end{align}}}</math>
+
:Then, multiply the root, integers and fractions, by itself.
|style="text-align:right;"|עוד נעשה פריטה לב' רביעיות וג' נחשת חמשיות רביעית שהם ג"כ נקשרות וזה שנכפול הב' בה' ויעלו י' ונחבר להם הג' אשר תחתיו ויעלו י"ג
+
|style="text-align:right;"|ותכפול אותו השרש על עצמו שלמים ונשברים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|הנה שאלתנו הראשונה הוא כאלו אמרו שיש בידינו י"ג חמישיות רביעית מי"ט חמישיות שביעית שמינית מג' תשיעיות עשירית הד' שלמים כזה&#x202B;:
+
:If the product is more than the first number, divide the excess by double the root and subtract [the quotient] from [the first approximate root].
 +
|style="text-align:right;"|ואם <s>יצא</s> יעלה יותר מהחשבון הראשון תחלק העודף ההוא על כפל השרש ותחסרנו ממנו
 +
|}
 +
 
 +
:*<math>\scriptstyle{\color{OliveGreen}{\left(a+\frac{b}{2a}\right)^2>a^2+b\longrightarrow\sqrt{a^2+b}\approx\left(a+\frac{b}{2a}\right)-\frac{\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)}{2\sdot\left(a+\frac{b}{2a}\right)}}}</math>
 +
{|
 
|-
 
|-
 
|
 
|
|
+
:If the product is less than the number, see by how much, divide [the excess] also by double the root, then add [the quotient] to [the first approximate] root.
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
+
|style="width:45%; text-align:right;"|ואם היה העולה פחות מהחשבון תראה בכמה הוא ותחלקנו לכפל השרש ג"כ ותוסיפנו על השרש הקודם
 +
|}
 +
 
 +
:*<math>\scriptstyle{\color{OliveGreen}{\left(a+\frac{b}{2a}\right)^2<a^2+b\longrightarrow\sqrt{a^2+b}\approx\left(a+\frac{b}{2a}\right)+\frac{\left(a^2+b\right)-\left(a+\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}}}</math>
 +
{|
 
|-
 
|-
| rowspan=3 colspan=2 |&nbsp;|| rowspan=2 colspan=3 |&nbsp;||colspan=2 | &nbsp;|| 4
+
|And so on.
 +
|style="width:45%; text-align:right;"|וכן לעולם
 
|-
 
|-
| 9 || 10
+
|You come ever closer to the truth, but you will never attain it.
 +
|style="text-align:right;"|ולעולם תתקרב יותר אל האמת ולא תשיגנה לעולם
 
|-
 
|-
| 5 || 7 || 8 || 3
+
!<span style=color:Green>Shortcuts</span>
 +
|
 
|-
 
|-
| 5 || 4 || 19
+
|If you look closely, you will see that you do this with less effort.
 +
|style="text-align:right;"|וכאשר תעיין הטב תראה שתוכל לעשותו בלי כ"כ יגיעה
 
|-
 
|-
| 13
+
|This is by looking at the fraction attained in the [first] step.
|}
+
|style="text-align:right;"|והוא שתעיין השברים שנתחדשו בעת ההיא
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|והנה ביאור שאלתנו הוא כאלו אמרנו לנו לשלקחנו ד' שלמים ועשינו מהם ר"ל מארבעתם ביחד עשרה חלקים שווים ולקחנו [חלק אחד מהם ועשינו אותו ט' חלקים ולקחנו] ג' חלקים מאלו הט' האחרונים ביחד ועשינו ח' חלקים שוים ולקחנו חלק אחד מהם ועשינו אותו ז' חלקים וחלקנו כל חלק מהם לה' ולקחנו י"ט חלקים ממין אלו האחרונים ביחד ועשינו אותם ד' חלקים שוים וחלקנו כל חלק מהם לה' חלקים ויש לנו ממין אלו החלקים האחרונים י"ג ונרצה לידע מה המה אלה
+
*<span style=color:Green>The first approximation</span>
 +
:<math>\scriptstyle{\color{OliveGreen}{\sqrt{a^2+b}\approx a+\frac{b}{2a+1}}}</math>
 +
:<span style=color:Green>The error of the approximation</span>
 +
:<math>\scriptstyle{\color{OliveGreen}{\left(a^2+b\right)-\left(a+\frac{b}{2a+1}\right)^2=\frac{b}{2a+1}\sdot\left(1-\frac{b}{2a+1}\right)}}</math>
 +
|
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|והננו צריכים להבנה, לפי שאמרו מי"ט חמישיות וכו', גם לאומרם מג' תשיעיות וכו', גם לאומרם מד' שלמים, כי בזה ידענו שאינם משבר אחד, אף לא משלם אחד, כי מספר שלמים וממספר ש שברים
+
:If it is an addition [to the integer received through the extraction algorithm] and it was produced by adding 1 to twice the root [in the denominator], find the product of the fraction attained in this step by its complement [with respect to 1]. This product will be the deficit when you multiply the [approximate] root by itself, with respect to the initial number [whose root is extracted].
 +
|style="text-align:right;"|ואם היו לתוספת ונעשה בתוספת א' על כפל השרש<br>
 +
ראה כמה כפל השברים המתחדשים ההם בפעם ההיא במה שיש מהשברים ההם עד תשלום<br>
 +
והעולה הוא אשר יחסר כאשר תכפול השרש בעצמו מהחשבון הראשון
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|לכן נכה מספר השברים אשר בידינו במספר השברים אשר הזכירו, גם במספר השלמים, זה אחר זה
+
:<span style=color:Green>The second approximation</span>
 +
:<math>\scriptstyle{\color{OliveGreen}{\sqrt{a^2+b}\approx\left(a+\frac{b}{2a+1}\right)+\frac{\frac{b}{2a+1}\sdot\left(1-\frac{b}{2a+1}\right)}{2\sdot\left(a+\frac{b}{2a+1}\right)}}}</math>
 +
|
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left(\frac{13}{5}\sdot\frac{1}{4}\right)\sdot\left(\frac{19}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)&\scriptstyle=\frac{13\sdot19}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\\&\scriptstyle=\frac{247}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\\\end{align}}}</math>
+
:You should, therefore, divide it by double the [approximate] root itself and added to this root.
|style="text-align:right;"|וזה כי אומרנו י"ג חמישיות רביעיות י"ט חמישיות וכו' הוא כאומרנו י"ט פעמי' י"ג חמישיות [ רביעית חמישית] וכו' לכן נכפול הי"ג בי"ט ויעלו 247 חמישיות רביעיות חמישית וכו&#x202B;'
+
|style="text-align:right;"|והוא אשר יש לך לחלק עוד על כפל השרש בעצמו ולהוסיפו עליו
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left(\frac{247}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\sdot\left(\frac{3}{9}\sdot\frac{1}{10}\right)&\scriptstyle=\frac{247\sdot3}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}\\&\scriptstyle=\frac{741}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}\\\end{align}}}</math>
+
::You can see it clearly in the previous example, which had [a fraction] added and involved adding one [in the denominator], where the fraction was six sevenths.
|style="text-align:right;"|גם כאשר אמרו לנו מג' תשיעיות, הוא כאלו אמרו לנו ג' פעמים כל אשר בידינו [ולזה נכפול כל אשר בידינו], שהוא 247, בג' ויעלה 741 והם חמישיות רביעיות חמישיות שביעיות שמיניות תשיעיות עשירית וכו&#x202B;'
+
|style="text-align:right;"|וזה תוכל לראות ברור בדמיון שעבר שהיה לתוספת ובתוספת א' והשברים ההם שהיו ששה שביעיות
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left(\frac{741}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)\sdot4&\scriptstyle=\frac{741\sdot4}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}\\&\scriptstyle=\frac{2964}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}\\\end{align}}}</math>
+
::Its complement [with respect to one] is one seventh, and when you multiply them by this complement the product is six sevenths of a seventh; this is indeed the deficit we found with respect to the original number [whose root was extracted], and so we instructed to divide it by double the [approximate] root and add [the result] to this root.
|style="text-align:right;"|ולפי שאמרו לנו מד' שלמים, הוא כאלו אמרו לנו ד' פעמים כל אשר בידינו, לכן כל אשר בידינו, שהוא 741, בארבעה ויעלה 2964 חמישיות רביעית חמישית שביעית שמינית תשיעית עשירית
+
::<math>\scriptstyle{\color{blue}{10375-\left(101+\frac{6}{7}\right)^2=\frac{6}{7}\sdot\left(1-\frac{6}{7}\right)=\frac{6}{7}\sdot\frac{1}{7}}}</math>
 +
|style="text-align:right;"|והנה {{#annot:term|598,1422|bcFr}}השלמתם לשלם{{#annotend:bcFr}} הוא שביעית אחת וכאשר תכפלם ב{{#annot:term|598,1422|xbp0}}השלמה{{#annotend:xbp0}} זו יעלה ו' שביעיות שביעית וזה בעצמו הוא שמצינו חסר בכפל השרש מהחשבון [הא']&#x202B;<ref>marg.</ref> וצוינו לחלקו לכפל השרש ולהוסיפו על השרש
 
|-
 
|-
|Note: the number on top of a certain number is its denominator
+
|
|style="text-align:right;"|וזכור לעולם כי המספר, אשר תמצא על ראשו מספר אחר, שהתחתון איננו מורה, כי העליון
+
*<span style=color:Green>The first approximation</span>
|-
+
:<math>\scriptstyle{\color{OliveGreen}{\sqrt{a^2+b}\approx a+\frac{b}{2a}}}</math>
|The order of the denominators is unimportant
+
:<span style=color:Green>The error of the approximation</span>
|style="text-align:right;"|ואם בקשנו לידע כלם אלו החלקים הנפרטו', כמה שלמים, או כמה שברים, או שברי שברים מאלו הם, כבר ידעת שיש כאן שבעה מורים ותושיבם כרצונך, או כסדרם עתה, או בהשגחה, כדי שיצאו החלקים יותר נאותים, כי הסדר לא יזיק לעולם, כי אם התוספת בהם, או המגרעת, כאשר ביארנו בפרק הד&#x202B;'
+
:<math>\scriptstyle{\color{OliveGreen}{\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)=\left(\frac{b}{2a}\right)^2}}</math>
 +
|
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{\begin{align}&\scriptstyle\left[\frac{2}{4}+\left(\frac{3}{5}\sdot\frac{1}{4}\right)\right]\sdot\left[\left(\frac{3}{7}\sdot\frac{1}{8}\right)+\left(\frac{4}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left(\frac{3}{9}\sdot\frac{1}{10}\sdot4\right)\\&\scriptstyle=\frac{2964}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}\\&\scriptstyle=\frac{2964}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}\\&\scriptstyle=\frac{741}{5}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}\\&\scriptstyle=\left(\frac{148}{4}\sdot\frac{1}{2}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)+\left(\frac{1}{5}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)\\&\scriptstyle=\left(\frac{37}{7}\sdot\frac{1}{2}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)+\left(\frac{1}{5}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)\\&\scriptstyle=\left(\frac{5}{5}\sdot\frac{1}{2}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)+\left(\frac{1}{2}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)+\left(\frac{1}{5}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)\\&\scriptstyle=\left(\frac{1}{2}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)+\left(\frac{2}{7}\sdot\frac{1}{5}\sdot\frac{1}{2}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)+\left(\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{2}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)\\\end{align}}}</math>
+
:But if the additional [fraction] does not involve adding 1 [in the denominator] and falling short [of the initial number whose root is extracted], then we multiply the [additional] fraction by itself, and divide by double the [approximate] root, because this is the excess of the square of the [approximate] root over the original number [whose root is extracted].
|style="text-align:right;"|ונחלק עליהם 2964, שהוא מספר אשר בידינו נפרטות וקראנו לזה כלילת יופי&#x202B;:<br>
+
|style="text-align:right;"|אך אם היה לתוספת בלי תוספת א' שהיו למגרעת<br>
ואחר שיש לחשבון רביעית, נשימהו לאחרון, כדי שיתבטל ונחלקם על ד' ויצא בחילוק 741 ולא ישאר דבר<br>
+
נראה כפל השברים אשר נתחדשו על עצמם ונחלקם לכפול השרש<br>
וזה היוצא בחלוק אין לו אחד מהמורים הנשארים, לכן נשים אשר נספק לפני האחרון אשר שמנו ויהיה ה' ונחלקם על הה' ויצא בחלוק 148 וישאר א' ונשימנו תחתיו<br>
+
לפי שזהו בעצמו אשר יהיה כפל השרש בעצמו יותר על החשבון
ואחר שיש לו החשבון רביעית, נתיך המורה השמינית, שהוא הח', ונעשה ממנו ב'ד' ונשימם במקומו, כך הוא הוראת חצי רביעית, או רביעית חצי, [כמו] או שמינית ועוד נבאר זה בסוף הספר ואחר התיכנו אותו, ר"ל שנסירהו ונשים במקומו ב'ד', נשים הד' לפני המורי' המושמים ונחלק לו אשר בידינו ויצא בחלוק ל"ז חלקים<br>
 
ונחלקם לאשר נחפוץ ויהיה על הז' ויצא בחילוק ה' וישארו ב' ונשימם תחתיו<br>
 
ונחלק הה' שיצאו בחלוק למורה הה' הא' ויצא א' בחלוק ולא ישאר דבר<br>
 
ואחר שאשר יצא בחלוק הוא פחות מהקטן שבכל המורים הנזכרים, אין לנו לחלק עוד, אבל נשימם על הסדר, לפני המושמים בכל השגחה ונשים זה האחד, אשר יצא בחילוק באחרונה, תחת המורה הסמוך למושמים עד הנה והנה יצא לנו מבוקשינו והוא שהנשאל לנו תחלה עולה חצי תשיעית עשירית ושתי שביעיות חמישית חצי תשיעית עשירית וחמישית רביעית שביעית וכו&#x202B;'
 
 
|-
 
|-
 
|
 
|
 +
*<span style=color:Green>The second approximation</span>
 +
:<math>\scriptstyle{\color{OliveGreen}{\sqrt{a^2+b}\approx\left(a+\frac{b}{2a}\right)-\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}}}</math>
 
|
 
|
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
 
|-
 
|-
| 5 || 4 || 7 || 5 || 2 || 9
+
|
 +
:We subtract the result from the previous [approximate] root, and so on.
 +
|style="text-align:right;"|והיוצא נחסרנו לעולם מהשרש הקודם וכן לעולם
 +
|-
 +
|Therefore, if you wish to repeat the procedure in order to come closer to the truth, [do this], because the more you repeat, the nearer you come to the truth, even if you can never attain it, as we have explained.
 +
|style="text-align:right;"|ולזה אם רצונך להכפל זה המעשה כדי להתקרב אל האמת כי כל מה שתוסיף להכפל זה הענין &#x202B;<ref>36r</ref>תוסיף להתקרב אל האמת ואם לא תשיגנה לעולם כמו שביארנו
 +
|-
 +
|[If you repeat the procedure], never add 1 to double the root, even if the remainder is very large with respect to the [approximate] root, so as to avoid confusion, for [adding 1] was instructed only for a single [approximation] step.
 +
|style="text-align:right;"|לא תוסיף א' לעולם על כפל השרש [ואף אם יהיה הנשאר הרבה מאד על השורש]&#x202B;<ref>marg.</ref> כדי שלא יבלבל עליך כי לא ציויתיו אלא למסתפק בפעם אחת
 
|-
 
|-
| 1 || &nbsp;|| 2 || &nbsp;|| 1 ||
+
|Adding 1 [<math>\scriptstyle{\color{OliveGreen}{a+\frac{b}{2a+1}}}</math>] when the remainder is the same as the [approximate] root or greater, improves the approximation, as I explained, but if one repeats the procedure [<math>\scriptstyle{\color{OliveGreen}{a+\frac{b}{2a}}}</math>], one does not need this addition, because by repeating the procedure one approaches [the truth] very closely even without adding 1. It is better not to add it, so as to maintain a standard form of procedure and prevent confusion.
|}
+
|style="text-align:right;"|ובתוספת הא' כשהנשאר כשרש או יותר הוא {{#annot:term|1612,1874|05Nl}}מתקרב יותר{{#annotend:05Nl}} כמו שכתבתי<br>
 +
אבל המכפיל פעמי המעשה אינך צריך לתוספת זה<br>
 +
כי בהכפל המעשה {{#annot:term|1612,1874|Kx0D}}יתקרב מאד מאד{{#annotend:Kx0D}} אף מבלי תוספת הא&#x202B;'<br>
 +
וטוב שלא נוסיפנו כדי שיהיה כל מעשהו בסגנון אחד ולא יתבלבל
 
|-
 
|-
 +
!<span style=color:Green>The reason that if the remainder is smaller than the approximate root <math>\scriptstyle{\color{OliveGreen}{b<a}}</math>, it is divided by double the root <math>\scriptstyle{\color{OliveGreen}{\frac{b}{2a}}}</math>:
 
|
 
|
:The number of denominators in the above example has increased from 7 to 8 - due to the factorization of the eighths to halves of quarters
 
|style="text-align:right;"|ואל תתמה שלא היו לך כי אם ז' מורים ועתה הם ח', כי זה היה להתכת המורה השמינית והוא הח' שהסרנו אותו מהם ושמנו במקומו שני מורים והם ב'ד' והקש על זה, כי הכל ברור, המעשה והטעם
 
 
|-
 
|-
|}
+
|The reason we say that if there is a remainder that is smaller than the [approximate] root, then we should divide it by double the root, is because that which is added to the root will add to the square its product by twice the previous root and its product by itself, as we explained with regard to integers.
{|
+
:<math>\scriptstyle{\color{OliveGreen}{\left(a+b\right)^2-a^2=2ab+b^2}}</math>
 +
|style="text-align:right;"|<big>וטעם</big> אומרנו שאם ישאר דבר והוא פחו' מהשרש שנחלקנו לכפל השרש<br>
 +
הוא לפי שאש' {{#annot:term|1212,178|g91P}}יתוסף{{#annotend:g91P}} בשורש יוסיף במרובע כפלו בשורש הראשון פעמים גם כפלו בעצמו כאשר ביארנו בשלמים
 
|-
 
|-
 
|
 
|
 
+
:*<span style=color:Green>The excess of the first approximation:</span>
=== Common Denominator ===
+
::<math>\scriptstyle{\color{OliveGreen}{\left(a+\frac{b}{2a}\right)^2\approx a^2+\left[2\sdot\left(a\sdot\frac{b}{2a}\right)\right]=a^2+b}}</math>
!style="text-align:right;"|<big>השער השלישי בהשואה</big>
+
|
 
|-
 
|-
|Equalizing fractions of various types that are not related to each other, i.e. not fractions of each other
+
|But, we proceed as if it only adds its product by twice the root. If this were true, i.e. that what is added to the root adds to the square only the product of what is added to the root by twice the root, then we would have this product, which equals the excess of the number [whose root is extracted] over the square of the integer [received through the extraction algorithm].
|style="text-align:right;"|ההשואה היא כאשר יהיו לך שברים ממינים שונים, בלתי נקשרים זה בזה כלל, ר"ל שאין אלו שברי שברים אלו
+
|style="text-align:right;"|ואנו עושים מעשינו כאלו אינו מוסיף כי אם כפלו בשרש פעמים<br>
 +
ואם היה זה האמת ר"ל שהמתוסף על השרש לא היה מוסיף על המרובע כי אם כפל זה המתוסף בכפל השרש לבד<br>
 +
הנה היה בידינו המספר העולה מהכפל הזה והוא השארית הנזכרת שהיא נוספת בחשבון על מרובע השלימים
 
|-
 
|-
|
+
|Hence, when we add in the root what is equal to its product by twice the root, as this excess itself, we reach the required result.
*<math>\scriptstyle\left[2+\frac{3}{8}+\left(\frac{2}{4}\sdot\frac{1}{8}\right)\right]\quad\frac{4}{5}\quad\left[\frac{6}{7}+\left(\frac{3}{8}\sdot\frac{1}{7}\right)\right]</math>
+
|style="text-align:right;"|וכאשר נוסיף בשרש דבר מה שיהיה שוה כפלו בכפל השרש כזה התוספת בעצמו הגענו אל מבוקשנו
|style="text-align:right;"|המשל אם היו בידיך שני שלמים ועוד וג' שמינית וב' רביעיות שמינית ועוד ד' חמישיות ועוד ו' שביעיות וג' שמיניות שביעית כזה ותרצה להשיבם כלם ממין אחד
 
 
|-
 
|-
|
+
|Altough this addition is unknown to us, as we know the result of the multiplication, which is the mentioned remainder, and we also know one of the multiplicands, which is double the root, when we divide the product by double the root, the result is the unknown, which is the addition, i.e. by multiplying this addition by double the root, the result is the mentioned remainder and this is clear.
|
+
:<math>\scriptstyle{\color{OliveGreen}{2a\sdot\frac{b}{2a}=b}}</math>
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
+
|style="text-align:right;"|ועם היות שנעלם ממנו תוספת זה ומ"מ אחר שידענו העולה מהכפל ההוא והיא השארית הנזכרת גם ידענו אחד מהנכפלים והוא כפל השרש [הנה בחלקנו זה העולה לכפל השורש יצא]&#x202B;<ref>marg.</ref> יצא הנעלם שהוא התוספת ר"ל כי בכפול זה התוספת בכפול השרש יעלה כנשאר הנזכר וזה ברור
 
|-
 
|-
| 8 || 7 || 5 || 4 || 8 || rowspan=2 | 2
+
|Since, that which is added to the root, adds also to the square its product by itself, i.e. the product of this addition by itself.
 +
|style="text-align:right;"|אכן לפי שהמתוסף על השרש מוסיף עוד במרובע כפלו בעצמו ר"ל כפל התוספת הזה בעצמו
 
|-
 
|-
| 3 || 6|| 4 || 2|| 3
+
|Therefore, when we multiply the root by itself after this addition is added to it, the square will exceed the initial number [whose root is extracted] by the square of the addition. This is what we explained above.
|}
+
:<math>\scriptstyle{\color{OliveGreen}{\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)=\left(\frac{b}{2a}\right)^2}}</math>
 +
|style="text-align:right;"|לכן כאשר נכפול השרש בעצמו אחר הוסיף &#x202B;<ref>36v</ref>עליו זה התוספת יעלה המרובע מוסף על החשבון הראשון כפל התוספת הזה בעצמו וכן ביארנוהו למעלה
 
|-
 
|-
 
|
 
|
First we convert the 2 integers plus the 3 eighths and the 2 quarters of an eighth, then the 4 fifths and then the 6 sevenths
+
:<span style=color:Green>The second approximation</span>
|style="text-align:right;"|ונעשה תחלה פריטה לב' שלמים וג' שמיניות וב' רביעיות שמינית ועוד ד' חמישיות ועוד ו' שביעיות אחרי היותם נקשרים גם לו' שביעיות וג' שמיניות שביעית כי גם הם נקשרים וצריכים פריטה
+
:<math>\scriptstyle{\color{OliveGreen}{\sqrt{a^2+b}\approx\left(a+\frac{b}{2a}\right)-\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}}}</math>
 +
|
 
|-
 
|-
 
|
 
|
:*We start by saying: 2 units how many eighths are they? this is known by multiplying them by 8, they are 16, we add to them the 3 that is beneath [the 8] and the total is 19.
+
:If we want to come even closer, we divide this addition by double the root and the result is subtracted from the [approximate] root, as we explained.
::<math>\scriptstyle{\color{blue}{2+\frac{3}{8}=\frac{\left(2\sdot8\right)+3}{8}=\frac{16+3}{8}=\frac{19}{8}}}</math>
+
|style="text-align:right;"|ואם היינו רוצים להתקרב עוד ואנו מחלקים זה התוספת לכפל השרש הזה והיוצא {{#annot:term|181,2030|t72G}}יחסר{{#annotend:t72G}} מזה השרש כאשר ביארנו למעלה
|style="text-align:right;"|ונתחיל לומר ב' אחדים כמה שמיניות הם וזה יודע בהכפלם בח' יהיו י"ו ונחבר להם הג' אשר תחתיו יהיו כלם י"ט
+
|}
 +
:*<span style=color:Green>The excess of the second approximation:</span>
 +
::<math>\scriptstyle{\color{OliveGreen}{\left(a+\frac{b}{2a}\right)^2-\left[\left(a+\frac{b}{2a}\right)-\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]^2=\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\sdot\left[2\sdot\left[\left(a+\frac{b}{2a}\right)-\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]\right]+\left[\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]^2}}</math>
 +
{|
 
|-
 
|-
 
|
 
|
::We convert them further to quarters of an eighth by multiplying them by 4, the result is 76, then add to them the 2 that is beneath [the 4], the resilt is 78 quarters of an eighth.
+
:[The square of the approximate root] from which we subtract exceeds over the square [of the second approximate root] by the product [of the subtracted fraction] by double the subtracted [approximate] root after the subtraction and its product by itself.
::<math>\scriptstyle{\color{blue}{\frac{19}{8}+\left(\frac{2}{4}\sdot\frac{1}{8}\right)=\frac{\left(19\sdot4\right)+2}{4}\sdot\frac{1}{8}=\frac{76+2}{4}\sdot\frac{1}{8}=\frac{78}{4}\sdot\frac{1}{8}}}</math>
+
|style="width:45%; text-align:right;"|הנה זה שאנו מחסרים היה מוסיף על המרובע ככפלו על כפל השרש {{#annot:term|789,1674|MPXZ}}המחוסר{{#annotend:MPXZ}} הזה לאחר חסרונו וכפלו על עצמו בלי כפל
|style="text-align:right;"|עוד נשיבם רביעיות שמיני' וזה יהיה בהכפלם כלם בד' יעלו ע"ו ונחבר להם הב' אשר תחתיו יעלו ע"ח רביעיות שמינית
 
 
|-
 
|-
 
|
 
|
:*We also convert the 6 sevenths plus 3 eighths of a seventh by saying: 6 sevenths how many eighths of a seventh are they? this is known by multiplying them by 8, they are 48, we add to them the 3 that is beneath [the 8] and the result is 51 eighths of a seventh.
+
:We divide the addition that we have by double the [approximate root] before subtracting from it, and it is as if we divide it by double the subtracted root plus double the subtracted [fraction].
::<math>\scriptstyle{\color{blue}{\frac{6}{7}+\left(\frac{3}{8}\sdot\frac{1}{7}\right)=\frac{\left(6\sdot8\right)+3}{8}\sdot\frac{1}{7}=\frac{48+3}{8}\sdot\frac{1}{7}=\frac{51}{8}\sdot\frac{1}{7}}}</math>
+
::<math>\scriptstyle{\color{OliveGreen}{\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}=\frac{\left(\frac{b}{2a}\right)^2}{\left[2\sdot\left[\left(a+\frac{b}{2a}\right)-\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]\right]+\left[2\sdot\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]}}}</math>
|style="text-align:right;"|עוד נפרוט הו' שביעיות וג' שמיניות שביעית ונאמרו ו' שביעיות שלמות כמה שלמות שמיניות שביעית הם וזה יודע בהכפלם בח' ויעלו מ"ח ונחבר להם הג' אשר תחתיו ועלו נ"א שמיניות שביעית
+
|style="text-align:right;"|ואולם התוספת אשר היה לנו חלקנוהו על כפל כל השרש <s>טרם</s> <sup>טרם</sup> {{#annot:term|181,2030|oVAO}}החסרו{{#annotend:oVAO}} והוא כמו שחלקנוהו על כפל השרש הזה המחוסר ועל כפל החסרון <sup>זה</sup>
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|והרי הוא כאלו שאלו לנו להשיב למין אחד עין ע"ח רביעיות שמינית וד' חמישיות ונ"א שמיניות שביעית שביעי כזה&#x202B;:
+
:But, [The square of the first approximate root] exceeds [over the square of the second approximate root] by the product [of the subtracted fraction] by double the subtracted [approximate] root plus its product by itself.
 +
|style="text-align:right;"|ואולם הוא לא היה מוסיף כי אם כפלו על כפל השרש הזה המחוס' וכפלו על עצמו בלי כפל
 
|-
 
|-
 
|
 
|
|
+
:We find that we did not subtract all that is needed, as the square of the subtracted [approximate root] exceeds over the original number by the product of the subtracted [fraction] by itself. This is clear and is always so.
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
+
::<math>\scriptstyle{\color{OliveGreen}{\left[\left(a+\frac{b}{2a}\right)-\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]^2-\left(a^2+b\right)=\left[\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]^2}}</math>
 +
|style="text-align:right;"|נמצא שלא חסרנו בכל הצורך אבל עוד ישאר במרובע זה השרש המחוסר תוספת על החשבון הראשון ככפל זה החסרון על עצמו וזה ברור וכן יהיה לעולם
 +
|-
 +
|So, when we do not add 1 [to the denominator], and wish to come closer to the truth [using a repetitive procedure for extracting the root], [in the first step] we should only add the fraction of the first step [i.e., the remainder divided by twice the approximate root].
 +
|style="text-align:right;"|לכן כאשר לא נוסיף א' ונרצה להתקרב אל האמת אין לנו להוסיף על השרש כי אם השברים הראשונים אשר נתחדשו בפעם הראשון מאשר נשאר לנו
 
|-
 
|-
| 8 || 7 || 5 || 4 || 8
+
|But, from there on we must divide the square of the fraction produced at that step by twice the previous [approximate] root. And the result should always be subtracted from the previous [approximate] root.
 +
|style="text-align:right;"|אבל מכאן ואילך לעולם יש לנו לחלק כפל השברים המתחדשים בפעם ההיא על כפל השרש הקודם לו והיוצא נחסרהו לעולם מהשרש הקודם לו
 
|-
 
|-
| 51 || &nbsp;|| 4 || 78
+
|
|}
+
:*{{#annot:√7|439|TblT}}Example: we seek the root of 7.
 +
::<math>\scriptstyle\sqrt{7}</math>
 +
|style="text-align:right;"|<big>המשל</big> בקשנו שרש ז&#x202B;'{{#annotend:TblT}}
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואחרי היות בידינו מורים משונים ושברים משונים, ראוי לנו לבאר איך נשיבם כלם ממין אחד מבלתי שינוי ביניהם, ר"ל שיהיו כלם שברים ממורים אחדים
+
::The integer that is in its root is 2 and 3 remains.
 +
|style="text-align:right;"|הנה השלמי' אשר בשרשו הם ב' ונשארו ג&#x202B;'
 
|-
 
|-
|The order of the denominators is unimportant<br>
+
|
:<math>\scriptstyle\frac{1}{a}\sdot\frac{1}{b}=\frac{1}{b}\sdot\frac{1}{a}</math>
+
::If we divide it by double the [approximate] root, the quotient is 3-quarters.
|style="text-align:right;"|וקודם זה אציע שסדור המורים אינו מעלה ומוריד
+
::<math>\scriptstyle{\color{blue}{\sqrt{7}\approx2+\frac{7-4}{2\sdot2}=2+\frac{3}{4}}}</math>
 +
|style="text-align:right;"|ואם חלקנום לכפל השרש יצא בחילוק ג' רביעיות
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{\frac{1}{7}\sdot\frac{1}{8}=\frac{1}{56}=\frac{1}{8}\sdot\frac{1}{7}}}</math>
+
::When we add this addition to the 2 integers and consider the whole sum as a root, its square exceeds over the square of 2, which is 4 integers, by the product of these three-quarters by themselves.
|style="text-align:right;"|כי כך הוא שביעית שמינית עד"מ כמו שמינית שביעית, כי כל אחד מהם הוא חלקנו מנ"ו בשלם, שהוא המספר אשר הוא מורכב מאלו המורים וזה ברור
+
:::<math>\scriptstyle{\color{blue}{\left(2+\frac{3}{4}\right)^2-2^2=3+\left(\frac{3}{4}\right)^2}}</math>
 +
|style="text-align:right;"|והנה זה התוספת כאשר נחברהו אל הב' השלמים ונעשה מהכל שרש אחת הנה יתוסף במרובעו יותר על מרובע הב שיהיה ד' שלמים ככפל שלש רביעיות אלו בעצמם
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle\frac{3}{7}\quad\frac{4}{8}</math>
+
::But, our remainder is as the product of 3-quarters by 4 integers, which are double the first [approximate] root.
|style="text-align:right;"|לכן כאשר היה לנו ע'ד'מ' ג' שביעיות וד' שמינית
+
:::<math>\scriptstyle{\color{blue}{7-2^2=3=4\sdot\frac{3}{4}=2^2\sdot\frac{3}{4}}}</math>
 +
|style="text-align:right;"|ואולם &#x202B;<ref>37r</ref>שאריתנו לא היה כי אם ככפל הג' רביעיות בד' השלמים אשר הם כפל השרש הראשון
 
|-
 
|-
 
|
 
|
:{|
+
::We find that too many fractions are added to our root, so that the square of the sum exceeds the 7 integers by the product of 3-quarters by themselves, which is 9-quarters of a quarter that are 2-quarters and a quarter of a quarter. This is clear, because the product of 2 and 3-quarters [by itself] is 7 integers and [9]-quarters of a quarter, as will be explained in chapter three of section two.
 +
:::<math>\scriptstyle{\color{blue}{\left(2+\frac{3}{4}\right)^2-7=\left[7+\left(\frac{3}{4}\right)^2\right]-7=\left(\frac{3}{4}\right)^2=\frac{9}{4}\sdot\frac{1}{4}=\frac{2}{4}+\left(\frac{1}{4}\sdot\frac{1}{4}\right)}}</math>
 +
|style="text-align:right;"|נמצא ש{{#annot:term|2510,178|mjLV}}נתוספו{{#annotend:mjLV}} בשרשנו זה שברים יותר מדאי עד שמרובע הכל יהיה יותר על הז' שלמים ככפל הג' רביעיות בעצמם שהם ט' רביעיות רביעית שהם ב' רביעיות שלמות ורביעית רביעית<br>
 +
וזה ברור כי כפל ב' וג' רביעיות עולה ז' שלמים וב' רביעיות רביעית כאשר יתבאר בחלק הב' בפרק הג' ממנו
 
|-
 
|-
|<math>\scriptstyle{\color{blue}{\frac{3}{7}}}</math>||&#8199;&#8199;<math>\scriptstyle{\color{blue}{\frac{4}{8}}}</math>
+
|
 +
::Therefore, we should divide this excess by double the root as we explained.
 +
|style="text-align:right;"|ולזה ראוי לנו לחלק תוספת זה על כפל השרש כאשר ביארנו
 
|-
 
|-
|<math>\scriptstyle{\color{blue}{\frac{3\sdot8}{8}\sdot\frac{1}{7}}}</math>||&#8199;&#8199;<math>\scriptstyle{\color{blue}{\frac{4\sdot7}{7}\sdot\frac{1}{8}}}</math>
+
|
 +
::Double the root is 5 integers and 2-quarters, which are one-half.
 +
|style="text-align:right;"|והנה כפל השרש הוא ה' שלמים וב' רביעיות שהם חצי שלם
 
|-
 
|-
|<math>\scriptstyle{\color{blue}{\frac{24}{8}\sdot\frac{1}{7}}}</math>||&#8199;&#8199;<math>\scriptstyle{\color{blue}{\frac{28}{7}\sdot\frac{1}{8}}}</math>
+
|
 +
::When we divide 2-quarters and a quarter of a quarter by it, the quotient is 9 parts of 11 of half a quarter.
 +
|style="text-align:right;"|וכאשר נחלק עליהם ב' רביעיות ורביעית רביעית יצא בחילוק ט' חלקים מי"א מחצי רביעית
 
|-
 
|-
 +
|
 +
::When we subtract it from the former root, the remainder is 2 integers, 2-quarters, half a quarter, and 2 parts of 11 of half a quarter. The procedure of all this is explained in section two.
 +
|style="text-align:right;"|וכאשר נסירם מהשרש הקודם ישאר ב' שלמים וב' רביעיות שלמות וחצי רביעית וב' חלקים מי"א מחצי רביעית וכל זה יתבאר מעשהו בחלק הב&#x202B;'
 
|}
 
|}
|style="text-align:right;"|נשיבם כלם שביעיות שמינית, שהוא שמיניות שביעית<br>
+
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\sqrt{7}&\scriptstyle\approx\left(2+\frac{3}{4}\right)-\frac{\frac{2}{4}+\left(\frac{1}{4}\sdot\frac{1}{4}\right)}{2\sdot\left(2+\frac{3}{4}\right)}=\left(2+\frac{3}{4}\right)-\frac{\frac{2}{4}+\left(\frac{1}{4}\sdot\frac{1}{4}\right)}{5+\frac{2}{4}}=\left(2+\frac{3}{4}\right)-\frac{\frac{2}{4}+\left(\frac{1}{4}\sdot\frac{1}{4}\right)}{5+\frac{1}{2}}=\left(2+\frac{3}{4}\right)-\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\\&\scriptstyle=2+\frac{2}{4}+\left(\frac{1}{2}\sdot\frac{1}{4}\right)+\left(\frac{2}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\\\end{align}}}</math>
וזה יעשה בכפול הג' שברי השביעיות בח' ויהיו כ"ד שמיניות שביעיות<br>
+
{|
וזה ברור, כי כל שביעיות הוא ח' שמיניות שביעית, כמו שכל שלם הוא שמונה שמיניות השלם<br>
 
וכן נעשה לד' שמיניות, שנשיבם לשביעיות שמינית והוא בכפול הד', שהוא מספר השברים, בז', שהוא מורה השביעיות ויעלו כ"ח<br>
 
והם כ"ח שביעיות שמינית והאחרות עלו כ"ד שמיניות שביעית, הנה כלם ממין אחד כמו שהזכרנו שאין חלוף בין אומרנו שביעית שמינית לאומרנו שמינית שביעית
 
 
|-
 
|-
|<math>\scriptstyle\frac{a}{b}=\frac{a\sdot d}{b}\sdot\frac{1}{d}=\frac{a\sdot d}{d}\sdot\frac{1}{b}</math><br>
+
|
<math>\scriptstyle\frac{a}{b}=\frac{a\sdot d}{d}\sdot\frac{1}{b}=\frac{a\sdot d}{b}\sdot\frac{1}{d}</math>
+
::The square of this [approximate] root. i.e. the 2 integers, 2-quarters, half a quarter, and 2 parts of 11 of half a quarter is less than the [square of the] former [approximate root] by the product of this remainder, i.e. 9 parts of 11 of half a quarter by double the subtracted root plus its product by itself.
|style="text-align:right;"|ואחר שהצענו הצעה זו, נשוב למעשינו הראשון והוא לכפול כל מספר שברים אשר בידינו במורי חברותיה, זה אחר זה, וכן לכלם ואז תהיה כל אחד שברים מכל המורים והנח הם שוים, כי סדור המורים בקדימה ואיחור לא יזיק
+
|style="width:45%; text-align:right;"|והנה {{#annot:term|181,2030|zdQE}}יחסר{{#annotend:zdQE}} מרובע השרש הזה ר"ל הב' שלמים וב' רביעיות וחצי רביעית וב' חלקים מי"א מחצי רביעית אחרי {{#annot:term|181,2030|RhZG}}החסרו מ{{#annotend:RhZG}}אשר לפניו ככפל החסרון הזה ר"ל הט' חלקים מי"א מחצי רביעית על כפל השרש המחוסר וככפלו לעצמו
 +
|}
 +
::<math>\scriptstyle{\color{blue}{\left(2+\frac{3}{4}\right)^2-\left[2+\frac{2}{4}+\left(\frac{1}{2}\sdot\frac{1}{4}\right)+\left(\frac{2}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\right]^2=\left[\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\sdot\left[2\sdot\left[2+\frac{2}{4}+\left(\frac{1}{2}\sdot\frac{1}{4}\right)+\left(\frac{2}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\right]\right]\right]+\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)^2}}</math>
 +
{|
 
|-
 
|-
 
|
 
|
:{|
+
::But, the first excess of the square over the [given] number is as the product of this remainder by double the first [approximate] root, i.e. by double this subtracted root and by double this remainder, since, when we divide the addition by double the former [approximate] root, i.e. by double the subtracted root and by double this remainder, the result of division is this remainder.
 +
|style="width:45%; text-align:right;"|ואולם התוספת הראשו' אשר היה במרובע על החשבון היה ככפל החסרון זה בכפל השרש הראשון ר"ל בכפל השרש הזה המחוסר ובכפל החסרון הזה שהרי כאשר חלקנו התוספת על כפל השרש הקודם ר"ל על כפל השרש המחוסר ועל כפל זה החסרון [יצא בחלוק זה החסרון]&#x202B;<ref>marg.</ref>
 
|-
 
|-
|<math>\scriptstyle{\color{blue}{\scriptstyle\left[2+\frac{3}{8}+\left(\frac{2}{4}\sdot\frac{1}{8}\right)\right]}}</math>||&#8199;&#8199;<math>\scriptstyle{\color{blue}{\scriptstyle\frac{4}{5}}}</math>&#8199;&#8199;|| <math>\scriptstyle{\color{blue}{\scriptstyle\left[\frac{6}{7}+\left(\frac{3}{8}\sdot\frac{1}{7}\right)\right]}}</math>
+
|
 +
::We find that the product of this remainder, i.e. 9 parts of 11 of half a quarter, by double the first [approximate] root, which is 2 integers and 3-quarters, whose double is 5 integers and a half, which is the same as double this subtracted root, i.e. the 2 integers, 2-quarters, [half a quarter], and 2 parts of 11 of half a quarter plus double the remainder, which is 9 parts of 11 of half a quarter, is as the excess we have, which is the 2-quarters and a quarter of a quarter, by which we have divided.
 +
|style="text-align:right;"|נמצא שכפל זה החסרון ר"ל הט' חלקים מי"א מחצי רביעית בכפל השרש הראשון שהוא ב' שלמים וג' רביעיות שכפלו ה' שלימים וחצי שהוא כמו כפל &#x202B;<ref>37v</ref>השרש המחוסר הזה ר"ל הב' שלימים וב' רביעיות וב' חלקים מי"א מחצי רביעית וכפל זה החסרון שהוא הט' חלקים מי"א מחצי רביעית <s>וכפל זה החסרון שהוא הט' חלקים מי"א</s> הוא כמו התוספת אשר היה לנו שהוא הב' רביעיות ורביעית רביעית שחלקנו עליהם
 +
|}
 +
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\sdot\left[2\sdot\left(2+\frac{3}{4}\right)\right]&\scriptstyle=\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\sdot\left(5+\frac{1}{2}\right)=\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\sdot\left[\left[2\sdot\left[2+\frac{2}{4}+\left(\frac{1}{2}\sdot\frac{1}{4}\right)\left(\frac{2}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\right]\right]+\left[2\sdot\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\right]\right]\\&\scriptstyle=\frac{2}{4}+\left(\frac{1}{4}\sdot\frac{1}{4}\right)\\\end{align}}}</math>
 +
{|
 
|-
 
|-
|<math>\scriptstyle{\color{blue}{\frac{78}{4}\sdot\frac{1}{8}}}</math>||&#8199;&#8199;<math>\scriptstyle{\color{blue}{\scriptstyle\frac{4}{5}}}</math>&#8199;&#8199;|| <math>\scriptstyle{\color{blue}{\scriptstyle\frac{51}{7}\sdot\frac{1}{8}}}</math>
+
|It is known with little intelligence that the product of a number by a number is as its product by all the parts of the other number, each one by itself.
 +
:<math>\scriptstyle{\color{OliveGreen}{a\sdot\left(b_1+b_2+\ldots+b_n\right)=\left(a\sdot b_1\right)+\left(a\sdot b_2\right)+\ldots+\left(a\sdot b_n\right)}}</math>
 +
|style="width:45%; text-align:right;"|כי ידוע הוא במעט התבוניות כי כפל מספר על מספר הוא ככפלו בכל חלקי המספר האחד כל אחד בפני עצמו
 
|-
 
|-
|<math>\scriptstyle{\color{blue}{\frac{78\sdot5}{5}\sdot\frac{1}{4}\sdot\frac{1}{8}}}</math>||&#8199;&#8199;<math>\scriptstyle{\color{blue}{\scriptstyle\frac{4\sdot8}{8}\sdot\frac{1}{5}}}</math>&#8199;&#8199;|| <math>\scriptstyle{\color{blue}{\scriptstyle\frac{51\sdot5}{5}\sdot\frac{1}{8}\sdot\frac{1}{7}}}</math>
+
|This is the reason of the product of a known number by the double of another number.
 +
|style="text-align:right;"|והוא הטעם שכפל מספר ידוע על כפל מספר ידוע אחר
 
|-
 
|-
|<math>\scriptstyle{\color{blue}{\frac{390\sdot7}{7}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{8}}}</math>||&#8199;&#8199;<math>\scriptstyle{\color{blue}{\scriptstyle\frac{32\sdot4}{4}\sdot\frac{1}{8}\sdot\frac{1}{5}}}</math>&#8199;&#8199;|| <math>\scriptstyle{\color{blue}{\scriptstyle\frac{255\sdot4}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\sdot\frac{1}{7}}}</math>
+
|
 +
::Example: the product by the double of 4 is as its product by double all its parts, each one by itself, for instance, by the double of 3 and by the double of 1.
 +
:::<math>\scriptstyle{\color{blue}{a\times\left(2\sdot4\right)=a\sdot\left(2\sdot3\right)+a\sdot\left(2\sdot1\right)}}</math>
 +
|style="text-align:right;"|<big>המשל</big> על כפל ד' הוא ככפלו על כפל כל חלקיו כל אחד בפני עצמו<br>
 +
<big>המשל</big> על כפל ג' ועל כפל א&#x202B;'
 
|-
 
|-
|<math>\scriptstyle{\color{blue}{\frac{2730\sdot8}{8}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{8}}}</math>||&#8199;&#8199;<math>\scriptstyle{\color{blue}{\scriptstyle\frac{128\sdot7}{7}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{5}}}</math>&#8199;&#8199;|| <math>\scriptstyle{\color{blue}{\scriptstyle\frac{1020\sdot8}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\sdot\frac{1}{7}}}</math>
+
|
 +
::This is as our saying: the product of 9 parts of 11 of half a quarter by double the first [approximate] root, which is 2 integers and 3-quarters, is as its product by all of its parts, each one by itself, i.e. by double the subtracted root and by double the remainder that are the parts of the former [approximate] root. This is clear.
 +
|style="text-align:right;"|וזהו כאומרנו שכפל הט' חלקים מי"א מחצי רביעית בכפל השרש הראשון שהוא הב' שלמים וג' רביעיות הוא כמו כפלו בכל חלקיו כל אחד בפני עצמו ר"ל בכפל השרש המחוסר ובכפל החסרון שהם חלקי השרש הקודם וזה ברור
 +
|}
 +
::<math>\scriptstyle{\color{blue}{\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\sdot\left[2\sdot\left(2+\frac{3}{4}\right)\right]=\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\sdot\left[\left[2\sdot\left[2+\frac{2}{4}+\left(\frac{1}{2}\sdot\frac{1}{4}\right)\left(\frac{2}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\right]\right]+\left[2\sdot\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\right]\right]}}</math>
 +
{|
 
|-
 
|-
|<math>\scriptstyle{\color{blue}{\frac{21840}{8}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{8}}}</math>||&#8199;&#8199;<math>\scriptstyle{\color{blue}{\scriptstyle\frac{896\sdot8}{8}\sdot\frac{1}{7}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{5}}}</math>&#8199;&#8199;|| <math>\scriptstyle{\color{blue}{\scriptstyle\frac{8160}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\sdot\frac{1}{7}}}</math>
+
|
 +
:*<math>\scriptstyle{\color{OliveGreen}{\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)=\left(\frac{b}{2a}\right)^2=\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\sdot\left[2\sdot\left(a+\frac{b}{2a}\right)\right]}}</math>
 +
|
 
|-
 
|-
|<math>\scriptstyle{\color{blue}{\frac{21840}{8}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{8}}}</math>||&#8199;&#8199;<math>\scriptstyle{\color{blue}{\scriptstyle\frac{7168}{8}\sdot\frac{1}{7}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{5}}}</math>&#8199;&#8199;|| <math>\scriptstyle{\color{blue}{\scriptstyle\frac{8160}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\sdot\frac{1}{7}}}</math>
+
|
 +
:Since the former [approximate] root exceeds over the number, whose root we wish to know, by the product of the subtracted [fraction] by double the whole former [approximate] root, as when we divide it by double the former [approximate] root, the result is this excess. Therefore, when we multiply this subtracted [fraction] by double the former [approximate] root, which is the product of the quotient by the divisor, the result is the dividend, which is the excess that we have.
 +
|style="width:45%; text-align:right;"|ואחר שהמרובע הקודם היה מוסיף על החשבון אשר רצינו לידע שרשו ככפל החסרון על כפל כל השורש הקודם שהרי כשחלקנו אותו על כפל השורש הקודם [יצא זה החסרון הנה כאשר נכפול זה החסרון בכפל השורש הקודם]&#x202B;<ref>marg.</ref> שהוא כפל היוצא בחילוק במספר אשר חלקנו עליו יעלה כמספר המתחלק שהוא התוספת שהיה לנו
 
|-
 
|-
 
|}
 
|}
 
+
:*<math>\scriptstyle{\color{OliveGreen}{\left(a+\frac{b}{2a}\right)^2-\left[\left(a+\frac{b}{2a}\right)-\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]^2=\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\sdot\left[\left[2\sdot\left(a+\frac{b}{2a}\right)\right]-\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]}}</math>
|style="text-align:right;"|ונתחיל במעשינו ונאמר 78 רביעיות שמינית, כאשר נכפלם בה', שהוא מורה החמישיות, יעלו 390 חמישיות רביעית שמינית<br>
+
{|
עוד נכפול זה המחובר בז', שהוא מורה השביעית ויעלו 2730 שביעיות חמישיות רביעית שמינית<br>
 
עוד נכפול כל זה בח', שהוא המורה השמיניות ויעלו 21840 שמיניות שביעיות חמישיות רביעיות שמיניות וזהו העולה מה78 רביעיות שמיניות<br>
 
עוד נכפול הד', שהוא ד' חמישיות, בכל מורי חברותיה זה אחר זה ונאמר ד בח' הם [ל"ב] שמיניות חמשית<br>
 
עוד נכפלם בד', יהיו 128 רביעיות שמיניות חמישית<br>
 
ונכפלם בז', יהיה 896 שביעיות רביעית שמינית חמישית<br>
 
עוד נכפלם בח' 8, יעלו 7168 שמיניות שביעית רביעית שמינית חמישית<br>
 
עוד נכפול הנ"א, שהם נ"א שמיניות שביעית, בה', יעלו 255 חמישיות שמיניות שביעית<br>
 
נכפלם בד', יעלו 1020 רביעית חמישיות שמיניות שביעית<br>
 
עוד נכפלם בח', יעלו 8160 שמיניות רביעיות חמישית שמינית שביעית<br>
 
הרי כלם ממין אחד, כי המורים שוים, כי הסדר אינו מעלה ומוריד כאשר ביארנו
 
 
|-
 
|-
|Summing the numerators is done as part of the fractionalization, in which all fractions are converted to the lowest fraction, but not as part of the equalization
+
|
|style="text-align:right;"|והשמר לך מאד פן תטעה בעשותך השואה זו, לחבר לעולה מכפל השברים במורים מה שנמצא תחת המורי', כי זה לא יעשה כי אם בפריטה לבד, שאנו רוצים לחבר כל השברים הנזכרים הנקשרים ולפרטם למין הפרוטות
+
:But, because of the subtracted [fraction] that we subtract from the [former approximate] root, the square [of the second approximate root] is less that [the square of] the first [approximate root] only by the product of the subtracted [fraction] by double the subtracted [approximate root] plus its product by itself.
 +
|style="width:45%; text-align:right;"|ואולם בשביל זה החסרון אשר אנו מחסרים עתה מהשרש לא יחסר המרובע הזה מהראשון כי בכפל זה החסרון בכפל המחוסר ובעצמו בלי כפל
 
|-
 
|-
 
|
 
|
:*Example: converting different kinds of coins (peraḥim, zehuvim, peruṭot) to the currency of the lowest value (peruṭot)
+
:*<math>\scriptstyle{\color{OliveGreen}{\left[\left(a+\frac{b}{2a}\right)-\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]^2-\left(a^2+b\right)=\left[\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]^2}}</math>
|style="text-align:right;"|המשל במי שיש לו פרחים וזהובים ופרוטות, שרוצה להשיב הפרוטות שיש לו, או להשיב הפרחים זהובים, ר"ל לראות כמה זהובים יעלו ולחבר לעולה הזהובים אשר היו בידו ואחר כך להשי' כל הזהובים פרוטות ולחבר עמהם הפרוטות אשר בידו ויהיה אז הכל מחובר ונפרט
+
|
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|אבל ההשואה אין בה חבור כלל, כי אם לעשות כל שברים מהם ממין האחדים, לכן לא יחברם כלל וזה מבואר בטעם
+
:Hence, the remainder [of the second approximate root] is the product of the subtracted [fraction] by itself.
 +
|style="text-align:right;"|א"כ ישאר עוד מהתוספת כפל זה החסרון בעצמו
 +
|-
 +
|Thus, we have explained that when we repeat this [procedure] a few times, the excess of the square [of the approximate root over the given number] is always the square of the fraction resulting from the division at that phase, that we have to add to the [approximate] root in the first phase, or to subtract from the [approximate] root in all other phases. This is provided that we do it without adding one, i.e. if we do not add one to double the [approximate] root, by which we divide [the excess], when the excess is greater than the [approximate] root, but we divide the excess only by double the [approximate] root without adding one at all.
 +
|style="text-align:right;"|הנה ביארנו כי בעשותינו זה כמה פעמים לעולם ישאר במרובע תוספת מרובע השברים שיצאו בחילוק בעת ההיא שהם אשר עלינו להוסיף על השרש &#x202B;<ref>38r</ref>במעשה הראשון או לחסרו מן השרש בשאר הפעמים כלם אם לא נעשנו בתוספת אחד ר"ל אם לא נוסיף אחד על כפל השרש לחלק על הכל אם יהיה התוספת גדול מהשרש אלא שנחלק התוספת על כפל השרש לבד בלי תוספת אחד כלל
 +
|-
 +
|This is the reason that we say that when we do not add one, we always take the square of the additional or subtracted fraction resulting the last phase, divide it by double the [approximate] root, then subtract the quotient from the [approximate] root. The reason of this procedure is clear.
 +
|style="text-align:right;"|ולזה אמרנו כי כאשר לא נעשה בתוספת אחד לעולם נקח מרובע השברים אשר יצאו בפעם האחרונה הן לתוספת או למגרעת ונחלקם על כפל השרש המחוסר והיוצא נחסרנו מהשרש וכן נעשה <sup>לעולם</sup> וכל זה ברור בטעם
 +
|-
 +
!<span style=color:Green>The reason that if the remainder is equal to the approximate root or greater than it <math>\scriptstyle{\color{OliveGreen}{b\ge a}}</math>, it is divided by double the root plus one <math>\scriptstyle{\color{OliveGreen}{\frac{b}{2a+1}}}</math>:
 +
|-
 +
|The reason we say that when the remainder equals to the [approximate] root or greater than it, we should divide it by double the root plus one, as long as we do not intend to repeat the procedure so as to further approach the truth except for this [step] only, is that if we had not added one, the square of the root consisting of the integer and fraction would exceed the number [whose root is extracted] by the square of the fraction received in the division. But this would be a quarter or more.
 +
|style="text-align:right;"|<big>וטעם</big> אומרנו כי כאשר הנשאר <sup>הוא כשורש</sup> או יותר ממנו שיש לנו לחלקו על כפל השרש בתוספת אחד<br>
 +
אם אין דעתינו להכפיל המעשה להתקרב עוד אל האמת זולתי בפעם הזאת לבד<br>
 +
הוא לפי שאם לא היינו מוסיפים אחד היה מרובע השרש {{#annot:term|178,1841|6Saf}}המקובץ מ{{#annotend:6Saf}}השלמים והשברים עודף על החשבון ככפל השברים אשר יצאו בחילוק וזה יהיה רביעית אחת או יותר
 +
|-
 +
|
 +
:<math>\scriptstyle{\color{OliveGreen}{b\ge a\longrightarrow\sqrt{a^2+b}\approx a+\frac{b}{2a+1}}}</math>
 +
:<math>\scriptstyle{\color{OliveGreen}{b\ge a\longrightarrow\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)=\left(\frac{b}{2a}\right)^2\ge\frac{1}{4}}}</math>
 +
|
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ולזה שמתי להם שמות שונים, מורי' על הענין ברמז&#x202B;:
+
::For, if [the remainder] is equal to the root itself, and we divide it by double the root, the result of division will be a half. Its square, i.e. its product by itself, which is the excess, will then be an entire quarter.
 +
::<math>\scriptstyle{\color{OliveGreen}{b=a\longrightarrow\left(\frac{b}{2a}\right)^2=\left(\frac{a}{2a}\right)^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}}}</math>
 +
|style="text-align:right;"|לפי שאם יהיה כשורש בעינו ונחלקנו על כפל השרש יצא בחלוק חצי ומרובעו ר"ל כפלו בעצמו שהוא התוספת שיהיה רביעית שלמה
 
|-
 
|-
 
|
 
|
*'''Hašavah''' (equalization) = converting fractions that are related together into one type of fractions by multiplying each of these fractions by the denominators of the others. The intention is not to sum the fractions together, but only to equalize their denominators
+
::And if the remainder is greater than the root, when we divide it by double the root, the result will be more than a half, and its square more than a quarter.
|style="text-align:right;"|כי להחזרת השברים הבלתי נקשרות למין אחד, בהכאת כל אחד מהם במורי חברותיה, קראתי '''השואה''', שאין כונתינו חבור כלל, כי אם ההשואה לבד
+
::<math>\scriptstyle{\color{OliveGreen}{b>a\longrightarrow\left(\frac{b}{2a}\right)^2>\left(\frac{a}{2a}\right)^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}}}</math>
 +
|style="text-align:right;"|ואם יהיה השארית יותר גדול מהשרש כשנחלקנו על כפל השרש יהיה היוצא יותר מחצי ומרובעו יותר מרביעית
 
|-
 
|-
 
|
 
|
*'''Periṭah''' (fractionalization) = converting fractions that are related together into the lowest type of fractions
+
:*{{#annot:√6|439|cUME}}Example: we wish to know the root of 6.
|style="text-align:right;"|ולהשבת השברים הנקשרים כלם יחד למין השברים הגרועים מהם קראתי '''פריטה'''
+
::<math>\scriptstyle\sqrt{6}</math>
 +
|style="text-align:right;"|והמשל בקשנו לידע שרש ו&#x202B;'{{#annotend:cUME}}
 
|-
 
|-
 
|
 
|
:Two reasons for the use of the term periṭah:
+
::The integer that results in the root is 2 and 2 remains, which is as the root itself.
|style="text-align:right;"|לשתי כוונות&#x202B;:
+
|style="text-align:right;"|הנה השלמים אשר יצאו בשרש הם ב' וישארו ב' שהוא כמו השרש בעצמו
 
|-
 
|-
 
|
 
|
:1) the root is used for converting different kinds of coins to the currency of the lowest value (peruṭot) and for converting the general to particular (peraṭim)
+
::If we divide it by double the [approximate] root without adding one, it is divided by 4, which is double the root and the quotient is a half, so the whole root is 2 integers and a half.
|style="text-align:right;"|האחת שהוא כפורט ועושה מהפרחים וזהובים ופרוטות פרוטות וכמשיב הכללים לפרטים
+
::<math>\scriptstyle{\color{blue}{\sqrt{6}\approx2+\frac{6-4}{2\sdot2}=2+\frac{2}{4}=2+\frac{1}{2}}}</math>
 +
|style="text-align:right;"|ואם חלקנום על כפל השרש בלי תוספת אחת יתחלק לד' שהוא כפל השרש ויצא בחילוק חצי ויהיה כל השרש ב' שלמים וחצי
 
|-
 
|-
 
|
 
|
:2) reminding of the details (peraṭ) that should be considered in the procedure - i.e. the numerators that are written beneath the denominators
+
::Its square is 6 integers and a quarter.
|style="text-align:right;"|והכונה השנית היא כי בשם זה יזכר שיש לו לקחת עמו הפרט והעוללות אשר ימצא תחת המורים
+
:::<math>\scriptstyle{\color{blue}{\left(2+\frac{1}{2}\right)^2=6+\frac{1}{4}}}</math>
 +
|style="text-align:right;"|ומרובעם ו' שלמים ורביע
 +
|}
 +
:<math>\scriptstyle{\color{OliveGreen}{b\ge a\longrightarrow\left(a^2+b\right)-\left(a+\frac{b}{2a+1}\right)^2=\frac{b}{2a+1}\sdot\left(1-\frac{b}{2a+1}\right)<\frac{1}{2}\sdot\left(1-\frac{1}{2}\right)=\frac{1}{4}}}</math>
 +
{|
 +
|-
 +
|
 +
:If we add one, the square [of the approximate root] will be smaller [than the given number] by the product of the quotient, which is less than a half, by its complement with respect to 1, so it will be less than a quarter.
 +
|style="width:45%; text-align:right;"|ואם היינו מוסיפים &#x202B;<ref>38v</ref>א' הנה יחסר מהמרובע ככפל היוצא בחילוק שיהיה פחות מחצי בהשלמתו לאחד וזה יהיה פחות מרביע
 
|-
 
|-
|When multiplication and fractionalization are needed - the fractionalization should be applied first, and then the multiplication
+
|
|style="text-align:right;"|ובכל מספר שצריך הכאה עם הפריטה, יעשה קודם הפריטה לבעלי ההכאה ואחר ההכאה
+
:Therefore it is close to the truth, for the square [of the approximate root] is smaller than the [given] number by less than a quarter.
 +
|style="text-align:right;"|הנה א"כ הוא קרוב אל האמת כי לא יחסר רביע במרובע מהחשבון
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|לכן בכל מקום אשר נזכיר ונצוה לעשות פריטה רצוננו ואחריה ההכאה, אם הוצרך איליה, או אשר מהם יצטרך, שאם יהיה לך מספר מורכב מהשברים הצריכים הכאה ועם הצריכים פריטה
+
:If we do not add one, we increase [the excess] to a quarter [at least] and all the more so if it is greater than the [approximate] root.
 +
|style="text-align:right;"|ואם לא נוסיף א' נוסיף רביע וכ"ש אם היה גדול מהשרש
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle\frac{3}{4}\sdot\left[\frac{2}{5}+\left(\frac{3}{4}\sdot\frac{1}{5}\right)\right]\sdot\left[\frac{4}{6}+\left(\frac{1}{3}\sdot\frac{1}{6}\right)\right]</math>
+
:For, when we divide it by double the [approximate] root, the quotient is greater than a half and its square is greater than a quarter, as you can see in the preceding example.
|style="text-align:right;"|המשל: ג' רביעיות מב' חמישיות וג' רביעיות חמישיות מד' ששיות ושלישית ששית, תשימם על הסדר כזה&#x202B;:
+
:::<math>\scriptstyle{\color{OliveGreen}{b>a\longrightarrow\left(\frac{b}{2a}\right)^2>\left(\frac{1}{2}\right)^2=\frac{1}{4}}}</math>
 +
|style="text-align:right;"|כי כאשר נחלקנו לכפול השרש יצא בחילוק יותר מחצי ומרובעו יותר מרביע כאשר תראה במשל הקודם לזה
 +
|-
 +
|If you divide [the remainder] by double the root plus 1, the square of the root will be less than the sought number by the product of the quotient and its complement with respect to one, which can never in any way reach a quarter.
 +
|style="text-align:right;"|ואם תחלקנו על כפל השרש בתוספת <sup>א'</sup> יחסר מרובע השרש המקובץ מהחשבון הנשאל ככפל היוצא בחלוק בהשלמתו לאחד ולא יהיה אפי' רביע בשום פנים
 +
|}
 +
:<math>\scriptstyle{\color{OliveGreen}{b\ge a\longrightarrow\left(a^2+b\right)-\left(a+\frac{b}{2a+1}\right)^2=\frac{b}{2a+1}\sdot\left(1-\frac{b}{2a+1}\right)<\frac{1}{2}\sdot\left(1-\frac{1}{2}\right)=\frac{1}{4}}}</math>
 +
{|
 
|-
 
|-
 
|
 
|
 +
:For, the product of a portion of a line or a number by its complement never reaches a quarter.
 +
|style="width:45%; text-align:right;"|כי כאשר תכפול קצת הקו או המספר בקצתו האחר לא יעלה לעולם לרביע
 +
|-
 
|
 
|
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
+
::Because, if you multiply its half by its half the result will be a quarter.
 +
::<math>\scriptstyle{\color{blue}{\frac{1}{2}\sdot\frac{1}{2}=\frac{1}{4}}}</math>
 +
|style="text-align:right;"|שאם תכפול חציו בחציו יהיה רביע
 
|-
 
|-
| colspan=3 |&nbsp;|| 3 || 6
+
|
 +
:And clearly if you multiply its smaller portion by its larger [complementing] portion [the product] will not be a quarter but smaller than it by the square of their distances from half the line or the number.
 +
::<math>\scriptstyle{\color{OliveGreen}{\left(1-\frac{n}{m}\right)>\frac{n}{m}\longrightarrow\frac{1}{4}-\left[\frac{n}{m}\sdot\left(1-\frac{n}{m}\right)\right]=\left(\frac{1}{2}-\frac{n}{m}\right)^2}}</math>
 +
|style="text-align:right;"|ואם תכפול מעוטו ברובו לא יהיה רביע וזה ברור אבל יחסר ממנו כמרובע מרחקם מחצי הקו או המספר
 
|-
 
|-
| &nbsp;|| 4 || 5 || 1 || 4
+
|
 +
::For instance, if we divide a line into a quarter and 3-quarters, when you multiply its half by its half it is as if you multiply a quarter of the line by a quarter of the line four times.
 +
:::<math>\scriptstyle{\color{blue}{\frac{1}{2}\sdot\frac{1}{2}=4\sdot\left(\frac{1}{4}\sdot\frac{1}{4}\right)}}</math>
 +
|style="text-align:right;"|<sup>כי</sup> ע'ד'מ' אם חלקנו הקו לרביע הקו וג' רביעיות הנה אם תכפול החצי בחצי הוא כאלו תכפול רביע הקו <s>עם</s> ברביע הקו ד' פעמים
 
|-
 
|-
| 4 || 3 || 2
+
|
 +
::If you multiply a quarter of the line by its 3-quarters, which is its complement with respect to one, it is exactly as the product of a quarter of the line by a quarter of the line three times.
 +
:::<math>\scriptstyle{\color{blue}{\frac{1}{4}\sdot\left(1-\frac{1}{4}\right)=\frac{1}{4}\sdot\frac{3}{4}=3\sdot\left(\frac{1}{4}\sdot\frac{1}{4}\right)}}</math>
 +
|style="text-align:right;"|ואם תכפול רביע הקו בג' רביעיות המשלימות אותו לאחד שלם לא יהיה כי אם כפל רביע הקו ברביע הקו ג' פעמים <s>ואם תכפול רביע הקו בג' רביעיות המשלימות אותו לאחד שלם לא יהיה כי אם</s>
 
|-
 
|-
| 3
+
|
|}
+
::It is less than the product of a quarter by a quarter, which is the distance of each portion of the line from its half.
 +
:::<math>\scriptstyle{\color{blue}{\left(\frac{1}{2}\sdot\frac{1}{2}\right)-\left[\frac{1}{4}\sdot\left(1-\frac{1}{4}\right)\right]=\frac{1}{4}\sdot\frac{1}{4}}}</math>
 +
|style="text-align:right;"|הנה יחסר מחצי על חצי ככפל רביע על רביע שהוא מרחק כל אחד מחלקי הקו מהחצי
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\frac{3}{4}\sdot\left[\frac{2}{5}+\left(\frac{3}{4}\sdot\frac{1}{5}\right)\right]\sdot\left[\frac{4}{6}+\left(\frac{1}{3}\sdot\frac{1}{6}\right)\right]&\scriptstyle=\frac{3}{4}\sdot\left[\frac{\left(2\sdot4\right)+3}{4}\sdot\frac{1}{5}\right]\sdot\left[\frac{\left(4\sdot3\right)+1}{3}\sdot\frac{1}{6}\right]\\&\scriptstyle=\frac{3}{4}\sdot\left(\frac{11}{4}\sdot\frac{1}{5}\right)\sdot\left(\frac{13}{3}\sdot\frac{1}{6}\right)\\\end{align}}}</math>
+
::For instance, if you multiply a half of 12 by its half, which is 6 by 6, the result is 36, which is the product of 6 by 5 that is 30, and the product of 6 by 1, which is 6.
|style="text-align:right;"|ותעשה פריטה לד' '''שביעיות''' ושלישית שישית והוא שתכפול הד' בג' ותחבר להם האחד אשר תחתיו ויעלו י"ג שלישיות ששית<br>
+
:::<math>\scriptstyle{\color{blue}{\left(\frac{1}{2}\sdot12\right)\sdot\left(\frac{1}{2}\sdot12\right)=6\sdot6=36=30+6=\left(6\sdot5\right)+\left(6\sdot1\right)}}</math>
וכן תעשה לב' חמישיות וג' רביעיות חמישית ויעלו י"א רביעיות חמישית<br>
+
|style="text-align:right;"|ואם תכפול ע'ד'מ' חצי מספר י"ב בחציו שהוא ו' בו' יעלה ל"ו שהוא כפל ו' בה' שהם ל' וכפלו ו' בא' שהם ו&#x202B;'
וישוב מספרך כאלו אמרו ג' רביעיות מי"ח רביעיות חמישית מי"ג שלישיות שישית כזה&#x202B;:
+
|-
 +
|
 +
::But, if you multiply 5 by 7, which is its complement with respect to [twelve], it is only 35, because it is as the product of 5 by 6, which is 30, and the product of 5 by 1, which is 5.
 +
:::<math>\scriptstyle{\color{blue}{\left(6-1\right)\sdot\left(6+1\right)=5\sdot7=35=30+5=\left(5\sdot6\right)+\left(5\sdot1\right)}}</math>
 +
|style="text-align:right;"|ואולם אם תכפול ה' בז' שהם השלמתו לאחד לא יהיה כי אם ל"ה לפי שהוא ככפל ה' בו' שהם ל' וכפל ה' בא' שהם ה&#x202B;'
 +
|-
 +
|
 +
::The [greater] the fraction, the greater is the excess.
 +
|style="text-align:right;"|וכל מה &#x202B;<ref>39r</ref>שיתחלקו יותר החלקים יחסר יותר
 +
|-
 +
|
 +
::That is, its difference from a quarter is as the square of its difference from a half.
 +
:::<math>\scriptstyle{\color{OliveGreen}{\left(1-\frac{n}{m}\right)>\frac{n}{m}\longrightarrow\frac{1}{4}-\left[\frac{n}{m}\sdot\left(1-\frac{n}{m}\right)\right]=\left(\frac{1}{2}-\frac{n}{m}\right)^2}}</math>
 +
|style="text-align:right;"|וזה שהחסרון מרביע הוא כמרובע הרחקתם מחצי
 +
|-
 +
|?
 +
|style="text-align:right;"|כבמשלנו זה שהיה כמרובע האחד אשר נתרחקו מו' שהוא החצי
 +
|-
 +
|
 +
::If we multiply 3 by its complement with respect to twelve, which is 9, the result is only 27 and it is less than [the square of its] half by the square of 3, which is 9.
 +
|style="text-align:right;"|ואם היינו כופלים ג' בהשלמתו לי"ב שהוא ט' הנה לא יעלה כי אם כ"ז ויחסר כמרובע ג' שנתרחקו מהחצי שהוא ט&#x202B;'
 +
|}
 +
:::<math>\scriptstyle{\color{blue}{\left[\left(\frac{1}{2}\sdot12\right)\sdot\left(\frac{1}{2}\sdot12\right)\right]-\left[3\sdot\left(12-3\right)\right]=\left(6\sdot6\right)-\left(3\sdot9\right)=36-27=9=3^2}}</math>
 +
{|
 +
|-
 +
|
 +
::This is because the product of 6 by 6 is as the product of 6 by 3 and the product of 6 by 3, which is twice the product of 3 by 3.
 +
:::<math>\scriptstyle{\color{blue}{\left(\frac{1}{2}\sdot12\right)\sdot\left(\frac{1}{2}\sdot12\right)=6\sdot6=\left(6\sdot3\right)+\left(6\sdot3\right)=\left[2\sdot\left(3\sdot3\right)\right]+\left[2\sdot\left(3\sdot3\right)\right]}}</math>
 +
|style="width:45%; text-align:right;"|וזה כי כפל ו' בו' הוא ככפל ו' בג' וככפלו ו' בג' שהוא כפל ג' בג' פעמים
 +
|-
 +
|
 +
::But, the product of 3 by 9 is only the product of 3 by 6 and the product of 3 by 3.
 +
:::<math>\scriptstyle{\color{blue}{3\sdot\left(12-3\right)=3\sdot9=\left(3\sdot6\right)+\left(3\sdot3\right)}}</math>
 +
|style="text-align:right;"|ואולם כפל ג' בט' אינו כי אם כפל ג' בו' וכפל ג' בג' פעם אחת לבד
 +
|-
 +
|
 +
::So, its difference from a quarter of a square number is as the product of its difference from the half by itself, which is a quarter of a quarter.
 +
|style="text-align:right;"|לכן יחסר מרביע מרובע <sup>ה</sup>מספר ככפל ריחוקם מהחצי בעצמו והוא רביע רביע
 +
|}
 +
:::<math>\scriptstyle{\color{OliveGreen}{\frac{1}{4}n^2-\left[m\sdot\left(n-m\right)\right]=\left[\left(\frac{1}{2}n\right)\sdot\left(\frac{1}{2}n\right)\right]-\left[m\sdot\left(n-m\right)\right]=\left[\left(\frac{1}{2}n\right)-m\right]^2}}</math>
 +
{|
 +
|-
 +
|
 +
::Since its difference is 3, which is a quarter of 12. Deduce from this.
 +
:::<math>\scriptstyle{\color{blue}{\left[\left(\frac{1}{2}\sdot12\right)\sdot\left(\frac{1}{2}\sdot12\right)\right]-\left[3\sdot\left(12-3\right)\right]=3^2=\left(\frac{1}{4}\sdot12\right)^2}}</math>
 +
|style="width:45%; text-align:right;"|לפי שרחוקם היה ג' שהוא רביע הי"ב דוק ותשכח
 +
|-
 +
!<span style=color:Green>The reason for<span style=color:Green> <math>\scriptstyle{\color{OliveGreen}{\left(a^2+b\right)-\left(a+\frac{b}{2a+1}\right)^2=\frac{b}{2a+1}\sdot\left(1-\frac{b}{2a+1}\right)}}</math>
 +
|
 +
|-
 +
|Our saying that when we divide [the remainder] by double the root plus 1, the square of the summed [approximate] root is smaller than the [original] number by the product of the quotient by its complement with respect to one -
 +
|style="text-align:right;"|ואולם אומרנו שכאשר נחלקנו לכפל השרש בתוספת אחד שיהיה החסרון אשר במרובע השרש המקובץ מהחשבון ככפל היוצא בחילוק בהשלמתו
 +
|-
 +
|I shall explain it first by the previous examples, then I shall explain its reason:
 +
|style="text-align:right;"|אבארנו תחלה במשלים העוברים וא'ח'כ' אבארנו בטעם
 +
|-
 +
|
 +
:*{{#annot:√7|439|ROfW}}When we seek the root of 7.
 +
::<math>\scriptstyle\sqrt{7}</math>
 +
|style="text-align:right;"|<big>המשל</big> כאשר בקשנו שרש ז&#x202B;'{{#annotend:ROfW}}
 +
|-
 +
|
 +
::The result is 2 integers and 3 remains, which is greater then the [approximate] root.
 +
|style="text-align:right;"|והיה ב שלמים ונשארו ג' שהם יותר מהשרש
 +
|-
 +
|
 +
::We divide it by double the root plus 1, i.e. by 5; the quotient is 3-fifths.
 +
::<math>\scriptstyle{\color{blue}{\sqrt{7}\approx2+\frac{7-4}{\left(2\sdot2\right)+1}=2+\frac{3}{5}}}</math>
 +
|style="text-align:right;"|וחלקנום לכפל השרש בתוספת <sup>א' </sup> ר"ל על ה' יצא בחילוק ג' חמישיות
 +
|-
 +
|
 +
::When we multiply two integers and 3-fifths by itself, its square is 6 integers, 3-fifths and 4-fifths of a fifth.
 +
|style="text-align:right;"|וכאשר נכפול שני שלמים <sup>וג'</sup> חמישיות על עצמו יהיה מרובעו ו' שלמים וג' חמישיות וד' חמישיות חמישית
 +
|-
 +
|
 +
::But, the required number is 7 integers, so this square is smaller than 7 integers by one-fifth and a fifth of a fifth.
 +
|style="text-align:right;"|והחשבון הנשאל היה ז' שלימים הנה יחסר זה המרובע מז' שלמים חמישית [אחת שלמה וחמישית חמישית
 +
|-
 +
|
 +
::This itself is as the product of 3-fifths, which is the quotient, by its complement with respect to one, which is 2-fifths.
 +
|style="text-align:right;"|וזה]&#x202B;<ref>marg.</ref> וזה בעצמו הוא כפל הג' חמישיות אשר יצאו בחלוק <sup>על השלמתם</sup> לאחד שלם שהוא <sup>ב'</sup> חמישיות
 +
|-
 +
|
 +
::For, the product of 3-fifths by 2-fifths is 6-fifths of a fifth, which is one-fifth and a fifth of a fifth.
 +
|style="text-align:right;"|כי כפל ג' חמישיות בב' חמישיות הוא ו' חמישיות <sup>חמישית</sup> שהן חמישית אחד שלם וחמישית חמישית
 +
|}
 +
::<math>\scriptstyle{\color{blue}{7-\left(2+\frac{3}{5}\right)^2=7-\left[6+\frac{3}{5}+\left(\frac{4}{5}\sdot\frac{1}{5}\right)\right]=\frac{1}{5}+\left(\frac{1}{5}\sdot\frac{1}{5}\right)=\frac{6}{5}\sdot\frac{1}{5}=\frac{3}{5}\sdot\frac{2}{5}=\frac{3}{5}\sdot\left(1-\frac{3}{5}\right)}}</math>
 +
{|
 +
|-
 +
|
 +
:*In the second example: if we seek the root [of 6].
 +
::<math>\scriptstyle\sqrt{6}</math>
 +
|style="width:45%; text-align:right;"|<big>ובמשל</big> בשני אם בקשנו שרש
 +
|-
 +
|
 +
::The result is 2 integers and 2 remains, which is the same as the root.
 +
::<math>\scriptstyle{\color{blue}{\sqrt{6}\approx2+\frac{6-4}{\left(2\sdot2\right)+1}=2+\frac{2}{5}}}</math>
 +
|style="text-align:right;"|והנה יצאו ב' שלמים ונשארו ב' שהוא כמו השרש
 +
|-
 +
|
 +
::If we divide it by double the root plus 1, i.e. by 5; the quotient is 2-fifths.
 +
|style="text-align:right;"|אם חלקנום על כפל השרש בתוספת <sup>א'</sup> ר"ל על ה' &#x202B;<ref>39v</ref>יצא בחילוק ב' חמישיות
 +
|-
 +
|
 +
::When we multiply two integers and 2-fifths by itself, its square is 5 integers, 3-fifths and 4-fifths of a fifth.
 +
|style="text-align:right;"|וכאשר כפלנו שני שלמים וב' חמישיות על עצמם יעלה ה' מרובעו ה' שלמים וג' [חמישיות]&#x202B;<ref>marg.</ref> וד' חמישיות חמישית
 +
|-
 +
|
 +
::But, the required number, whose root we seek, is 6 integers, so this square is smaller than that number by one-fifth and a fifth of a fifth.
 +
|style="text-align:right;"|ואולם החשבון הנשאל אשר בקשנו שרשו היה ו' שלמים הנה יחסר זה המרובע מהחשבון ההוא חמישית אחת שלימה וחמישית חמישית
 +
|-
 +
|
 +
::This is as the product of 2-fifths, which is the quotient, by its complement with respect to one, which is 3-fifths.
 +
|style="text-align:right;"|והוא ככפל הב' חמישיות אשר יצאו בחילוק בהשלמתם לאחד שהוא ג' חמישיות
 +
|-
 +
|
 +
::For, the product of 2-fifths by 3-fifths is 6-fifths of a fifth, which is one-fifth and a fifth of a fifth as we have explained.
 +
|style="text-align:right;"|כי כפל ב' חמישיות בג' חמישיות הוא ו' חמישיות חמישית שהן חמישית אחד שלמה וחמישית חמישית כאשר ביארנו
 +
|}
 +
::<math>\scriptstyle{\color{blue}{6-\left(2+\frac{2}{5}\right)^2=6-\left[5+\frac{3}{5}+\left(\frac{4}{5}\sdot\frac{1}{5}\right)\right]=\frac{1}{5}+\left(\frac{1}{5}\sdot\frac{1}{5}\right)=\frac{6}{5}\sdot\frac{1}{5}=\frac{2}{5}\sdot\frac{3}{5}=\frac{2}{5}\sdot\left(1-\frac{2}{5}\right)}}</math>
 +
{|
 +
|-
 +
|The reason is that the remainder is as the result of division multiplied by twice the [previous approximate] root plus one.
 +
::<math>\scriptstyle{\color{OliveGreen}{b=\frac{b}{2a+1}\sdot\left(2a+1\right)=\left(\frac{b}{2a+1}\sdot2a\right)+\left(\frac{b}{2a+1}\sdot1\right)}}</math>
 +
|style="width:45%; text-align:right;"|<big>והטעם</big> הוא לפי שהשארית היה ככפל זה היוצא בחילוק בכפל השרש הראשון ובאחד
 +
|-
 +
|For, when we divide the remainder by double the [approximate] root plus 1, we find that the remainder is as the product of this quotient by double the [approximate] root plus 1.
 +
|style="text-align:right;"|שהרי בחלקנו השארית לכפל השרש בתוספת א' יצא זה בחלוק נמצא שהשארית היה ככפל זה היוצא בחלוק בכפל השרש הקודם [ובא&#x202B;']&#x202B;<ref>marg.</ref> <s>לא יוסיף במרובע</s>
 +
|-
 +
|The addition of the result to the previous [approximate] root, however, will add to the square only its product by twice the previous root and its product by itself.
 +
::<math>\scriptstyle{\color{OliveGreen}{\left(a+b\right)^2-a^2=\left(2\sdot a\sdot b\right)+b^2}}</math>
 +
|style="text-align:right;"|ואולם תוספת זה היוצא בשרש הקודם לא יוסיף במרובע כי אם ככפלו בכפל השרש הקודם ובכפלו בעצמו
 +
|-
 +
|But, its product by itself subtracted from its product by 1 is its product by its complement [with respect to 1].
 +
::<math>\scriptstyle{\color{OliveGreen}{\left(b\sdot1\right)-b^2=b\sdot\left(1-b\right)}}</math>
 +
|style="text-align:right;"|וכפלו בעצמו יחס' מכפלו בא' כפלו בהשלמתו לאחד
 +
|-
 +
|
 +
:For example, the product of a third by one is as its product by all the parts [of 1], namely by a third, which is itself, and by two thirds, which is its complement with respect to one; this is clear.
 +
:::<math>\scriptstyle{\color{blue}{\left(\frac{1}{3}\sdot1\right)=\left(\frac{1}{3}\sdot\frac{1}{3}\right)+\left(\frac{2}{3}\sdot\frac{1}{3}\right)=\left(\frac{1}{3}\sdot\frac{1}{3}\right)+\left[\frac{1}{3}\sdot\left(1-\frac{1}{3}\right)\right]}}</math>
 +
|style="text-align:right;"|כי המשל כפל שליש באחד הוא ככפלו בכל חלקיו <sup>ר"ל</sup> ככפלו בשליש ר"ל בעצמו וככפלו בשתי שלישים אשר הם המשלים אותו כאחד וזה ברור
 +
|-
 +
|
 +
:<math>\scriptstyle{\color{OliveGreen}{b\ge a\longrightarrow\left(a^2+b\right)-\left(a+\frac{b}{2a+1}\right)^2<\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)}}</math>
 +
:<span style=color:Green>closer approximation:</span><math>\scriptstyle{\color{OliveGreen}{a+\frac{b}{2a+1}}}</math>
 +
|
 +
|-
 +
|Thus, we have explained that when the remainder is as the [approximate] root or greater than it, if we divide it by double the [approximate] root plus 1, it comes closer to the truth by subtraction more than it come closer to the truth by addition when we divide it by double the [approximate] root without adding 1.
 +
|style="text-align:right;"|הנה ביארנו כי כאשר השארית היה כשרש או יותר ממנו כי בחלקנו אותו לכפל השרש בתוספת א' יתקרב אל האמת לחסרון מאשר יתקרב אל האמת לתוספת בחלקנו אותו לכפל השרש בלי תוספת אחד
 +
|-
 +
|
 +
:<math>\scriptstyle{\color{OliveGreen}{b<a\longrightarrow\left(a^2+b\right)-\left(a+\frac{b}{2a+1}\right)^2>\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)}}</math>
 +
:<span style=color:Green>closer approximation:</span> <math>\scriptstyle{\color{OliveGreen}{a+\frac{b}{2a}}}</math>
 +
|
 +
|-
 +
|But, if the remainder is less than the [approximate] root it is vice versa.
 +
|style="text-align:right;"|ואולם אם השארית פחות מהשרש יהיה להפך
 +
|-
 +
|
 +
*{{#annot:√29|439|rK5S}}Example: if we wish the root of 29.
 +
:<math>\scriptstyle\sqrt{29}</math>
 +
|style="text-align:right;"|&#x202B;<ref>40r</ref><big>המשל</big> אם בקשנו שרש כ"ט{{#annotend:rK5S}}
 +
|-
 +
|
 +
:The integer resulting in the root is 5 and 4 remains. If we divide it by double the root without addition, which is 10, the result is 4-tenths.
 +
:<math>\scriptstyle{\color{blue}{\sqrt{29}\approx5+\frac{29-25}{2\sdot5}=5+\frac{4}{10}}}</math>
 +
|style="text-align:right;"|הנה השלמים אשר יצאו בשרש הם ה' ונשארו ד&#x202B;'<br>
 +
ואם חלקנום לכפל השרש בלי תוספת שהוא י' יצאו ד' עשיריות
 +
|-
 +
|
 +
::Its excess over the truth is as the product of this result by itself, which is 16-tenths of a tenth, i.e. 16 parts of 100.
 +
::<math>\scriptstyle{\color{blue}{\left(5+\frac{4}{10}\right)^2-29=\frac{16}{10}\sdot\frac{1}{10}=\frac{16}{100}}}</math>
 +
|style="text-align:right;"|וריחוקו מן האמת לתוספת הוא ככפל זה היוצא בעצמו שהוא י"ו עשיריות עשירית ר"ל י"ו חלקים מק' שבשלם
 +
|-
 +
|
 +
:If we divide it by [double the approximate root] plus one, which is [1]1, the quotient is 4 parts of 11.
 +
:<math>\scriptstyle{\color{blue}{\sqrt{29}\approx5+\frac{29-25}{\left(2\sdot5\right)+1}=5+\frac{4}{{\color{red}{1}}1}}}</math>
 +
|style="text-align:right;"|ואם חלקנום בתוספת א' שהוא <s>שה</s> ל"א יצאו בחלוק ד' חלקים מי"א בשלם
 +
|-
 +
|
 +
::Its distance from the truth is as the product of the quotient by its complement with respect to 1, which is 7 parts of 11, as we explained and it is 28 parts of 11 of one part of 11, i.e. 28 parts of 121, which is more that one-fifth.
 +
::<math>\scriptstyle{\color{blue}{29-\left(5+\frac{4}{11}\right)^2=\frac{4}{11}\sdot\left(1-\frac{4}{11}\right)=\frac{4}{11}\sdot\frac{7}{11}=\frac{28}{11}\sdot\frac{1}{11}=\frac{28}{121}>\frac{1}{5}}}</math>
 +
|style="text-align:right;"|ויתרחק מן האמת בכפל ו<s>ה</s>היוצא בהשלמתו לאחד שהוא ז' חלקים מי"א כאשר ביארנו והוא כ"ח חלקים מי"א מחלק אחד עשר בשלם ר"ל כ"ח חלקים מקכ"א בשלם והוא יותר מחמישית שלם
 +
|-
 +
|
 +
::But, the former was not even one-sixth. Deduce from this.
 +
::<math>\scriptstyle{\color{blue}{\left(5+\frac{4}{10}\right)^2-29=\frac{16}{10}\sdot\frac{1}{10}=\frac{16}{100}<\frac{1}{6}}}</math>
 +
|style="text-align:right;"|ואולם הראשונים לא היו אפי' שישית אחת והקש על זה
 +
|-
 +
|
 +
:The reason is that the excess of the latter over the truth is less than a quarter by the product of its distance from a half by itself.
 +
:<math>\scriptstyle{\color{OliveGreen}{\left(a^2+b\right)-\left(a+\frac{b}{2a+1}\right)^2=\frac{1}{4}-\left(\frac{1}{2}-\frac{b}{2a+1}\right)^2}}</math>
 +
|style="text-align:right;"|והטעם כי זה יחסר רחוקו מן האמת מרביעיתו ככפל מרחקו מחצי בעצמו
 +
|-
 +
|
 +
:While the excess of the former over the truth is less [than a quarter] by the product of its distance from a half by itself plus twice the product of this distance by the addition in the root.
 +
:<math>\scriptstyle{\color{OliveGreen}{\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)=\frac{1}{4}-\left[\left(\frac{1}{2}-\frac{b}{2a}\right)^2+\left[2\sdot\frac{b}{2a}\sdot\left(\frac{1}{2}-\frac{b}{2a}\right)\right]\right]}}</math>
 +
|style="text-align:right;"|וזה יחסר רחוקו מן האמת ככפל רחוקו מחצי בעצמו וככפל זה הריחוק פעמים בזה השרש המתוסף
 +
|-
 +
|
 +
::Example: in our previous example, when it is done with the addition of 1. We divide 4 by 11, the result is 4 parts of 11. The excess over the truth is as the product of these 4 [parts] by 7 [parts] as aforesaid, which is less than a quarter by the product of one part [of 11] of one and a half, which is the distance of [4 parts of 11] from a half, by itself, which is the distance of its square that is 2 and a quarter.
 +
|style="text-align:right;"|המשל במשלנו הקודם כי כאשר יעשה [בתוספת א' המשל שחלקנו הד' על י"א ויצאו ד'י"א הנה]&#x202B;<ref>marg.</ref> י"א הנה יתרחק מן האמת ככפל אלו הד' בז' כנזכר ויחסר מרביע ככפל חלק אחד וחצי שהוא מרחקו מחצי הי"א בעצמו שהוא מרובע מרחקו שהוא ב' ורביע
 +
|}
 +
::<math>\scriptstyle{\color{blue}{29-\left(5+\frac{4}{11}\right)^2=\frac{4}{11}\sdot\frac{7}{11}=\frac{1}{4}-\frac{2+\frac{1}{4}}{11^2}=\frac{1}{4}-\left[\left(1+\frac{1}{2}\right)\sdot\frac{1}{11}\right]^2=\frac{1}{4}-\left(\frac{1}{2}-\frac{4}{11}\right)^2}}</math>
 +
{|
 +
|-
 +
|
 +
::But, when we divide it without an addition, i.e. by 10, the result of division is 4-tenths. The excess over the truth is as its product by itself, which is less than a quarter by the square of its distance from a half, which is one, plus twice the product of this one by double this root. The total is 9.
 +
|style="width:45%; text-align:right;"|ואולם כאשר חלקנוהו מבלי תוספת המשל על י' הנה עלה בחלוק ד' עשיריות ויתרחק מן האמת ככפלו בעצמו שהוא פחות מרביע כמרובע מרחקו מחצי שהוא האחד וכפל זה האחד בכפל זה השרש שעולה הכל ט&#x202B;'
 +
|}
 +
::<math>\scriptstyle{\color{blue}{\left(5+\frac{4}{10}\right)^2-29=\left(\frac{4}{10}\right)^2=\frac{16}{100}=\frac{1}{4}-\frac{9}{100}=\frac{1}{4}-\left[\left(\frac{1}{2}-\frac{4}{10}\right)^2+\left[2\sdot\frac{4}{10}\sdot\left(\frac{1}{2}-\frac{4}{10}\right)\right]\right]}}</math>
 +
{|
 +
|-
 +
|Although the excesses are not equal ''A single handful does not satisfy a lion'' [Talmud, Berakhot 3, 2].
 +
|style="width:45%; text-align:right;"|ועם היות שאין הריחוקים שוים ולא החלקים מ"מ ''אין הקומץ משביע את הארי''&#x202B;<ref group=note>תלמוד בבלי, מסכת ברכות, דף ג ע"ב</ref>
 +
|-
 +
|I do not feel to be more precise, because I have been precise enough at this place.
 +
|style="text-align:right;"|ולא חששתי לדקדק יותר כי די באשר דקדקתי בזה המקום
 +
|-
 +
|We already stated that the one who wants to repeat the procedure does not need to add one [to double the approximate root], even if the remainder is greater than the root, because by repeating [the procedure] he comes as closer to the truth as possible. He should not be confused in the procedure by adding one, but always apply it without addition, and he should not speculate, only to take the square of the fraction resulting at that phase, divide it by double the [approximate] root, then subtract the quotient from its [approximate] root and so on. Because, I instructed to add one just when the remainder is as the [approximate] root or greater, only for the one who settles for one time. But the one who wants to come very closer and repeat the procedure should not add [one to double the approximate root] and not get confused.
 +
|style="text-align:right;"|&#x202B;<ref>40v</ref><big>ועוד</big> שכבר אמרנו שהרוצה להכפיל המעשים שאין לו צורך להוסיף אחד אף אם יהיה השארית גדול מהשרש כי בהכפל {{#annot:term|1612,1874|MDGB}}יתקרב אל האמת{{#annotend:MDGB}} בכל מאויו ולא יתבלבל במעשיו בתוספת אחד אבל לעולם יעשה בלי תוספת ואין לו לעיין כי אם לקחת מרובע השברים היוצאים בחלוק בפעם ההיא ולחלקו לכפל השרש והיוצא יחסרהו משרשו וכן לעולם<br>
 +
כי לא ציויתי להוסיף אחד כאשר השארית כשרש או יותר אלא למסתפק בפעם אחת<br>
 +
אבל הרוצה <s>לידע</s> להתקרב מאד ולהכפיל המעשים לא יוסיף ולא יתבלבל
 +
|-
 +
|<span style=color:Green>[= He should use this approximation <math>\scriptstyle{\color{OliveGreen}{a+\frac{b}{2a}}}</math> instead of the previous approximation <math>\scriptstyle{\color{OliveGreen}{a+\frac{b}{2a+1}}}</math>, even if b≥a, in order to avoid confusion]</span>
 +
|
 +
|-
 +
|<span style=color:Green>Another approximation:</span>
 +
*<math>\scriptstyle{\color{OliveGreen}{\sqrt{a^2+b}\approx a+\frac{2\sdot a\sdot b}{\left(2a\right)^2+b}}}</math>
 +
|
 +
|-
 +
|
 +
:If you wish to come closer to the truth at once with little effort, add the remainder [i.e. the difference between the number and the approximate the root] to the square of double the [approximate] root that is in your hand, and divide by it the product of the remainder and double the [approximate] root. Add the result to the [approximate] root that is in your hand, and this root will be very near the truth.
 +
|style="text-align:right;"|ואם תרצה להתקרב אל האמת ברגע במעט עמל<br>
 +
חבר הנשאר למרובע כפל השרש שבידיך וחלק עליו כפל הנשאר בכפל השרש<br>
 +
והיוצא חברהו לשרש שבידיך ויהיה שרש קרוב מאד אל האמת
 +
|-
 +
|<span style=color:Green>The second approximation:</span>
 +
*<math>\scriptstyle{\color{OliveGreen}{\sqrt{a^2+b}\approx\left[a+\frac{2\sdot a\sdot b}{\left(2a\right)^2+b}\right]+\frac{2\sdot\left[a+\frac{2\sdot a\sdot b}{\left(2a\right)^2+b}\right]\sdot\frac{b^3}{\left[\left(2a\right)^2+b\right]^2}}{\left[2\sdot\left[a+\frac{2\sdot a\sdot b}{\left(2a\right)^2+b}\right]\right]^2+\frac{b^3}{\left[\left(2a\right)^2+b\right]^2}}}}</math>
 +
|
 +
|-
 +
|
 +
:If you wish to come closer to the truth, [divide] the cube of the above remainder by the denominator squared.
 +
|style="text-align:right;"|ואם תרצה להתקרב יותר אל האמת קח מעוקב הנשאר הנזכר מהמורה כפול
 +
|-
 +
|
 +
*I.e. if we wish to know the root [of 3].
 +
:<math>\scriptstyle{\color{OliveGreen}{\sqrt{3}}}</math>
 +
|style="text-align:right;"|ר"ל שאם רצינו לדעת שרש
 +
|-
 +
|
 +
:Double the root is added to the remainder; the total is six and the remainder at the beginning is two.
 +
:<math>\scriptstyle{\color{blue}{\sqrt{3}\approx1+\frac{2\sdot1\sdot\left(3-1\right)}{\left(2\sdot1\right)^2+\left(3-1\right)}=1+\frac{2\sdot1\sdot2}{\left(2\sdot1\right)^2+2}=1+\frac{4}{6}}}</math>
 +
|style="text-align:right;"|והיה כפל השרש {{#annot:term|178,2083|Fg9j}}מחובר עם{{#annotend:Fg9j}} הנשאר היה הכל ששה והנשאר בתחלה היו שתים
 +
|-
 +
|
 +
:Take the cube of two, which is eight, name it by a sixth of a sixth, i.e. 8 that is called a sixth [= whose denominator is six] and this is the excess of the square over double the last [approximate] root.
 +
::<math>\scriptstyle{\color{blue}{3-\left(1+\frac{4}{6}\right)^2=\frac{2^3}{\left[\left(2\sdot1\right)^2+2\right]^2}=\frac{8}{6}\sdot\frac{1}{6}}}</math>
 +
|style="text-align:right;"|תקח מעוקב השנים שהוא שמונה ותקרא לו שם משישית שישית ר"ל ח' ששמה שישית וזה יהיה הנשאר במרובע על כפל השרש האחרון
 +
|-
 +
|
 +
:Do with it and with the last [approximate] root as you did with the first remainder and the first [approximate] root; the resulting root is 1 integer and 112 parts of 153.
 +
:<math>\scriptstyle{\color{blue}{\sqrt{3}\approx\left(1+\frac{4}{6}\right)+\frac{2\sdot\left(1+\frac{4}{6}\right)\sdot\left(\frac{8}{6}\sdot\frac{1}{6}\right)}{\left[2\sdot\left(1+\frac{4}{6}\right)\right]^2+\left(\frac{8}{6}\sdot\frac{1}{6}\right)}=1+\frac{112}{153}}}</math>
 +
|style="text-align:right;"|ותעשה ממנו עם זה השרש האחרון כמו שעשית לשארית הראשון עם השרש הראשון ויעלה כל השרש א' שלם וקי"ב חלקים מקנ"ג בשלם
 +
|-
 +
|
 +
::Whose square is 3 integers minus 2 parts of the square of 153.
 +
::<math>\scriptstyle{\color{blue}{\left(1+\frac{112}{153}\right)^2=3-\frac{2}{153^2}}}</math>
 +
|style="text-align:right;"|שמרובעו הוא ג' שלימים חסר ב' חלקים ממרובע קנ"ג בשלם
 +
|-
 +
|''See, indeed, see'' [Samuel 1 24, 12], you have come closer to the truth, so that between the square of your root and the required square there is only one of a thousand and this is enough.
 +
|style="text-align:right;"|''וראה גם ראה''&#x202B;<ref group=note>שמואל א כד, יב</ref> גם נתקרבת אל האמת שאין ממרובע השרשך למרובע הנשאל אחד מרבבה בשלם ודי
 +
|-
 +
|}
 +
{|
 +
|-
 +
|
 +
 
 +
= Section Two: Fractions =
 +
|style="text-align:right;"|&#x202B;<ref>41r</ref><big>החלק השני בשברים</big>
 +
|-
 +
|
 +
== Introduction ==
 +
|
 +
|-
 +
|Before the chapters, I will open with an introduction that consist of three chapters:
 +
|style="text-align:right;"|לפני הפרקים אקדים הקדמה אחת ובה שלשה פרקים
 +
|-
 +
|
 +
*Chapter one on decomposing to a fraction
 +
|style="text-align:right;"|השער הא' בפריטה
 +
|-
 +
|
 +
*Chapter two on multiplication [= fractions of fractions, fractions of integers]
 +
|style="text-align:right;"|השער הב' בהכאה
 +
|-
 +
|
 +
*Chapter three on expansion to a common denominator
 +
|style="text-align:right;"|השער השלישי בהשואה
 +
|-
 +
|
 +
=== Chapter One on Decomposing to a Fraction ===
 +
|style="width:45%; text-align:right;"|<big>השער הראשון</big> בפריטה
 +
|-
 +
|<span style=color:Green>Definition:</span> {{#annot:definition|1561,1937|xxm5}}Decomposing to a fraction is converting the integers to fractions of whichever type you wish.
 +
|style="text-align:right;"|הפריטה היא {{#annot:term|2612,2489|6pAM}}חזרת השלימים לחלקים{{#annotend:6pAM}} מהמין אשר תרצה{{#annotend:xxm5}}
 +
|-
 +
|
 +
:If you have integers and fractions - converting all to the type of these fractions
 +
|style="text-align:right;"|ואם יש בידיך שלמים ושברים להשיב הכל ממין השברי' ההם
 +
|-
 +
|
 +
:If you have fractions and fractions of fractions - converting all to the lower type of them.
 +
|style="text-align:right;"|וכן אם יש לך שברים ושברי שברים כמו שיהיו להשיב כלם מהמין הקטן מהם
 +
|-
 +
|Example for integers and fractions:
 +
:<math>\scriptstyle{\color{OliveGreen}{n+\frac{a}{b}=\frac{\left(n\sdot b\right)+a}{b}}}</math>
 +
|style="text-align:right;"|<big>המשל</big> שלימים בשברים
 +
|-
 +
|
 +
*If you have 3 integers and 5 sevenths.
 +
:<math>\scriptstyle3+\frac{5}{7}</math>
 +
|style="text-align:right;"|אם היו בידיך ג' שלמים וה' שביעיות
 +
|-
 +
|
 +
:The integers are converted to sevenths, which is the type of fractions that are with them, by multiplying these three integers by the denominator of the sevenths, which is 7. The result is 21. By adding the 5 sevenths to them, the total is 26 sevenths.
 +
:<math>\scriptstyle{\color{blue}{3+\frac{5}{7}=\frac{\left(3\sdot7\right)+5}{7}=\frac{21+5}{7}=\frac{26}{7}}}</math>
 +
|style="text-align:right;"|הנה השילימים ישובו שביעיות שהוא מין שברים שעמו {{#annot:term|156,2136|LxoE}}בהכפל{{#annotend:LxoE}} אלו השלשה שלימים במורה השביעיות שהוא הז' ויעלו כ"א ובחברך אליהם הה' שביעיות אשר עמהם יהיו הכל כ"ו <s>שלימים</s> שביעיות
 +
|-
 +
|All this is seen clear and its reason is explained in the examination of the [divisors] as clarified in chapter four - this is the rule and the reason.
 +
|style="text-align:right;"|וכל זה תראה ברור ומפורש בטעם בבחינת המתחלק למורים כמו שנתבאר בפרק הד' והוא הדין והוא הטעם
 +
|-
 +
|If you have fractions and fractions of fractions, multiply the fractions by the denominator of the fractions of fractions, then add to them the fractions of fractions.
 +
:<math>\scriptstyle{\color{OliveGreen}{\frac{g}{b}+\left(\frac{a}{b}\sdot\frac{c}{d}\right)=\frac{\left(g\sdot d\right)+\left(a\sdot c\right)}{b}\sdot\frac{1}{d}}}</math>
 +
|style="text-align:right;"|כי אם אין בידיך כי אם שברים ושברי שברים שתכפול השברים במורה השברי שברים <s>ושבר שברים שתכפול</s> ותחבר אליהם השברי שברים וכן לעולם
 +
|-
 +
|I will give one example for all this:
 +
|style="text-align:right;"|ואביא משל <sup>א'</sup> לכל זה
 +
|-
 +
|
 +
*Example: if you have 3 integers, 2 quarters of a fifth and 4 eighths of quarters of a fifth, like this:
 +
:<math>\scriptstyle3+\left(\frac{2}{4}\sdot\frac{1}{5}\right)+\left(\frac{4}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)+\left(\frac{2}{3}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)</math>
 +
|style="text-align:right;"|<big>המשל</big> אם היו לך ג' שלימים וב' רביעיות חמישית וד' שמיניות רביעית חמישית כזה
 
|-
 
|-
 
|
 
|
 
|
 
|
 
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
|-
+
|-
| colspan=3 |&nbsp;|| 3 || 6
+
| 3 || 9 || 8 || 4 || 5
|-
+
|-
| &nbsp;|| 4 || 5 || 13
+
| 2 || &nbsp;|| 4 || 2 || &nbsp;
|-
+
|}
| 4 || 11
+
|-
|-
+
|
| 3
+
:*First we convert the 3 integers to fifths by multiplying them by 5, which is their denominator. This is because each integer is 5 fifths. Hence, they are 15 fifths.
|}
+
::<math>\scriptstyle{\color{blue}{3=\frac{3\sdot5}{5}=\frac{15}{5}}}</math>
|-
+
|style="text-align:right;"|נשיב ראשונה הג' שלמים לחמישיות והוא בכפלנו אותם בה' שהוא המורה עליהם וזה כי כל שלם הוא ה' חמישיות ויהיה ט"ו חמישיות
|The numerators are multiplied after the fractionalization
+
|-
|style="text-align:right;"|ואחר עשותך פריטה זו כנזכר, תעשה ההכאה והוא לתת סבות להכות הג', שהם השברים האחרונים במספר השברים, לא במורים השברים וגם לזה ירשמו בשם ההכאה, כי בהכאה יבא השבר והשבר הוא תחת המורה, כמו שהנשבר הוא שפל ובזוי עם
+
|
 +
::If there was a number beneath it [as the numerator of the 5] we would have add it to them, so they are also fifths.
 +
|style="text-align:right;"|ואם היה תחתיו מספר היינו מחברים אותו עליהם שהיו <ref>41v</ref>ג"כ חמישיות
 +
|-
 +
|
 +
:*Since there is no [number beneath the 5], we further convert them to quarters of a fifth, which is the denominator of the 2, by multiplying them by 4. Because each fifth is 4 quarters of a fifth. The result is 60 quarters of a fifth. We add to them the two that is beneath [the 4], which is also of the same type, i.e. quarters of a fifth. The total is 62.
 +
::<math>\scriptstyle{\color{blue}{\frac{15}{5}+\left(\frac{2}{4}\sdot\frac{1}{5}\right)=\frac{\left(15\sdot4\right)+2}{4}\sdot\frac{1}{5}=\frac{60+2}{4}\sdot\frac{1}{5}=\frac{62}{4}\sdot\frac{1}{5}}}</math>
 +
|style="text-align:right;"|אכן אחר אשר לא נמצא שם נשיבם עוד רביעיות חמישית [שהוא המורה הב' וזה שנכפלם בד' כי כל חמישית שלמה היא ד' רביעיות החמישית ויעלו ס' רביעיות חמישית]&#x202B;<ref>marg.</ref> ונחבר אליהם השנים אשר תחתיו שהם ג"כ מזה המין ר"ל רביעיות חמישית <sup>ויעלו ס' רביעיות חמישית</sup> ונחבר אליהם הב' אשר תחתיו שהם ג"כ מזה המין ר"ל רביעיות חמישית יעלה הכל ס"ב
 +
|-
 +
|
 +
:*We convert them to eighths of quarters of a fifth by multiplying them by 8, the result is 496. We add to them the 4 that is beneath [the 8], which is of their type. The total is 500.
 +
|style="text-align:right;"|נשיבם שמיניות רביעיות חמישית וזה בשנכפלם בח' יעלה תצ"ו נחבר להם הד' אשר תחתיו שהם ממינם יעלה הכל ת"ק
 +
|}
 +
::<math>\scriptstyle{\color{blue}{\left(\frac{62}{4}\sdot\frac{1}{5}\right)+\left(\frac{4}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)=\frac{\left(62\sdot8\right)+4}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{496+4}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{500}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}}}</math>
 +
{|
 +
|-
 +
|
 +
:*We convert them to ninths of eighths of quarters of a fifth by multiplying them by 9, the result is 4500. Since we do not find anything beneath [the 9] we do not add anything to them.
 +
::<math>\scriptstyle{\color{blue}{\frac{500}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{500\sdot9}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{4500}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}}}</math>
 +
|style="width:45%; text-align:right;"|נשיבם תשיעיות שמינית רביעית חמישית וזה בשנכפלם בט' יעלו 4500 ואחרי שלא נמצא תחתיו דבר לא נחבר אליהם דבר
 +
|-
 +
|
 +
:*We convert them to thirds of ninths of eighths of quarters of a fifth by multiplying them by 3, the result is 13500. We add to them the 2 that is beneath [the 3], which is of their type. The total is 13502 and we completed the procedure.
 +
|style="text-align:right;"|אבל נשיבם שלישיות תשיעית שמינית רביעית חמישית והוא שנכפלם בג' יעלו 13500 נחבר אליהם הב' אשר תחתיו שהוא ממינם יעלה הכל 13502 וכלינו כל מלאכתנו
 +
|}
 +
::<math>\scriptstyle{\color{blue}{\left(\frac{4500}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)+\left(\frac{2}{3}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)=\frac{\left(4500\sdot3\right)+2}{3}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{13500+2}{3}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{13502}{3}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}}}</math>
 +
{|
 +
|-
 +
|
 +
*If there are no integers there at all.
 +
:<math>\scriptstyle{\color{OliveGreen}{\left(\frac{2}{4}\sdot\frac{1}{5}\right)+\left(\frac{4}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)+\left(\frac{2}{3}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)}}</math>
 +
|style="width:45%; text-align:right;"|ואם לא היה שם שלמים כלל
 +
|-
 +
|
 +
:*We should start from the 2 that is beneath the first denominator beneath which there is a number, even if it were the second of the denominators. We multiply them by 8, which is the next denominator. The result is 16. We add to them the 4 that is beneath [the 8]. The result is 20.
 +
|style="text-align:right;"|היה לנו להתחיל מהב' אשר תחת המורה הראשון אשר תחתיו מספר מה ואם הוא שני לחשבון המורים והיה לנו לכפלם בח' שהוא המורה הסמוך ויעלו י"ו ולחבר להם הד' אשר תחתיו ויעלו כ&#x202B;'
 +
|-
 +
|
 +
::<math>\scriptstyle{\color{blue}{\left(\frac{2}{4}\sdot\frac{1}{5}\right)+\left(\frac{4}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)=\frac{\left(2\sdot8\right)+4}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{16+4}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{20}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}}}</math>
 +
|
 +
|-
 +
|
 +
::Then we multiply them by 9. The result is 180. We multiply them also by 3. The result is 540. We add to them the 2 that is beneath [the 3]. The total is 542.
 +
|style="text-align:right;"|ונכפלם עוד בט' יהיו ק"פ נכפלם עוד בג' יעלו 540 נחבר להם הב' אשר תחתיו ויעלה הכל 542
 +
|}
 +
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left(\frac{20}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)+\left(\frac{2}{3}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)&\scriptstyle=\left(\frac{20\sdot9}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)+\left(\frac{2}{3}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)=\frac{\left(180\sdot3\right)+2}{3}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\\&\scriptstyle=\frac{540+2}{3}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{542}{3}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\\\end{align}}}</math>
 +
{|
 +
|-
 +
|Thus, we have everything explained by the procedure and by reason - how everything is converted into the final type, whether there are integers with fractions, or there are no integers there; the result is of the final type.
 +
|style="width:45%; text-align:right;"|הרי לנו הכל מפורש במעשה ובטעם איך ישוב הכל מהמין האחרון בין אם יש שלמים עם שברים בין אם אין שם שלמים והיוצא באחרונה הם מהמין האחרון
 +
|-
 +
|I.e. for the result in our mentioned example are thirds of a ninth of an eighth of a quarter of a fifth.
 +
|style="text-align:right;"|ר"ל כי אלו אשר יצאו לנו במשלנו הנזכר הם שלישיות תשיעית שמינית רביעית חמישית
 +
|-
 +
|}
 +
{|
 +
|-
 +
|
 +
 
 +
=== Chapter Two on Multiplication <span style=color:Green>[= compound fractions]</span> ===
 +
|style="width:45%; text-align:right;"|<big>השער השני בהכאה</big>
 +
|-
 +
|<span style=color:Green>Definition:</span> The multiplication [= compound fractions] is when the fractions are not [fractions] of one integer, or of one fraction, but they are [fractions] of a number of integers or a number of fractions.
 +
|style="text-align:right;"|<sup>ההכאה</sup> היא כאשר השברים אינם שברים <ref>42r</ref>משלם אחד או משבר אחד אבל הם ממספר שלמים או ממספר שברים
 +
|-
 +
|
 +
*As when we say: two fifths of three quarters of 5 integers, like this:
 +
:<math>\scriptstyle\frac{2}{5}\sdot\frac{3}{4}\sdot5</math>
 +
|style="text-align:right;"|ר"ל כאומרנו שתי חמישיות משלש רביעיות מה' שלמים כזה
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| colspan=2 |&nbsp;|| 5
 +
|-
 +
| &nbsp;|| 4
 +
|-
 +
| 5 || 3
 +
|-
 +
| 2
 +
|}
 +
|-
 +
|
 +
:Our saying two fifths of 3 quarters of 5 integers is as saying that we take 5 integers and divide them into 4 equal parts. We take 3 of them, which are 3 quarters of the 5 integers, and divide these three parts further into 5 equal parts. Then we take 2 of them, which are 2 fifths of 3 quarters of 5 integers.
 +
|style="text-align:right;"|והנה אומרנו שני חמישיו' מג' רביעיות מה' שלמים הוא כאומרנו שלקחנו ה' שלמים ועשינו מהם ד' חלקי' שוים ולקחנו הג' מהם שזהו ג' רביעיות מה' שלמים וחלקנו עוד אלו הג' חלקים לה' חלקים שוים ולקחנו הב' מהם שזהו פי' ב' חמשיות מג' רביעיות מה' שלמים
 +
|-
 +
|The fractions here are of one type only, therefore, there is no need for decomposing to a fraction at all.
 +
|style="text-align:right;"|ואין כאן שברים כי אם ממין אחד ואינך צריך לעשות פריטה כלל
 +
|-
 +
|
 +
:<math>\scriptstyle{\color{OliveGreen}{\frac{a}{b}\sdot\frac{c}{d}=\frac{a\sdot c}{b}\sdot\frac{1}{d}}}</math>
 +
:<math>\scriptstyle{\color{OliveGreen}{\frac{a}{b}\sdot\frac{c}{d}\sdot n=\frac{a\sdot c\sdot n}{b}\sdot\frac{1}{d}}}</math>
 +
|
 +
|-
 +
|Yet, there is a need for multiplication.
 +
|style="text-align:right;"|אבל אתה צריך לעשות הכאה
 +
|-
 +
|
 +
:For, our saying: 2 fifths of 3 quarters is as our saying: 2 fifths of a quarter, plus 2 fifths of a quarter, plus 2 fifths of a quarter. Therefore, we multiply 2 by 3, which is the number of the quarters. The result is 6. Hence, we know that the 2 fifths of 3 quarters are 6 fifths of a quarter and this clear by the operation and by reason.
 +
|style="text-align:right;"|והוא כי אומרנו ב' חמישיות מג' רביעיות הרי הוא כאומרנו ב' חמישיות רביעית וב' חמישיות רביעית וב' חמישיות רביעית ולזה נכה הב' בג' <sup>שהוא</sup> מספר הרביעיות יעלו ו' הנה ידענו שהב' חמישיות מג' רביעיות הם ו' חמישיות רביעיות והוא ברור במעשה ובטעם
 +
|-
 +
|
 +
:<math>\scriptstyle{\color{blue}{\frac{2}{5}\sdot\frac{3}{4}=\left(\frac{2}{5}\sdot\frac{1}{4}\right)+\left(\frac{2}{5}\sdot\frac{1}{4}\right)+\left(\frac{2}{5}\sdot\frac{1}{4}\right)=\frac{2\sdot3}{5}\sdot\frac{1}{4}=\frac{6}{5}\sdot\frac{1}{4}}}</math>
 +
|
 +
|-
 +
|
 +
:Since we say "of 5 integers" it is as if we have 6 fifths of a quarter of one five times. Therefore, we multiply 6, which is the number of the fractions that we have, by 5, which is the number of the integers, as the number of the duplications of what we have. The result is 30. Hence, 2 fifths of 3 quarters of 5 integers are 30 fifths of a quarter.
 +
|style="text-align:right;"|ולפי שאמרנו מה' שלמים הוא כאלו יש לנו בידינו ו' חמישיות רביעית משלם וכן עד ה' פעמים לכן נכה הו' שהוא מספר השברים אשר בידינו בה' שהוא מספר השלמים שהוא כמספר הפעמים אשר ישנך בידינו ויעלו ל' הרי לנו שה<sup>ב'</sup> חמישיו' מג' רביעיות מה' שלמים הם ל' חמישיות רביעית והקש על זה
 +
|-
 +
|
 +
:<math>\scriptstyle{\color{blue}{\frac{2}{5}\sdot\frac{3}{4}\sdot5=\frac{6}{5}\sdot\frac{1}{4}\sdot5=\frac{6\sdot5}{5}\sdot\frac{1}{4}=\frac{30}{5}\sdot\frac{1}{4}}}</math>
 +
|
 +
|-
 +
|Sometimes the fractions and fractions of fractions are of a number of fractions or integers and for this you should apply both operations i.e. decomposing to a fraction and multiplication.
 +
|style="text-align:right;"|ולפעמים יהיה כמספר שברים ושברי שברים משבר אחת גם ממספר שברים או שלמים ולזה תצטרך לעשות שני <s>דברים</s> <sup>המעשים</sup> ר"ל הפריטה והכאה
 +
|-
 +
|
 +
*Example: two quarters and 3 fifths of a quarter of 3 sevenths of an eighth and 4 fifths of sevenths of an eighth of 3 ninths of a tenth of 4 integers.
 +
:<math>\scriptstyle\left[\frac{2}{4}+\left(\frac{3}{5}\sdot\frac{1}{4}\right)\right]\sdot\left[\left(\frac{3}{7}\sdot\frac{1}{8}\right)+\left(\frac{4}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left(\frac{3}{9}\sdot\frac{1}{10}\right)\sdot4</math>
 +
|style="text-align:right;"|<big>המשל</big> שני רביעיות וג' חמישיות רביעית מג' שביעיות שמינית וד' חמישיות שביעית שמינית מג' <ref>42v</ref>תשיעיות עשירית מד' שלמים
 +
|-
 +
|
 +
:Set the following diagram:
 +
|style="text-align:right;"|תעשה הצורה כזה
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| rowspan=3 colspan=2 |&nbsp;|| rowspan=2 colspan=3 |&nbsp;|| colspan=2 |&nbsp;|| 4
 +
|-
 +
| 9 || 10
 +
|-
 +
| 5 || 7 || 8 || 3
 +
|-
 +
| 5 || 4 || 4 || 3
 +
|-
 +
|3
 +
|}
 +
|-
 +
|
 +
:First decompose each of them to a fraction:
 +
|style="text-align:right;"|ועשה הפריטה לכל אחד מהם תחלה
 +
|-
 +
|
 +
:*Decompose the 3 sevenths of an eighth that are related [to the four fifths of sevenths of an eighth] by multiplying them by each other, that is by multiplying the 3 that is the number of the [sevenths] by 5, which is the next denominator. The result is 15. We add to them the 4 that is beneath [the 5], which is of the same type. The total is 19.
 +
|style="text-align:right;"|ונעשה {{#annot:term|1561,1937|YyGS}}פריטה{{#annotend:YyGS}} לג' שביעיות שמינית שהן {{#annot:term|1567,1494|dGUb}}נקשרות{{#annotend:dGUb}} <s>בשנכפול</s> זו בזו וזה בשנכפול הג' שהם מספ' השברים בה' שהוא המורה הסמוך ויעלו ט"ו ונחבר להם הד' אשר תחתיו שהם ממין זה יהיו כלם י"ט
 +
|-
 +
|
 +
::<math>\scriptstyle{\color{blue}{\left(\frac{3}{7}\sdot\frac{1}{8}\right)+\left(\frac{4}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)=\frac{\left(3\sdot5\right)+4}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}=\frac{15+4}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}=\frac{19}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}}}</math>
 +
|
 +
|-
 +
|
 +
:*We decompose 2-quarters and 3 fifths of a quarter that are also related, by multiplying 2 by 5. The result is 10. We add to them the 3 that is beneath [the 5]. The result is 13.
 +
|style="text-align:right;"|עוד נעשה פריטה לב' רביעיות וג' <s>נחשת</s> חמשיות רביעית שהם ג"כ נקשרות וזה שנכפול הב' בה' ויעלו י' ונחבר להם הג' אשר תחתיו ויעלו י"ג
 +
|-
 +
|
 +
::<math>\scriptstyle{\color{blue}{\frac{2}{4}+\left(\frac{3}{5}\sdot\frac{1}{4}\right)=\frac{\left(2\sdot5\right)+3}{5}\sdot\frac{1}{4}=\frac{10+3}{5}\sdot\frac{1}{4}=\frac{13}{5}\sdot\frac{1}{4}}}</math>
 +
|
 +
|-
 +
|
 +
:Thus, our first question is as if saying: we have 13 fifths of a quarter of 19 fifths of sevenths of an eighth of 3 ninths of a tenth of 4 integers. As follows:
 +
|style="text-align:right;"|הנה שאלתנו הראשונה הוא כאלו אמרו שיש בידינו י"ג חמישיות רביעית מי"ט חמישיות שביעית שמינית מג' תשיעיות עשירית הד' שלמים כזה
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| rowspan=3 colspan=2 |&nbsp;|| rowspan=2 colspan=3 |&nbsp;||colspan=2 | &nbsp;|| 4
 +
|-
 +
| 9 || 10
 +
|-
 +
| 5 || 7 || 8 || 3
 +
|-
 +
| 5 || 4 || 19
 +
|-
 +
| 13
 +
|}
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\left[\frac{2}{4}+\left(\frac{3}{5}\sdot\frac{1}{4}\right)\right]\sdot\left[\left(\frac{3}{7}\sdot\frac{1}{8}\right)+\left(\frac{4}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left(\frac{3}{9}\sdot\frac{1}{10}\right)\sdot4=\left(\frac{13}{5}\sdot\frac{1}{4}\right)\sdot\left(\frac{19}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\sdot\left(\frac{3}{9}\sdot\frac{1}{10}\right)\sdot4}}</math>
 +
{|
 +
|-
 +
|
 +
:Hence, the explanation of our question is if we were told:
 +
:*We took 4 integers and divided them, i.e. the four of them together, into ten equal parts.
 +
|style="width:45%; text-align:right;"|והנה ביאור שאלתנו הוא כאלו אמר<s>נ</s>ו לנו לשלקחנו ד' שלמים ועשינו מהם ר"ל מארבעתם ביחד עשרה חלקים שווים
 +
|-
 +
|
 +
:*We took one part of them and divided it into 9 parts.
 +
|style="text-align:right;"|ולקחנו [חלק אחד מהם ועשינו אותו ט' חלקים
 +
|-
 +
|
 +
:*We took 3 parts of these 9 latter together and divided them into 8 equal parts.
 +
|style="text-align:right;"|ולקחנו]&#x202B;<ref>marg.</ref> ג' חלקים מאלו הט' האחרונים ביחד ועשינו ח' חלקים שוים
 +
|-
 +
|
 +
:*We took one part of them, divided it into 7 equal parts, then divided each part of them into 5.
 +
|style="text-align:right;"|ולקחנו חלק אחד מהם ועשינו אותו ז' חלקים וחלקנו כל חלק מהם לה&#x202B;'
 +
|-
 +
|
 +
:*We took 19 parts of the type of the latter, divided them into 4 equal parts, then divided each part of them into 5.
 +
|style="text-align:right;"|ולקחנו י"ט חלקים ממין אלו האחרונים ביחד ועשינו אותם ד' חלקים שוים וחלקנו כל חלק מהם לה' חלקים
 +
|-
 +
|
 +
:*So we have 13 of the type of these latter parts and we wish to know which are they.
 +
|style="text-align:right;"|ויש לנו ממין אלו החלקים האחרונים י"ג ונרצה לידע מה המה אלה
 +
|-
 +
|
 +
:We should understand, since it is said "of 19 fifths" etc. and it is said "of 3 ninths" etc. and it said "of 4 integers", that from this we know that they are not of one fraction nor of one integer, but of a number of integers and fractions.
 +
|style="text-align:right;"|והננו צריכים להבנה לפי שאמרו מי"ט חמישיות וכו' גם לאומרם מג' תשיעיות וכו' גם לאומרם מד' שלמים כי בזה ידענו שאינם משבר אחד אף לא משלם אחד כי מספר שלמים <sup>ו</sup>ממספר <s>ש</s> שברים
 +
|-
 +
|
 +
:Therefore, we multiply the number of the fractions we have by the number of the fractions that are mentioned and by the number of integers, one after the other.
 +
|style="text-align:right;"|&#x202B;<ref>43r</ref>לכן נכה מספר השברים אשר בידינו במספר השברים אשר הזכירו גם במספר השלמים זה אחר זה
 +
|-
 +
|
 +
::Because, our saying: "13 fifths of quarters of 19 fifths" etc. is as our saying "19 times 13 fifths of a quarter of a fifth" etc.
 +
|style="text-align:right;"|וזה כי אומרנו י"ג חמישיות רביעיות י"ט חמישיות וכו' הוא כאומרנו י"ט פעמי' י"ג חמישיות [רביעית חמישית]&#x202B;<ref>marg.</ref> וכו&#x202B;'
 +
|-
 +
|
 +
:So, we multiply 13 by 19; the result is 247 fifths of quarters of a fifth etc.
 +
|style="text-align:right;"|לכן נכפול הי"ג בי"ט ויעלו 247 חמישיות רביעיות חמישית וכו&#x202B;'
 +
|-
 +
|
 +
::<math>\scriptstyle{\color{blue}{\left(\frac{13}{5}\sdot\frac{1}{4}\right)\sdot\left(\frac{19}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)=\frac{13\sdot19}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}=\frac{247}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}}}</math>
 +
|
 +
|-
 +
|
 +
::Also, when we are told: "of 3-ninths", it is as if we are told: "3 times all that we have".
 +
|style="text-align:right;"|גם כאשר אמרו לנו מג' תשיעיות הוא כאלו אמרו לנו ג' פעמים כל אשר בידינו
 +
|-
 +
|
 +
:So, we multiply all that we have, which is 247, by 3; the result is 741, which are fifths of quarters of fifths of sevenths of eighths of ninths of a tenth etc.
 +
|style="text-align:right;"|&#x202B;[ולזה נכפול כל אשר בידינו]&#x202B;<ref>marg.</ref> שהוא 247 בג' ויעלה 741 והם חמישיות רביעיות חמישיות שביעיות שמיניות תשיעי<s>ו</s>ת עשירית וכו&#x202B;'
 +
|}
 +
::<math>\scriptstyle{\color{blue}{\left(\frac{247}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\sdot\left(\frac{3}{9}\sdot\frac{1}{10}\right)=\frac{247\sdot3}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}=\frac{741}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}}}</math>
 +
{|
 +
|-
 +
|
 +
::As we are told: "of 4 integers", it is as if we are told: "4 times all that we have".
 +
|style="width:45%; text-align:right;"|ולפי שאמרו לנו <sup>מד'</sup> שלמים הוא כאלו אמרו לנו ד' פעמים כל אשר בידינו
 +
|-
 +
|
 +
:So, [we multiply] all that we have, which is 741, by four; the result is 2964-fifths of a quarter of a fifth of a seventh of an eighth of a ninth of a tenth.
 +
|style="text-align:right;"|לכן כל אשר בידינו שהוא 741 בארבעה ויעלה 2964 חמישיות רביעית חמישית שביעית שמינית <sup>ת</sup>שיעית עשירית
 +
|}
 +
::<math>\scriptstyle{\color{blue}{\left(\frac{741}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)\sdot4=\frac{741\sdot4}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}=\frac{2964}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}}}</math>
 +
{|
 +
|-
 +
|Always remember that the number you find on top of another number is the denominator, not the bottom [number].
 +
|style="width:45%; text-align:right;"|וזכור לעולם כי המספר אשר תמצא על ראשו מספר אחר שהתחתון איננו מורה כי העליון
 +
|-
 +
|If we want to know how many integers, or fractions, or fractions of fractions are these decomposed fractions:
 +
|style="text-align:right;"|ואם בקשנו לידע כלם אלו החלקים הנפרטו' כמה שלמים או כמה שברים או שברי שברים מאלו הם
 +
|-
 +
|You already know that there are seven denominators. Arrange them as you wish, according to their order now, or calculatedly, in order that the fractions will be more proper. For the order is harmless, except in addition and subtraction, as we explain in chapter 4.
 +
|style="text-align:right;"|כבר ידעת שיש כאן שבעה מורים ותושיבם כרצונך או כסדרם עתה או בהשגחה כדי שיצאו החלקים יותר נאותים כי הסדר לא יזיק לעולם כי אם התוספת בהם או ה{{#annot:term|155,1193|9ZbD}}מגרעת{{#annotend:9ZbD}} כאשר ביארנו בפרק הד&#x202B;'
 +
|-
 +
|
 +
:We divide by them the 2964, which is the decomposed number that we have, and we call it a reduced fraction [lit. perfect beauty].
 +
|style="text-align:right;"|ונחלק עליהם 2964 שהוא מספר אשר בידינו נפרטות וקראנו לזה כלילת יופי
 +
|-
 +
|
 +
|-
 +
|
 +
:Since this number has a quarter, we place [the 4] last, in order that it will be removed and we divide [2964] by 4; the result of division is 741 and nothing remains.
 +
|style="text-align:right;"|ואחר שיש לחשבון רביעית נשימהו לאחרון כדי שיתבטל ונחלקם על ד' ויצא בחילוק 741 ולא ישאר דבר
 +
|-
 +
|
 +
:This result of division is indivisible by the remaining denominators, therefore we place whichever we want before the last that we wrote. Let it be 5. We divide it by 5; the result of division is 148 and 1 remains. We write it beneath it.
 +
|style="text-align:right;"|וזה היוצא בחלוק אין לו אחד מהמורים הנשארים לכן נשים אשר נספק לפני האחרון אשר שמנו ויהיה ה' ונחלקם על הה' ויצא בחלוק 148 וישאר א' ונשימנו תחתיו
 +
|-
 +
|
 +
:Since this number has a quarter, we factorize the denominator of the eighth, which is 8, to 4 and 2 and write them instead of it; this indicates half of a quarter, of a quarter of a half, or an eighth. We shall explain it at the end of the book. After we have factorized it, i.e. removed it and placed 2 and 4 instead of it, we write 4 before the written denominators and divide what we have by it; the result of division are 37 [parts].
 +
|style="text-align:right;"|ואחר שיש לו החשבון &#x202B;<ref>43v</ref>רביעית {{#annot:term|2615,1559|WuM8}}נתיך{{#annotend:WuM8}} המורה השמינית שהוא הח' ונעשה ממנו ב'ד' ונשימם במקומו כך הוא הוראת חצי רביעית או רביעית חצי [כמו]&#x202B;<ref>marg.</ref> <s>או</s> שמינית ועוד נבאר זה בסוף הספר ואחר {{#annot:term|2615,1559|4u2l}}התיכנו אותו{{#annotend:4u2l}} ר"ל שנסירהו ונשים במקומו ב'ד' נשים הד' לפני המורי' המושמים ונחלק לו אשר בידינו ויצא בחלוק ל"ז <s>חלקים</s>
 +
|-
 +
|
 +
:We divide them by whichever we want. Let it be 7. The result of division is 5 and 2 remains. We write it beneath it.
 +
|style="text-align:right;"|ונחלקם לאשר נחפוץ ויהיה על הז' ויצא בחילוק ה' וישארו ב' ונשימם תחתיו
 +
|-
 +
|
 +
:We divide the 5 resulted from the division by the denominator of the first fifth; the result of division is 1 and nothing remains.
 +
|style="text-align:right;"|ונחלק הה' שיצאו בחלוק למורה הה' הא' ויצא א' בחלוק ולא ישאר דבר
 +
|-
 +
|
 +
:Since the result of division is less than the smallest denominators mentioned, we should not divide further, but write them orderly before those that were written calculatedly. We write the one resulted from the last division beneath the denominator that is next to those that were written up to this phase.
 +
|style="text-align:right;"|ואחר שאשר יצא בחלוק הוא פחות מהקטן שבכל המורים הנזכרים אין לנו לחלק עוד אבל נשימם על הסדר לפני המושמים בכל השגחה ונשים זה האחד אשר יצא בחילוק באחרונה תחת המורה הסמוך למושמים עד הנה
 +
|-
 +
|
 +
:Thus, we get what we wanted and it is that the required at first is half a ninth of a tenth, two-sevenths of a fifth of a half of a ninth of a tenth, and a fifth of a quarter of a seventh etc.
 +
|style="text-align:right;"|והנה יצא לנו מבוקשינו והוא שהנשאל לנו תחלה עולה חצי תשיעית עשירית ושתי שביעיות חמישית חצי תשיעית עשירית וחמישית רביעית שביעית וכו&#x202B;'
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left[\frac{2}{4}+\left(\frac{3}{5}\sdot\frac{1}{4}\right)\right]\sdot\left[\left(\frac{3}{7}\sdot\frac{1}{8}\right)+\left(\frac{4}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left(\frac{3}{9}\sdot\frac{1}{10}\sdot4\right)&\scriptstyle=\frac{2964}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}=\frac{2964}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}\\&\scriptstyle=\frac{741}{5}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}\\&\scriptstyle=\left(\frac{148}{4}\sdot\frac{1}{2}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)+\left(\frac{1}{5}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)\\&\scriptstyle=\left(\frac{37}{7}\sdot\frac{1}{2}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)+\left(\frac{1}{5}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)\\&\scriptstyle=\left(\frac{5}{5}\sdot\frac{1}{2}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)+\left(\frac{1}{2}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)+\left(\frac{1}{5}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)\\&\scriptstyle=\left(\frac{1}{2}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)+\left(\frac{2}{7}\sdot\frac{1}{5}\sdot\frac{1}{2}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)+\left(\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{2}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)\\\end{align}}}</math>
 +
{|
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| 5 || 4 || 7 || 5 || 2 || 9
 +
|-
 +
| 1 || &nbsp;|| 2 || &nbsp;|| 1 ||
 +
|}
 +
|-
 +
|
 +
:Do not be surprised that you had onle seven denominators and now they are eight, as this is due to the factorization of the denominator of the eighth that is 8, which we removed and instead of which we placed two denominators that are 2 and 4.
 +
|style="width:45%; text-align:right;"|ואל תתמה שלא היו לך כי אם ז' מורים ועתה הם ח' כי זה היה ל{{#annot:term|2614,1558|CHAD}}התכת{{#annotend:CHAD}} המורה השמינית והוא הח' שהסרנו אותו מהם ושמנו במקומו שני מורים והם ב'ד&#x202B;'
 +
|-
 +
|Apply this, because the entire procedure and the reason are clear.
 +
|style="text-align:right;"|והקש על זה כי הכל ברור המעשה והטעם
 +
|-
 +
|}
 +
{|
 +
|-
 +
|
 +
 
 +
=== Chapter Three on the Expansion to a Common Denominator ===
 +
|style="width:45%; text-align:right;"|<big>השער השלישי בהשואה</big>
 +
|-
 +
|<span style=color:Green>Definition:</span> {{#annot:definition|2618,2023|FYfS}}The expansion to a common denominator is when you have fractions of various types that are not related to each other at all, i.e. the type of these fractions is not the type of fractions of the others.
 +
|style="text-align:right;"|ההשואה <sup>היא</sup> כאשר יהיו לך שברים ממינים שונים בלתי נקשרים זה בזה כלל ר"ל שאין אלו שברי שברים אלו{{#annotend:FYfS}}
 +
|-
 +
|
 +
*Example: if you have two integers, 3-eighths and 2-quarters of an eighth, 4-fifths, 6-sevenths and 3-eighths of a sevenths, like this, and you wish to convert all of them into one type.
 +
:<math>\scriptstyle\left[2+\frac{3}{8}+\left(\frac{2}{4}\sdot\frac{1}{8}\right)\right]\quad\frac{4}{5}\quad\left[\frac{6}{7}+\left(\frac{3}{8}\sdot\frac{1}{7}\right)\right]</math>
 +
|style="text-align:right;"|המשל אם היו בידיך שני שלמים <s>ועוד</s> וג' שמינית וב' רביעיות שמינית ועוד ד' חמישיות ועוד ו' שביעיות וג' שמיניות שביעית כזה &#x202B;<ref>44r</ref>ותרצה להשיבם כלם ממין אחד
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| 8 || 7 || 5 || 4 || 8 || rowspan=2 | 2
 +
|-
 +
| 3 || 6|| 4 || 2|| 3
 +
|}
 +
|-
 +
|
 +
:First we decompose the 2 integers plus the 3-eighths and the 2-quarters of an eighth, since they are related to the 6-sevenths and the 3-eighths of a seventh, for the related also need decomposing to a fraction.
 +
|style="text-align:right;"|ונעשה תחלה פריטה לב' שלמים וג' שמיניות וב' רביעי<sup>ו</sup>ת שמינית <s>ועוד ד' חמישיות ועוד ו' שביעיות</s> אחרי היותם {{#annot:term|1567,1494|KtgV}}נקשרים{{#annotend:KtgV}} גם לו' שביעיות וג' שמיניות שביעית כי גם הם נקשרים וצריכים פריטה
 +
|-
 +
|
 +
:*We start by saying: 2 units, how many eighths are they? This is known by multiplying them by 8; they are 16. We add to them the 3 that is beneath [the 8] and the total is 19.
 +
::<math>\scriptstyle{\color{blue}{2+\frac{3}{8}=\frac{\left(2\sdot8\right)+3}{8}=\frac{16+3}{8}=\frac{19}{8}}}</math>
 +
|style="text-align:right;"|ונתחיל לומר ב' אחדים כמה שמיניות הם וזה יודע ב{{#annot:term|156,2136|AiFV}}הכפלם{{#annotend:AiFV}} <sup>בח'</sup> יהיו י"ו ונחבר להם הג' אשר תחתיו יהיו כלם י"ט
 +
|-
 +
|
 +
::We convert them further to quarters of an eighth by multiplying them by 4; the result is 76. Then we add to them the 2 that is beneath [the 4]; the result is 78 quarters of an eighth.
 +
::<math>\scriptstyle{\color{blue}{\frac{19}{8}+\left(\frac{2}{4}\sdot\frac{1}{8}\right)=\frac{\left(19\sdot4\right)+2}{4}\sdot\frac{1}{8}=\frac{76+2}{4}\sdot\frac{1}{8}=\frac{78}{4}\sdot\frac{1}{8}}}</math>
 +
|style="text-align:right;"|עוד נשיבם רביעיות שמיני' וזה יהיה בהכפלם כלם בד' יעלו ע"ו ונחבר להם הב' אשר תחתיו יעלו ע"ח רביעיות שמינית
 +
|-
 +
|
 +
:*We also decomposing the 6-sevenths plus 3-eighths of a seventh to a fraction by saying: 6-sevenths, how many eighths of a seventh are they? This is known by multiplying them by 8; they are 48. We add to them the 3 that is beneath [the 8]; the result is 51 eighths of a seventh.
 +
::<math>\scriptstyle{\color{blue}{\frac{6}{7}+\left(\frac{3}{8}\sdot\frac{1}{7}\right)=\frac{\left(6\sdot8\right)+3}{8}\sdot\frac{1}{7}=\frac{48+3}{8}\sdot\frac{1}{7}=\frac{51}{8}\sdot\frac{1}{7}}}</math>
 +
|style="text-align:right;"|עוד נפרוט הו' שביעיות וג' שמיניות שביעית ונאמרו ו' שביעיות שלמות כמה <s>שלמות</s> שמיניות שביעית הם וזה יודע בהכפלם בח' ויעלו מ"ח ונחבר להם הג' אשר תחתיו ועלו נ"א שמיניות שביעית
 +
|-
 +
|
 +
:It is as if we were asked to convert 78 quarters of an eighth, 4 fifths, and 51 eighths of a seventh into one type. Like this:
 +
:<math>\scriptstyle{\color{blue}{\frac{78}{4}\sdot\frac{1}{8}\quad\frac{4}{5}\quad\frac{51}{8}\sdot\frac{1}{7}}}</math>
 +
|style="text-align:right;"|והרי הוא כאלו שאלו לנו להשיב למין אחד <s>עין מ'</s> <sup>ע"ח</sup> רביעיות שמינית וד' חמישיות ונ"א <s>ע"ח</s> שמיניות <sup>שביעית</sup> <s>שביעי</s> כזה
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| 8 || 7 || 5 || 4 || 8
 +
|-
 +
| 51 || &nbsp;|| 4 || 78
 +
|}
 +
|-
 +
|
 +
:Since we have different denominators and different fractions, we should explain how to convert all of them into one type without changing them, i.e. that they will all be fractions of the same denominators.
 +
|style="text-align:right;"|ואחרי היות בידינו מורים משונים ושברים משונים ראוי לנו לבאר איך נשיבם כלם ממין אחד מבלתי שינוי ביניהם ר"ל שיהיו כלם שברים ממורים אחדים
 +
|-
 +
|
 +
:First, I will explain that the order of the denominators neither increases nor decreases:
 +
:<math>\scriptstyle{\color{OliveGreen}{\frac{1}{a}\sdot\frac{1}{b}=\frac{1}{b}\sdot\frac{1}{a}}}</math>
 +
|style="text-align:right;"|וקודם זה אציע שסדור המורים אינו מעלה ומוריד
 +
|-
 +
|
 +
::Because, the seventh of an eighth, for instance, is the the same as the eighth of a seventh, since each is a part of [56], which is the number that consists of these denominators and this is clear.
 +
::<math>\scriptstyle{\color{blue}{\frac{1}{7}\sdot\frac{1}{8}=\frac{1}{{\color{red}{56}}}=\frac{1}{8}\sdot\frac{1}{7}}}</math>
 +
|style="text-align:right;"|כי כך הוא שביעית שמינית עד"מ כמו שמינית שביעית כי כל אחד מהם הוא חלקנו <sup>מה'</sup> בשלם שהוא המספר אשר הוא מורכב מאלו המורים וזה ברור
 +
|-
 +
|
 +
:*So, when we have, for example, 3-sevenths and 4-eighths.
 +
::<math>\scriptstyle\frac{3}{7}\quad\frac{4}{8}</math>
 +
|style="text-align:right;"|לכן כאשר היה לנו עד"מ ג' שביעיות וד' שמינית
 +
|-
 +
|
 +
::We convert all of them into sevenths of an eighth, which are eighths of a seventh.
 +
|style="text-align:right;"|נשיבם כלם שביעיות שמינית שהוא שמיניות שביעית
 +
|-
 +
|
 +
::*This is done by multiplying the 3 that are the number of the sevenths by 8; they are 24 eighths of a seventh.
 +
:::<math>\scriptstyle{\color{blue}{\frac{3\sdot8}{8}\sdot\frac{1}{7}=\frac{24}{8}\sdot\frac{1}{7}}}</math>
 +
|style="text-align:right;"|וזה יעשה בכפול הג' שברי השביעיות בח' ויהיו כ"ד שמיניות שביעיות
 +
|-
 +
|
 +
:::This is clear, since every seventh is 8-eighths of a seventh, as each integer is eight eighths.
 +
|style="text-align:right;"|וזה ברור כי כל שביעיות הוא ח' שמיניות שביעית כמו שכל שלם &#x202B;<ref>44v</ref>הוא שמונה שמיניות השלם
 +
|-
 +
|
 +
::*We do the same with the 4-eighths: we convert them into sevenths of an eighth by multiplying the 4, which is the number of the fractions, by 7, which is the denominator of the seventh; the result is 28.
 +
:::<math>\scriptstyle{\color{blue}{\frac{4\sdot7}{7}\sdot\frac{1}{8}=\frac{28}{7}\sdot\frac{1}{8}}}</math>
 +
|style="text-align:right;"|וכן נעשה לד' שמיניות שנשיבם לשביעי<sup>ו</sup>ת שמינית והוא בכפול הד' שהוא מספר השברים בז' שהוא מורה השביעיות ויעלו כ"ח
 +
|-
 +
|
 +
::They are 28 sevenths of an eighth and the others are 24 eighths of a seventh, so all are of the same type, as we said that there is no difference between saying a seventh of an eighth and saying an eighth of a seventh.
 +
|style="text-align:right;"|והם כ"ח שביעיות שמינית והאחרות עלו כ"ד שמיניות שביעית הנה כלם ממין אחד כמו שהזכרנו שאין חלוף בין אומרנו שביעית שמינית לאומרנו שמינית שביעית
 +
|-
 +
|After explaining this premise, we return to our first procedure, which is multiplying each numerator of the fractions that we have by the denominators of the others successively, thus each fraction will be of all the denominators, so they are of the same type, for the order of the denominators forward or backward does not matter.
 +
:<math>\scriptstyle{\color{OliveGreen}{\frac{a}{b}=\frac{a\sdot d}{b}\sdot\frac{1}{d}=\frac{a\sdot d}{d}\sdot\frac{1}{b}}}</math>
 +
:<math>\scriptstyle{\color{OliveGreen}{\frac{a}{b}=\frac{a\sdot d}{d}\sdot\frac{1}{b}=\frac{a\sdot d}{b}\sdot\frac{1}{d}}}</math>
 +
|style="text-align:right;"|ואחר שהצענו הצעה זו נשוב למעשינו הראשון והוא לכפול כל מספר שברים אשר בידינו במורי חברותיה זה אחר זה וכן לכלם ואז תהיה כל אחד שברים מכל המורים והנה הם שוים כי סדור המורים בקדימה ואיחור לא יזיק
 +
|-
 +
|
 +
:*We start our procedure by saying: when we multiply 78 quarters of an eighth by 5, which is the denominator of the fifths, the result is 390 fifths of a quarter of an eighth.
 +
::<math>\scriptstyle{\color{blue}{\frac{78\sdot5}{5}\sdot\frac{1}{4}\sdot\frac{1}{8}=\frac{390}{5}\sdot\frac{1}{4}\sdot\frac{1}{8}}}</math>
 +
|style="text-align:right;"|ונתחיל במעשינו ונאמר 78 רביעיות שמינית כאשר נכפלם בה' שהוא מורה החמישיות יעלו 390 חמישיות רביעית שמינית
 +
|-
 +
|
 +
::We also multiply this product by 7, which is the denominator of the seventh; the result is 2730 sevenths of fifths of a quarter of an eighth.
 +
::<math>\scriptstyle{\color{blue}{\frac{390\sdot7}{7}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{8}=\frac{2730}{7}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{8}}}</math>
 +
|style="text-align:right;"|עוד נכפול זה {{#annot:term|241,1220|1nHC}}המחובר{{#annotend:1nHC}} בז' שהוא מורה השביעית ויעלו 2730 שביעיות חמישיות רביעית שמינית
 +
|-
 +
|
 +
::We also multiply all this by 8, which is the denominator of the eighths; the result is 21840 eighths of sevenths of fifths of quarters of eighths and this is the result of 78 quarters of eighths.
 +
::<math>\scriptstyle{\color{blue}{\frac{2730\sdot8}{8}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{8}=\frac{21840}{8}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{8}}}</math>
 +
|style="text-align:right;"|עוד נכפול כל זה בח' שהוא המורה השמיניות ויעלו 21<sup>8</sup>40 שמיניות שביעיות חמישיות רביעיות שמיניות וזהו העולה מה78 רביעיות שמיניות
 +
|-
 +
|
 +
:*We also multiply the 4 that are 4-fifths by all the denominators of the others, one after the other. We say: 4 by 8 is 32 eighths of a fifth.
 +
::<math>\scriptstyle{\color{blue}{\frac{4\sdot8}{8}\sdot\frac{1}{5}=\frac{32}{8}\sdot\frac{1}{5}}}</math>
 +
|style="text-align:right;"|עוד נכפול הד' שהוא ד' חמישיות בכל מורי חברותיה זה אחר זה ונאמר ד בח' הם [ל"ב]&#x202B;<ref>marg.</ref> שמיניות חמשית
 +
|-
 +
|
 +
::We also multiply them by 4; they are 128 quarters of eighths of a fifth.
 +
::<math>\scriptstyle{\color{blue}{\frac{32\sdot4}{4}\sdot\frac{1}{8}\sdot\frac{1}{5}=\frac{128}{4}\sdot\frac{1}{8}\sdot\frac{1}{5}}}</math>
 +
|style="text-align:right;"|עוד נכפלם בד' יהיו 128 רביעיות שמיניות חמישית
 +
|-
 +
|
 +
::We also multiply them by 7; they are 896 sevenths of a quarter of an eighth of a fifth.
 +
::<math>\scriptstyle{\color{blue}{\frac{128\sdot7}{7}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{5}=\frac{896}{7}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{5}}}</math>
 +
|style="text-align:right;"|ונכפלם בז' יהיה 896 שביעיות רביעית שמינית חמישית
 +
|-
 +
|
 +
::We also multiply them by 8; the result is 7168 eighths of a seventh of a quarter of an eighth of a fifth.
 +
::<math>\scriptstyle{\color{blue}{\frac{896\sdot8}{8}\sdot\frac{1}{7}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{5}=\frac{7168}{8}\sdot\frac{1}{7}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{5}}}</math>
 +
|style="text-align:right;"|עוד נכפלם ב<sup>ח'</sup> <s>8</s> יעלו 7168 שמיניות שביעית רביעית שמינית חמישית
 +
|-
 +
|
 +
:*We also multiply the 51 that are 51-eighths of a seventh by 5; the result is 255 fifths of eighths of a seventh.
 +
::<math>\scriptstyle{\color{blue}{\frac{51\sdot5}{5}\sdot\frac{1}{8}\sdot\frac{1}{7}=\frac{255}{5}\sdot\frac{1}{8}\sdot\frac{1}{7}}}</math>
 +
|style="text-align:right;"|עוד נכפול הנ"א שהם נ"א שמיניות שביעית בה' יעלו <sup>255</sup> <s>2</s> חמישיות שמיניות שביעית
 +
|-
 +
|
 +
::We multiply them by 4; the result is 1020 quarters of fifths of eighths of a seventh.
 +
::<math>\scriptstyle{\color{blue}{\frac{255\sdot4}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\sdot\frac{1}{7}=\frac{1020}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\sdot\frac{1}{7}}}</math>
 +
|style="text-align:right;"|נכפלם בד' יעלו 1020 רביעית חמישי<sup>ו</sup>ת שמיניות שביעית
 +
|-
 +
|
 +
::We also multiply them by 8; the result is 8160 eighths of quarters of a fifth of an eighth of a seventh.
 +
::<math>\scriptstyle{\color{blue}{\frac{1020\sdot8}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\sdot\frac{1}{7}=\frac{8160}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\sdot\frac{1}{7}}}</math>
 +
|style="text-align:right;"|עוד נכפלם בח' יעלו 8160 &#x202B;<ref>45r</ref>שמיניות רביעיות חמישית שמינית שביעית
 +
|-
 +
|
 +
:Now all are of one type, for the denominators are the same, because the order neither increases nor decreases as we have explained.
 +
|style="text-align:right;"|הרי כלם ממין אחד כי המורים שוים כי הסדר אינו מעלה ומוריד כאשר ביארנו
 +
|-
 +
|Beware lest you make a mistake when doing this expansion to a common denominator, not to add what is beneath the denominators to the product of the numerators by the denominators, for this is done only when decomposing to a fraction, when we want to sum up all the mentioned related fractions and to decompose them to the lowest fraction.
 +
|style="text-align:right;"|והשמר לך מאד פן תטעה בעשותך השואה זו לחבר לעולה מכפל ה{{#annot:term|570,1242|fPu0}}שברים{{#annotend:fPu0}} במורים מה שנמצא תחת המורי' כי זה לא יעשה כי אם בפריטה לבד שאנו רוצים לחבר כל השברים הנזכרים הנקשרים ולפרטם למין הפרוטות
 +
|-
 +
|
 +
:*Example: the one who has peraḥim and peruṭot and wishes to convert the peruṭot that he has, or to convert the peraḥim into zehuvim [gold coins], i.e. to see how many zehuvim they are, to add the zehuvim that he has to the result, then to convert all the zehuvim to peruṭot and add to them the peruṭot that he has, so that all is summed and decomposed [to lowest value (peruṭot)].
 +
|style="text-align:right;"|המשל במי שיש לו פרחים וזהובים ופרוטות שרוצה להשיב הפרוטות שיש לו או להשיב הפרחים זהובים ר"ל לראות כמה זהובים יעלו ולחבר לעולה הזהובים אשר היו בידו ואחר כך להשי' כל הזהובים פרוטות ולחבר עמהם הפרוטות אשר בידו ויהיה אז הכל מחובר ונפרט
 +
|-
 +
|But, the expansion to a common denominator does not includes summing at all, but to convert all the fractions to same type of units, so one does not sum them at all and this is clear by reason.
 +
|style="text-align:right;"|אבל ההשואה אין בה חבור כלל כי אם לעשות כל שברים מהם ממין האחדים לכן לא יחברם כלל וזה מבואר בטעם
 +
|-
 +
|Therefore I gave them different names that indicate this matter by hint.
 +
|style="text-align:right;"|ולזה שמתי להם שמות שונים מורי' על הענין ברמז
 +
|-
 +
|
 +
*{{#annot:definition|2618,2023|7E8S}}For, to the conversion of the fractions that are not related together into one type of fractions by multiplying each of these fractions by the denominators of the others, I called '''Hašavah''' [expansion to a common denominator], yet our intention is not at all to sum the fractions together, but only to equalize [their denominators].
 +
|style="text-align:right;"|כי ל{{#annot:term|2612,1428|4KPL}}החזרת{{#annotend:4KPL}} השברים הבלתי נקשרות למין אחד בהכאת כל אחד מהם במורי חברותיה קראתי השואה שאין כונתינו חבור כלל כי אם ההשואה לבד{{#annotend:7E8S}}
 +
|-
 +
|
 +
*{{#annot:definition|1561,1937|EbbI}}To the conversion of fractions that are related together into the lowest type of fractions I called '''Periṭah''' [decomposing to a fraction].
 +
|style="text-align:right;"|ולהשבת השברים הנקשרים כלם <sup>יחד</sup> למין השברים הגרועים מהם קראתי פריטה{{#annotend:EbbI}}
 +
|-
 +
|
 +
:For two reasons:
 +
|style="text-align:right;"|לשתי כו<sup>ו</sup>נות
 +
|-
 +
|
 +
:1) It is as converting [= poreṭ] peraḥim and zehuvim [kinds of coins] to peruṭot [currency of the lowest value] and as converting [= poreṭ] the general to particular [= peraṭim] <span style=color:Green>[meaning: the Hebrew word for converting = poreṭ has the same linguistic root of periṭah that is used for decomposing to a fraction]</span>
 +
|style="text-align:right;"|האחת <sup>שהוא</sup> כפורט ועושה מהפרחים וזהובים ופרוטות פרוטות וכמשיב הכללים לפרטים
 +
|-
 +
|
 +
:2) By this word one is reminded of the details [= peraṭ, again the same linguistic root] that are found beneath the denominators [i.e. the numerators].
 +
|style="text-align:right;"|והכונה השנית היא כי בשם זה יזכר שיש לו לקחת עמו הפרט והעוללות אשר ימצא תחת המורים
 +
|-
 +
|For every number that requires multiplication and decomposing to a fraction - the decomposing to a fraction should be applied first to the multiplicands, and then the multiplication is applied.
 +
|style="text-align:right;"|ובכל מספר שצריך הכאה עם הפריטה יעשה קודם הפריטה לבעלי ההכאה ואחר ההכאה
 +
|-
 +
|Therefore, wherever we mention and instruct to decompose to a fraction, we mean that it is followed by the multiplication if needed, or whatever is needed, if you have a number that consists of fractions that require multiplication and decomposing to a fraction.
 +
|style="text-align:right;"|לכן בכל מקום אשר נזכיר ונצוה לעשות פריטה רצוננו ואחריה ההכאה אם הוצרך איליה או אשר מהם יצטרך שאם יהיה לך מספר &#x202B;<ref>45v</ref>מורכב מהשברים הצריכים הכאה ועם הצריכים פריטה
 +
|-
 +
|
 +
*Example: 3-quarters of 2-fifths and 3-quarters of fifths of 4-sixths and a third of a sixth.
 +
:<math>\scriptstyle\frac{3}{4}\sdot\left[\frac{2}{5}+\left(\frac{3}{4}\sdot\frac{1}{5}\right)\right]\sdot\left[\frac{4}{6}+\left(\frac{1}{3}\sdot\frac{1}{6}\right)\right]</math>
 +
|style="text-align:right;"|המשל ג' רביעיות מב' חמישיות וג' רביעיות חמישיות מד' ששיות ושלישית ששית
 +
|-
 +
|
 +
:Arrange them like this:
 +
|style="text-align:right;"|תשימם על הסדר כזה
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| colspan=3 |&nbsp;|| 3 || 6
 +
|-
 +
| &nbsp;|| 4 || 5 || 1 || 4
 +
|-
 +
| 4 || 3 || 2
 +
|-
 +
| 3
 +
|}
 +
|-
 +
|
 +
::*Decompose 4-[sixths] and a third of a sixth by multiplying 4 by 3 and add the 1 that is beneath it; the result is 13-thirds of a sixth.
 +
:::<math>\scriptstyle{\color{blue}{\frac{4}{6}+\left(\frac{1}{3}\sdot\frac{1}{6}\right)=\frac{\left(4\sdot3\right)+1}{3}\sdot\frac{1}{6}=\frac{13}{3}\sdot\frac{1}{6}}}</math>
 +
|style="text-align:right;"|ותעשה פריטה לד' שביעיות ושלישית שישית והוא שתכפול הד' בג' ותחבר להם האחד אשר תחתיו ויעלו י"ג שלישיות ששית
 +
|-
 +
|
 +
::*Do the same with 2-fifths and 3-quarters of a fifth; the result is 11-quarters of a fifth.
 +
:::<math>\scriptstyle{\color{blue}{\frac{2}{5}+\left(\frac{3}{4}\sdot\frac{1}{5}\right)=\frac{11}{4}\sdot\frac{1}{5}}}</math>
 +
|style="text-align:right;"|וכן תעשה לב' חמישיות וג' רביעיות חמישית ויעלו י"א רביעיות חמישית
 +
|-
 +
|
 +
::Your number becomes as if saying 1[1]-quarters of a fifth of 13-thirds of a sixth, like this.
 +
::<math>\scriptstyle{\color{blue}{\frac{3}{4}\sdot\left[\frac{2}{5}+\left(\frac{3}{4}\sdot\frac{1}{5}\right)\right]\sdot\left[\frac{4}{6}+\left(\frac{1}{3}\sdot\frac{1}{6}\right)\right]=\frac{3}{4}\sdot\left(\frac{1{\color{red}{1}}}{4}\sdot\frac{1}{5}\right)\sdot\left(\frac{13}{3}\sdot\frac{1}{6}\right)}}</math>
 +
|style="text-align:right;"|וישוב מספרך כאלו אמרו ג' רביעיות מי"ח רביעיות חמישית מי"ג שלישיות שישית כזה
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| colspan=3 |&nbsp;|| 3 || 6
 +
|-
 +
| &nbsp;|| 4 || 5 || 13
 +
|-
 +
| 4 || 11
 +
|-
 +
| 3
 +
|}
 +
|-
 +
|
 +
:*After you decompose to a fraction as mentioned, you apply the multiplication, that is to multiply the 3, which is the last numerator, by the numerators, not by the denominators, and they are written by the name of the product, because the result of the multiplication is the numerator and the numerator is beneath the denominator, as the fractional is low and ''despised by peoples'' [Psalms 22, 7].
 +
|style="text-align:right;"|ואחר עשותך פריטה זו כנזכר תעשה ההכאה והוא <s>לתת סבות</s> להכות הג' שהם השברים האחרונים במספר השברים לא במורים השברים וגם לזה ירשמו בשם ההכאה כי בהכאה יבא השבר והשבר הוא תחת המורה כמו שהנשבר הוא שפל ''ובזוי עם''&#x202B;<ref group=note>תהילים כב, ז</ref>
 +
|-
 +
|
 +
::You start to multiply and say: three by 11 is 33; 33 by 13 is 429; so the result of the required fractions is 429-[quarters] of a quarter of a fifth of a third of a sixth, like this:
 +
|style="text-align:right;"|ותתחיל להכות ולומר שלשה בי"א הם ל"ג ול"ג בי"ג הם 429 הרי עלו כל השברים הנשאלים 429 רביעית חמישית שלישית שישית <sup>כזה</sup>
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\frac{3}{4}\sdot\left[\frac{2}{5}+\left(\frac{3}{4}\sdot\frac{1}{5}\right)\right]\sdot\left[\frac{4}{6}+\left(\frac{1}{3}\sdot\frac{1}{6}\right)\right]=\frac{3}{4}\sdot\left(\frac{11}{4}\sdot\frac{1}{5}\right)\sdot\left(\frac{13}{3}\sdot\frac{1}{6}\right)=\frac{3\sdot11\sdot13}{4}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}=\frac{33\sdot13}{4}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}=\frac{429}{4}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}}}</math>
 +
{|
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| 4 || 4 || 5 || 3 || 6
 +
|-
 +
| 429
 +
|}
 +
|-
 +
|
 +
:*Divide these 429 by the denominators, i.e. by 4, then the result by the other 4, the result by 5, and so on until they gone. 
 +
|style="width:45%; text-align:right;"|ותחלק אלו ה429 למורים אלו ר"ל לד' והיוצא לד' האחר והיוצא לה' וכן לכלם עד כלותם
 +
|-
 +
|
 +
::When something remains in any of these division, write it beneath that denominator.
 +
|style="text-align:right;"|וכאשר ישאר דבר בשום חלוקה מהן תשימהו תחת המורה ההוא
 +
|-
 +
|
 +
::When the number is gone before the denominators are gone and you get in the division by one of them less than the denominator that precedes it, write this result beneath this preceding denominator, then you know how many sixths or how many thirds of sixths they are.
 +
|style="text-align:right;"|וככלות החשבון קודם כלות המורים ויצא לך בחלוק על אחד מהן פחות מהמורה אשר לפניו תשים אותו היוצא תחת המורה הזה אשר לפני ואז תדע כמה <s>ש</s> שישיות או כמה שלישיות שישיות הן
 +
|-
 +
|This is called the most beautiful [arrangement] as mentioned above, because it is to convert the particular to general, so that the fractions become greater and nicer. 
 +
|style="text-align:right;"|וזה נקרא כלילת יופי &#x202B;<ref>46r</ref>כמו שנזכר למעלה לפי שהוא לעשות מהפרטים כללים יען יהיו השברים יותר גדולים ויותר יפים
 +
|-
 +
|The real beauty is see first if the dividend has any of these divisors and write it last [to the right], then once again with the quotient, and on the third time and so on.
 +
|style="text-align:right;"|והיופי האמיתי כשתעיין בתחלה המספר המתחלק אם יש לו שום אחד מהמורים ההם ואותו תשים אחרון וכן בשנית ביוצא וכן בשלישית וכן לעולם
 +
|-
 +
|Do this only if you are asked how much are the remaining fractions, for if you did it for the purpose of expansion to a common denominator or for the purpose of [the operations discussed in] one of the next chapters, do not divide it by the denominators at all. Because I write it here only to teach you the procedure, although it is not its place and it is mentioned in other places.
 +
|style="text-align:right;"|ולא תעשה זה כי אם כאשר ישאלו לך כמה עולים חלקים אלו הנשארות אכן אם עשית זה לצורך ההשואה או לצורך אחד מהשערים הבאים לא תחלקהו על המורים כלל כי לא כתבתיו כאן כי אם ללמדך על המעשה ואם אין זה מקומו ונזכר כבר במקומות אחרים
 +
|-
 +
|
 +
:*When you do it in our example: i.e. you divide the 429 by 4, which is the last denominator, the result of division is 107 and 1 remains. Write it beneath it.
 +
::<math>\scriptstyle{\color{blue}{\frac{429}{4}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}=\left(\frac{107}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)+\left(\frac{1}{4}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)}}</math>
 +
|style="text-align:right;"|ובעשותך זה בדמיוננו זה ר"ל שתחלק ה429 על הד' שהוא המורה האחרון יצא בחילוק 107 וישאר א' ותשימהו תחתיו
 +
|-
 +
|
 +
:*Divide this result by 4 that precedes it; the result of division is 26 and 3 remains. Write it beneath it.
 +
::<math>\scriptstyle{\color{blue}{\frac{107}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}=\left(\frac{26}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)+\left(\frac{3}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)}}</math>
 +
|style="text-align:right;"|&#x202B;[ותחלק זה היוצא לד' הקודם לו יצא בחלוק כ"ו וישארו ג' תשימם תחתיו
 +
|-
 +
|
 +
:*Divide this result by 5; the result of division is 5 and 1 remains. Write it beneath it.
 +
::<math>\scriptstyle{\color{blue}{\frac{26}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}=\left(\frac{5}{3}\sdot\frac{1}{6}\right)+\left(\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)}}</math>
 +
|style="text-align:right;"|ותחלק זה היוצא לה' ויצא בחלוק ה' וישאר א' ותשימהו תחתיו
 +
|-
 +
|
 +
:*Divide this 5 by 3; the result is 1 and 2 remains. Write it beneath it.
 +
::<math>\scriptstyle{\color{blue}{\frac{5}{3}\sdot\frac{1}{6}=\frac{1}{6}+\left(\frac{2}{3}\sdot\frac{1}{6}\right)}}</math>
 +
|style="text-align:right;"|ותחלק]&#x202B;<ref>marg.</ref> ותחלק ה' אלו על הג' ויצא א' וישארו ב' ותשימם תחתיו
 +
|-
 +
|
 +
::If this 1 was greater than 6, which is the denominator that precedes this one, next to it, we would have had to divide it by it and the result of division would have been integers, since it is first and the denominators are all gone. We would have written the remainder beneath it and it were sixths.
 +
|style="text-align:right;"|וזה הא' אם היה גדול <sup>מהו'</sup> <s>מדות</s> שהוא המורה אשר לפני אלו הסמוך להם היה לנו לחלקם עליו והיוצא בחלוק היה שלימים אחר שהוא ראשון וכבר כלו המורים והנשאר הינו שמים אותו תחתיו והיה שישיות שלמות
 +
|-
 +
|
 +
::Since it is less than it, we write it beneath it immediately, and we get that the remaining fractions are one-sixth, 2-thirds of a sixth, a fifth of a third of a sixth, 3-quarters of a fifth of a third of a sixth and a quarter of a quarter of a fifth of a third of a sixth.
 +
|style="text-align:right;"|אכן לפי שהוא פחות ממנו נשימם תחתיו מיד ויצא לנו מזה שהשברים הנשארים עלו ששית א' שלמה וב' שלישיות ששית וחמישית שלישית שישית וג' רביעיות חמישית שלישית שישית ורביעית רביעית חמישית שלישית שישית
 +
|}
 +
 
 +
:<math>\scriptstyle{\color{blue}{\frac{3}{4}\sdot\left[\frac{2}{5}+\left(\frac{3}{4}\sdot\frac{1}{5}\right)\right]\sdot\left[\frac{4}{6}+\left(\frac{1}{3}\sdot\frac{1}{6}\right)\right]=\frac{1}{6}+\left(\frac{2}{3}\sdot\frac{1}{6}\right)+\left(\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)+\left(\frac{3}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)+\left(\frac{1}{4}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)}}</math>
 +
{|
 +
|-
 +
|
 +
:According to the most beautiful [arrangement], i.e. to write the denominators calculatedly in order, the fractions result as in the second diagram and all yield the same sum.
 +
|style="width:45%; text-align:right;"|ועל דרך היופי ר"ל לשים המורים בסדר בהשגחה יצאו החלקים כפי הצורה השנית והכל עולה לסך אחד
 +
|-
 +
|To make it easier for you, when you expande to a common denominator, if you find any denominator that appears the same number of times in all the numbers [to be expanded], i.e. for instance, that 8 is in each of them once, or twice, or three times, do not multiply by this denominator at all. When you write all the denominators, write it only as many times as it apears in one of the numbers.
 +
:<math>\scriptstyle{\color{OliveGreen}{\frac{a}{b}\sdot\frac{1}{n}\quad\frac{c}{d}\sdot\frac{1}{n}}}</math>
 +
|style="text-align:right;"|וכדי להקל מעליך כאשר תעשה ההשואה אם תמצא <s>לכל אחד מ</s>המספרים ש<sup>ו</sup>ם מורה שוה לכלם פעמים שוות ר"ל ע'ד'מ' שהח' בכל אחת מהם פעם אחת או פעמי' &#x202B;<ref>46v</ref>שלש לא תכפול שום המספרים ההם במו[ר]ה ההוא כלל ובהשימך כל המורים לא תשימה כי אם כפעמים ש{{#annot:term|358,2034|6UQE}}ישנו{{#annotend:6UQE}} באחד מהמספרי&#x202B;'
 +
|-
 +
|If it is in all of them, but not the same number of times - for instance, once in this one and twice or three times in the other - where it is found the maximal number of times, do not multiply by this denominator at all; as for the rest of the numbers, multiply each by this denominator, as many times as the excess of the maximal number of times over the number of times it is found in the present number. When you write the denominator, write it only as many times as the maximal number of times that it apears.
 +
:<math>\scriptstyle{\color{OliveGreen}{\frac{a}{b}\sdot\frac{1}{n}=\frac{a}{b}\sdot\frac{1}{n}\sdot\frac{n}{n}\sdot\frac{n}{n}\quad\frac{c}{d}\sdot\frac{1}{n}\sdot\frac{1}{n}\sdot\frac{1}{n}}}</math>
 +
|style="text-align:right;"|ואם הוא בכלם אבל אינו בהם פעמים שוות אבל בזה פעם אחת ובזה שנים או שלשה ע'ד'מ' אשר ישנו שם פעמים לא תכפלנו במורה זה [כלל וכל אחד משאר המספרים תכפלנו במורה זה&#x202B;]&#x202B;<ref>marg.</ref> כ"כ פעמים כפעמים שהוא יותר כמספר הרב הפעמים שבמספר הזה הנכפל בו עתה ובהשימך המורה לא תשימנו כי אם כפעמים אשר הוא באשר הוא יותר פעמים
 +
|-
 +
|If it is not in all of them, but in two or three of them, multiply each of the numbers, in which it is not found at all, by this denominator, as the maximal number of times that it apears in one of them. Do not multiply the number, in which it is found the maximal number of times, by it. [As for the rest of] the numbers, in which it is found, multiply each by it, as many times as the excess of the maximal number of times over the number of times it is found in the present multiplicand.
 +
:<math>\scriptstyle{\color{OliveGreen}{\frac{a}{b}=\frac{a}{b}\sdot\frac{n}{n}\sdot\frac{n}{n}\quad\frac{c}{d}\sdot\frac{1}{n}\sdot\frac{1}{n}}}</math>
 +
|style="text-align:right;"|ואם אינו בכלן כי אם בשנים או בג' מהם המספרי' אשר אינו בהם כלל תכפול כל אחד מהם במורה זה כמספר הפעמים אשר הוא באשר הוא יותר פעמים והמספר אשר הוא בו יותר פעמים לא תכפלנו כלל והמספרים אשר ישנו בהם תכפול כל אחד בו כמספר הפעמים העודפים באשר הוא היותר פעמים מבזה הנכפל
 +
|-
 +
|If it is found in them the same number of times, do not multiply by it any of the numbers, in which it is found, and when you write the denominators, write it only as many times as the maximal number of times that it apears.
 +
|style="text-align:right;"|ואם הוא בהם פעמים שוות לא תכפול בו שום אחד מהמספרים אשר הוא בו ובהשימך המורים לא תשימנו כי אם כפעמים אשר הוא באשר הוא יותר רב פעמים
 +
|-
 +
|
 +
:It follows that in the example of the expansion to a common denominator that we had at the beginning of this chapter, we did not have to multiply the 78-quarters of an eighth by 8 at all, nor the eighths of the seventh, as it is found in both equally.
 +
|style="text-align:right;"|ויצא מזה כי במשל ההשואה שעשינו בתחלת שער זה לא היה לנו לכפול הע"ח רביעיות שמינית בח' כלל גם לא השמיני<sup>ו</sup>ת שביעית להיותו בשניהם בשוה
 +
|-
 +
|
 +
:We also had to [multiply] the 8 only once, as it is found, by one of the others.
 +
|style="text-align:right;"|גם לא היה לנו לשום הח' כי אם פעם אחת כאשר הוא באחד מהאחרים
 +
|-
 +
|
 +
:Among the denominators, we had to write the 8 only once, as the number of times that it is found in each of them.
 +
|style="text-align:right;"|ובמורים לא היה לנו לשום הח' כי אם פעם אחת כפעמים אשר ישנו באחד מהם
 +
|-
 +
|It does not matter if all this is not done, but this will make the procedure more difficult.
 +
|style="text-align:right;"|וכל זה אינו מזיק אם לא יעשה אבל כי תכבד העבודה
 +
|-
 +
|}
 +
{|
 +
|-
 +
|
 +
 
 +
== Chapter One: Addition ==
 +
|style="width:45%; text-align:right;"|<big>הפרק האחד <s>עשר</s> &#x202B;<ref>47r</ref>בחבור</big>
 +
|-
 +
|In it the discussion on [conversion] and summing.
 +
|style="text-align:right;"|בחיבור ובו מאמ' האמרה והאחדות
 +
|-
 +
|<span style=color:Green>The procedure:</span>
 +
|
 +
|-
 +
|When you wish to add fractions with integers or fractions with fractions of another type, first, decompose each of the numbers that requires decomposing to [the lowest type of] fraction by itself, then multiply what needs to be multiplied, and after you decompose [and multiply] whichever requires either both decomposing and multiplication, or one of them, expand the numbers to one type, sum up all their results together, i.e. the numerators, then we divide [the sum] by all the denominators of all the fractions.
 +
|style="text-align:right;"|כאשר תרצה לחבר שברים עם שלמים ושברים [או]&#x202B;<ref>marg.</ref> עם שברים ממין אחר בתחלה תפרוט כל אחד מהמספרים לבדו אשר יצטרך פריטה גם תכה הצריך להכאה ואחר שתפרוט וכל אחד מהם הצריך להם או לאחד מהם ר"ל לפריטה או להכאה תשוה המספרים אחד אל אחד עד שיהיו כלם ממין אחד והעולה בכל אחד מהם חבר הכל יחד ר"ל מספר השברים וחלקנו על כל המורים אשר לכל <s>אחד</s> השברים
 +
|-
 +
|
 +
*{{#annot:(2+⅜+²/₄·⅛)+⅘+(⁶/₇+⅜·⅐)|677|O6E2}}For instance, if in the example for the expansion to a common denominator that we have presented at the beginning of the third chapter, you are asked to sum up them and say how much they are:
 +
:<math>\scriptstyle\left[2+\frac{3}{8}+\left(\frac{2}{4}\sdot\frac{1}{8}\right)\right]+\frac{4}{5}+\left[\frac{6}{7}+\left(\frac{3}{8}\sdot\frac{1}{7}\right)\right]</math>
 +
|style="text-align:right;"|כי ע'ד'מ' אם במשלנו אשר עשינו בהשואה בתחלת השער הג' שאלו לך שתחברם ותאמ' כמה הם{{#annotend:O6E2}}
 +
|-
 +
|
 +
:You had to do all that we have done: the decomposing of each of them and the expansion of all until they become what they are:
 +
|style="text-align:right;"|היה לך לעשות כל אשר עשינו הפריטה לכל אחד וההשואה לכלם עד שיגיעו לאשר הגיעו
 +
|-
 +
|
 +
:*The two integers, 3-eighths and 2-quarters of an eighth become 21840 eighths of a seventh of a fifth of a quarter of an eighth.
 +
::<math>\scriptstyle{\color{blue}{2+\frac{3}{8}+\left(\frac{2}{4}\sdot\frac{1}{8}\right)=\frac{21840}{8}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{8}}}</math>
 +
|style="text-align:right;"|והוא שהשנים השלמים וג' שמיניות וב' רביעיות שמינית עלו ל21840 &#x202B;[שמיניות שביעית חמשית רביעית שמינית
 +
|-
 +
|
 +
:*The 4-fifths become 8160 parts of all the denominators.
 +
::<math>\scriptstyle{\color{red}{\frac{4}{5}=\frac{7168}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\sdot\frac{1}{7}}}</math>
 +
|style="text-align:right;"|והד' חמשיות עלו ל&#x202B;8160]&#x202B;<ref>marg.</ref> מכל המורים
 +
|-
 +
|
 +
:After you do all this, you have to sum all the numbers of the fractions, i.e. 21840 with 7168 and 8160; the result is 37168, which are parts of the five mentioned denominators, i.e. 8, 4, 5, 7, and 8 that are all the denominators of the original numbers.
 +
|style="text-align:right;"|ואחר עשותך כל זה היה לך לחבר יחד כל מספרי השברים ר"ל ה21840 עם ה7168 ועם ה8160 ויעלו 37168 והם מהה' מורים הנזכרים ר"ל ה8 וה4 והה' והז' והח' שהם כל מורי המספרים הראשונים
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\left[2+\frac{3}{8}+\left(\frac{2}{4}\sdot\frac{1}{8}\right)\right]+\frac{4}{5}+\left[\frac{6}{7}+\left(\frac{3}{8}\sdot\frac{1}{7}\right)\right]=\left(\frac{21840}{8}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{8}\right)+\left(\frac{7168}{8}\sdot\frac{1}{7}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{5}\right)+\left(\frac{8160}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\sdot\frac{1}{7}\right)=\frac{37168}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\sdot\frac{1}{7}}}</math>
 +
{|
 +
|-
 +
|
 +
*Arrange them in order as you wish, or by observation, as we noted in the fourth chapter, so that the fraction will be more appropriate. You will find it explained properly there.
 +
|style="width:45%; text-align:right;"|ותשימם על הסדר כאשר תרצה או בהשגחה כאשר הזכרנו בפרק הרביעי כדי שיצאו החלקים יותר נאותים ושם תמצאנו מבואר באר הטב
 +
|-
 +
|
 +
:*Since this number 37168 is divisible by eight, which is one of the denominators, we place it last, i.e. first.
 +
::<math>\scriptstyle{\color{red}{\frac{37168}{8}=4646}}</math>
 +
|style="text-align:right;"|ולהיות לזה החשבון 37168 המתחלק שמינית שהוא אחד מהמורים נשימנו אחרון ר"ל הראשון
 +
|-
 +
|
 +
:*We divide our number by it, i.e. by 7; the result of division is 663 and 5 remain. We place them beneath.
 +
::<math>\scriptstyle{\color{blue}{\frac{4646}{7}=663+\frac{5}{7}}}</math>
 +
|style="text-align:right;"|ונחלק חשבונננו זה עליו ר"ל 7 ויצא בחילוק 663 [נ' 3]&#x202B;<ref>marg.</ref> וישארו ה' ונשימם תחתיו
 +
|-
 +
|
 +
:*We divide them by 4; the result of division is 33 and nothing remains.
 +
::<math>\scriptstyle{\color{blue}{\frac{663}{4}=33}}</math>
 +
|style="text-align:right;"|ונחלקם על הד' ויצא בחילוק ל"ג ולא ישאר דבר
 +
|-
 +
|
 +
:*We divide these 33 resulting in division by the 8, which is the remaining denominator; the result of division is 4, which are integers, since all the denominators are gone. We place them aside. One remains, which is an eighth. We place it beneath, like this:
 +
::<math>\scriptstyle{\color{blue}{\frac{33}{8}=4+\frac{1}{8}}}</math>
 +
|style="text-align:right;"|ונחלקם אלו הל"ג היוצאים בחילוק על הח' שהוא המורה הנשאר ויצא בחלוק <s>ד'</s> ד' והם שלמים לפי שכבר כלו כל המורים ונשימם מחוץ וישאר א' והוא &#x202B;<ref>47v</ref>שמינית שלימה ונשימה תחת כזה
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| 4 || 7 || 4 || 5 || 8
 +
|-
 +
| &nbsp;|| 5 || 3 || &nbsp;|| 1
 +
|}
 +
|-
 +
|
 +
:We get that when we sum two integers, 3-eighths and 2-quarters of an eighth with 4-fifths, and with 6-sevenths and 3-eighths of a seventh, the total sum is 4 integers, one eighth, 3-quarters of a fifth of an eighth, and 5-sevenths of a quarter of a fifth of an eighth. Deduce from this.
 +
|style="text-align:right;"|הנה עלה בידינו שכאשר חברנו השנים שלמים וג' שמיניות וב' רביעיות שמינית עם ד' חמישיות ועם ו' שביעיות וג' שמיניות שביעית שעלה הכל ד' שלמים ושמינית אחת וג' רביעיות חמישית שמינית וה' שביעיות רביעית חמישית שמינית והקש על זה והה&#x202B;'
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\left[2+\frac{3}{8}+\left(\frac{2}{4}\sdot\frac{1}{8}\right)\right]+\frac{4}{5}+\left[\frac{6}{7}+\left(\frac{3}{8}\sdot\frac{1}{7}\right)\right]=4+\frac{1}{8}+\left(\frac{3}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\right)+\left(\frac{5}{7}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\right)}}</math>
 +
{|
 +
|-
 +
|This is the reason that if you are told [to sum] numerous numbers, you need to multiply first, before the expansion [to a common denominator], then the expansion and afterwards the summing, as mentioned.
 +
|style="width:45%; text-align:right;"|והוא הטעם אם אמרו לך מספרים רבים והיו בהם שצריכין <s>ג"כ הכאה קודם השיווי</s> שתעשה להם ג"כ ההכאה קודם השיווי ואחר כך ההשוואה וא'ח'כ' החבור כנזכר
 +
|-
 +
|
 +
*If you are asked in general, how many are they?
 +
|style="text-align:right;"|ואולם אם לא שאלו לך בסתם כמה הם
 +
|-
 +
|
 +
:*For example, if you are told: how many fifths are they?
 +
|style="text-align:right;"|אבל אמרו לך ע'ד'מ' כמה חמישיות
 +
|-
 +
|
 +
::Since 5 is one of the denominators, you do not need to perform another procedure, but place the 5 as the first among the denominators, like this:
 +
|style="text-align:right;"|הם אחר שזה הה' הוא במורים אינך צריך לעשות פועל חדש כי אם שתשים הה' הראשון מהמורים כזה
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| 4 || 7 || 4 || 8 || 5
 +
|-
 +
| &nbsp;|| 5 || 3 || 25 || &nbsp;
 +
|}
 +
|-
 +
|
 +
:You receive 4 integers, 25-eighths of one-fifth of a fifth, 3-quarters of one-eighth of a fifth and 5-sevenths of one-quarter of one-eighth of a fifth. It is all the same and it is enough for the one who understands.
 +
|style="text-align:right;"|ויעלה בידך ד' שלמים כ"ה שמיניות חמישית חמישית וג' רביעיות שמינית חמישית <s>וג' רביעית שמינית חמישית</s> וה' שביעיות רביעית שמינית חמישית והכל אחד ודי למבין
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\left[2+\frac{3}{8}+\left(\frac{2}{4}\sdot\frac{1}{8}\right)\right]+\frac{4}{5}+\left[\frac{6}{7}+\left(\frac{3}{8}\sdot\frac{1}{7}\right)\right]=4+\frac{1}{8}+\left(\frac{3}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\right)+\left(\frac{5}{7}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\right)=4+\left(\frac{25}{8}\sdot\frac{1}{5}\sdot\frac{1}{5}\right)+\left(\frac{3}{4}\sdot\frac{1}{8}\sdot\frac{1}{5}\right)+\left(\frac{5}{7}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{5}\right)}}</math>
 +
{|
 +
|-
 +
|
 +
*If you are told to convert them to another type that is not among the denominators:
 +
|style="width:45%; text-align:right;"|אכן אם אמרו לך {{#annot:term|2613,1429|4lUo}}להחזירם{{#annotend:4lUo}} ממין אחר שאינו במורי&#x202B;'
 +
|-
 +
|
 +
:*For example, you are told: how many ninths are they?
 +
|style="text-align:right;"|המשל שאמרו לך כמה תשיעיות הן
 +
|-
 +
|
 +
:This is called the conversion category: after decomposing, multiplying, and expanding [to a common denominator], before you divide by the mentioned denominators, multiply the resulting numerator of these fractions, i.e. 37168, by the denominator, to which it is required to convert, i.e. 9, which is the denominator of the ninth; the result is 334512. We write the 9 as the first denominator and all the other denominators after it, randomly or by observation.
 +
:<math>\scriptstyle{\color{blue}{37168\sdot9=334512}}</math>
 +
|style="text-align:right;"|זה יקרא מאמר ההמרה והוא שאחרי עשותך הפריטה וההכאה וההשואה קודם שתחלקם למורים הנזכרים תכפול כל חשבון השברים ר"ל ה37168 בזה המורה אשר רצו להחליפם אליו ר"ל הט' שהוא המורה התשיעית ויעלו 334512 ונשים הט' למורה ראשון וכל המורים האחרי' אחריו אם כאשר יזדמן אם בהשגחה
 +
|-
 +
|
 +
:*When we divide first by 8, the result of division is 41814 and nothing remains.
 +
::<math>\scriptstyle{\color{blue}{\frac{334512}{8}=41814}}</math>
 +
|style="text-align:right;"|ובחלקנו ראשונה לח' ויצא בחילוק 41814 ולא ישאר דבר
 +
|-
 +
|
 +
:*We divide the result by 4; the quotient is 10453 and 2 remain. We place them beneath it.
 +
::<math>\scriptstyle{\color{blue}{\frac{41814}{4}=10453+\frac{2}{4}}}</math>
 +
|style="text-align:right;"|ונחלק זה היוצא לד' ויצא בחילוק 10453 וישארו ב' ונשימם תחתיו
 +
|-
 +
|
 +
:*<math>\scriptstyle{\color{OliveGreen}{\frac{10453}{5}=2090+\frac{3}{5}}}</math>
 +
|
 +
|-
 +
|
 +
:*We divide it by 7; the result of division is 298 and 4 remain. We place them beneath it.
 +
::<math>\scriptstyle{\color{blue}{\frac{2090}{7}=298+\frac{4}{7}}}</math>
 +
|style="text-align:right;"|ונחלקנו &#x202B;<ref>48r</ref>לז' ויצא בחילוק 298 וישארו ד' ונשימם תחתיו
 +
|-
 +
|
 +
:*We divide the result by 8; the quotient is 37 and 2 remain. We place them beneath it.
 +
::<math>\scriptstyle{\color{blue}{\frac{298}{8}=37+\frac{2}{8}}}</math>
 +
|style="text-align:right;"|ונחלק זה היוצא על הח' ויצא בחילוק ל"ז וישארו ב' ונשימם תחתיו
 +
|-
 +
|
 +
:*We divide the result by 9; the quotient is 4, which are integers, and 1 remains. We place it beneath it.
 +
::<math>\scriptstyle{\color{blue}{\frac{37}{9}=4+\frac{1}{9}}}</math>
 +
|style="text-align:right;"|ונחלק זה היוצא על הט' ויצא בחילוק ד' והם שלמים וישאר א' ונשימהו תחתיו
 +
|-
 +
|
 +
:Thus, we have converted the fractions into ninths and parts of ninths.
 +
|style="text-align:right;"|והנה המרנו החלקים ר"ל השברים לתשיעית וחלקי תשיעית
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\left[2+\frac{3}{8}+\left(\frac{2}{4}\sdot\frac{1}{8}\right)\right]+\frac{4}{5}+\left[\frac{6}{7}+\left(\frac{3}{8}\sdot\frac{1}{7}\right)\right]=4+\frac{1}{9}+\left(\frac{2}{8}\sdot\frac{1}{9}\right)+\left(\frac{4}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\right)+\left(\frac{3}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\right)+\left(\frac{2}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\right)}}</math>
 +
{|
 +
|-
 +
|The rule of this category [i.e. conversion] is that whenever you are asked with regard to a known type of fractions, whether various or not, to convert them to another type, whether a fraction or a fraction of a fraction:
 +
|style="width:45%; text-align:right;"|כלל זה מאמר זה הוא שכאשר ישאלו לך על חלקי' ידועים שונים ובלתי שונים שתמירם למין אחר בין אם יאמרו לך לשבר או לשבר שבר
 +
|-
 +
|
 +
*As, if you are told to convert them to fifths of one-seventh of an eighth, or something similar.
 +
|style="text-align:right;"|כמו שיאמרו לך השיבם לחמישיות שביעית שמינית או הדומה לזה
 +
|-
 +
|You should first decompose, multiply, and expand the fractions, if they are various, then sum them together and multiply the sum by the denominator or the denominators, to which you need to convert them.
 +
|style="text-align:right;"|יש לך לעשות תחלה פריטה והכאה והשואה לשברים אם היו שונים ושוב תחברם יחד ושוב תכפלם כלם ביחד על המורה או המורים אשר רוצים שתמירם אליהם
 +
|-
 +
|
 +
:*I.e. if you are told to convert them into fifths, multiply them by 5 alone.
 +
|style="text-align:right;"|ר"ל שאם אמרו לך שתמירם לחמישיות תכפלם בה' לבד
 +
|-
 +
|
 +
:*But, if you are told [to convert them] into fifths of a seventh of an eighth, multiply them by 8, then the product by 7, and again by 5.
 +
|style="text-align:right;"|ואם אמרו לך לחמישיות שביעית שמינית תכפלם בח' והעולה בז' והעולה בה&#x202B;'
 +
|-
 +
|After you do all that, write the denominator or denominators of the first conversion to the right by the required order: first the 8, after it the 7, after it the 5, then arrange after them the denominators that you have randomly of calculatedly and divide by them the number that you get from the multiplication of the numerators by the denominator or denominators of the conversion. All this is clear by reason.
 +
|style="text-align:right;"|ואחר עשותך כל זה תשים מורה או מורה ההמרה ראשונה לצד ימין על הסדר שנשאל הח' תחלה ואחריו הז' ואחריו הה' ושוב תסדר אחריהם מורה שבידך כפי המזדמן או בהשגחה ותחלק על כלם המספר אשר עלה לידיך מכפל מספר שבריך במורה או מורי ההמרה וכל זה ברור בטעם
 +
|-
 +
|For, if you multiply what you have by given denominators, the product always have these denominators in addition to its original denominators. Therefore, when you wish to reduce them, i.e. to convert these decomposed fractions to proper integers and fractions, you have to arrange these denominators, by whice they were multiplied, with their original denominators and the order does not matter. Since it is asked how many fractions of these denominators they are, we write them first in this procedure.
 +
|style="text-align:right;"|כי לעולם אם תכפול אשר בידך במורים מונחים הנה יהיה למקובץ מורים אלו מוספים על מוריו הראשונים ולכן כאשר תרצה לעשות להם {{#annot:term|1555,2488|Mkxu}}כלילת יופי{{#annotend:Mkxu}} ר"ל להשיב שברים אלו הנפרטות לכללים וחלקים יפים יש לך לסדר עם מוריו הראשונים אלו המורים אשר הוכפלו בהם והסדר לא יזיק ולפי ששאלו כמה חלקים הם מהמורים האלו לכן נשימם ראשונה במלאכה
 +
|-
 +
|If you are told to convert them to another fraction as greater as possible, it is called '''ha-Aḥdut''' [lit. unification] and it is an important issue, because by it we can divide the smaller by the greater and to generate denominators without extracting the denominators of the number by which we want to divide or to add to its denominators.
 +
|style="text-align:right;"|אכן אם יאמרו לך להשיבם לחלק אחר <sup>ה</sup>גדול שאיפשר לכן נקרא<s>ה</s> האחדות והוא ענין נכבד &#x202B;<ref>48v</ref>כי ממנו יצא לנו לחלק מעט על רב ולחדש מורים <s>ב</s> בעצמינו מבלי הוצאת מורי המספר שרצינו לחלק עליו או גם להוסיף על מוריו
 +
|-
 +
|For this I assigned it a discussion of its own and I write it in this chapter as it is a kind of addition.
 +
|style="text-align:right;"|לזה הקצתי לו מאמר לבדו ואכתבנו בזה הפרק לפי שהוא כעין חבור
 +
|-
 +
|I named it "ha-Aḥdut" [lit. unification], since we want to convert them to one fraction whether it is possible or not.
 +
|style="text-align:right;"|וקראתי לו שם שם האחדות לפי שאנו רוצים לעשותם חלק אחד אם איפשר ואם הוא בלתי איפשר
 +
|-
 +
|If it is impossible, we have to add one in the procedure as will be explained.
 +
|style="text-align:right;"|ואם הוא בלתי איפשר יש לנו להוסיף אחד במלאכה כאש' יתבאר
 +
|-
 +
|For these two reasons I called it "ha-aḥdut".
 +
|style="text-align:right;"|לב' כוונות אלו קראתי לו שם האחדות
 +
|-
 +
|
 +
=== <span style=color:Green>Summing fractions to one fraction</span> ===
 +
|style="width:45%; text-align:right;"|<big>מאמר האחדות</big>
 +
|-
 +
|If you wish to convert fractions, equal or different, into one fraction if possible, or as greatest as possible.
 +
|style="text-align:right;"|אם רצית להשיב שברים <s>שוים</s> <sup>שוים</sup> או שונים לחלק אחד אם איפשר או לגדול שאיפשר
 +
|-
 +
|
 +
*{{#annot:(⅖·²/₉·2)+(⅛+²/₉·⅐·⅛)·(¼+²/₆·¼)|677|GkGP}}Example: two-fifths of 2-ninths of 2 integers, and one-eighth, and two-ninths of one-seventh of one-eighth of one-quarter and two-sixths of one-quarter.
 +
:<math>\scriptstyle\left(\frac{2}{5}\sdot\frac{2}{9}\sdot2\right)+\left[\left[\frac{1}{8}+\left(\frac{2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left[\frac{1}{4}+\left(\frac{2}{6}\sdot\frac{1}{4}\right)\right]\right]</math>
 +
|style="text-align:right;"|<big>המשל</big> שני חמישיות מב' תשיעיות מב' שלמים ועוד שמינית אחת ושני תשיעיות שביעית שמינית מרביעית ושתי ששיות רביעית{{#annotend:GkGP}}
 +
|-
 +
|
 +
:Arrange them like this:
 +
|style="text-align:right;"|תשימם על הסדר כזה
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| colspan=2 |&nbsp;|| 2
 +
|-
 +
| &nbsp;|| 9
 +
|-
 +
| 5 || 2
 +
|-
 +
| 2
 +
|}
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| colspan=3 |&nbsp;|| 6 || 4
 +
|-
 +
| 9 || 7 || 8 || 2 || 1
 +
|-
 +
| 2 || &nbsp;|| 1
 +
|}
 +
|-
 +
|Apply on them [the operations of] decomposition, multiplication, expansion [to a common denominator], and summation.
 +
|style="text-align:right;"|תעשה להם פריטה והכאה והשוואה וחיבור
 +
|-
 +
|In order to train you more in the procedure I will perform them one by one:
 +
|style="text-align:right;"|וכדי להרגילך עוד במעשה אעשה אחת אחת
 +
|-
 +
|
 +
::We decompose the quarter and the two-sixths of one-quarter: we multiply 1 by 6; they are 6; we add to them the units that are beneath them, i.e. the 2; the result is 8-sixths of a quarter.
 +
::<math>\scriptstyle{\color{blue}{\frac{1}{4}+\left(\frac{2}{6}\sdot\frac{1}{4}\right)=\frac{\left(1\sdot6\right)+2}{6}\sdot\frac{1}{4}=\frac{6+2}{6}\sdot\frac{1}{4}=\frac{8}{6}\sdot\frac{1}{4}}}</math>
 +
|style="text-align:right;"|נעשה פריטה לרביעית ושתי שישיות רביעית<br>
 +
נכפול א' בו' יהיו ו' ונחבר להם הפרט אשר נמצא תחתיו ר"ל הב' יעלו ח' שישיות רביעית
 +
|-
 +
|
 +
::We also decompose the seventh and the 2-ninths of one-seventh of one-eighth: we multiply 1 by 7, then we multiply them further by 9; they are 63; we add to them the two; the result is 65-ninths of one-seventh of an eighth.
 +
|style="text-align:right;"|עוד נעשה פריטה לשביעית וב' תשיעיות שביעית שמינית<br>
 +
נכפול א' בז' נכפלם עוד בט' יהיו ס"ג ונחבר להם השנים ויעלו ס"ה תשיעיות שביעיות שמינית
 +
|-
 +
|
 +
::<math>\scriptstyle{\color{blue}{\frac{1}{8}+\left(\frac{2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)=\frac{\left(1\sdot7\sdot9\right)+2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}=\frac{63+2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}=\frac{65}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}}}</math>
 +
|
 +
|-
 +
|
 +
::It is as if one says: 65-ninths of a seventh of an eighth of 8-sixths of a quarter, like this:
 +
::<math>\scriptstyle{\color{blue}{\left[\frac{1}{8}+\left(\frac{2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left[\frac{1}{4}+\left(\frac{2}{6}\sdot\frac{1}{4}\right)\right]=\left(\frac{65}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\sdot\left(\frac{8}{6}\sdot\frac{1}{4}\right)}}</math>
 +
|style="text-align:right;"|והרי הוא כאלו אמרו ס"ה תשיעיות שביעית שמינית מח' שישיות רביעית כזה
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| colspan=3 |&nbsp;|| 6 || 4
 +
|-
 +
| 9 || 7 || 8 || 8
 +
|-
 +
|65
 +
|}
 +
|-
 +
|
 +
:We also multiply the two numbers we have:
 +
|style="text-align:right;"|עוד נעשה הכאה לשני מספרי' שבידינו
 +
|-
 +
|
 +
::We start with the first number and say: 2 by 2 is 4. We multiply it also by the two integers; it is 8-fifths of a ninth, like this:
 +
|style="text-align:right;"|ונתחיל במספ' הראשון ונאמ ב' בב' הם ד' נכפלם עוד בשני השלמים יהיו ח' חמישיות תשיעית שלימה &#x202B;<ref>49r</ref>כזה
 +
|-
 +
|
 +
::<math>\scriptstyle{\color{blue}{\frac{2}{5}\sdot\frac{2}{9}\sdot2=\frac{2\sdot2\sdot2}{5}\sdot\frac{1}{9}=\frac{4\sdot2}{5}\sdot\frac{1}{9}=\frac{8}{5}\sdot\frac{1}{9}}}</math>
 +
|
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| 5 || 9
 +
|-
 +
| 8 || &nbsp;
 +
|}
 +
|-
 +
|
 +
::We multiply also the second number, the eight-sixths of a quarter, by 65; the result is 520-ninths of a seventh of an eighth of a sixth of a quarter, like this:
 +
|style="text-align:right;"|עוד נכה במספר השני השמונה ששיות רביעית בס"ה ויעלו 520 תשיעיות שביעית שמינית שישית רביעית כזה
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| 9 || 7 || 8 || 6 || 4
 +
|-
 +
| 520 || &nbsp;|| &nbsp;|| &nbsp;|| &nbsp; 
 +
|}
 +
|}
 +
 
 +
::<math>\scriptstyle{\color{blue}{\left[\frac{1}{8}+\left(\frac{2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left[\frac{1}{4}+\left(\frac{2}{6}\sdot\frac{1}{4}\right)\right]=\left(\frac{65}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\sdot\left(\frac{8}{6}\sdot\frac{1}{4}\right)=\frac{65\sdot8}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}=\frac{520}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}}}</math>
 +
{|
 +
|-
 +
|
 +
:We expand these two numbers [to a common denominator]:
 +
|style="width:45%; text-align:right;"|ונעשה ההשואה לאלו השני מספרים
 +
|-
 +
|
 +
::Since the denominator 9 is found in each of them once, we do not multiply any of the numbers by it and we write it only once, as I mentioned at the end of chapter three.
 +
|style="text-align:right;"|ואחר היות בכל אחת מהם מורה הט' פעם אחת לא נכפול בו שום אחד מהמספרים ולא נסדרהו כי אם פעם אחת כאשר הזכרתי בסוף השער הג&#x202B;'
 +
|-
 +
|
 +
::We multiply the 8-fifths of ninths by all the denominators of the other number, except for the 9, as explained, and we say: eight by 4 is 32. We multiply it by 6; the result is 192. We multiply it by 8; the result is 1536. We multiply it by 7; the result is 10752.
 +
|style="text-align:right;"|ונכפול הח' חמישיות תשיעיות בכל מורה המספר האחר זולתי הט' כאשר התבאר ונאמר שמונה בד' יעלה ל"ב נכפלם בו' יעלו 192 נכפלם בח' יעלו 1536 נכפלם בז' יעלו 10752
 +
|}
 +
::<math>\scriptstyle{\color{blue}{8\sdot4\sdot6\sdot8\sdot7=32\sdot6\sdot8\sdot7=192\sdot8\sdot7=1536\sdot7=10752}}</math>
 +
::<math>\scriptstyle{\color{blue}{\frac{2}{5}\sdot\frac{2}{9}\sdot2=\frac{8}{5}\sdot\frac{1}{9}=\frac{8\sdot4\sdot6\sdot8\sdot7}{5}\sdot\frac{1}{9}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{8}\sdot\frac{1}{7}=\frac{10752}{5}\sdot\frac{1}{9}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{8}\sdot\frac{1}{7}}}</math>
 +
{|
 +
|-
 +
|
 +
::We multiply also the 520, which is the numerator of the other fractions, by 5, which is the denominator of the other, but not by 9 as mentioned; the result is 2600.
 +
|style="width:45%; text-align:right;"|עוד נשוב לכפול ה520 שהם מספ' השברים האחרים בה' שהוא מורה חבריהם ולא בט' כנזכר ויעלו 2600
 +
|-
 +
|
 +
:We arrange them one above the other, like this:
 +
|style="text-align:right;"|נסדרם זה על זה כזה
 +
|-
 +
|
 +
|
 +
{| style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
| style="text-align: left;" | 10752
 +
|-
 +
| style="text-align: left;" | <u>&#8199;2600</u>
 +
|-
 +
| style="text-align: left;" | 13352
 +
|}
 +
|}
 +
::<math>\scriptstyle{\color{blue}{\left[\frac{1}{8}+\left(\frac{2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left[\frac{1}{4}+\left(\frac{2}{6}\sdot\frac{1}{4}\right)\right]=\frac{520}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}=\frac{520\sdot5}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{2600}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}\sdot\frac{1}{5}}}</math>
 +
{|
 +
|-
 +
|
 +
:We sum them together; the result is 13352.
 +
|style="width:45%; text-align:right;"|ונחברם יחד יעלו 13352
 +
|-
 +
|
 +
:We arrange all the denominators, i.e. all the denominators of both numbers, except for the 9 that we write only once and we write our number beneath the last denominator, as it is the numerator that is decomposed to all of these denominators.
 +
|style="text-align:right;"|נסדר כל המורים ר"ל כל מורי שני המספרי' בלתי הט' שלא נשימנו כי אם פעם אחת ונשים מספרינו תחת המורה האחרון לפי שהוא שברים נפרטות מכל אלו המורים
 +
|-
 +
|
 +
:So, it is as if we are asked: which fraction are 13352-sevenths of an eighth of a sixth of a quarter of a fifth of a ninth, are they realy fraction of one, or as greater fraction as possible?
 +
|style="text-align:right;"|והרי <sup>זה</sup> כאלו שאלו לנו 13352 שביעיות שמינית שישית רביעית חמישית תשיעית איזה חלק הם אם הם חלק אחד ממש או החלק הגדול שאפשר
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\left(\frac{2}{5}\sdot\frac{2}{9}\sdot2\right)+\left[\left[\frac{1}{8}+\left(\frac{2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left[\frac{1}{4}+\left(\frac{2}{6}\sdot\frac{1}{4}\right)\right]\right]=\left(\frac{10752}{5}\sdot\frac{1}{9}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{8}\sdot\frac{1}{7}\right)+\left(\frac{2600}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)=\left(\frac{13352}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{9}\right)}}</math>
 +
{|
 +
|-
 +
|<span style=color:Green>Definition of the common denominator:</span> {{#annot:definition|1163|V17G}} first we examine which number has all these denominators alone, i.e. that consists of them and we call this number "the common denominator" [lit. the mother of the denominators], for it gave tham birth and they came out from it.
 +
|style="width:45%; text-align:right;"|נעיין תחלה איזהו המספר שהוא בעל אלו המורים כלם לבדם ר"ל שהוא מורכב מהם ונקרא למספר הזה אם המורים כי היא ילדתם וממנה יצאו{{#annotend:V17G}}
 +
|-
 +
|This is known by multiplying all the denominators one by the other and the product by another and so on until they end.
 +
|style="text-align:right;"|וזה יודע בכפול כל המורים אחד באחד והעולה באחר וכן כלם עד כלותם
 +
|-
 +
|
 +
::We say: 9 by 5 are 45. We multiply it by 4; the result is 180. We multiply it by 6; the result is 1080. We multiply it by 8; the result is 8640. We multiply it by 7; the result is 60480.
 +
|style="text-align:right;"|ונאמ' ט' בה' יעלו מ"ה נכפלם בד' יעלו [180 נכפלם בו' יעלו 1080 נכפלם בח' יעלו&#x202B;]&#x202B;<ref>marg.</ref> 8640 נכפלם בז' יעלו 60480
 +
|}
 +
::<math>\scriptstyle{\color{blue}{9\sdot5\sdot4\sdot6\sdot8\sdot7=45\sdot4\sdot6\sdot8\sdot7=180\sdot6\sdot8\sdot7=1080\sdot8\sdot7=8640\sdot7=60480}}</math>
 +
{|
 +
|-
 +
|<span style=color:Green>Dividing the common denominator by the summed numerator</span>
 +
|
 +
|
 +
|-
 +
|
 +
:<math>\scriptstyle{\color{OliveGreen}{\frac{a\sdot n}{a}=n\longrightarrow\frac{a}{a\sdot n}=\frac{1}{n}}}</math>
 +
|
 +
|-
 +
|
 +
::Therefore, we [divide] the common denominator by the numerator, i.e. we divide 6[0]480 by 13352 and if it is divided into integers without addition or subtraction, the reduced result of division is the denominator of all the required fractions together, i.e. one quarter or similar to it.
 +
::<math>\scriptstyle{\color{blue}{\frac{6{\color{red}{0}}480}{13352}}}</math>
 +
|style="width:45%; text-align:right;"|ולזאת קרינו {{#annot:term|1163,1239|A7R5}}אם המורים{{#annotend:A7R5}} למספר השברים ר"ל שנחלק ה68480 ל13352 ואם {{#annot:term|2187,1225|Ze9g}}יתחלק כלו לשלימים{{#annotend:Ze9g}} בלי תוספת &#x202B;<ref>49v</ref>ומגרעת הנה היוצא בחילוק {{#annot:term|1555,2509|86e8}}בצמצום{{#annotend:86e8}} הוא {{#annot:term|571,1239|BOwU}}מורה החלק{{#annotend:BOwU}} אשר הם כל השברים הנשאלים יחד מהשלם ר"ל רביעית אחד או הדומ' לו
 +
|-
 +
|
 +
|style="text-align:right;"|<span style="text-decoration: line-through; text-decoration-color: red;">ואם לא יתחלק כלו לשלמים בלי תוספת ומגרעת הנה היוצא בחלוק בצמצום הוא מורה החלק אשר הם כל השברים הנשאלים יחד מהשלם ר"ל רביעית אחת או הדומה לו</span>
 +
|-
 +
|
 +
:If it is not entirely divided into integers, but there is a remainder:
 +
:<math>\scriptstyle{\color{OliveGreen}{\frac{\left(a\sdot n\right)+r}{a}=n+\frac{r}{a}\longrightarrow\frac{a}{\left(a\sdot n\right)+r}=\frac{1}{n+1}+\frac{a-r}{\left(n+1\right)\sdot\left[\left(a\sdot n\right)+r\right]}}}</math>
 +
|style="text-align:right;"|ואם לא {{#annot:term|2187,1225|OK90}}יתחלק כלו לשלמים{{#annotend:OK90}} וישאר שום מספר
 +
|-
 +
|
 +
:As in our example, in which the result of division is 4 and the remainder is 7072.
 +
:<math>\scriptstyle{\color{blue}{\scriptstyle\frac{60480}{13352}=4+\frac{7072}{13352}}}</math>
 +
|style="text-align:right;"|כמשלינו זה שיצא בחילוק ד' ונשאר 7072
 +
|-
 +
|
 +
::We add 1 to the result of division; it is 5 and this is the denominator of the greatest possible fraction, i.e. one-fifth.
 +
|style="text-align:right;"|נוסיף א' על היוצא בחילוק ויהיה ה' והוא מורה החלק הגדול שאפשר ר"ל חמשית אחת
 +
|-
 +
|
 +
::We also subtract the remaining 7072 from the 13352 by which we divide; the remainder is 6280, which are parts of all the denominators of this fraction, i.e. one-fifth.
 +
|style="text-align:right;"|עוד נחסר ה7072 הנשארים מה13352 אשר חלקנו עליו וישאר 6280 שהוא חלקים מכל המורים מזה החלק ר"ל מחמישית אחת
 +
|-
 +
|
 +
::I.e. we receive that all the required fractions are one-fifth and 6280-sevenths of an eighth of a sixth of a quarter of a fifth of a ninth of a fifth, like this:
 +
|style="text-align:right;"|ר"ל שיצא לנו שכל השברים הנשאלים הם חמישית אחת ו6280 שביעיות שמינית שישית רביעית חמישית תשיעית חמישית כזה
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left(\frac{2}{5}\sdot\frac{2}{9}\sdot2\right)+\left[\left[\frac{1}{8}+\left(\frac{2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left[\frac{1}{4}+\left(\frac{2}{6}\sdot\frac{1}{4}\right)\right]\right]&\scriptstyle=\left(\frac{13352}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{9}\right)=\frac{13352}{60480}=\frac{1}{4+1}+\frac{13352-7072}{5\sdot60480}\\&\scriptstyle=\frac{1}{5}+\left(\frac{6280}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{5}\right)\\\end{align}}}</math>
 +
{|
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| 5 || 9 || 5 || 4 || 6 || 8 || 7
 +
|-
 +
| 1 || &nbsp;|| &nbsp;|| &nbsp;|| &nbsp;|| &nbsp;|| 0826
 +
|}
 +
|-
 +
|<span style=color:Green>The order of the denominators of compound fractions of fractions is unimportant, but the denominator of the simple fraction should be placed separately, on the right:</span>
 +
|
 +
|-
 +
|If you want to reduce these fractions, i.e. to divide them by the denominators, arrange them as they are now, or randomly, or calculatedly as mentioned above, provided that you write the 5 first to the right with the 1 beneath it, because you cannot change this, and all the others are related to it, i.e. all of them are fractions and fractions of fractions of it, i.e. of a fifth of the whole.
 +
|style="width:45%; text-align:right;"|&#x202B;[ואם תרצה לעשות לשברים אלו כלילת יופי ר"ל לחלקם על המורים תסדרם&#x202B;]&#x202B;<ref>marg.</ref> תסדרם כפי שהם עתה או כפי המזדמן או בהשגחה כנזכר למעלה ובלבד שתניח הה' ראשון לצד ימין עם הא' אשר תחתיו כי זה אין בידיך לשנותו וכל האחרים נקשרים בו ר"ל שהם כלם שברים ושברי שברים ממנו ר"ל מחמשית מהשלם
 +
|-
 +
|
 +
::We divide them first by 8; the result of division is 785 and nothing remains.
 +
|style="text-align:right;"|ונחלקם תחלה לח' ויצא בחלוק 785 ולא ישאר דבר
 +
|-
 +
|
 +
::We divide this result by 5; the result of division is 157 and nothing remains.
 +
|style="text-align:right;"|ונחלק זה היוצא לה' ויצא בחילוק 157 ולא ישאר דבר
 +
|-
 +
|
 +
::We divide it by 4; the result of division is 39 and 1 remains. We write it beneath it.
 +
|style="text-align:right;"|ונחלקם לד' ויצא בחילוק ל"ט וישאר א' ונשימנו תחתיו
 +
|-
 +
|
 +
::We divide it by 6; the result of division is 6 and 3 remains.
 +
|style="text-align:right;"|ונחלקם ל<s>ט'</s>[ו']&#x202B;<ref>marg.</ref> ויצא בחילוק ו' וישארו ג&#x202B;'
 +
|-
 +
|
 +
:We factorize the 9, i.e. we convert it to two denominators that are 3 and 3, since a third of a third is as a ninth, and I shall discuss this further in the last chapter with God's help.
 +
|style="text-align:right;"|ונתיך הט' ר"ל שנעשה ממנו <sup>ב'</sup> מורים שהם &#x202B;<ref>50r</ref>ג' ג' כי כך הוא שלישית <sup>שלישית</sup> כמו תשיעית ועוד אדבר בזה בכלל האחרון ב"ה י"ת
 +
|-
 +
|
 +
::We divide the 6 resulting in the last division by one of them, i.e. by the 3; the result of division is 2 and nothing remains.
 +
|style="text-align:right;"|ונחלק הו' אשר יצאו בחלוק באחרונה על האחד מהם ר"ל על הג' ויצא בחילוק ב' ולא ישאר דבר
 +
|-
 +
|
 +
::Since this 2 is smaller than the rest of the denominators, we should not divide it further, only to write it beneath the next denominator that we write before them, which is the second 3, so that it would not be forgotten.
 +
|style="text-align:right;"|ואלו הב' אחר שהוא מספר קטן משאר המורים אין לנו עוד לחלקם רק להשימם תחת המורה הסמוך אשר נשים לפניהם ויהיו הג' השני כדי שלא ישכח ונשימם תחתיו
 +
|-
 +
|
 +
::We write also the 6, which is the remaining denominator, before them and before it the first 5. We write the 1 beneath it, which is the denominator of the greatest possible fraction that we sought.
 +
|style="text-align:right;"|ונסדר עוד <s>הט</s> [הו']&#x202B;<ref>marg.</ref> המורה הנשאר לפניהם ולפניו הה' ראשונה ונשים תחתיו הא' אשר היה תחתיו שהוא המורה היותר חלק גדול הגדול שאיפשר אשר בקשנו
 +
|-
 +
|
 +
:We receive that the required fractions are one-fifth, 2-thirds of a seventh of a fifth, 3-sixths of a third of a third of a seventh of a fifth, and one-quarter of a sixth of a third of a third of a seventh of a fifth, like this:
 +
|style="text-align:right;"|הנה יצא לנו שהשברים הנשאלים יעלו חמשית א' שלמה וב' שלישיות שביעית חמישית וג' ששיות שלישית שלישית שביעית חמישית ורביעית שישית שלישית שלישית שביעית חמישית כזה
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left(\frac{2}{5}\sdot\frac{2}{9}\sdot2\right)+\left[\left[\frac{1}{8}+\left(\frac{2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left[\frac{1}{4}+\left(\frac{2}{6}\sdot\frac{1}{4}\right)\right]\right]&\scriptstyle=\frac{1}{5}+\left(\frac{6280}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{5}\right)=\frac{1}{5}+\left(\frac{6280}{8}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{9}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\&\scriptstyle=\frac{1}{5}+\left(\frac{785}{5}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{9}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)=\frac{1}{5}+\left(\frac{157}{4}\sdot\frac{1}{6}\sdot\frac{1}{9}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\&\scriptstyle=\frac{1}{5}+\left(\frac{39}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\&\scriptstyle=\frac{1}{5}+\left(\frac{6}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{3}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\&\scriptstyle=\frac{1}{5}+\left(\frac{2}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{3}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\\end{align}}}</math>
 +
{|
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| 4 || 6 || 3 || 3 || 7 || 5
 +
|-
 +
| 1 || 3 || 0 || 2 || 0 || 1
 +
|}
 +
|-
 +
|Deduce from that
 +
|style="text-align:right;"|והקש על זה
 +
|-
 +
|
 +
 
 +
=== <span style=color:Green>Reason</span> ===
 +
|
 +
|-
 +
|The reason we say that if there is no remainder, the result of the division is itself the denominator of the fractions of the whole, is because our saying "these portions of the denominators" is as our saying "the portions of their common denominator in the whole".
 +
|style="width:45%; text-align:right;"|<big>וטעם</big> אומרנו שאם לא ישאר דבר שהיוצא בחילוק בעצמו הוא מורה החלק אשר השברים מהשלם הוא לפי שאמרנו אלו החלקים מאלו המורים הוא כאלו אמרנו כ"כ מחלקי אם המורים בשלם
 +
|-
 +
|
 +
:<math>\scriptstyle{\color{OliveGreen}{\frac{a\sdot n}{a}=n\longrightarrow\frac{a}{a\sdot n}=\frac{1}{n}}}</math>
 +
:<math>\scriptstyle{\color{OliveGreen}{\frac{a}{b}\sdot\frac{c}{d}=\frac{a\sdot c}{b\sdot d}}}</math>
 +
|
 +
|-
 +
|
 +
*I.e., for instance, if we have 2-thirds of a quarter:
 +
:<math>\scriptstyle\frac{2}{3}\sdot\frac{1}{4}</math>
 +
|style="text-align:right;"|ר"ל כי ע'ד'מ' אם היו לנו ב' שלישיות רביעית
 +
|-
 +
|
 +
:It is as our saying "two parts of 12 in the whole", which is the common denominator of these denominators, i.e. it consists of them, since the product of 3 by 4 is 12.
 +
:<math>\scriptstyle{\color{blue}{\frac{2}{3}\sdot\frac{1}{4}=\frac{2}{3\sdot4}=\frac{2}{12}}}</math>
 +
|style="text-align:right;"|הוא כאומרנו שני חלקים מי"ב בשלם שהיא אם אלו המורים ר"ל שהוא מורכב מהם שכפל ג' בד' עולה י"ב
 +
|-
 +
|
 +
*Similarly, our saying "3-quarters of a half of a third".
 +
:<math>\scriptstyle\frac{3}{4}\sdot\frac{1}{2}\sdot\frac{1}{3}</math>
 +
|style="text-align:right;"|וכן אומרנו ג' רביעיות חצי שלישית
 +
|-
 +
|
 +
:It is as our saying "3 parts of 24 in the whole", which is the common denominator of these three denominators and this is clear.
 +
:<math>\scriptstyle{\color{blue}{\frac{3}{4}\sdot\frac{1}{2}\sdot\frac{1}{3}=\frac{3}{24}}}</math>
 +
|style="text-align:right;"|היא כאומרנו ג' חלקים מכ"ד בשלם שהוא אם שלש מורים אלו וזה ברור
 +
|-
 +
|It clear from chapter four of the first section.
 +
|style="text-align:right;"|ועוד נחבר בפ' הרביעי מהחלק הא&#x202B;'
 +
|-
 +
|
 +
:We know that these numerators are portions of their common denominator in one whole.
 +
|style="text-align:right;"|הנה ידענו שאלו השברים הם חלקים מחלקי האם בשלם
 +
|-
 +
|
 +
:*If they are its third, they are a third of the whole.
 +
::<math>\scriptstyle{\color{blue}{\frac{\frac{1}{3}\sdot a}{a}=\frac{1}{3}\sdot1}}</math>
 +
|style="text-align:right;"|ואם <sup>הם</sup> <s>היה</s> שלישיתם הם שלישית השלם
 +
|-
 +
|
 +
:*If its quarter, [they are] a quarter [of the whole].
 +
::<math>\scriptstyle{\color{blue}{\frac{\frac{1}{4}\sdot a}{a}=\frac{1}{4}\sdot1}}</math>
 +
|style="text-align:right;"|ואם רביעיתם רביעית
 +
|-
 +
|
 +
:*If the same as [the common denominator], they are one integer.
 +
::<math>\scriptstyle{\color{blue}{\frac{1\sdot a}{a}=1\sdot1}}</math>
 +
|style="text-align:right;"|ואם כמותם הם א' שלם
 +
|-
 +
|
 +
*For instance, if the numerator is fifth of the common denominator, i.e. fifth of the whole, when we divide the common denominator by it, the result of division is 5 and nothing remains.
 +
:<math>\scriptstyle{\color{blue}{\frac{\frac{1}{5}\sdot a}{a}=\frac{1}{5}\sdot1\longrightarrow\frac{a}{\frac{1}{5}\sdot a}=5}}</math>
 +
|style="text-align:right;"|<s>וע</s> וע'ד'מ' אם מספר השברים היה חמישית האם ר"ל חמישית השלם בחלקנו האם עליהם &#x202B;<ref>50v</ref>היה היוצא בחלוק ה' ולא היה נשאר דבר
 +
|-
 +
|
 +
*If it is its quarter, the result is 4.
 +
:<math>\scriptstyle{\color{blue}{\frac{\frac{1}{4}\sdot a}{a}=\frac{1}{4}\sdot1\longrightarrow\frac{a}{\frac{1}{4}\sdot a}=4}}</math>
 +
|style="text-align:right;"|ואם היה רביעית יצאו ד&#x202B;'
 +
|-
 +
|We receive that the result of division indicates the portion that the numerator is of the whole and the reason for this is clear, when all is divided with no remainder.
 +
|style="text-align:right;"|הרי לנו שהיוצא בחילוק הוא {{#annot:term|571,1239|TAZT}}המורה החלק{{#annotend:TAZT}} אשר השברים מהשלם וזה ברור בטעם כאשר נתחלק הכל ולא נשאר דבר
 +
|-
 +
|To clarify the reason of our saying that when there is a remainder, we add one to the result etc. I shall bring another example:
 +
:<math>\scriptstyle{\color{OliveGreen}{\frac{\left(a\sdot n\right)+r}{a}=n+\frac{r}{a}\longrightarrow\frac{a}{\left(a\sdot n\right)+r}=\frac{1}{n+1}+\frac{a-r}{\left(n+1\right)\sdot\left[\left(a\sdot n\right)+r\right]}}}</math>
 +
|style="text-align:right;"|<big>ולברר</big> טעם אומרנו שכאשר נשאר שם דבר שנוסיף א' על היוצא<s>ות</s> וכו' אביא משל אח&#x202B;'
 +
|-
 +
|
 +
*Example: we have 3-quarters of a seventh, i.e. three parts of 28, which is the common denominator of the whole.
 +
:<math>\scriptstyle\frac{3}{4}\sdot\frac{1}{7}</math>
 +
:<math>\scriptstyle{\color{blue}{\frac{3}{4}\sdot\frac{1}{7}=\frac{3}{28}}}</math>
 +
|style="text-align:right;"|<big>המשל</big> היו בידינו ג' רביעיות שביעית ר"ל שלשה חלקים מכ"ח שהוא אם המורים בשלם
 +
|-
 +
|
 +
:If we divide 28 by 3 the result of division is 9 and 1 remains.
 +
:<math>\scriptstyle{\color{blue}{\frac{28}{3}=9+\frac{1}{3}\longrightarrow\frac{3}{28}=\frac{1}{9+1}+{\color{red}{\frac{3-1}{\left(9+1\right)\sdot28}}}=\frac{1}{10}+{\color{red}{\frac{3-1}{10\sdot28}}}}}</math>
 +
|style="text-align:right;"|ואם נחלק אלו הכ"ח אל הג' יצאו ט' בחילוק וישאר א&#x202B;'
 +
|-
 +
|
 +
:We add 1 to the 9 resulting from the division; the result is ten, which indicates the tenth.
 +
|style="text-align:right;"|נוסיף א' על הט' היוצא בחילוק יעלה עשרה המורה על העשירית
 +
|-
 +
|
 +
::If the original fraction was 3 parts of 30, it was one-tenth by reduction, because when we divide 30 by three, the result is [10] and nothing remains, so it was a whole tenth, as we explained.
 +
::<math>\scriptstyle{\color{blue}{\frac{30}{3}=10\longrightarrow\frac{3}{30}=\frac{1}{10}}}</math>
 +
|style="text-align:right;"|ואם החלקים הראשונים היו ג' חלקים מל' באחד היו עשירית אחד {{#annot:term|1555,2509|suVP}}בצמצום{{#annotend:suVP}} כי בחלקנו הל' בשלשה היו יוצאים ולא היה נשאר דבר ואז היו עשירית שלמה כמו שביארנו
 +
|-
 +
|
 +
::Since it is 3 parts of 28, it is greater than one-tenth. To know by how much it is greater, we multiply 28 by 30; the result is 840.
 +
|style="text-align:right;"|אכן להיותם ג' חלקים מכ"ח בשלם יותר מעשירית אחת ולדעת כמה הם יותר נכפול הכ"ח בל' ויעלו 840
 +
|-
 +
|
 +
::Our saying: "one part of 840 in the whole" is as our saying: "one part of 30 of 28 in the whole", or "one part of 28 of 30 in the whole", because they are the divisors, of which it is composed and all this is well explained in chapter 4 of the first section.
 +
::<math>\scriptstyle{\color{blue}{28\sdot30=840\longrightarrow\frac{1}{840}=\frac{1}{30}\sdot\frac{1}{28}=\frac{1}{28}\sdot\frac{1}{30}}}</math>
 +
|style="text-align:right;"|והנה אומרנו חלק אחד מ840 בשלם הוא כאומרנו חלק אחד מל' מכ"ח בשלם או חלק אחד מכ"ח מל' בשלם כי הם המורים אשר מהם הורכב וכל זה נתבאר הטב בפרק הד' מהחלק הא&#x202B;'
 +
|-
 +
|
 +
::Therefore, 30 parts of 840 of the whole are one part of 28 of the whole.
 +
::<math>\scriptstyle{\color{blue}{\frac{30}{840}=\frac{1}{28}}}</math>
 +
|style="text-align:right;"|וא"כ הל' חלקים מה840 בשלם הם חלק אחד מכ"ח בשלם
 +
|-
 +
|
 +
::Whereas 28 parts of 840 of the whole are one part of 30 of the whole.
 +
::<math>\scriptstyle{\color{blue}{\frac{28}{840}=\frac{1}{30}}}</math>
 +
|style="text-align:right;"|וכן הכ"ח חלקים מ840 בשלם הם חלק אחד מל' בשלם
 +
|-
 +
|
 +
::So, one part of 30 of the whole is 28 parts of 840 of the whole.
 +
::<math>\scriptstyle{\color{blue}{\frac{1}{30}=\frac{28}{840}}}</math>
 +
|style="text-align:right;"|הרי לנו שהחלק אחד מל' בשלם הוא כ"ח חלקים מ840 בשלם
 +
|-
 +
|
 +
::And one part of 28 of the whole is 30 parts of 840.
 +
::<math>\scriptstyle{\color{blue}{\frac{1}{28}=\frac{30}{840}}}</math>
 +
|style="text-align:right;"|וכן החלק מכ"ח בשלם הוא ל' חלקים מ840
 +
|-
 +
|
 +
::We find that 3 parts of 28 of the whole is 3 times 30, which is 90 parts of 840 of the whole.
 +
::<math>\scriptstyle{\color{blue}{\frac{3}{28}=\frac{3\sdot30}{840}=\frac{90}{840}}}</math>
 +
|style="text-align:right;"|נמצא שהג' חלקי' מכ"ח בשלם הוא ג' פעמים ל' שהם 90 חלקים מ840 בשלם
 +
|-
 +
|
 +
::And 3 parts of 30 of the whole is 3 times 28, which is 84 parts of 840.
 +
::<math>\scriptstyle{\color{blue}{\frac{3}{30}=\frac{3\sdot28}{840}=\frac{84}{840}}}</math>
 +
|style="text-align:right;"|והג' חלקים מל' בשלם הם ג' פעמים הם כ"ח שהם פ"ד חלקים מ840
 +
|-
 +
|
 +
::So, they exceed over them by 6 parts of 860 of the whole, i.e. 6 parts of 30 of 28 of the whole, because they are its divisors.
 +
::<math>\scriptstyle{\color{blue}{\frac{3}{28}-\frac{3}{30}=\frac{90}{840}-\frac{84}{840}=\frac{6}{840}=\frac{6}{30\sdot28}}}</math>
 +
|style="text-align:right;"|הנה יעדפו עליהם ו' חלקים מ840 בשלם ר"ל ו' חלקים מל' מכ"ח בשלם כי הם מוריו
 +
|-
 +
|
 +
::Every 3 parts of these are a tenth of 30, which are, i.e. the 30, are one part of 28 of the whole, as explained.
 +
|style="text-align:right;"|וכל ג' חלקים &#x202B;<ref>51r</ref>מאלו הם עשירית הל' שהם ר"ל <s>שהם</s> הל' הם חלקי א' מכ"ח בשלם כמו שנתבאר
 +
|-
 +
|
 +
::Hence, every three of them are one-tenth of a part of 28 of the whole, i.e. one part of 28 of a tenth of the whole.
 +
|style="text-align:right;"|א"כ כל שלשה מהם הם עשירית [חלק מכ"ח בשלם ר"ל חלק מכ"ח מעשירית בשלם שהוא]&#x202B;<ref>marg.</ref> <s>הל' שהם ר"ל הל' הם חלקי א' מכ"ח בשלם כמו שנתבאר</s>
 +
|-
 +
|
 +
::Which is a quarter of a seventh of a tenth of the whole.
 +
::<math>\scriptstyle{\color{blue}{\frac{3}{840}=\frac{1}{10}\sdot\frac{30}{840}=\frac{1}{10}\sdot\frac{1}{28}=\frac{1}{28}\sdot\frac{1}{10}=\frac{1}{4}\sdot\frac{1}{7}\sdot\frac{1}{10}}}</math>
 +
|style="text-align:right;"|<s>א"כ כל שלשה מהם הם עשירית הל' חלק מכ"ח בשלם ר"ל חלק מכ"ח מעשירית בשלם</s> שהוא רביעית שביעית עשירית מהשלם
 +
|-
 +
|
 +
::The additional six, by which we find that the 3 parts of 28 that we have exceed over the 3 parts of 30, which are a whole tenth, are therefore 2-quarters of a seventh of a tenth.
 +
::<math>\scriptstyle{\color{blue}{\frac{3}{28}-\frac{3}{30}=\frac{6}{840}=\frac{2}{4}\sdot\frac{1}{7}\sdot\frac{1}{10}}}</math>
 +
|style="text-align:right;"|והששה הנוספות אשר מצאנו לג' חלקים מכ"ח אשר היו בידינו על הג' חלקים מל' אשר מצאנו לג' חלקים היו עשירית שלמה יעלו א"כ ב' רביעיות שביעית עשירית
 +
|-
 +
|
 +
:We receive that when we divide 28, which is the common denominator, by 3, which are the numerator, so that the result is 9 and 1 remains, that when we add one to the 9, so that the result is 10, which indicates a tenth, we are left with an excess of 2-quarters of a seventh of a tenth, which is the excess that the number, by which we divide, which is 3, exceeds over the remainder, which is 1. I.e. these 2 are parts of the denominators that are a quarter of a [seventh] of the denominator that was generated, which is a tenth.
 +
|style="text-align:right;"|הרי לנו שכאשר חלקנו הכ"ח שהוא האם על הג' שהיו מספר החלקים ויצא ט' ונשאר א' שכאשר הוספנו אחד על הט' ועלה י' והורה עשירית שנשאר לנו לתוספת ב' רביעיות שביעית עשירית שהם התוספת אשר למספר אשר חלקנו עליו שהיה ג' על השארית שהיה א' ר"ל שאלו הב' הם חלקים מהמורים שהיו רביעית שמינית מהמורה שנתחדש שהוא עשירית
 +
|-
 +
|All this is clear by reason to the one who understands and deduce from this.
 +
|style="text-align:right;"|וכל זה ברור בטעם למבין והקש על זה
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\scriptstyle\frac{28}{3}=9+\frac{1}{3}\longrightarrow\frac{3}{28}=\frac{1}{9+1}+\frac{3-1}{\left(9+1\right)\sdot28}=\frac{1}{10}+\frac{2}{10\sdot28}=\frac{1}{10}+\left(\frac{3}{28}-\frac{3}{30}\right)=\frac{1}{10}+\left(\frac{2}{4}\sdot\frac{1}{7}\sdot\frac{1}{10}\right)}}</math>
 +
 
 +
{|
 +
|-
 +
|<span style=color:Green>Dividing a small number by a greater number - without divisors or with divisors</span>
 +
|
 +
|-
 +
|We receive that the one who wants to divide a smaller by a greater can divide it with or without extraction of the divisors.
 +
|style="width:45%; text-align:right;"|<big>ויצא</big> לנו מזה שהרוצה לחלק מעט על רב שיוכל לחלקו בלי הוצאת המורים או בהוצאת המורים
 +
|-
 +
|We also get the greatest part that can be pronounced by a single name.
 +
|style="text-align:right;"|ויצאו לנו ג"כ החלק היותר גדול שאיפשר בשם אחד
 +
|-
 +
|This is very helpful when we want to divide a prime number, such as 101, that has no divisors.
 +
|style="text-align:right;"|וזה יועיל מאד כאשר אנו רוצים לחלק למספר פשוט כמו ק"א או כדומה לו שאין לו מורים
 +
|-
 +
|In order to explain this matter well, I shall bring two examples - one with extraction of divisors and one without extraction of divisors:
 +
|style="text-align:right;"|וכדי לבאר הענין יפה יפה אביא שני משלים אחד עם הוצאת המורים ואחד מבלי הוצאת המורים
 +
|-
 +
|
 +
*{{#annot:73÷240|157|Fs1g}}Example: we wish to divide 73 by 240.
 +
:<math>\scriptstyle73\div240</math>
 +
|style="text-align:right;"|<big>המשל</big> רצינו לחלק 73 על 240{{#annotend:Fs1g}}
 +
|-
 +
|
 +
::Its divisors are 6, 8, and 5, because they are the divisors, of which it is composed, and it is the common denominator.
 +
::<math>\scriptstyle{\color{blue}{240=6\sdot8\sdot5}}</math>
 +
|style="text-align:right;"|והנה מוריו הם אלו ו' ח' ה' כי מהם <s>מורים</s> הוא מורכב והוא האם
 +
|-
 +
|
 +
::We divide the common denominator, which is the greater number, by which we want to divide, by the smaller number, i.e. 73, which is the number that we want to divide; the result of division is 3 and 21 remains.
 +
::<math>\scriptstyle{\color{blue}{\frac{240}{73}=3+\frac{21}{73}}}</math>
 +
|style="text-align:right;"|ונחלק האם שהוא המספר הגדול אשר רצינו לחלק עליו על המספר הקטן <span style="text-decoration: line-through; text-decoration-color: red;">ר"ל ה73 אשר הוא המספר אשר רצינו לחלק עליו על המספר</span> &#x202B;<ref>51v</ref><span style="text-decoration: line-through; text-decoration-color: red;">הקטן</span> ר"ל ה73 אשר הוא המספר אשר רצינו לחלק ויצא בחילוק ג' וישארו כ"א
 +
|-
 +
|
 +
::We add 1 to the result, it is 4 and this is the denominator of the greatest fraction, which is one-quarter. We write it first and we write 1 beneath it.
 +
|style="text-align:right;"|נוסיף א' על היוצא יהיה ד' והוא המורה החלק גדול והוא רביעית אחת ונשימנו ראשונה ונשים תחתיו א&#x202B;'
 +
|-
 +
|
 +
::We also put aside the 21 that remains from the 73, which is the number by which we divide now; 52 remain and it is added to the quarter, i.e. the result from dividing 73, which is the smaller number, by 240, which is the greater number, is one-quarter and 52 parts of 240 of a quarter.
 +
|style="text-align:right;"|עוד נשים הכ"א הנותרים מהע"ג שהוא החשבון אשר חלקנו עליו עתה ישארו נ"ב והם מוסיפים על הרביעית ר"ל שהעולה שיצא לנו בחלוק ה73 המספר הקטן על ה240 שהוא המספר הגדול רביעית אחת <s>רביעית אחת</s> ונ"ב חלקים מ240 מרביעית
 +
|-
 +
|
 +
::Or, if you wish, take the divisors instead and say: one-quarter and 52-fifths of an eighth of a sixth of a quarter.
 +
|style="text-align:right;"|או אם תרצה תקח מורה במקומו ותאמר רביעית אחת ונ"ב חמישיות שמינית שישית רביעית
 +
|-
 +
|
 +
::If you wish, you can reduce them; the result is one-quarter, one-fifth of a quarter, and 4-eighths of a sixth of a fifth of a quarter. Deduce from that.
 +
|style="text-align:right;"|ואם תרצה תעשה להם כלילת יופי ויעלו רביעית אחת וחמישית רביעית וד' שמיניות שישית חמישית רביעית והקש על זה
 +
|}
 +
::<math>\scriptstyle{\color{blue}{73\div240=\frac{1}{3+1}+\frac{73-21}{\left(3+1\right)\sdot240}=\frac{1}{4}+\frac{52}{240}\sdot\frac{1}{4}=\frac{1}{4}+\left(\frac{52}{5}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}\right)=\frac{1}{4}+\left(\frac{1}{5}\sdot\frac{1}{4}\right)+\left(\frac{4}{8}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}\right)}}</math>
 +
{|
 +
|-
 +
|I shall bring another example, in which there are no divisors.
 +
|style="width:45%; text-align:right;"|<big>ועוד</big> אעשה משל אחר <sup>מ</sup>אשר אין לו מורים כלל
 +
|-
 +
|I will illustrate there that we can apply our procedure repeatedly time after time, until the number ends and until reaching to a simple fraction [whose numerator is 1].
 +
|style="text-align:right;"|ושם אאריך שאנו יכולים לעשות מעשינו זה פעם אחר פעם עד כלות המספר והגיעו לחלק אחד
 +
|-
 +
|I call it also '''Aḥdut''' [= unification], as it brings all to one.
 +
|style="text-align:right;"|כי גם לזה קראתיו אחדות כי יגיעם כלם לאחד
 +
|-
 +
|Even between all the denominators and the last denominator we can insert a new denominator as we wish.
 +
|style="text-align:right;"|ואפי' בין כל המורים למורה האחרון נוכל להכניס מורה חדש ככל חפצנו
 +
|-
 +
|
 +
*{{#annot:38÷101|157|h3tR}}Example: to divide 38 by 101, because this number, i.e. 101 [is prime].
 +
:<math>\scriptstyle38\div101</math>
 +
|style="text-align:right;"|<big>המשל</big> לחלק ל"ח לק"א כי זה המספר ר"ל ק"א{{#annotend:h3tR}}
 +
|-
 +
|
 +
::We divide 101 by 38; the result of division is 2 and 25 remains.
 +
::<math>\scriptstyle{\color{blue}{\frac{101}{38}=2+\frac{25}{38}}}</math>
 +
|style="text-align:right;"|ונחלק הק"א לל"ח [ויצאו בחלוק ב' וישארו כ"ה
 +
|-
 +
|
 +
::We add 1 to the 2; it is 3. We write it as the first denominator and we write 1 beneath it.
 +
::<math>\scriptstyle{\color{blue}{38\div101=\frac{1}{2+1}+\frac{38-25}{\left(2+1\right)\sdot101}=\frac{1}{3}+\left(\frac{13}{101}\sdot\frac{1}{3}\right)}}</math>
 +
|style="text-align:right;"|נוסיף א' על הב' יהיו ג' ונשימהו למורה ראשון ונשים תחתיו א&#x202B;'
 +
|-
 +
|
 +
::We subtract the remainder from 38, by which we divide now; 13 remains.
 +
|style="text-align:right;"|ונגרע השארית מהל"ח אשר&#x202B;]&#x202B;<ref>marg.</ref> אשר חלקנו עליו עתה וישארו י"ג
 +
|-
 +
|
 +
::If it were not that much, we would write the 101 as a second denominator and write this remainder, i.e. the 13, beneath it. Then, we would say that when divising 38 by 101, each gets one-third and 13 parts of 101 of a whole third.
 +
|style="text-align:right;"|ואם לא היו כ"כ הינו שמים למורה שני הק"א והינו שמים זה השארית ר"ל אלו הי"ג תחתיו והינו אומרים שהמחלק ל"ח על ק"א שיגיע לכל אחד מהם שלישית אחת וי"ג חלקים מק"א משלישית שלמה
 +
|-
 +
|
 +
::Since it is that much and in order to find more proper fractions, we divide again the 101 by 13; the result of division is 7 and 10 remains.
 +
::<math>\scriptstyle{\color{blue}{\frac{101}{13}=7+\frac{10}{13}}}</math>
 +
|style="text-align:right;"|אכן להיותם הרבה וכדי שנמצא חלקים יותר נאותות נשוב לחלק הק"א לאלו הי"ג ויצא בחילוק ז' וישאר י&#x202B;'
 +
|-
 +
|
 +
::We write the 7 plus one, which is 8, as a second denominator, and we write 1 beneath it. We put aside the 10, which is the remainder from the 13, by which we divide now; 3 remains.
 +
|style="text-align:right;"|ונשים זה הז' בתוספת אחד והוא ח' למורה שני ונשים תחתיו <sup>א'</sup> ונשים הי' שהם השארית &#x202B;<ref>52r</ref>מהי"ג אשר חלקנו עליהם עתה וישארו ג&#x202B;'
 +
|-
 +
|
 +
:If you wish, you have already finished the whole procedure. Write the 101 as a third denominator and write the 3, which is the remainder, beneath it.
 +
|style="text-align:right;"|ואם תרצה כבר כלית <sup>כל</sup> מלאכתך ותשים הק"א למורה שלישי <s>ותשים למורה שלישי</s> ותשים אלו הג' תחתיו שהם {{#annot:term|458,2454|Jb3s}}השארית הנשארה{{#annotend:Jb3s}}
 +
|}
 +
::<math>\scriptstyle{\color{blue}{38\div101=\frac{1}{3}+\frac{13}{101}\sdot\frac{1}{3}=\frac{1}{3}+\frac{1}{3}\sdot\left[\frac{1}{7+1}+\frac{13-10}{\left(7+1\right)\sdot101}\right]=\frac{1}{3}+\frac{1}{3}\sdot\left[\frac{1}{8}+\frac{3}{8\sdot101}\right]=\frac{1}{3}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)+\left(\frac{3}{101}\sdot\frac{1}{3}\sdot\frac{1}{8}\right)}}</math>
 +
{|
 +
|-
 +
|
 +
::If you want to repeat the procedure in order to reach a complete unification [Aḥdut], i.e. there would not be any numerator other than one, divide the 101 again by the 3; the result of division is 33 and 2 remains.
 +
::<math>\scriptstyle{\color{blue}{\frac{101}{3}=33+\frac{2}{3}}}</math>
 +
|style="width:45%; text-align:right;"|אכן אם תרצה עוד להכפל המעשיך יען תגיע לאחדות גמורה ר"ל שלא יהיו שם מנין שברים כי אם אחד אחד תשוב תחלק הק"א על אלו הג' ויצא בחילוק ל"ג וישארו ב&#x202B;'
 +
|-
 +
|
 +
::We add 1 to the 33; it is 34. We write it as a third denominator and we write 1 beneath it.
 +
|style="text-align:right;"|ונוסיף א' על הל"ג ויהיו ל"ד ונשימם למורה שלשי ונשים א' תחתיו
 +
|-
 +
|
 +
::We subtract the remaining two from the 3, by which we divide now; 1 remains and we have reached the complete unification and finished our procedure entirely.
 +
|style="text-align:right;"|<sup>ונחסר</sup> אלו הב' הנשארים מהג' אשר חלקנו עליהם עתה וישאר א' וכבר הגענו לאחדות הגמור וכלינו מלאכתנו מכל וכל
 +
|-
 +
|
 +
::We write 101 as a fourth denominator and write 1 beneath it.
 +
|style="text-align:right;"|ונשים ק"א למורה [רביעי] ונשים א' תחתיו
 +
|}
 +
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle38\div101&\scriptstyle=\frac{1}{3}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)+\left(\frac{3}{101}\sdot\frac{1}{3}\sdot\frac{1}{8}\right)=\frac{1}{3}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)+\left[\frac{1}{3}\sdot\frac{1}{8}\sdot\left[\frac{1}{33+1}+\frac{3-2}{\left(33+1\right)\sdot101}\right]\right]\\&\scriptstyle=\frac{1}{3}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)+\left[\frac{1}{3}\sdot\frac{1}{8}\sdot\left[\frac{1}{34}+\frac{1}{34\sdot101}\right]\right]\\&\scriptstyle=\frac{1}{3}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)+\left(\frac{1}{3}\sdot\frac{1}{8}\sdot\frac{1}{34}\right)+\left(\frac{1}{3}\sdot\frac{1}{8}\sdot\frac{1}{34}\sdot\frac{1}{101}\right)\\\end{align}}}</math>
 +
{|
 +
|-
 +
|You have three forms, all of which are true. You can switch to whichever of them you want. You are allowed to do it differently, when you divide the common denominator, as in the first example. We write all the denominators that are generated, time after time, one after the other, one instead of the other.
 +
|style="width:45%; text-align:right;"|הרי לך שלש צורות שכלם אמיתיות ותוכל להשיב כאשר תרצה מהם וכן היה הרשות בידך לעשות זה פעם אחר [כאשר היתה מחלק אם המורים כבמשל הא' ונשים כל המורים המתחדשים פעם אחר פעם זה&#x202B;]&#x202B;<ref>marg.</ref> פעם זה אחר זה כ"א תחת כל אחד
 +
|-
 +
|The term '''Aḥdut''' [= unification] is useful for all this, so that you will not forgat to write 1 beneath each generated denominator, then write the common denominator itself, or its divisors instead of it, and 1 beneath the last, if you have reached the complete unification, and if not, write beneath it what remains last, after you have subtracted the remainder from the number, by which you divide at that last time. Write that last rem,ainder beneath the last divisor of the common denominator.
 +
|style="text-align:right;"|כי לכל זה יועיל שם האחדות שלא תשכח מלשים א' תחת כל מורה מתחדש ואחר תשים האם עצמה או מוריה במקומה ותחת האחרון א' אם הגעת לאחדות הגמורה ואם אין תשים תחתיו הנשאר באחרונה אחרי הסירך הנשאר מהמספר אשר אתה מחלק עליו בעת ההיא באחרונה [.]השארית האחרונה ההיא תשים תחת המורה האחרון אשר לאם
 +
|-
 +
|If it is greater than it, reduce them, I mean, divide that remainder by the last denominator and write the remainder beneath it and so on until it is complete. All this is clear and repeated many times.
 +
|style="text-align:right;"|ואם יהיה רב ממנו תעשה מהם כלילת יופי רצוני לומר לחלק השארית <sup>הא'</sup> <s>ההיא</s> על המורה האחרון והיוצא שלפניו והנשאר תשים תחתיו וכן לעולם עד כלותו וכל זה מבואר ונכפל פעמים רבות
 +
|-
 +
|For every other number that you divide into divisors, if you see that what you wrote beneath the last denominator is a large number and you want to set between the former denominators and the last one to the left a new denominator or denominators, divide the last denominator by what is beneath it, as you have done in the second and third examples.
 +
|style="text-align:right;"|וגם בכל מספר אחר אשר חלקת הכל למורים אם תראה שאשר שמת תחת המורה האחרון הוא מספר רב ותרצה להמציא בין כל המורים הראשונים זה האחרון אשר לצד שמאל משום מורה מחודש או מורים חלק &#x202B;<ref>52v</ref>המורה האחרון על אשר תחתיו כאשר עשית במה שבין הצורה השנית והשלישית
 +
|-
 +
|
 +
::101 was the last denominator in the first example and since you found 13, which is a large number, beneath it, you formed the denominator 8 that you wrote second and it is third in the second example.
 +
|style="text-align:right;"|שהרי הק"א היה המורה האחרון בצורה הראשונה ולפי שמצאת הי"ג שהם מספר רב תחתיו המצאת המורה הח' ששמת שני והוא שלישי בידך שבא בצורה השנית
 +
|-
 +
|
 +
::Likewise, from the second example to the third, you formed another denominator, which is 31, and you wrote the 101 fourth.
 +
|style="text-align:right;"|וכן עשית פעם אחת מהצורה השנית לשלישית והמצאת מורה אחר והוא הל"א ושמת הק"א רביעי
 +
|-
 +
|Provided that you do it only with the last denominator to the left.
 +
|style="text-align:right;"|ובלבד שלא תעשה זה כי אם למורה האחרון אשר לצד שמאל
 +
|-
 +
|All this is clear to the one who understands by the first reason.
 +
|style="text-align:right;"|וכל זה מבורר בטעם הראשון למבין
 +
|-
 +
|If you want to extract denominators between the middle denominators and the last denominator to the right, you have to extract [the common denominator] of all [the denominators], then this common denominator is divided by the numerators that are beneath those denominators, after they were decomposed, if it is divisible by them. All this is clear by reason. 
 +
|style="text-align:right;"|ואם תרצה להוציא המורים בין המורים האמצעיים תצטרך להוציא המורים לכל המורה האחרון אשר לצד שמאל והאם ההיא תחלק למנין השברים אשר היו תחת <s>המספר</s> המורים ההם אחרי עשות להם פריטה אם כבר נתחלק להם המספר וכל זה ברור בטעם
 +
|-
 +
|Because, after you have extracted the common denominator of these denominators, they are all become as one denominator and you seek between the formers and the [last] another denominator or denominators, and after you have set the denominators that you want, you write this common denominator after them to the left, or the denominators, of which it is composed, one after the other, instead of it, as it is all the same. 
 +
|style="text-align:right;"|כי אחר שהוצאת האם למורים האם הרי שבו כלם כמורה אחד ואתה מבקש בין הראשונים ובינו מורה או מורים אחרים ואחר שהמצאת המורים אשר רצית תשים האם הזאת אחריהם לצד שמאל או המורים אשר {{#annot:term|2491,1961|b4YC}}הורכבה מהם{{#annotend:b4YC}} זה אחר זה במקומה כי הכל אחד
 +
|-
 +
|This is enough for the one who understands.
 +
|style="text-align:right;"|ודי למבין
 +
|-
 +
|
 +
 
 +
=== <span style=color:Green>Check</span> ===
 +
 
 +
|
 +
|-
 +
|If you want to check your practice, decompose all the fractions you have received.
 +
|style="text-align:right;"|<big>ואם</big> תרצה לבחון מעשיך עשה פריטה לכל אלו השברים אשר באו לך
 +
|-
 +
|If the large number, by which you wanted to divide, is among your denominators, i.e. 101 in the last example, divide the resulting decomposed numerator by all other denominators except for it one after the other, or by their common denominator, what you receive should be as the small number that you wanted to divide [originally]. [If] nothing remains in any of these divisions, your procedure was true and correct; if not, know that you were wrong.
 +
|style="text-align:right;"|ואם יש במוריך אלו המספר הגדול אשר רצית לחלק עליו ר"ל הק"א במשל האחרון חלק זה העולה מהשברים הנפרטים על כל שאר המורים מבלעדיו זה אחר זה או על אמם ויצא לך באחרונה כמנין המספר הקטן אשר רצית לחלק ולא נשאר דבר בשום חלוקה מאלו הנה מעשיך אמת ונכון ואם לאו דע שטעית
 +
|-
 +
|If the original denominators, or the original divisor, are among you denominators, in the first example also, divide all the decomposed numerators by the rest of the denominators that were generated in the unification operation, or by their common denominator. If nothing remains and the result is as the small number that you wanted to divide [originally], or as the decomposed fractions in the example at the beginning of the discussion, [the procedure was] true and correct; if not, know that you were wrong.
 +
|style="text-align:right;"|&#x202B;<ref>53r</ref>גם במשל הראשון אם יש במוריך אלו הם המורים הראשונים או המורים עצמם חלק כל מספר השברים הנפרטות על שאר המורים שנתחדשו במלאכת האחדות או על אמם ואם לא ישאר לעולם דבר ויצא באחרונה כמספר הקטן אש' רצית לחלק או כשברים הנפרטים במשל ראש המאמר הנה אמת הנה נכון ואם לאו דע שטעית
 +
|-
 +
|If the common denominator or the original divisor are not in your procedure, i.e. among the denominators, multiply the resulting decomposed numerator by the large number, by which you wanted to divide - whether by the common denominator of the required fractions as in the first example at the beginning of this discussion, or by the large number, by which you wanted to divide as in the second example - we divide the product by all the denominators or by their common denominator, and if the result is as the required decomposed numerator in the first example, or as the small number that you wanted to divide in the second example without any remainder, [the procedure] is true; if not, it is wrong.
 +
|style="text-align:right;"|ואם אין במלאכתך זאת ר"ל במוריך לא אם המורים ולא המורים עצמם כפול כל המספר השברים הנפרטים בחשבון הגדול אשר רצית לחלק עליו אם באם המורים מהחלקים הנשאלים כבמשל הראשון אשר בראש זה המאמר אם במספר הגדול אשר רצית לחלק עליו כבמשל השני והעולה חלקנו לכל מוריך אלו או לאמם ואם יצא כמספר השברים הנפרטים הנשאלים במשל הראשון או כמספר הקטן אשר רצית לחלק במשל השני מבלי שארית כלל הנה אמת ואם לאו שקר
 +
|-
 +
|Before I start with the reason of this check, in order to train you in the procedure, I will check each one of the three mentioned examples:
 +
|style="text-align:right;"|וקודם התחילי בטעם בחינה זאת כדי להרגילך במעשה אעשה בחינה בכל אחד משלשת המשלים הנזכרים
 +
|-
 +
|
 +
*The decomposed [numerator] of the first example:
 +
:<math>\scriptstyle\left(\frac{2}{5}\sdot\frac{2}{9}\sdot2\right)+\left[\left[\frac{1}{8}+\left(\frac{2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left[\frac{1}{4}+\left(\frac{2}{6}\sdot\frac{1}{4}\right)\right]\right]</math>
 +
|style="text-align:right;"|הנה פריטת המשל הראשון
 +
|-
 +
|
 +
:7 by 21 is 21; [plus 2 it is 23]. 23 by 2 is 69. 69 by 6 is 414; with the 3 it is 417. [417] by 4 is 1668. 1668 plus 1 is 1669. 1669 by 5 is 8345. 8345 by 8 is 66760. We receive that the decomposed [numerator] is 66760.
 +
|style="text-align:right;"|היה 1<span style="text-decoration: line-through; text-decoration-color: red;"> 3 7 7</span> 7 <sup>ב</sup><s>3</s> 3 21 23 ב3 69 69 ב6 414<span style="text-decoration: line-through; text-decoration-color: red;">4</span> וה3 הם 417 וב4 166<sup>8</sup> 1668 ו1 1669 [5] 1669 8345 8345 [ב8] 66760 והנה עלה בידינו שהפריטה היא 66760
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\frac{1}{5}+\left(\frac{2}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{3}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)&\scriptstyle=\left(\frac{\left(3\sdot7\right)+2}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{3}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\&\scriptstyle=\left(\frac{21+2}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{3}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\&\scriptstyle=\left(\frac{\left(23\sdot3\sdot6\right)+3}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\&\scriptstyle=\left(\frac{\left(69\sdot6\right)+3}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\&\scriptstyle=\left(\frac{414+3}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\&\scriptstyle=\frac{\left(417\sdot4\right)+1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}=\frac{1668+1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\\&\scriptstyle=\frac{1669\sdot5}{5}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}=\frac{8345\sdot8}{8}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\\&\scriptstyle=\frac{66760}{8}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\\\end{align}}}</math>
 +
{|
 +
|-
 +
|
 +
::Had we not have all the original denominators, we would have multiplied it by all the original denominators, then we would have divided the result by all these eight denominators, one by one, or by their common denominator and the result were the required decomposed numerator, which is 13352.
 +
|style="width:45%; text-align:right;"|ואם לא היו בידינו כל המורים הראשונים היו כופלים זה בכל המורים הראשונים והעולה היינו מחלקים אל כל שמונת מורים אלו אחד אחד אחד או לאמם והיא יוצא מספר פריטת השברים הנשאלים והיא 13352
 +
|-
 +
|
 +
::Since we have all the original denominators, i.e. all the denominators of the required fractions - and do not be mistaken that there is no 9 here, as 3 and 3, which are its divisors, are instead of it - we divide what we received from the decomposing, i.e. 66760 by the denominators that were generated from our procedure, i.e. by the first 5 alone, because no other was generated; the result of division is 13352, which is the required decomposed numerator and nothing remains, so it is true.
 +
|style="text-align:right;"|אכן אחרי היות בידינו כל המורים הראשונים ר"ל כל מורה השברים &#x202B;<ref>53v</ref>הנשאלים ואל יטעך שאין כאן הט' שהרי במקומו ג' ג' שהם מוריו ונחלוק זה אשר עלה לנו מפריטתינו זאת ר"ל ה66760 למורים שנתחדשו במלאכתינו ר"ל לה' הראשון לבדו כי לא נתחדשו עוד ויצא בחילוק 13352 שהוא מספר פריטת השברים הנשאלים ולא נשאר דבר והנה אמת
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\frac{1}{5}+\left(\frac{2}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{3}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)&\scriptstyle=\frac{66760}{8}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\\&\scriptstyle=\frac{66760}{5}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}=\frac{13352}{8}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\\\end{align}}}</math>
 +
{|
 +
|-
 +
|
 +
*In the second example:
 +
:<math>\scriptstyle73\div240</math>
 +
|style="width:45%; text-align:right;"|<big>ובמשל</big> השני
 +
|-
 +
|
 +
:The decomposed [numerator] is: 1 by 5 is 5; plus 1 it is 6. 6 by 6 is 36. [36] by 8 is 288; plus 4 it is 292.
 +
|style="text-align:right;"|הוא הפריטה א' בה' ה' וא' ו' ו' בו' ל"ו בח' 288 ו4 292
 +
|-
 +
|
 +
:We divide it by 4, which is the new denominator; the result of division is 73 with no remainder and this is the small number that we want to divide, so it is correct.
 +
|style="text-align:right;"|נחלקם לד' שהוא המורה המתחדש יצא בחילוק מבלי שארית 73 שהוא המספר הקטן שרצינו לחלק והנה אמת
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\frac{1}{4}+\left(\frac{1}{5}\sdot\frac{1}{4}\right)+\left(\frac{4}{8}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}\right)&\scriptstyle=\left(\frac{\left(1\sdot5\right)+1}{5}\sdot\frac{1}{4}\right)+\left(\frac{4}{8}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}\right)=\left(\frac{5+1}{5}\sdot\frac{1}{4}\right)+\left(\frac{4}{8}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}\right)\\&\scriptstyle=\frac{\left(6\sdot6\sdot8\right)+4}{8}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}=\frac{\left(36\sdot8\right)+4}{8}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}=\frac{288+4}{8}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}=\frac{292}{4}\sdot\frac{1}{240}=\frac{73}{240}\\\end{align}}}</math>
 +
{|
 +
|-
 +
|
 +
*In the third example:
 +
:<math>\scriptstyle38\div101</math>
 +
|style="width:45%; text-align:right;"|ובמשל השלישי
 +
|-
 +
|
 +
:In the first figure the decomposed [numerator] is 114. We divide it by 3, which is the new denominator; the result is 38, which is the small number that we wanted to divide.
 +
:<math>\scriptstyle{\color{blue}{\scriptstyle\frac{1}{3}+\left(\frac{13}{101}\sdot\frac{1}{3}\right)=\frac{114}{3}\sdot\frac{1}{101}=\frac{38}{101}}}</math>
 +
|style="text-align:right;"|בצורה הראשונה הנה הפריטה עולה 114 נחלקם לג' שהוא המורה המתחדש יצאו הל"ח שהוא המספר הקטן אשר רצינו לחלק
 +
|-
 +
|
 +
:In the second figure the decomposed [numerator] is 912. We divide it by 3 and 8, which are the new denominators: first by 3; the result is 304. We divide it by 8; the result is 38.
 +
|style="text-align:right;"|ובצורה השנית הפריטה 912 נחלקם לג' ולח' שהם המורים החדשי' תחלה לג' יצא 304 נחלקם לח' ויצאו הל"ח
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\frac{1}{3}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)+\left(\frac{3}{101}\sdot\frac{1}{3}\sdot\frac{1}{8}\right)=\frac{912}{3}\sdot\frac{1}{8}\sdot\frac{1}{101}=\frac{304}{8}\sdot\frac{1}{101}=\frac{38}{101}}}</math>
 +
{|
 +
|-
 +
|
 +
:In the third figure the decomposed [numerator] is 31008. We divide it by 3; the result is 10336. We divide it by 8; the result is 1292. We divide it by 34, which is the denominator that remains from the new denominators; the result is 38, so it is true.
 +
|style="width:45%; text-align:right;"|ובצורה השלישית הפריטה 31008 נחלקם לג' יצא 10336 נחלקם לח' יצא 1292 נחלקם לל"ד שהוא המורה הנשאר מהמורים החדשים יצא הל"ח והנה אמת
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\frac{1}{3}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)+\left(\frac{1}{3}\sdot\frac{1}{8}\sdot\frac{1}{34}\right)+\left(\frac{1}{3}\sdot\frac{1}{8}\sdot\frac{1}{34}\sdot\frac{1}{101}\right)=\frac{31008}{3}\sdot\frac{1}{8}\sdot\frac{1}{34}\sdot\frac{1}{101}=\frac{10336}{8}\sdot\frac{1}{34}\sdot\frac{1}{101}=\frac{1292}{34}\sdot\frac{1}{101}=\frac{38}{101}}}</math>
 +
{|
 +
|-
 +
!<span style=color:Green>Reason: check</span>
 +
|
 +
|-
 +
|The reason of this check is clear because when the original denominators, or the common denominator, or the great number, by which we wanted to divide, are among our denominators, decomposing means the numerator of [the fraction that consists of] all the original as well as the new denominators and this is clear as was explained many times.
 +
|style="width:45%; text-align:right;"|<big>וטעם</big> בחינה זה הוא ברור כי כשיש במורינו המורי' הראשונים או האם <s>או האם</s> או המספר הגדול אשר רצינו לחלק עליו הנה הפריטה היא מספר שברים מכל המורים חדשים גם שנים וזה ברור כמו שנתבאר פעמים רבות
 +
|-
 +
|Since decomposing is to convert them to the lowest fraction, which is the last type and it is related to all the denominators.
 +
|style="text-align:right;"|כי הפריטה הוא להשיבם פרוטות <s>כי הפריטה הוא מספר שברים מכל המורים</s> שהוא המין האחרון והוא {{#annot:term|1567,1494|G7Ca}}נקשר{{#annotend:G7Ca}} בכל המורים
 +
|-
 +
|When we divide it by the new denominators it is as reducing, for the order does not matter.
 +
|style="text-align:right;"|וכאשר נחלקם על המורים המתחדשים הוא כעושה כלילת יופי כי הסדר לא יזיק
 +
|-
 +
|After it is divided by all the new [denominators] and nothing remains, it is reduced and the result is a numerator of the new denominators, or their common denominator, or of the large number.
 +
|style="text-align:right;"|ואחר שנתחלק על כל החדשים ולא נשאר &#x202B;<ref>54r</ref>דבר הנה יצאו מן הכלל והיוצא באחרונה הם שברים מהמורים הראשונים או מאמם כבראשונה או מהמספר הגדול
 +
|-
 +
|
 +
::I.e. that the 38 that we received, after we divided the decomposed by the new denominators and they were reduced, are parts of 101 parts of the whole. Because each unit of the 38 is one part of 101 of the whole.
 +
|style="text-align:right;"|ר"ל שהל"ח שיצאו לנו אחר שחלקנו הפריטה במורים החדשי' ויצאו הם מן הכלל הם חלקים מק"א חלקים בשלם כי לכל אחד מהל"ח יעלה לכל אחד חלק אחד מק"א בשלם ומהל"ח ל"ח
 +
|-
 +
|The reason for our saying: "if the original denominators, or their common denominator, or the greatest number are not among our denominators, we multiply the decomposed by the original denominators, or by their common denominator, or by the greatest number and divide by all the denominators, so that the result is without a remainder as the required decomposed fractions in the first example, or as the smaller number in the second number" - is that the decomposed fraction consists of all these denominators and when we multiply it by the original denominators, or by their common denominator, or by the greatest number, we decompose it further to fractions of fractions of the original [denominators].
 +
|style="text-align:right;"|<big>וטעם</big> אומרנו שאם אין המורים הראשונים או אמם או המספר הגדול במורינו שנכפול הפריטה במורים הראשונים או באמם או במספר הגדול ונחלקנו בכל המורים שיצא מבלי שארית כמספר פריטת השברים הנשאלים במשל הראשון או כמספר הקטן במשל השני הוא לפי שהפריטה היא שברים מכל אלו המורים וכאשר אנו כופלים אותה במורים הראשונים או באמם או במספר הגדול הוא שאנו פורטים אותה עוד לשברי שברים מהראשונים
 +
|-
 +
|
 +
*I.e. if we have 3-quarters of an eighth, for instance:
 +
:<math>\scriptstyle\frac{3}{4}\sdot\frac{1}{8}</math>
 +
|style="text-align:right;"|ר"ל כי אם יש בידינו ג' רביעיות שמינית ע'ד'מ&#x202B;'
 +
|-
 +
|
 +
:If we multiply them by 7, the result are sevenths of a quarter of an eighth and this has been clarified many times.
 +
:<math>\scriptstyle{\color{blue}{\frac{3}{4}\sdot\frac{1}{8}=\frac{7\sdot3}{7}\sdot\frac{1}{4}\sdot\frac{1}{8}}}</math>
 +
|style="text-align:right;"|אם נכפלם בז' היוצא שביעית רביעית שמינית וזה נתברר פעמים רבות
 +
|-
 +
|Therefore, in our procedure, the product [by the original denominators] is a numerator of [a fraction that consists of] all these [renewed] denominators that we have, as well as of the original denominators, or of their common denominator, or of the large number that we added [to the new denominators] just now. When we divide it by our denominators, i.e. [the renewed denominators] without the original denominators that we added now [to the new denominators], or without their common denominator, or without the large number, because we do not divide by them, the result of division should be a numerator of [a fraction that consists of] the original denominators, or of their common denominator, or of the large number.
 +
|style="text-align:right;"|והנה במעשינו היוצא אחר הכפל יהיו שברים מכל אלו המורים אשר לנו ומהראשונים או מאמם או מהמספר הגדול שהוספנו עליהם עתה וכאשר נחלקנו למורינו ר"ל מבלתי הראשונים אשר הוספנו עתה או מבלתי אמם או מבלתי המספר הגדול אשר הוספנו עתה כי להן לא נחלקם ישאר היוצא שברים מהמורים הראשונים או מאמם או מהמספר הגדול
 +
|-
 +
|If the result is as the decomposed numerator required in the first example, or as the small number in the second [example], it is restored to what it was in the beginning, so our calculation is correct.
 +
|style="text-align:right;"|והנה אם היוצא היה כמספר פריטת השברים הנשאלים במשל הראשון או כמספר הקטן בשני הנה שב כבתחלה והנה כל מעשינו אמת ויציב
 +
|-
 +
|Know that the prime number, i.e. if the large number [by which the small number is divided] is a prime number that has no divisors, as in the third example, which is 101, it cannot be absent or converted [after the unification procedure], and this is clear because it cannot be divided completely by another number without a remainder, since it is prime.
 +
|style="text-align:right;"|ודע כי &#x202B;<ref>54v</ref>המספר הפשוט ר"ל אם היה המספר הגדול מספר פשוט שאין לו מורים כבמשל השלישי שהוא קי"א כי לעולם לא יעדר ולא יומר וזה ברור כי הוא לא יתחלק לשום מספר בשלימות מבלי שארית אחר שהוא פשוט
 +
|-
 +
|}
 +
{|
 +
|-
 +
|
 +
 
 +
== Chapter Two: Subtraction ==
 +
|style="width:45%; text-align:right;"|<big>הפרק השני בחסרון</big>
 +
|-
 +
|
 +
*{{#annot:(⁸/₉+³/₇·⅕·⅑)·(⅚·3)-(¾+⅖·¼)·²/₉|678|0SK8}}Example: if you are told: three-quarters and two-fifths of a quarter of two-ninths, subtract them from eight-ninths and three-sevenths of a fifth of a ninth of five-sixths of 3 integers
 +
:<math>\scriptstyle\left[\left[\frac{8}{9}+\left(\frac{3}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\right)\right]\sdot\left(\frac{5}{6}\sdot3\right)\right]-\left[\left[\frac{3}{4}+\left(\frac{2}{5}\sdot\frac{1}{4}\right)\right]\sdot\frac{2}{9}\right]</math>
 +
|style="text-align:right;"|<big>המשל</big> אם אמרו לך שלש רביעיות ושתי חמישיות רביעית משתי תשיעיות חסרם משמונה תשיעיות ושלש שביעיות חמשית תשיעית מחמש ששיות מג' שלמים{{#annotend:0SK8}}
 +
|-
 +
|
 +
:Set the first, which is the smaller number [i.e. the subtracted], like this:
 +
|style="text-align:right;"|תשים הצורה הראשונה והוא המעט כזה
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| colspan=2 |&nbsp;|| 9
 +
|-
 +
| 5 || 4 || 2
 +
|-
 +
| 2 || 3
 +
|}
 +
|-
 +
|
 +
:Set the second, which is the greater number [i.e. the minuend], like this:
 +
|style="text-align:right;"|והצורה השנית והוא הרב תשים כזה
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| colspan=3 |&nbsp;|| 3
 +
|-
 +
| colspan=3 |&nbsp;|| 6
 +
|-
 +
| 7 || 5 || 9 || 5
 +
|-
 +
| 3 || &nbsp;|| 8
 +
|}
 +
|-
 +
|
 +
::The smaller number, after it is multiplied and decomposed, becomes 34 fifths of a quarter of a ninth, like this:
 +
::<math>\scriptstyle{\color{blue}{\left[\frac{3}{4}+\left(\frac{2}{5}\sdot\frac{1}{4}\right)\right]\sdot\frac{2}{9}=\frac{34}{5}\sdot\frac{1}{4}\sdot\frac{1}{9}}}</math>
 +
|style="text-align:right;"|והנה המעט אחרי אשר הוכה ונפרט יעלה 34 חמישיות רביעית תשיעית כזה
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| 5 || 4 || 9
 +
|-
 +
| 34 || &nbsp;|| &nbsp;
 +
|}
 +
|-
 +
|
 +
::The greater number, after it is multiplied and decomposed, becomes 4245 sevenths of a fifth of a ninth of a sixth.
 +
::<math>\scriptstyle{\color{blue}{\left[\frac{8}{9}+\left(\frac{3}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\right)\right]\sdot\left(\frac{5}{6}\sdot3\right)=\frac{4245}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{6}}}</math>
 +
|style="text-align:right;"|והרב יעלה אחרי שנפרט והוכה <s>שביעיות</s> 4245 שביעיות חמישית תשיעית ששית
 +
|-
 +
|After multiplying and decomposing, we should expand them by multiplying the numerator of one by the denominators of the other, then both are of the same fractions.
 +
:<math>\scriptstyle{\color{red}{\frac{a}{b}=\frac{a\sdot d}{b}\sdot\frac{1}{d}\quad\frac{c}{d}=\frac{c\sdot b}{d}\sdot\frac{1}{b}}}</math>
 +
|style="text-align:right;"|ואחרי שהוכו ונפרטו יש לנו להשוותם וזה בכפול מספר שברי כל אחת במורי חברתה ואז היו כל אחת מהם שברים
 +
|-
 +
|
 +
:To make the procedure easier for us, since 9 and 5 are in the denominators of both the same number of times, which is once, we do not multiply any of [the numerators] by them, as explained at the end of the third chapter, and we set them only once.
 +
|style="text-align:right;"|אכן להקל עלינו המעשה אחרי היות בש[בריהם] הט' והה' פעמים שוות והוא פעם אחת לא נכפול בהם שום אחת מהם כמו שנתבאר בסוף השער הג' וגם לא נסדרם <s>שום אחת מהם</s> כי אם פעם אחת
 +
|-
 +
|
 +
::The smaller – after it is multiplied by 6 and 7 one after another, which are the denominators of the other number, except for 9 and 5, by which we do not multiply as mentioned – becomes 1828; and since it is multiplied by 6 and 7, these denominators are added to its denominators, so they are 1428 sevenths of a sixth of a fifth of a quarter of a ninth.
 +
|style="text-align:right;"|והנה המעט אחרי הכפלו בו' ובז' זה אחר זה שהם מורי חברתה מזולת הט' והה' שלא נכפול בהם כנזכר יעלה 1828 ואחר שהוכה בו' ובז' &#x202B;<ref>55r</ref>נתוספו לו מורים אלו על מוריו לכן יהיו אלו ה1428 שביעיות שישית חמישית רביעית תשיעית
 +
|-
 +
|
 +
::<math>\scriptstyle{\color{blue}{\left[\frac{3}{4}+\left(\frac{2}{5}\sdot\frac{1}{4}\right)\right]\sdot\frac{2}{9}=\frac{34\sdot6\sdot7}{7}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{9}=\frac{1428}{7}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{9}}}</math>
 +
|
 +
|-
 +
|
 +
:Hence, the reason is clear why we set all the denominators and why we do not set the 9 and the 5 once more, even though they are in the other number, this is because it was not multiplied by them and it is obvious.
 +
|style="text-align:right;"|ובכאן נתבאר הטעם למה אנו מסדרים כל המורים ולמה אין אנו מסדרי' הט' והה' פעם אחרת ואם הם בחברתה והוא לפי שלא נכפלו בהם וזה ברור
 +
|-
 +
|
 +
::The greater – after it is multiplied by 4, which is the remaining denominator of the other number that is not in [the greater] – becomes 16980; and since it is multiplied by 4, it is added also to its denominators, so they are quarters of a seventh of a fifth of a ninth of a sixth.
 +
|style="text-align:right;"|והרב אחרי הכפלו בד' שהוא המורה הנשאר בחברתה שאינו בה יעלה 16980 ואחר שהוכה על הד' ונוסף גם הוא על מוריו יהיו רביעיות שביעית חמישית תשיעית ששית
 +
|}
 +
::<math>\scriptstyle{\color{blue}{\left[\frac{8}{9}+\left(\frac{3}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\right)\right]\sdot\left(\frac{5}{6}\sdot3\right)=\frac{4245\sdot4}{4}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{6}=\frac{16980}{4}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{6}}}</math>
 +
{|
 +
|-
 +
|
 +
:So, [the denominators of] both are equal, because the order does not matter.
 +
|style="width:45%; text-align:right;"|והנה שניהן שוות כי הסדר לא יזיק
 +
|-
 +
|
 +
:We set the numbers one above the other, then we subtract as the procedure of integers; the remainder is 15552 quarters of a seventh of a fifth of a ninth of a sixth. If you wish, you can reduce them, so the remainder becomes 2 integers and 2-sevenths of a fifth.
 +
|style="text-align:right;"|ונשים המספרים זה על זה ונחסרנו כמעשינו בשלמים ונשארו 15552 רביעיות שביעית חמשית תשיעית שישית<br>
 +
ואם תרצה תעשה להם כלילת יופי ויעלה זה השארית ב' שלמים וב' שביעיות חמישית והקש על זה
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\left[\left[\frac{8}{9}+\left(\frac{3}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\right)\right]\sdot\left(\frac{5}{6}\sdot3\right)\right]-\left[\left[\frac{3}{4}+\left(\frac{2}{5}\sdot\frac{1}{4}\right)\right]\sdot\frac{2}{9}\right]=\left(\frac{16980}{4}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{6}\right)-\left(\frac{1428}{7}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{9}\right)=\frac{15552}{4}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{6}=2+\left(\frac{2}{7}\sdot\frac{1}{5}\right)}}</math>
 +
{|
 +
|-
 +
|This is the rule: we decompose and multiply both the greater [= the minuend] and the smaller [= the subtracted], or any of them that requires it, then we expand their [denominators], subtract [the numerator of] one from the other as the way of the integers and reduce the remainder that includes all the denominators that are included originally in each of them.
 +
|style="width:45%; text-align:right;"|<big>זה הכלל</big> שנעשה לכל אחד מהמספרים הרב והמעט פריטה והכאה או אשר יצטרך מהם ואחר כך נעשה להם השוואה ואחר כך נחסרם זה מזה כדרכנו בשלמים והנשאר נעשה לו כלילת יופי והוא כל השברים ר"ל היו לאחת מהם עם אשר הוכתה בהם מאשר בחברתה
 +
|-
 +
|}
 +
{|
 +
|-
 +
|
 +
 
 +
== Chapter Three: Multiplication ==
 +
|style="width:45%; text-align:right;"|<big>הפרק השלישי בכפל</big>
 +
|-
 +
|The operation [described] in this chapter is the same operation [described] in the second principle of compound fractions.
 +
|style="text-align:right;"|הנה מעשה זה הפרק הוא מעש' השער השני הנקרא שער ההכאה
 +
|-
 +
|
 +
*Because, our saying: multiply 3-quarters by 4-fifths, for instance, is as our saying: 3-quarters of 4-fifths.
 +
:<math>\scriptstyle{\color{blue}{\frac{3}{4}\times\frac{4}{5}}}</math>
 +
|style="text-align:right;"|כי אמרנו כפול ג' רביעיות על ד' חמישיות ע'ד'מ' הוא כאומרנו ג' רביעיות מד' חמישיות
 +
|-
 +
|We multiply the numerator by the numerator, not by the denominators.
 +
:<math>\scriptstyle{\color{OliveGreen}{\frac{a}{b}\times\frac{c}{d}=\frac{a\sdot c}{d}\sdot\frac{1}{b}}}</math>
 +
|style="text-align:right;"|ונכפול מספר השברים במספר השברים לא במורים
 +
|-
 +
|
 +
::I.e. 3 by 4; the result is 12 and this is the numerator of the denominators of both numbers, i.e. they are fifths of a quarter.
 +
::<math>\scriptstyle{\color{blue}{\frac{3}{4}\times\frac{4}{5}=\frac{3\sdot4}{5}\sdot\frac{1}{4}=\frac{12}{5}\sdot\frac{1}{4}}}</math>
 +
|style="text-align:right;"|&#x202B;[ר"ל הג' על הד' יעלו י"ב והם שברים ממורי שני המספרים ר"ל]&#x202B;<ref>marg.</ref> ר"ל שהן חמישיות רביעית
 +
|-
 +
|Therefore, there is no need in this chapter for expansion at all, because they are not two [different] types of fractions, but they are fractions that are related to each other, as we explained.
 +
|style="text-align:right;"|ולזה אין מבוא בזה השער להשואה כלל כי אינם שני מינים שברים אבל הם שברים &#x202B;<ref>55v</ref>{{#annot:term|1567,1494|S0DR}}נקשרים זו בזו{{#annotend:S0DR}} כמו שביארנו
 +
|-
 +
|In order to train you in the procedure I give an example:
 +
|style="text-align:right;"|וכדי להרגילך במעשה אביא משל אחד
 +
|-
 +
|
 +
*{{#annot:⁴/₇·(⁵/₉·⅛)×(⅗·⅑)·(⅔·5)|17|WIlB}}Example: we wish to multiply 4-sevenths of 5-ninths of an eighth by 3-fifths of a ninth of 2-thirds of 5 integers.
 +
:<math>\scriptstyle\left[\left[\frac{4}{7}\sdot\left(\frac{5}{9}\sdot\frac{1}{8}\right)\right]\right]\times\left[\left(\frac{3}{5}\sdot\frac{1}{9}\right)\sdot\left(\frac{2}{3}\sdot5\right)\right]</math>
 +
|style="text-align:right;"|<big>המשל</big> רצינו לכפול ד' שביעיות מה' תשיעיות שמינית על ג' חמשיות תשיעית מב' שלישיות מה' שלמים{{#annotend:WIlB}}
 +
|-
 +
|
 +
:You do not have to do anything except for relating them together and write "of" [the letter מ] instead of "by", i.e. say: they are 4-sevenths of 5-ninths of an eighth of 3-fifths of a ninth of 2-thirds of 5 integers. So, we are back to the chapter on compound fractions.
 +
|style="text-align:right;"|אין לך לעשות <sup>דבר</sup> כי אם {{#annot:term|1567,1404|9XkM}}לקשרם יחד{{#annotend:9XkM}} ולשים במקום על מ' ר"ל שתאמר הם ד' שביעיות מה' תשיעיות שמינית [מג']&#x202B;<ref>marg.</ref> חמישיות תשיעית מב' שלישיות מה' שלמים והרי לנו חזרו לשער ההכאה
 +
|-
 +
|
 +
:If you want to know how much they are, multiply them, for in this example there is no need for decomposing, then we reduce the result with all the denominators, because all are related to each other. The result after the multiplication is 600-sevenths of a ninth of an eighth of a fifth of a ninth of a third.
 +
|style="text-align:right;"|ואם תרצה לידע מה המה אלה עשה להם הכאה כי בזה המשל אין מבוא לפריטה והעולה נעשה לו כלילת יופי על כל המורים כי כלם נקשרים זה בזה ויעלה אחר ההכאה 600 שביעיות תשיעית שמינית חמישית תשיעית שלישית
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\left[\left[\frac{4}{7}\sdot\left(\frac{5}{9}\sdot\frac{1}{8}\right)\right]\right]\times\left[\left(\frac{3}{5}\sdot\frac{1}{9}\right)\sdot\left(\frac{2}{3}\sdot5\right)\right]=\frac{4}{7}\sdot\left(\frac{5}{9}\sdot\frac{1}{8}\right)\sdot\left(\frac{3}{5}\sdot\frac{1}{9}\right)\sdot\left(\frac{2}{3}\sdot5\right)=\frac{600}{7}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{3}}}</math>
 +
{|
 +
|-
 +
|Know that the denominators are always [written] on top and you cannot find anything above them. By this you distinguish between the denominators and the numerators.
 +
|style="width:45%; text-align:right;"|ודע שלעולם המורים עליונים ולא תמצא עליהם דבר ובזה תבחין בין המורים למספר השברים
 +
|-
 +
|''Although there is no proof to the matter, there is a reference to the matter'' [Mishnah, Sanhedrin 8, 2], ''to include Torah scholars'' [Talmud, Bekhorot 6, 2] - the denominators [morim, lit. teachers] should be high above all and the numerators are beneath them, as the student and his teacher, or a teacher's house that is wide open, so that whoever wishes comes.
 +
|style="text-align:right;"|ואם ''א[י]ן ראיה לדבר זכר לדבר''<ref group=note>משנה סנהדרין ח, ב</ref> את ''לרבות תלמידי'' ''חכמים''<ref group=note>בבלי, קודשים, בכורות, דף ו, ב</ref> שהמורים ראויין להיות גבוהים על הכל וה{{#annot:term|570,1242|iMq3}}שברים{{#annotend:iMq3}} למטה מהם כתלמיד לפני רבו או בית פתוח לרוחה תחת המורה ויבא מי שירצה
 +
|-
 +
|But, the integers - there is nothing above or beneath them. Their house is not open, for they are not denominators [lit. teachers].
 +
|style="text-align:right;"|אבל השלמים לעולם אין עליהם ולא תחתיהם דבר ולא בית פתוח כי אינם מורי הוראה
 +
|-
 +
|
 +
:After we reduce them, they are five-ninths of a seventh of a ninth.
 +
:<math>\scriptstyle{\color{blue}{\left[\left[\frac{4}{7}\sdot\left(\frac{5}{9}\sdot\frac{1}{8}\right)\right]\right]\times\left[\left(\frac{3}{5}\sdot\frac{1}{9}\right)\sdot\left(\frac{2}{3}\sdot5\right)\right]=\frac{600}{7}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{3}=\frac{5}{9}\sdot\frac{1}{7}\sdot\frac{1}{9}}}</math>
 +
|style="text-align:right;"|ואחרי עשותנו להם כלילת יופי שהן חמש תשיעיות שביעית תשיעית
 +
|-
 +
|This is the rule: we should not expand to a common denominator at all. All that we should do is only to relate [the fractions] to each other, which is to write "of" [the letter מ] instead of "by", as we explained, then multiply and decompose if necessary, and after all this to reduce, which is to divide by the denominators that are always on top as we explained, and the result is the required.
 +
|style="text-align:right;"|<big>זה הכלל</big> שאין לנו לעשות בזה ההשואה כלל כי אין לנו לעשות כי אם לקשרם יחד והוא לשים מ' במקום על כמו שבארנו ואחר כן נעשה לה הכאה גם פריטה אם הוצרך אליה ואחר כל זה לעשות לה כלילת יופי והוא לחלקם על המורים שהרי העליונים לעולם כמו שביארנו והיוצא &#x202B;<ref>56r</ref>הוא המבוקש
 +
|}
 +
{|
 +
|-
 +
|
 +
 
 +
== Chapter Four: Division ==
 +
|style="width:45%; text-align:right;"|<big>הפרק הרביעי בחלוק</big>
 +
|-
 +
|
 +
*{{#annot:(¾+⅔·¼)÷(⁴/₉+⅚·⅑)·⅔|552|t3ba}}We wish to divide three-quarters and 2-thirds of a quarter by 4-ninths and 5-sixths of a ninth of 2-thirds.
 +
:<math>\scriptstyle\left[\frac{3}{4}+\left(\frac{2}{3}\sdot\frac{1}{4}\right)\right]\div\left[\left[\frac{4}{9}+\left(\frac{5}{6}\sdot\frac{1}{9}\right)\right]\sdot\frac{2}{3}\right]</math>
 +
|style="text-align:right;"|רצינו לחלק שלש רביעיות וב' שלשיות רביעית על ד' תשיעיות וה' ששיות תשיעית מב' שלישיות{{#annotend:t3ba}}
 +
|-
 +
|
 +
:The diagram of the greater number [the dividend] is like this:
 +
|style="text-align:right;"|הנה צורת הרב היא כזה
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| 3 || 4
 +
|-
 +
| 2 || 3
 +
|}
 +
|-
 +
|
 +
:The diagram of the smaller number [the divisor] is like this:
 +
|style="text-align:right;"|וצורת המעט כזה
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| colspan=2 |&nbsp;|| 3
 +
|-
 +
| 6 || 9 || 2
 +
|-
 +
| 5 || 4
 +
|}
 +
|-
 +
|
 +
:The large number [= the dividend] requires only decomposing. The result after the decomposing is 11-thirds of a quarter.
 +
::<math>\scriptstyle{\color{blue}{\frac{3}{4}+\left(\frac{2}{3}\sdot\frac{1}{4}\right)=\frac{11}{3}\sdot\frac{1}{4}}}</math>
 +
|style="text-align:right;"|והרב אינו צריך כי אם פריטה ויעלה אחר הפריטה י"א שלישיות רביעיות
 +
|-
 +
|
 +
:The small number [= the divisor] requires decomposing and multiplication. The result after the decomposing and multiplication is 58-sixths of a ninth of a third.
 +
::<math>\scriptstyle{\color{blue}{\left[\frac{4}{9}+\left(\frac{5}{6}\sdot\frac{1}{9}\right)\right]\sdot\frac{2}{3}=\frac{58}{6}\sdot\frac{1}{9}\sdot\frac{1}{3}}}</math>
 +
|style="text-align:right;"|אכן המעט צריך פריטה והכאה ויעלה אחר הפריטה וההכאה נ"ח ששיות תשיעית שלישית
 +
|-
 +
|After decomposing and multiplying each of them, if needed, we expand them to a common denominator.
 +
|style="text-align:right;"|ואחר שעשינו לכל אחד מהם אשר הוצרך מפריטה והכאה נשוום יחד
 +
|-
 +
|
 +
::Since the 3 is once in both of them, we do not multiply them by it.
 +
|style="text-align:right;"|ואחרי היות הג' בשתיהן פעם אחת לא נכפלם בו
 +
|-
 +
|
 +
::The large number becomes 594 after the expansion.
 +
::<math>\scriptstyle{\color{blue}{\frac{3}{4}+\left(\frac{2}{3}\sdot\frac{1}{4}\right)=\frac{11}{3}\sdot\frac{1}{4}=\frac{594}{6}\sdot\frac{1}{9}\sdot\frac{1}{3}\sdot\frac{1}{4}}}</math>
 +
|style="text-align:right;"|ויעלה הרב אחר ההשואה 594
 +
|-
 +
|
 +
::The small number becomes 232.
 +
::<math>\scriptstyle{\color{blue}{\left[\frac{4}{9}+\left(\frac{5}{6}\sdot\frac{1}{9}\right)\right]\sdot\frac{2}{3}=\frac{58}{6}\sdot\frac{1}{9}\sdot\frac{1}{3}=\frac{232}{6}\sdot\frac{1}{9}\sdot\frac{1}{3}\sdot\frac{1}{4}}}</math>
 +
|style="text-align:right;"|והמעט יעלה 232
 +
|-
 +
|
 +
::These two numbers are fractions of four denominators, which are sixths of a ninth of a third of a quarter.
 +
|style="text-align:right;"|והם ר"ל שני המספרים האלו שברים מהד' מורים שהם שישיות תשיעית שלישית רביעית
 +
|-
 +
|
 +
:Since they are expanded, it is as if we were asked to divide 594-sixths of a ninth of a third of a quarter, which is as if we are told to divide 594 integers by 232.
 +
|style="text-align:right;"|ואחרי היותם שוות הרי הוא כאלו שאלו לנו שנחלק 594 שישיות תשיעיות שלישית רביעית והרי הוא כאלו אמרו לנו נחלק 594 שלמים על 232
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\left[\frac{3}{4}+\left(\frac{2}{3}\sdot\frac{1}{4}\right)\right]\div\left[\left[\frac{4}{9}+\left(\frac{5}{6}\sdot\frac{1}{9}\right)\right]\sdot\frac{2}{3}\right]=\left(\frac{594}{6}\sdot\frac{1}{9}\sdot\frac{1}{3}\sdot\frac{1}{4}\right)\div\left(\frac{232}{6}\sdot\frac{1}{9}\sdot\frac{1}{3}\sdot\frac{1}{4}\right)=\frac{594}{232}}}</math>
 +
{|
 +
|-
 +
|For, since they are of the same type, what do I care if they are integer or fractions, or zuzim or peraḥim, after all this operation is exactly the same as division of integers.
 +
|style="width:45%; text-align:right;"|כי אחר שהם ממין אחד מה לי אם הם שלמים או שברים או זוזים או פרחים והרי מעשהו שוה לחלוקת השלמים שוה בשוה
 +
|-
 +
|In order that we will receive fractions and integers together, we do not use the method of unifying, but the method of extracting the divisors, that is we extract the divisors of the number by which we want to divide and this is the small number in our example.
 +
|style="text-align:right;"|<big>וכדי</big> שיצאו לנו שברים ושלמים יחד לא נביאנו על דרך האחדות כי אם ע"ד הוצאת המורים והוא שנוציא מורי המספר אשר רצינו לחלק עליו והוא המספר המעט אשר במשלינו
 +
|-
 +
|However, do not be mistaken in thinking that its denominators that are above it are the divisors of the decomposed after the expansion and that these are the divisiors that you should seek for and divide by them, for this is not the case at all. You should divide by them only when you reduce.
 +
|style="text-align:right;"|ואל תטעה לחשוב כי מוריו אשר עליו <s>מוריו אשר עליו</s> הם המורים לחלקי הפריטה אחר ההשואה ושאלו &#x202B;<ref>56v</ref>הם המורים אשר לך לבקש ולחלק <sup>עליהם</sup> כי זה אינו כלל ואין לך לחלק עליהם כי אם בעשותך כלילת יופי
 +
|-
 +
|The divisors that you should seek for, means to know if the 232, which is the numerator of the number by which we want to divide the other numerator, is prime or composite, or of which numbers it consists.
 +
|style="text-align:right;"|אבל המורים אשר לך לבקש הוא לדעת ה232 שהוא מספר השברים אשר רצינו לחלק עליהם מספר השברים האחרים אם הוא פשוט או מורכב <sup>או</sup> מאי זה מספרים הוא מורכב
 +
|-
 +
|
 +
:Know that after you multiplied the result of decomposing by 4 in the expansion procedure, it is known that the product has a quarter [= 4 is its divisor], as well as all the denominators of the other [that were not among its own denominators].
 +
|style="text-align:right;"|ודע לך שאחר שכפלת והעולה בפריטתה בד' בעת ההשואה בידוע שיש לה רביעית וכן כל המורים אשר היו בחברתה ולא בה
 +
|-
 +
|Therefore, if you want to make the procedure easier for you, do not multiply by them and then you will not need to divide by them, when extracting the divisors. But, take them as denominators, by which you divide, with the resulting decomposed. Seek for the divisors of the resulting decomposed and write them with them.
 +
|style="text-align:right;"|<big>לכן</big> אם תרצה להקל מעליך המעשה לא תכפלנו בהם ולא תצטרך לחלקה עתה להם בעת הוצאת המורים אבל תקחם למורים שתחלק עליהם ועל היוצא מפריטתה ותבקש מורי המספר היוצא מפריטתה <s>ותבקש</s> ותשימם עמהם
 +
|-
 +
|All this was said about the number, by which you want to divide, but as for the number that you want to divide, you always need to multiply it by the denominators that are in the other [that were not among its own denominators].
 +
|style="text-align:right;"|וכל זה אמרנו במספר אשר תרצה לחלק עליו <s>אבל המספר אשר תרצה לחלק עליו</s> אבל המספר אשר תרצה לחלק צריך אתה לעולם לכפלו במורים אשר בחברתה ולא בה
 +
|-
 +
|
 +
::Example: in our example, if we want to seek for the divisors of 232, since the result of the decomposing and multiplication was multiplied in the expansion operation by 4, which is the denominator of the other, we know that the product has a quarter. We divide it by 4 and the result of division is 58.
 +
|style="text-align:right;"|<big>המשל</big> לזה במשלינו כי אם רצינו לבקש מורים ל232 ואחר שבעת ההשואה הוכפל היוצא מהפריטה וההכאה בד' שהיא מורה חברתה ידענו שלזה העולה יש לו רביעית ונחלקנו על ד' ויצא בחילוק נ"ח
 +
|-
 +
|
 +
::We seek also for the divisors of 58. We find that it has a half. We divide it by it, i.e. by 2; the result of division is 29 and this is a prime number.
 +
|style="text-align:right;"|ונבקש עוד מורים לנ"ח ונמצא לו חצי ונחלקנו עליו ר"ל ר"ל על ב' ויצא בחילוק כ"ט והוא מספר פשוט
 +
|-
 +
|
 +
::So, the divisors of the numerator, by which we want to divide, are 2, 4, 29.
 +
::<math>\scriptstyle{\color{blue}{232=4\sdot58=4\sdot2\sdot29}}</math>
 +
|style="text-align:right;"|הנה מורי מספר השברים אשר רצינו לחלק עליהם הם הב' והד' והכ"ט
 +
|-
 +
|In that you see clearly what I said that if we would have wanted to make the procedure easier for us, we would have taken the 4 as a first denominator from the start. 
 +
|style="text-align:right;"|ובזה תראה ברור מה שאמרתי שאם הינו רוצים להקל המעשה מעלינו היינו לוקחים מתחלה <s>מתחלה</s> הד' למורה ראשון
 +
|-
 +
|
 +
::Even if they are numerous, we do not have to multiply by them the number, by which we want to divide, i.e. the 58. But, we seek for the divisors of 58, or write it by itself as a denominator, and write the 4 with it. All is the same.
 +
|style="text-align:right;"|וכן אם היה שם הרבה ולא היינו צריכים לכפול בהם המספר אשר רצינו לחלק עליו &#x202B;<ref>57r</ref>ר"ל הנ"ח אבל נבקש מורים לנ"ח או לשים אותה עצמה למורה ולשים עמהם הד' והכל אחד
 +
|-
 +
|The reason for this is clear, because multiplication and division are inverse operations.
 +
|style="text-align:right;"|והטעם ברור כי הכפל והחלוקה הפכים הם
 +
|-
 +
|
 +
:<math>\scriptstyle{\color{OliveGreen}{\frac{a\sdot b}{b}=a}}</math>
 +
|
 +
|-
 +
|
 +
::If we multiply a number, i.e. the 58, by any number, i.e. by the 4, and then we divide the product by this same number, i.e. by the 4, we get what we had at the beginning, i.e. the 58.
 +
::<math>\scriptstyle{\color{blue}{\frac{58\sdot4}{4}=58}}</math>
 +
|style="text-align:right;"|ואם נכפול מספר ר"ל הנ"ח על מספר מה ר"ל הד' ונחלק העולה לזה המספר בעצמו ר"ל לד' יצא לנו אשר היה לנו בתחלה ר"ל הנ"ח
 +
|-
 +
|The operation is the same, but the procedure is easier.
 +
|style="text-align:right;"|והמעשה עולה אחד והמלאכת יותר קלה
 +
|-
 +
|As long as you do not make a mistake in multiplying the number that you want to divide, i.e. the 11, by the denominators of the other, because it is always required.
 +
|style="text-align:right;"|ובלבד שלא תטעה מלכפול המספר אשר רצית לחלק ר"ל הי"א במורי חברתה כי זה מחוייב לעולם
 +
|-
 +
|
 +
::We complete the example: we divide the 594 by the three denominators that we received, one after another.
 +
|style="text-align:right;"|ונשלים המשל ונחלק ה594 על הג' מורים שיצאו לנו זה אחר זה
 +
|-
 +
|
 +
::We divide it first by 3; the result of division is 3 integers and nothing remains. We write them aside.
 +
|style="text-align:right;"|ונחלקם תחלה לג' ויצא בחילוק ג' והם שלמי' ולא ישאר דבר ונשימם מחוץ
 +
|-
 +
|<span style=color:red>[it is not clear why the divisors 4, 2, 29 were replaced here by 3, 2, 29:]</span>
 +
|
 +
|-
 +
|
 +
:The outcome is that when we divide the greater number by smaller number mentioned in the example, the result of division is 3 integers and 24 parts of 29 parts of one half of the whole.
 +
:<math>\scriptstyle{\color{blue}{\frac{594}{3\sdot2\sdot29}=3+\left(\frac{24}{29}\sdot\frac{1}{2}\right)}}</math>
 +
|style="text-align:right;"|הנה היוצא הוא כי בחלקנו המספר הרב למעט הנזכרים במשל שיצא בחילוק ג' שלמים וכ"ד חלקים מכ"ט חלקים מחצי שלם
 +
|-
 +
|
 +
::I.e. that the smaller number is three times in the greater number.
 +
|style="text-align:right;"|ור"ל שהמספר המעט הוא ברב ג' פעמי&#x202B;'
 +
|-
 +
|
 +
::This is the meaning of the three integers. If they were two integers it would have meant that it is twice in it. If they were more, it were more [times in it].
 +
|style="text-align:right;"|וזה ר"ל השלשה שלמים ואם יהיו שנים שלמים ירצה לומר שהוא בו שתי פעמים ואם יותר יותר
 +
|-
 +
|
 +
::The fractions mean that it is in it additional parts of time as aforesaid, which are not a whole time.
 +
|style="text-align:right;"|והשברים ר"ל שהם עוד בו חלקי פעם כנזכר ולא היה פעם שלמה כלל
 +
|-
 +
|When the question is so, i.e. that we divide small fractions by numerous greater fractions, we can do this by the method of unification after we decompose, multiply, and expand [to a common denominator].
 +
|style="text-align:right;"|וכאשר השאלה כן <s>ר"ל שהם עוד בו חלקי פעם כנזכר ולא היה פעם שלמה כלל וכאשר השאלה כן</s> ר"ל שנחלק שברים קטנים לשברים רבים וגדולים מהם נוכל לעשות בדרך האחדות אחרי עשותנו הפריטה וההכאה וההשוואה
 +
|-
 +
|This is the rule: after we decompose and multiply each of them, or whichever is needed, then expand them as mentioned, we divide the [numerator] resulting in this by the [numerator] resulting in that, as integers. All the resulting integers are the number of times [that the divisor appears in the dividend] and the fractions are the [additional] parts of one time [that the divisor appears in the dividend]. All is clear.
 +
|style="text-align:right;"|<big>זה הכלל</big> שאחר עשותנו הפריטה וההכאה <s>וההשואה</s> לכל אחד מהם או אשר תצטרך ואחר כך ההשוואה כנזכר נחלק היוצא בזו ליוצא באחרת ככל דרכם השלמים מכל וכל והשלמים היוצאים יהיו מספר הפעמים והשברים חלקי פעם והכל ברור
 +
|-
 +
|The proofs of all the preceding and the following chapters on fractions are the same as the proofs for integers, i.e. each to its the inverse operations: addition and subtraction to each other; division and multiplication to each other. The proofs of the proportions and roots [of fractions] are also the same as for integers. 
 +
|style="text-align:right;"|ומופתי כל פרקי השברים העוברים והבאים הם כמופתי השלמים ר"ל כל דבר להפכו החבור והחסרון זה לזה והחלוק והכפל זה לזה גם בערכים ובשרשים מופתיהם &#x202B;<ref>57v</ref>כמופתי השלמים
 +
|-
 +
|}
 +
{|
 +
|-
 +
|
 +
 
 +
== Chapter Five: Proportions ==
 +
|style="width:45%; text-align:right;"|<big>הפרק הה' בערכים</big>
 +
|-
 +
|The proportion is as our saying: the ratio that these fractions have to known fractions - to whom these latter fractions have the same ratio, or who has this ratio to these latter fractions?
 +
|style="text-align:right;"|הערכים הוא כאומרנו הערך שיש לשברים אלו אצל שברים ידועים אצל מי יש לשברים אלו האחרים זה הערך או למי יש זה הערך אצל אלו השברים האחרים
 +
|-
 +
|
 +
:Or, if [a given number of] portions of gold are equal to [a certain number of] portions of silver, how many portions of silver worth another [number of] portions of gold?
 +
|style="text-align:right;"|או אם אלו השברים מזהב ע'ד'מ' שוים אלו של כסף אחרות אלו של זהב כמה שוים [אלו]&#x202B;<ref>marg.</ref> של כסף
 +
|-
 +
|
 +
:Or, how many portions of gold worth [another number of] portions of silver
 +
|style="text-align:right;"|או אלו של כסף כמה שוים של זהב
 +
|-
 +
|All this is the same as with integers.
 +
|style="text-align:right;"|כל זהו כמו בשלימים
 +
|-
 +
|Its procedure: the rule requires that we decompose and multiply each of the three numbers separately; then multiply the first of these by the second of these without expansion at all; then expand what resulted now that does not have the denominators of the other, i.e. to multiply the mentioned product by the denominators of what remains, which is the first or the second and so on, meaning to multiply the third by the denominators of the two that are the denominators of the mentioned product; finally to divide the [numerator] of the product after it was expanded by the [numerator of the] third after it was expanded.
 +
|style="text-align:right;"|ומעשהו היה הדין נותן שנעשה פריטה והכאה לכל אחד מהג' מספרים לעצמו<br>
 +
ולכפול ר"ל להכות הראשון מאלו [בב' מאלו]&#x202B;<ref>marg.</ref> מבלי השואה כלל ויהיה היוצא חלקים ממורי שני מספרים אלו<br>
 +
ולהשוות זה העולה עתה שאין חלקים ממוריו גם ממורה חברתה אשר הוכפלה בה עם הנשאר ר"ל לכפול זה העולה מהכפל הנזכר במור<sup>י</sup>ה הנשאר שהוא ראשון או שני וכן כלם זה פירושם גם לכפול השלישית במורי השנים שהם מורי זה העולה מהכפל כנזכר<br>
 +
ואחר שכל זה לחלק זה העולה אחר שהושווה לשלישי אחר שהושווה
 +
|-
 +
|
 +
:<math>\scriptstyle{\color{OliveGreen}{\frac{a_1}{b_1}:\frac{a_2}{b_2}=X:\frac{a_3}{b_3}\longrightarrow X=\frac{\frac{a_1}{b_1}\sdot\frac{a_3}{b_3}}{\frac{a_2}{b_2}}=\frac{\left(a_1\sdot a_3\right)\sdot b_2}{a_2\sdot\left(b_1\sdot b_3\right)}}}</math>
 +
|
 +
|-
 +
|The integers resulting in the division are proper integers of the unknown and the fractions are fractions of the whole.
 +
|style="text-align:right;"|והיו השלמים היוצאים בחילוק שלמים ממש מהנעלם והשברים שבר שלם
 +
|-
 +
|
 +
*{{#annot:¾·(3-¼)÷⅘·(5-⅕)=⅚·(6-⅙)÷X|567|ELCt}}Example: if 3-quarters of 3 integers minus one-quarter are equal to 4-fifths of 5 integers minus one-fifth, how much five-sixths of 6 integers minus one-sixth are equal?
 +
:<math>\scriptstyle\left[\frac{3}{4}\sdot\left(3-\frac{1}{4}\right)\right]:\left[\frac{4}{5}\sdot\left(5-\frac{1}{5}\right)\right]=\left[\frac{5}{6}\sdot\left(6-\frac{1}{6}\right)\right]:X</math>
 +
|style="text-align:right;"|<big>המשל</big> אם ג' רביעיות מג' שלמים פחות רביע שלם שוים ד' חמישיות מה' שלימים פחות חומש שלם חמש שישיות מו' שלימים פחות שישית שלם כמה שוים{{#annotend:ELCt}}
 +
|-
 +
|
 +
:We make a diagram for each, as follows:
 +
|style="text-align:right;"|נעשה לכל אחד צורה בפנים עצמה כזה
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| &nbsp;|| 4
 +
|-
 +
| 4 || 3 || 2
 +
|-
 +
| 3
 +
|}
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| &nbsp;|| 5
 +
|-
 +
| 5 || 4 || 4
 +
|-
 +
| 4
 +
|}
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| &nbsp;|| 6
 +
|-
 +
| 6 || 5 || 5
 +
|-
 +
| 5
 +
|}
 +
|-
 +
|
 +
::This is because the saying: 3-quarters of 3 integers minus one-quarter, is as the saying: two integers and 3-quarters.
 +
::<math>\scriptstyle{\color{blue}{\frac{3}{4}\sdot\left(3-\frac{1}{4}\right)=\frac{3}{4}\sdot\left(2+\frac{3}{4}\right)}}</math>
 +
|style="text-align:right;"|וזה כי אומרו ג' רביעיות מג' שלימים פחות רביע שלם הוא כאומרו משני שלימי' וג' רביעיות שלם
 +
|-
 +
|
 +
::Also, of 5 [integers] minus one-fifth is as of 4 integers and 4-fifths.
 +
::<math>\scriptstyle{\color{blue}{\frac{4}{5}\sdot\left(5-\frac{1}{5}\right)=\frac{4}{5}\sdot\left(4+\frac{4}{5}\right)}}</math>
 +
|style="text-align:right;"|וכן מהה' פחות חומש הוא כמו מד' &#x202B;<ref>58r</ref>שלמים וד' חמישיות משלם
 +
|-
 +
|
 +
::Also, of six integers minus one-sixth, is as saying: of 5 integers and 5-sixths.
 +
::<math>\scriptstyle{\color{blue}{\frac{5}{6}\sdot\left(6-\frac{1}{6}\right)=\frac{5}{6}\sdot\left(5+\frac{5}{6}\right)}}</math>
 +
|style="text-align:right;"|וכן מששה שלמים פחות שישית כאומרו מה' שלימים וה' שישיות שלם
 +
|-
 +
|After we have determined the proper names of the figures, we decompose and multiply each:
 +
|style="text-align:right;"|ואחרי ששם הצורות כתקנם נעשה לכל אחד פריטה והכאה
 +
|-
 +
|
 +
::In the first figure, we decompose the 2 integers by multiplying them by the denominator of the quarters, which is 4; they are 8-quarters.
 +
|style="text-align:right;"|ובצורה הראשונה נפרוט הב' שלימים ונכפלם במורה הרביעיות והוא ד' ויהיו ח' רביעיות
 +
|-
 +
|
 +
::We add to them the 3 that is beneath it, which are 3-quarters; the result is 11-quarters.
 +
|style="text-align:right;"|ונחבר להם הג' אשר תחתיו שהם ג' רביעיות שלם יעלו י"א רביעיות שלם
 +
|-
 +
|
 +
::Thus, it is as if one says: 3-quarters of 11-quarters, so we multiply 11 by 3; the result is 33, which are 33-quarters of a quarter.
 +
|style="text-align:right;"|והרי הוא כאלו אמרו ג' רביעיות מי"א רביעיות לכן נכה הי"א בג' יעלו ל"ג הלא הם ל"ג רביעי<sup>ו</sup>ת רביעית
 +
|}
 +
::<math>\scriptstyle{\color{blue}{\frac{3}{4}\sdot\left(3-\frac{1}{4}\right)=\frac{3}{4}\sdot\left(2+\frac{3}{4}\right)=\frac{3}{4}\sdot\frac{\left(2\sdot4\right)+3}{4}=\frac{3}{4}\sdot\frac{8+3}{4}=\frac{3}{4}\sdot\frac{11}{4}=\frac{3\sdot11}{4}\sdot\frac{1}{4}=\frac{33}{4}\sdot\frac{1}{4}}}</math>
 +
{|
 +
|-
 +
|
 +
::We do the same with the second; the result is 96-fifths of a fifth.
 +
::<math>\scriptstyle{\color{blue}{\frac{4}{5}\sdot\left(5-\frac{1}{5}\right)=\frac{4}{5}\sdot\left(4+\frac{4}{5}\right)=\frac{96}{5}\sdot\frac{1}{5}}}</math>
 +
|style="width:45%; text-align:right;"|וכן נעש' לשנית ויעלו 96<s>175</s> חמישיות חמישית
 +
|-
 +
|
 +
::Also with the first of the latter; the result is 175-sixths of a sixth.
 +
::<math>\scriptstyle{\color{blue}{\frac{5}{6}\sdot\left(6-\frac{1}{6}\right)=\frac{5}{6}\sdot\left(5+\frac{5}{6}\right)=\frac{175}{6}\sdot\frac{1}{6}}}</math>
 +
|style="text-align:right;"|וכן לראשונה מהאחרות ויעלו 175 שישיות שישית
 +
|-
 +
|
 +
::It is all as if we are asked: if 33-quarters of a quarter are equal to 96-fifths [of a fifth], how much 175-sixths of a sixth are equal?
 +
|style="text-align:right;"|והנה שבא הכל כאלו שאלו לנו אם 33 רביעיות רביעית שוות 96 חמישיות 175 שישיות שישית כמה שוות
 +
|-
 +
|
 +
::Or, the value that 33-quarters of a quarter have to 96-fifths of a fifth, to who do 175-sixths of a sixth have this value?
 +
|style="text-align:right;"|או הערך אשר ל33 רביעיות רביעיות אצל [.] 96 חמישיות חמישית ל175 שישיות שישית אצל מי יש לו זה הערך
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\left[\frac{3}{4}\sdot\left(3-\frac{1}{4}\right)\right]:\left[\frac{4}{5}\sdot\left(5-\frac{1}{5}\right)\right]=\left[\frac{5}{6}\sdot\left(6-\frac{1}{6}\right)\right]:X\longleftrightarrow\left(\frac{33}{4}\sdot\frac{1}{4}\right):\left(\frac{96}{5}\sdot\frac{1}{5}\right)=\left(\frac{175}{6}\sdot\frac{1}{6}\right):X}}</math>
 +
{|
 +
|-
 +
|
 +
:So, we have all the numerators and the denominators decomposed, each by itself.
 +
|style="width:45%; text-align:right;"|והרי לנו כל השברים נפרטים ומורים כל אחד לבדו
 +
|-
 +
|
 +
::Now, we have to multiply the second by the first, i.e. the 96-fifths of a fifth by 571-sixths [of a sixth] without expanding at all, since it is as our saying: 96-fifths of a fifth of 175-sixths of a sixth. We multiply them by each other, i.e. the numerator by the numerator, not by the denominators; the result is 16800-fifths of a fifth of a sixth of a sixth.
 +
|style="text-align:right;"|ויש לנו לכפול הב' בראשון ר"ל הו'ט' חמישיות חמישית 571 <s>שישית</s> שישיות מבלי השואה כלל לפי שהוא כאומרנו 96 חמישיות חמשית מ175 שישיות שישית ונכם זה בזה ר"ל מספר השברים בשברים לא במורים יעלו 16800 חמישיות חמישית ששית ששית
 +
|-
 +
|
 +
::We have to divide them by the first of the formers, which is 33 quarters of a quarter.
 +
|style="text-align:right;"|ויש לנו לחלקם לראשון מהאחדים שהוא ה33 רביעיות רביעית
 +
|-
 +
|
 +
::We have already said in the fourth chapter of this section that if we want, we can expand the dividend and the divisor first, i.e. that we multiply the 16800 that we want to divide by the denominators of the 33 quarters of a quarter, i.e. by 4; the result is 67200. We multiply it by the 4, other denominator; the result is 268800-quarters of a quarter of a fifth [of a fifth] of a sixth [of a sixth]. 
 +
|style="text-align:right;"|וכבר אמרנו בפ"ד מזה החלק שאם נרצה נשוה תחלה המתחלק ואשר נחלק עליו ר"ל שנכפול ה16800 אשר אנו רוצים לחלק במורה ה33 רביעיות רביעית ר"ל בד' ויעלה 67200 ונכפלם בד' המורה האחר ויעלה 268800 רביעיות רביעית חמישית שישית <sup>שישית</sup>
 +
|-
 +
|
 +
::We also multiply the 33-quarters of a quarter, which is the number by which we want to divide, by the denominators of the dividend that are 6 and 5.
 +
|style="text-align:right;"|ונכפול ג"כ ה33 רביעיות &#x202B;<ref>58v</ref>רביעית והוא המספר אשר רצינו לחלק עליו במורי המספר המתחלק והם הו' והה&#x202B;'
 +
|-
 +
|
 +
::After we multiply it one after another, we seek for the divisor of the total product and we divide the dividend, i.e. the 268800, by it.
 +
|style="text-align:right;"|ואחר שנכפלם בזה <sup>זה</sup> אחר זה נבקש מורה כל העולה ונחלק עליהם המספר המתחלק ר"ל ה268800
 +
|-
 +
|
 +
::If we want, we divide by these six denominators, by which we multiply, i.e. the 6 and the 5, one after another.
 +
|style="text-align:right;"|ואם בקשנו לז' [לו]&#x202B;<ref>marg.</ref> אלו המורים אשר נכפול בהם ר"ל הו' והה' ונחלק אליהם אחד <sup>אחד</sup>
 +
|}
 +
:<math>\scriptstyle{\color{blue}{X=\frac{\left(\frac{96}{5}\sdot\frac{1}{5}\right)\sdot\left(\frac{175}{6}\sdot\frac{1}{6}\right)}{\frac{33}{4}\sdot\frac{1}{4}}=\frac{\frac{16800}{5}\sdot\frac{1}{5}\sdot\frac{1}{6}\sdot\frac{1}{6}}{\frac{33}{4}\sdot\frac{1}{4}}=\frac{16800\sdot4\sdot4}{33\sdot5\sdot5\sdot6\sdot6}=\frac{67200\sdot4}{33\sdot5\sdot5\sdot6\sdot6}=\frac{268800}{33\sdot5\sdot5\sdot6\sdot6}}}</math>
 +
{|
 +
|-
 +
|
 +
::The result of the last division is 33, which is the number that we multiply by them one after another. Hence, why should we bother to multiply by it and to divide the product by it needlessly.
 +
|style="width:45%; text-align:right;"|יצא בחילוק האחרון ל"ג שהוא המספר אשר כפלנו בהם אחד אחד ומאחר שכן למה ניגע לבהלה לכפול בהם ולחלק העולה עליהם לבטלה
 +
|-
 +
|
 +
::Therefore, we do not multiply the number, by which we want to divide, i.e. the 33, by the denominators of the dividend, but we take these denominators as the first denominators and we write the 33 itself with them.
 +
|style="text-align:right;"|לכן לא נכפול המספר אשר רצינו לחלק עליו ר"ל ה33 במורי המספר המתחלק אבל נקח המורים ההם למורים ראשונים ונשים עמהם ה33 עצמו
 +
|-
 +
|
 +
::Or, if we want, we seek for its divisors; they are 11 and 3, and we write them instead of it with the mentioned denominators, i.e. the denominators of the number that we want to divide. They are all: 3, 11, 5, 5, 6, 6.
 +
|style="text-align:right;"|או נרצה נבקש לו מורים ויהיו י"א ג' ונשימם במקומו עם המורים הנזכרים ר"ל מורי המספר אשר רצינו לחלק ויהיו כלם 6 6 5 5 11 3
 +
|-
 +
|
 +
::We divide the dividend, which is 268800, by them; that is we reduce them.
 +
|style="text-align:right;"|ונחלק עליהם המספר המתחלק והוא 268800 וזה לעשות להם כלילת יופי
 +
|-
 +
|
 +
::For, if we want, we can say that the unknown of the four proportional terms is 268800-thirds of a fifth [of a fifth] of a sixth [of a sixth] of 11 of the whole.
 +
|style="text-align:right;"|כי אם רצינו יכולנו לו' שהנעלם מהארבעה הנערכים הוא 268800 שלישיות חמישית ששית מאחד עשר בשלם
 +
|-
 +
|
 +
::To know how much it is, we reduce it, which is that we divide it by these denominators; the result is 9 integers, a third of one part of 11 of the whole, and 4-sixths of a third of one part of 11 of the whole.
 +
|style="text-align:right;"|אכן לדעת מה המה אלה נעשה להם כלילת יופי והוא שנחלקם למורים אלו ויעלה ט' שלימים ושלשית חלק אחד מי"א בשלם וד' שישיות שלישית חלק אחד מי"א בשלם
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| 6 || 5 || 5 || 6 || 3 || 11 || rowspan=2 |9
 +
|-
 +
| &nbsp;|| &nbsp;|| &nbsp;|| 4 || 1 || &nbsp;
 +
|}
 +
|}
 +
:<math>\scriptstyle{\color{blue}{X=\frac{268800}{33\sdot5\sdot5\sdot6\sdot6}=\frac{268800}{3\sdot11\sdot5\sdot5\sdot6\sdot6}=\frac{268800}{3}\sdot\frac{1}{5}\sdot\frac{1}{5}\sdot\frac{1}{6}\sdot\frac{1}{6}\sdot\frac{1}{11}=9+\left(\frac{1}{3}\sdot\frac{1}{11}\right)+\left(\frac{4}{6}\sdot\frac{1}{3}\sdot\frac{1}{11}\right)}}</math>
 +
{|
 +
|-
 +
!<span style="color:Green>Check</span>
 +
|
 +
|-
 +
|If you want to check your procedure, multiply the second [of the second pair] that was unknown by the 33 quarters of a quarter, which is first of the first [pair], then divide the product by one of the remaining [numbers]; the result should be the other [remaining number] itself. If not, know that you were wrong.
 +
|style="width:45%; text-align:right;"|<big>ואם</big> תרצה לבחון מעשיך כפול זה השני שהיה נעלם <sup>בל"ג</sup> רביעיות רביעית שהוא הראשון מהאחדים וחלק העולה על אחד מהנשארים ויצא האחר בעינו ואם לא דע שטעית
 +
|-
 +
|
 +
:<math>\scriptstyle{\color{OliveGreen}{a_1:a_2=a_3:X\longrightarrow\begin{cases}\scriptstyle a_2=\frac{X\sdot a_1}{a_3}\\\scriptstyle a_3=\frac{X\sdot a_1}{a_2}\end{cases}}}</math>
 +
|
 +
|-
 +
|
 +
:When we multiply it by 33-quarters of a quarter, it is as our saying: 33-quarters of a quarter of 9 integers and one-third of a part of 11 of the whole; like this:
 +
:<math>\scriptstyle{\color{blue}{\left[9+\left(\frac{1}{3}\sdot\frac{1}{11}\right)+\left(\frac{4}{6}\sdot\frac{1}{3}\sdot\frac{1}{11}\right)\right]\sdot\left(\frac{33}{4}\sdot\frac{1}{4}\right)}}</math>
 +
|style="text-align:right;"|והנה כאשר נכפול זה בל"ג רביעיות רביעית הוא כאומרנו ל"ג רביעיות רביעית מט' שלמים ושלישית חלק מי"א בשלם כזה
 +
|-
 +
|
 +
|style="text-align:right;"|&#x202B;<ref>59r</ref>
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| colspan=2 |&nbsp;|| 6 || 3 || 11
 +
|-
 +
| 4 || 4 || 4 || 1 || &nbsp;
 +
|-
 +
| 33 || 1
 +
|}
 +
|-
 +
|
 +
:We decompose the 9 integers and the fractions that are with it; the result is [1792]-sixths of a third of 11 in the whole; like this:
 +
|style="text-align:right;"|ונפרוט הט' שלמים והשברים אשר עמו ויעלו 7921 ושישיות שלישית מי"א בשלם כזה
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| 4 || 4 || 6 || 3 || 11
 +
|-
 +
| 59136
 +
|}
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\left[9+\left(\frac{1}{3}\sdot\frac{1}{11}\right)+\left(\frac{4}{6}\sdot\frac{1}{3}\sdot\frac{1}{11}\right)\right]\sdot\left(\frac{33}{4}\sdot\frac{1}{4}\right)=\left(\frac{{\color{red}{1792}}}{6}\sdot\frac{1}{3}\sdot\frac{1}{11}\right)\sdot\left(\frac{33}{4}\sdot\frac{1}{4}\right)=\frac{59136}{4}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{11}}}</math>
 +
{|
 +
|-
 +
|
 +
:We divide it by the second of latter, which is 96-fifths of a fifth; the result is the remaining, which is 175-sixths of a sixth.
 +
:<math>\scriptstyle{\color{blue}{\frac{\left[9+\left(\frac{1}{3}\sdot\frac{1}{11}\right)+\left(\frac{4}{6}\sdot\frac{1}{3}\sdot\frac{1}{11}\right)\right]\sdot\left(\frac{33}{4}\sdot\frac{1}{4}\right)}{\frac{96}{5}\sdot\frac{1}{5}}=\frac{175}{6}\sdot\frac{1}{6}}}</math>
 +
|style="width:45%; text-align:right;"|ונחלק לשני מהאחרות והיא 96 חמישיות חמישית ותצא הנשארת שהיא ה175 שישיות שישית
 +
|-
 +
|
 +
:We multiply the dividend, i.e. 59136, by the denominators of 96 that are 5 and 5; the result is 1478400.
 +
:<math>\scriptstyle{\color{blue}{59136\sdot5\sdot5=1478400}}</math>
 +
|style="text-align:right;"|ונכפול המספר המתחלק ר"ל ה59136 במורי ה96 שהם 5 5 ויעלה 1478400
 +
|-
 +
|
 +
:In order not to duplicate the matter as we explained, we do not multiply the 96 by the denominator of the other, but we take them as denominators to divide by them and by the 96.
 +
|style="text-align:right;"|וכדי שלא להכפל הענין כמו שביארנו לא נכפול ה96 במורי האחרת אבל נקחם למורים שנחלק עליה ועל ה96
 +
|-
 +
|
 +
:If we want, we take its divisors that are 2, 8, 6 and write them with the formers.
 +
|style="text-align:right;"|ואם נרצה נקח מוריהם והם 6 8 2 ונשימם עם הראשונים
 +
|-
 +
|
 +
:Since we want to know if the result of division is 175-sixths of a sixth, it is as if we are asked: how many sixth of a sixth result from the division.
 +
|style="text-align:right;"|ולפי שאנו מבקשים לידע אם רצה בחילוק 175 שישיות שישית הרי הוא כאלו שאלו לנו כמה שישיות שישית יצא מהחלוקה
 +
|-
 +
|
 +
:If they were not among our denominators, we would have had to multiply the whole dividend by them, to add them to the other [denominators] and to write them first, as explained above.
 +
|style="text-align:right;"|ואם לא היו במורינו היינו צריכים לכפול כל המספר המתחלק בהם ולהוסיפם על האחרים ולשומם ראשונה כמו שנתבאר למעלה
 +
|-
 +
|
 +
:Since they are among our denominators, we do not need to multiply by them, but only to write them first, like this: 11, 3, 4, 8, 4, 2, 6, 6, and divide by all the latter except for them.
 +
|style="text-align:right;"|<s>אם</s> <sup>אכן</sup> אחרי היותם במורינו לא נצטרך לכפול בהם אבל כי נשימם ראשונה במל[..]ת כזה 6 6 2 4 8 4 3 11 ונחלק על כל האחרונים זולתם
 +
|-
 +
|
 +
::We see that when our division reached to 2, which is the denominator that is close to [the 6] in this diagram, if the result of the division is 175, we know that we were not wrong, because they are sixths of a sixth, provided that nothing remains written from the previous [denominators].
 +
|style="text-align:right;"|ונראה כאשר יגיע אליהם יצא בו בחלוק ר"ל בחלוקנו לב' שהו' המורה הסמוך להם בצורה זו אם יצא בחלוק 175 אז נדע שלא טעינו כי הם שישיות שישית ובלבד שלא ישאר <s>ב</s>לרשום חלוק מהעוברים
 +
|-
 +
|
 +
::To make it easier for us, you already know that the division by the denominators is the same as by their common denominator, so we extract the common denominator of all the denominators except for the 6 and 6 mentioned, by multiplying them one by the other and their product by another and so on; the common denominator is 8448.
 +
|style="text-align:right;"|וכדי להקל מעלינו כבר ידעת כי כך הוא החלק על המורים כעל אמם ונוציא אם כל המורים זולתי ה6 6 הנזכרים וזה בכפול אותם זה בזה והעולה באחר וכן כלם ותהיה האם 8448
 +
|-
 +
|
 +
::If, when we divide our number by 8448, which is the common denominator of all the denominators except for the 6 and 6, the result of division is 175 and nothing remains, we know that we were not wrong.
 +
|style="text-align:right;"|ואם כאשר נחלק מספרינו על ה8448 שהיא אם המורים כלם זולתי ה66 יצא בחילוק &#x202B;<ref>59v</ref>175 ולא ישאר דבר נדע שלא טעינו
 +
|-
 +
|
 +
::We find that if our number is received by multiplying this common denominator by 175, we know that we were not wrong.
 +
|style="text-align:right;"|נמצא שאם היה עולה מספרינו בכפול זאת האם בה'17 נדע שלא טעינו
 +
|-
 +
|
 +
::To make it easier for us, because of the duplication in the division, we multiply the 175 by the common denominator, i.e. 8448, and we know if the result is our number.
 +
|style="text-align:right;"|וכדי להקל מעלינו כי הכפל במעשה החילוק נכפול הה'17 באם ר"ל ב84<sup>4</sup>8 ונדע אם יצא מספרינו
 +
|-
 +
|
 +
:The truth is indeed that the product of 175 by 8448 is [1]478400 and it is our number.
 +
:<math>\scriptstyle{\color{blue}{175\sdot8448={\color{red}{1}}478400}}</math>
 +
|style="text-align:right;"|והאמת כן הוא שכפל הה'17 <sup>ב</sup>8448 יעלה &#x202B;478400 והוא מספרינו
 +
|-
 +
|Examine it. Our whole operation is true. Deduce from this.
 +
|style="text-align:right;"|ובחנהו והנה כל מעשינו אמת והקש על זה
 +
|-
 +
|This is the rule: [to extract] the proportions of fractions is to decompose and multiply each of the three numbers separately, or which ever of these [operations] needed, then multiply the one by the other and divide [the product] by the third.
 +
|style="text-align:right;"|<big>זה הכלל</big> שערכי השברים הוא לעשות לכל א' מהג' מספרים לבדו פריטה והכאה או אשר מהן יצטרך לכפול הראשון בשני ולחלקו בשלישי
 +
|-
 +
|The proof: to multiply the result by the unknown - if it is second [in one of the two pairs], we multiply it by the first of the other [pair]; if the unknown that we generated is first [in one of the two pairs], we multiply it by the second of the other [pair] - then we divide [the product] by one of the two remaining [numbers] and the result should be the other [remaining number].
 +
|style="text-align:right;"|והמופת לכפול היוצא לנו במקום הנעלם אם הוא שני נכפלנו בראשון שאינו ראשון ואם היה <sup>ה</sup>נעלם <span style="text-decoration: line-through; text-decoration-color: red;">אם הוא שני נכפלנו בראשון שאינו ראשון לו ואם היה הנעלם</span> אשר חדשנו ראשון נכפלנו <sup>בשני</sup> שאינו שני לו ונחלקנו לאחד מהנשארים ויצא האחר
 +
|-
 +
|
 +
:<math>\scriptstyle{\color{OliveGreen}{a_1:a_2=a_3:a_4\longrightarrow\begin{cases}\scriptstyle a_1=\frac{a_2\sdot a_3}{a_4}\\\scriptstyle a_2=\frac{a_1\sdot a_4}{a_3}\\\scriptstyle a_3=\frac{a_1\sdot a_4}{a_2}\\\scriptstyle a_4=\frac{a_2\sdot a_3}{a_1}\end{cases}}}</math>
 +
|
 +
|-
 +
|The reason of all this is the same as its reason for integers, since the operation is the same, therefore the reason is the same.
 +
|style="text-align:right;"|וטעם כל זה כטעמו בשלמים כי אם אחר שהמעשה אחד בעצמו גם הטעם אחד בעצמו
 +
|-
 +
|}
 +
{|
 +
|-
 +
|
 +
 
 +
== Chapter Six: Roots ==
 +
|style="width:45%; text-align:right;"|<big>הפרק הששי בשרשים</big>
 +
|-
 +
|<span style=color:Green>The procedure</span>
 +
|
 +
|-
 +
|You will need here also to decompose and multiply your fractions, or whatever is needed of [these operations], then multiply the result again by all the denominators one after another, or by the common denominator.
 +
:<math>\scriptstyle{\color{OliveGreen}{\sqrt{\frac{a}{b}}=\sqrt{\frac{a\sdot b}{b}\sdot\frac{1}{b}}}}</math>
 +
|style="text-align:right;"|גם בזה תצטרך לעשות לשבריך פריטה גם הכאה או מה שיצטרכו מהם והיוצא תשוב תכפול אותו בכל המורים אחד אחד זה אחר זה או באמם
 +
|-
 +
|Be very careful not to add to it what is beneath the denominators, for this is done only when decomposing.
 +
|style="text-align:right;"|ושמור נפשך מאד שמר שלא תחבר לו הנמצא תחת המורי' כי זה לא יעשה כי אם בפריטה
 +
|-
 +
|Extract the root of the whole result, as you do with integers, and the integers resulting [from the extraction of] the root are parts [= numerator] of these denominators.
 +
|style="text-align:right;"|ומכל העולה הוצא השרש <sup>כ</sup>כל כמעשיך בשלימים והשלימים היוצאים בשרש הם חלקים משלם מאלו המורים
 +
|-
 +
|Reduce them, if you wish.
 +
|style="text-align:right;"|ואם תרצה [עשה להם]&#x202B;<ref>marg.</ref> כלילת יופי
 +
|-
 +
|The fractions resulting [from the extraction of] the root are fractions of one part of all these denominators.
 +
|style="text-align:right;"|והשברים היוצאים בשרש הם שברים מחלק אחד מכל אלו המורים בשלם
 +
|-
 +
|
 +
*{{#annot:√(⁴/₆·(4+⁵/₉))|439|FQUg}}Example: we wish to know the root of 4-sixths of 4 integers and 5-ninths.
 +
:<math>\scriptstyle\sqrt{\frac{4}{6}\sdot\left(4+\frac{5}{9}\right)}</math>
 +
|style="text-align:right;"|<big>המשל</big> רצינו לדעת שרש ד' שישיות מד' &#x202B;<ref>60r</ref>שלמים וה' תשיעיות{{#annotend:FQUg}}
 +
|-
 +
|
 +
::Like this:
 +
|style="text-align:right;"|כזה
 +
|-
 +
|
 +
|
 +
{|border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| &nbsp; || 9 || 4
 +
|-
 +
| 6 || 5
 +
|-
 +
|4
 +
|}
 +
|-
 +
|
 +
:The result is 94 units, which are 94 sixths of ninths:
 +
|style="text-align:right;"|<s>ויצאו 94 שלימים שהם 94 שישיות תשיעיות</s>
 +
|-
 +
|
 +
::We decompose the 4 integers: we multiply them by 9; the result is 36 and with the 5, it is 41.
 +
|style="text-align:right;"|נפרוט הד' שלימים ונכפול אותם בט' יעלו 36 ועם ה5 יהיו 41
 +
|-
 +
|
 +
::We multiply it by 4; the product is 164 sixths of a ninth.
 +
|style="text-align:right;"|נכם בד' יעלו 164 שישיות תשיעית כזה
 +
|-
 +
|
 +
::The result is 94 units, which are 94 sixths of ninths and 20 remain.
 +
|style="text-align:right;"|ויצאו 94 שלימים שהם 94 שישיות תשיעיות ונשארו 20
 +
|}
 +
::<math>\scriptstyle{\color{blue}{\sqrt{\frac{4}{6}\sdot\left(4+\frac{5}{9}\right)}=\sqrt{\frac{4}{6}\sdot\frac{\left(4\sdot9\right)+5}{9}}=\sqrt{\frac{4}{6}\sdot\frac{36+5}{9}}=\sqrt{\frac{4}{6}\sdot\frac{41}{9}}=\sqrt{\frac{4\sdot164}{6}\sdot\frac{1}{9}}=\sqrt{\frac{164}{6}\sdot\frac{1}{9}}\approx\left(\frac{94}{6}\sdot\frac{1}{9}\right)+\left(\frac{20}{94\sdot2}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)}}</math>
 +
{|
 +
|-
 +
|
 +
::If you want to come closer to the truth, double the root, which is 94, then divide by it, in the way of the integers, that is that we divide double the 94, which is 188, by 20; the result is 9 and 8 remain.
 +
::<math>\scriptstyle{\color{blue}{\frac{94\sdot2}{20}=\frac{188}{20}=9+\frac{8}{20}}}</math>
 +
|style="width:45%; text-align:right;"|<big>ואם</big> רצית להתקרב אל האמת כפול השרש שהוא 94 וחלקם עליהם<br>
 +
ויעלה בדרך האחדות והוא שנחלק כפל ה94 שהוא 188 ל20 ועלו ט' ונשארו ח&#x202B;'
 +
|-
 +
|
 +
::We add 1 to the 9; it is 10, which is the denominator, so it is one-tenth. We subtract the remaining 8 from 20; 12 remain, which are parts of 188 of a tenth.
 +
|style="text-align:right;"|הוספנו א' מעל הט' היה 10 שהוא מורה עשירית אחת ונחסר הח' הנותרים מן ה20 נשארו י"ב שהם חלקים מ188 ומעשירית
 +
|-
 +
|
 +
::The denominator 188 is 47 [times 4], so the 12 are 12 quarters of a part of 47 of a tenth.
 +
|style="text-align:right;"|ומורה ה188 והם <s>47</s> [874]&#x202B;<ref>marg.</ref> והנה הי"ב הם י"ב רביעיות חלק ממ"ז בעשירית כזה
 +
|-
 +
|
 +
::We reduce them by dividing them by 4; the result is 3 and nothing remains. Since it is less than 47 we write it beneath it.
 +
|style="text-align:right;"|נעשה להם כלילת יופי והוא שנחלקם לד' יצאו ג' ולא ישאר דבר ואחר שהם פחות מהמ"ז נשימם תחתיו כזה
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| 4 || 47 || 10
 +
|-
 +
| &nbsp;|| 3 || 1
 +
|}
 +
|}
 +
::<math>\scriptstyle{\color{blue}{\frac{20}{94\sdot2}=\frac{20}{188}=\frac{1}{9+1}+\frac{20-8}{\left(9+1\right)\sdot188}=\frac{1}{10}+\left(\frac{12}{188}\sdot\frac{1}{10}\right)=\frac{1}{10}+\left(\frac{12}{4}\sdot\frac{1}{47}\sdot\frac{1}{10}\right)=\frac{1}{10}+\left(\frac{3}{47}\sdot\frac{1}{10}\right)}}</math>
 +
{|
 +
|-
 +
|
 +
::We receive that the whole root is 94, a tenth and 3 parts of 47 of a tenth and all these are parts of a sixth of a ninth as mentioned.
 +
|style="width:45%; text-align:right;"|הנה עלה לנו כל השרש 94 ועשירית וג' חלקים מ47 מעשירית וכל אלו <sup>הם</sup> חלקים משישית תשיעית כנזכר
 +
|-
 +
|
 +
::Hence, the resulting root is 94 sixths of a ninth, a tenth of a sixth of a ninth, and 3 parts of 47 of a tenth of a ninth. Like this:
 +
|style="text-align:right;"|א"כ השרש היוצא הוא 94 שישיות תשיעית ועשירית שישית תשיעית וג' חלקים ממ"ז מעשירית שישית תשיעית כזה
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| 47 || 10 || 6 || 9
 +
|-
 +
| 3 || 1 || 94 || &nbsp;
 +
|}
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\sqrt{\frac{4}{6}\sdot\left(4+\frac{5}{9}\right)}\approx\left(\frac{94}{6}\sdot\frac{1}{9}\right)+\left(\frac{20}{94\sdot2}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)&\scriptstyle=\left(\frac{94}{6}\sdot\frac{1}{9}\right)+\left[\left[\frac{1}{10}+\left(\frac{3}{47}\sdot\frac{1}{10}\right)\right]\sdot\frac{1}{6}\sdot\frac{1}{9}\right]\\&\scriptstyle=\left(\frac{94}{6}\sdot\frac{1}{9}\right)+\left(\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{3}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)\\\end{align}}}</math>
 +
{|
 +
|-
 +
|
 +
::We reduce the 94; the result is 1 whole, which is a true integer, and 6-ninths, which are two-thirds, and 4-ninths of sixths, we also have a tenth of a sixth of a ninth, and 3 parts of 47 of a tenth of a sixth of a ninth. Like this:
 +
|style="width:45%; text-align:right;"|ונעשה כלילת יופי ל94 ויעלה א' לשלם וזהו שלם באמת ועוד ו' תשיעיות שהם שני שלישיות ועוד ד' תשיעיות שישיות ויש לנו עוד עמהם עשירית שישית <sup>תשיעית</sup> וג' חלקים ממ"ז מעשירית ששית תשיעית כזה
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\sqrt{\frac{4}{6}\sdot\left(4+\frac{5}{9}\right)}\approx\left(\frac{94}{6}\sdot\frac{1}{9}\right)+\left(\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{3}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)&\scriptstyle=1+\frac{6}{9}+\left(\frac{4}{6}\sdot\frac{1}{9}\right)+\left(\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{3}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)\\&\scriptstyle=1+\frac{2}{3}+\left(\frac{4}{6}\sdot\frac{1}{9}\right)+\left(\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{3}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)\\\end{align}}}</math>
 +
{|
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| 47 || 10 || 6 || 9
 +
|-
 +
| 3 || 1 || 4 || 6
 +
|}
 +
|-
 +
|
 +
:This is an approximate root.
 +
|style="text-align:right;"|וזהו השרש הקרוב
 +
|-
 +
|
 +
=== <span style=color:Green>Check</span> ===
 +
 
 +
|
 +
|-
 +
|
 +
::If you want to check it, multiply it by itself and see if it gets close to the sought after, which is 1[64] sixths of a ninth plus one, as the square of the fractions that we added to the first approximate root of the fractions that we extracted.
 +
|style="width:45%; text-align:right;"|<big>ואם</big> תרצה לבחון אותו כפול אותו על עצמו וראה אם {{#annot:term|1612,1874|Y7il}}יתקרב לנשאל{{#annotend:Y7il}} שהוא 146 שישיות תשיעית &#x202B;<ref>60v</ref>בתוספת אחד בכמו מרובע השברים אשר הוספנו על שרש השברים הראשון אשר הוצאנו
 +
|-
 +
|
 +
::The tenth of a sixth of a ninth, and 3 parts of 47 of a tenth of a sixth of a ninth, whose square, i.e. their product by themselves, after decomposing, is 2500 parts of 47 of a tenth of a sixth of a ninth of 47 of a tenth of a ninth.
 +
|style="text-align:right;"|והעשירית שישית תשיעית וג' חלקי' ממ"ז מעשירית שישית תשיעית שמרובעם ר"ל כפלם בעצמם אחר הפריטה יעלה 2500 חלקים ממ"ז מעשירית שישית תשיעיות ממ"ז מעשירית תשיעית
 +
|-
 +
|
 +
::When you reduce them, the result is 4-ninths of 47 of 47 of a sixth of a ninth and one-sixth of a ninth of 47 of 47 of a sixth of a ninth.
 +
|style="text-align:right;"|וכאשר תעשה להם כלילת יופי יעלה ד' תשיעיות ממ"ז ממ"ז משישית תשיעית ושישית מתשיעית ממ"ז ממ"ז מששית תשיעית
 +
|}
 +
::<math>\scriptstyle{\color{blue}{\left[\left(\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{3}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)\right]^2=\frac{2500}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\sdot\frac{1}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}=\left(\frac{4}{9}\sdot\frac{1}{47}\frac{1}{47}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{1}{6}\sdot\frac{1}{9}\sdot\frac{1}{47}\sdot\frac{1}{47}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)}}</math>
 +
{|
 +
|-
 +
|
 +
::The decomposition of this root yields 44230 parts of 47 of a tenth of a sixth of a ninth.
 +
|style="width:47%; text-align:right;"|והנה פריטת זה השרש יעלה 44230 חלקים מחלק ממ"ז מעשירית משישית תשיעית
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\sqrt{\frac{4}{6}\sdot\left(4+\frac{5}{9}\right)}\approx1+\frac{2}{3}+\left(\frac{4}{6}\sdot\frac{1}{9}\right)+\left(\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{3}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)=\frac{44230}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}}}</math>
 +
{|
 +
|-
 +
|
 +
::When we multiply it by itself, it is as if we say: 44230 parts of 47 of a tenth of a sixth of a ninth of 44230 parts of 47 of a tenth of a sixth of a ninth, like this:
 +
|style="width:45%; text-align:right;"|וכאשר נכפול זה על עצמו הוא כאומרנו 44230 חלקים מחלק מ"ז מעשירית שישית תשיעית &#x202B;[מ442300 חלקים מחלק מ"ז מעשירית ששית תשיעית כזה]&#x202B;<ref>marg.</ref> כזה
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| colspan=4 |&nbsp;|| 47 || 10 || 6 || 9
 +
|-
 +
| 47 || 10 || 6 || 9 || 44230
 +
|-
 +
| 44230
 +
|}
 +
|-
 +
|
 +
::We multiply the 44230 [by itself]; the result is 195629[29]00 parts of 47 of a tenth of a sixth of a ninth of a part of 47 of a tenth [of a sixth] of a ninth, like this:
 +
|style="text-align:right;"|ונכה ה44<s>2</s>320 [44230]&#x202B;<ref>marg.</ref> ויעלה 19562900 חלקים מחלק מ"ז מעשירית שישית תשיעית מחלק מ"ז מעשירית תשיעית בשלם כזה
 +
|-
 +
|
 +
|
 +
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 +
|-
 +
| 47 || 10 || 6 || 9 || 47 || 10 || 6 || 9
 +
|-
 +
| 1956292900
 +
|}
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left[1+\frac{2}{3}+\left(\frac{4}{6}\sdot\frac{1}{9}\right)+\left(\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{3}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)\right]^2&\scriptstyle=\left(\frac{44230}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)^2=\frac{44230}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\sdot\frac{44230}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\\&\scriptstyle=\frac{1956292900}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\sdot\frac{1}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\\\end{align}}}</math>
 +
{|
 +
|-
 +
|
 +
::We reduce them, i.e. we divide them by all these denominators until reaching the first denominators 9 and 6. When we reach them, we know how many sixths of ninths they are, whether it is the required number, which is 164 sixths of a ninth plus the square of the additional mentioned fractions. The result of what we have is 164 sixths of a ninth plus 4-ninths of [a part of] 47 of [a part of] 47 of a sixth of a ninth and this excess is indeed equal to the square of the fractions that are added in the root to the first approximate root of the fractions. Thus, your calculation was correct.
 +
|style="width:45%; text-align:right;"|ונעשה להם כלילת יופי ר"ל שנחלקנו לכל המורים האלו עד הגיענו אל הט' והו' המורים הראשונים ובהיגיענו שם נדע כמה שישית תשיעיות יעלה אם יגיע למספר הנשאל שהוא 164 שישיות תשיעית ועוד מרובע השברים הנוספים הנזכרים כנזכר ואשר עלינו זה עלה 164 שישיות תשיעית ועוד ד' תשיעיות ממ"ז ממ"ז [נ' ד'&#x202B;]&#x202B;<ref>marg.</ref> משישית תשיעית וזה התוספת שוה ממש למרובע השברים הנוספים בשרש על שרש השברים אשר יצא ראשונה והיה כל &#x202B;<ref>61r</ref>מלאכתך אמת
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left[1+\frac{2}{3}+\left(\frac{4}{6}\sdot\frac{1}{9}\right)+\left(\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{3}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)\right]^2&\scriptstyle=\frac{1956292900}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\sdot\frac{1}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\\&\scriptstyle=\left(\frac{164}{6}\sdot\frac{1}{9}\right)+\left[\left(\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{3}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)\right]^2\\&\scriptstyle\left(\frac{164}{6}\sdot\frac{1}{9}\right)+\left(\frac{4}{9}\sdot\frac{1}{47}\frac{1}{47}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{1}{6}\sdot\frac{1}{9}\sdot\frac{1}{47}\sdot\frac{1}{47}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)\\\end{align}}}</math>
 +
{|
 +
|-
 +
|We also get from this that what we have said in chapter seven of the first section is verified that when we divide the remainder by double the [approximate] root without another addition, the square of the latter exceeds the required number by the square of the additional fractions and it is always like that.
 +
:<math>\scriptstyle{\color{blue}{\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)=\left(\frac{b}{2a}\right)^2}}</math>
 +
|style="width:45%; text-align:right;"|ויצא לנו עוד מזה שנתאמת מה שאמרנו בפ"ז מהחלק הא' שכאשר נחלק הנשאר על כפל השרש מבלי תוספת אחר שיעדף המרובע האחרון על החשבון הנשאל כמרובע השברי' הנוספים וכן יהיה בכל פעם ופעם דוק ותשכח
 +
|-
 +
|
 +
=== <span style=color:Green>Reasons</span> ===
 +
 
 +
|
 +
|-
 +
|<span style=color:Green>The reason for multiplying the numerator by the denominators</span>
 +
|
 +
|-
 +
|The reason we say that after decomposing we multiply the decomposed number by all the denominators is in order that the square will be duplicate parts of these denominators.
 +
:<math>\scriptstyle{\color{OliveGreen}{\sqrt{\frac{a}{b}}=\sqrt{\frac{a\sdot b}{b^2}}}}</math>
 +
|style="text-align:right;"|<big>וטעם</big> אמרנו שאחר הפריטה נכה המספר הפריטה בכל המורים הוא כדי שיהיה זה המרובע חלקים מאלו המורים פעמים ר"ל נשנים
 +
|-
 +
|
 +
:*If they were quarters, they are now quarters of a quarter.
 +
::<math>\scriptstyle{\color{blue}{\left(\frac{1}{4}\right)^2=\frac{1}{4}\sdot\frac{1}{4}}}</math>
 +
|style="text-align:right;"|שאם היו רביעיות יהיו עתה רביעיות רביעית
 +
|-
 +
|
 +
:*If they were fifths of a quarter, they are now fifths of a quarter of a fifth of a quarter.
 +
::<math>\scriptstyle{\color{blue}{\left(\frac{1}{5}\sdot\frac{1}{4}\right)^2=\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{4}}}</math>
 +
|style="text-align:right;"|ואם היו חמישיות רביעית יהיו עתה חמישיות רביעית חמישית רביעית
 +
|-
 +
|
 +
:And so on.
 +
|style="text-align:right;"|וכן לעולם
 +
|-
 +
|We need this because the denominators of the root are always duplicated as the denominators of the square.
 +
|style="text-align:right;"|והוצרכנו לזה לפי שמורי השרש לעולם הם {{#annot:term|358,2034|p9UV}}נשנים{{#annotend:p9UV}} במורי המרובע
 +
|-
 +
|
 +
:*If the root is, for instance, 2-quarters, the square is 4-quarters of a quarter.
 +
::<math>\scriptstyle{\color{blue}{\left(\frac{2}{4}\right)^2=\frac{4}{4}\sdot\frac{1}{4}}}</math>
 +
|style="text-align:right;"|וזה שאם השרש ע'ד'מ' ב' רביעיות יהיה המרובע ד' רביעיות [רביעית]
 +
|-
 +
|
 +
:*If the root is 2-fifths of a quarter, the square is 4-fifths of a quarter of a fifth of a quarter.
 +
::<math>\scriptstyle{\color{blue}{\left(\frac{2}{5}\sdot\frac{1}{4}\right)^2=\frac{4}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{4}}}</math>
 +
|style="text-align:right;"|ואם יהיה השרש ב' חמישיות רביעית יהיה המרובע ד' חמישיות רביעית חמישית רביעית
 +
|-
 +
|
 +
:The reason for that is that the multiplication of fractions, which is as our saying, for instance, the product of 2-quarters by 2-quarters, is as our saying 2-quarters of 2-quarters, as we explained above.
 +
|style="text-align:right;"|והטעם בזה לפי שהכפל בשברים שהוא אומרנו ע'ד'מ' כפל ב' רביעיות בב' רביעיות הוא כאומרנו ב' רביעיות מב' רביעיות כמו שביארנו למעלה
 +
|-
 +
|
 +
:*To know how many quarters of a quarter they are, we have to multiply 2 by 2.
 +
::<math>\scriptstyle{\color{blue}{\frac{2}{4}\times\frac{2}{4}=\frac{2\sdot2}{4}\sdot\frac{1}{4}}}</math>
 +
|style="text-align:right;"|ולדעת כמה רביעיות רביעית הם יש לנו להכות הב' בב&#x202B;'
 +
|-
 +
|I.e. the number of fractions of the root is multiplied by itself, like our method [in calculating] the square of an integer, as the number of the parts and their duplication.
 +
:<math>\scriptstyle{\color{OliveGreen}{\left(\frac{a}{b}\right)^2=\frac{a\sdot a}{b^2}}}</math>
 +
|style="text-align:right;"|ר"ל <s>ה</s>מספר שברי השרש בעצמם כדרכנו במרובע השלמים [כי מרובע השלמים במרובע השלמים&#x202B;]&#x202B;<ref>marg.</ref> כמספר החלקים ו{{#annot:term|156,2050|KoBz}}השינוי{{#annotend:KoBz}} בהם
 +
|-
 +
|Because, in integers, the number of the root and the number of the square are of one type, i.e. they are both integers.
 +
|style="text-align:right;"|כי בשלמים מספר השרש ומספר המרובע הם ממין אחד ר"ל שהם שלימים
 +
|-
 +
|Therefore, the square [of an integer] is always greater than the root.
 +
:<math>\scriptstyle{\color{OliveGreen}{n>1\longrightarrow n^2>n}}</math>
 +
|style="text-align:right;"|ולזה יהיה לעולם גדול המרובע מהשרש
 +
|-
 +
|Likewise, every product of an integer by a number.
 +
:<math>\scriptstyle{\color{OliveGreen}{n,m>1\longrightarrow n\times m>n}}</math>
 +
|style="text-align:right;"|וכן כל כפל מספר שלם במספר
 +
|-
 +
|Even if it is a product of integers by fractions.
 +
:<math>\scriptstyle{\color{OliveGreen}{n>1\longrightarrow n\times\frac{a}{b}>\frac{a}{b}}}</math>
 +
|style="text-align:right;"|ואף אם יהיה כפל שלימים בשברים
 +
|-
 +
|Since the number increases by multiplication, but the type [of number] does not change.
 +
:<math>\scriptstyle{\color{OliveGreen}{n,m>1\longrightarrow n\times m>n}}</math>
 +
:<math>\scriptstyle{\color{OliveGreen}{n\times\frac{a}{b}=\frac{n\sdot a}{b}>\frac{a}{b}}}</math>
 +
|style="text-align:right;"|וזה לפי שהמספר מתרבה בכפל והמין אינו משתנה
 +
|-
 +
|
 +
::For, when you say, for example: multiply 3 integer by 4 integers or by 4-fifths, it is as your saying: multiply 3 times 4 integers, or 4-fifths. So, the number increases, but the type does not change.
 +
|style="text-align:right;"|כי כאשר תאמר ע'ד'מ' כפול ג' שלמים בד' שלימים או בד' חמישיות הוא כאומרך כפול ג' פעמים ד' שלימים או ד' חמישיות הנה שהמספר מתרבה והדין לא ישתנה
 +
|-
 +
|
 +
::But, in fractions, our saying: multiply 2-quarters by 3-fifths, is as our saying: two-quarters of a time.
 +
|style="text-align:right;"|אבל בשברים אומרנו כפול ב' רביעיות בג' חמישיות הוא כאומרנו שני רביעיות פעם
 +
|-
 +
|
 +
::And our saying: multiply one-quarter by 3-fifths, is as our saying: 3-fifths one-quarter of a time, which is 3-fifths of a quarter.
 +
|style="text-align:right;"|ואם &#x202B;<ref>61v</ref>אומרנו כפול רביעית אחת בג' חמישיות הוא כאומרנו ג' חמישיות רביעית פעם והוא ג' חמישיות רביעית
 +
|-
 +
|
 +
::While our saying: [by] two-quarters, is by twice a quarter of a time, so each time is 3-fifth of a quarter, thus 2-quarters [by 3-fifths] are 6-fifths of a quarter.
 +
|style="text-align:right;"|ואולם אומרנו שני רביעיות יהיה בב' פעמים רביעית פעם וכל פעם הוא ג' חמישיות רביעית הנה הב' רביעיות יהיו ו' חמישיות רביעית
 +
|-
 +
|The number is increasing through the multiplication of the numerator by the numerator.
 +
|style="text-align:right;"|וכן לעולם יתרבה המספר בכפל [מספר השברים במספר&#x202B;]&#x202B;<ref>marg.</ref> <s>משבר</s> השברים
 +
|-
 +
|The result is [a fraction] of the denominators of both multiplicands together, as in our example, which are fifths of a quarter.
 +
:<math>\scriptstyle{\color{OliveGreen}{\frac{a}{b}\times\frac{c}{d}=\frac{a\sdot b}{b\sdot d}}}</math>
 +
|style="text-align:right;"|ויהיה העולה מכל <s>שני</s> מורי שני המספרים הנכפלים יחד כבמשלנו זה שהם חמישיות רביעיות
 +
|-
 +
|Hence the numerator of the square is a square of the numerator of the root, exactly as it is in integers.
 +
:<math>\scriptstyle{\color{OliveGreen}{\left(\frac{a}{b}\right)^2=\frac{a^2}{b^2}}}</math>
 +
|style="text-align:right;"|ולזה יהיה מספר שברי המרובע כמרובע מספר שברי השרש כדרכו בשלם שוה בשוה
 +
|-
 +
|But, the denominators are duplicated, since we multiply the root by its similar, and the denominators of both are twice the denominator of one, because they are equal, and the reason of all this is clear.
 +
|style="text-align:right;"|אבל כי המורים נשנים לפי שאנו כופלים השרש בכמותו ומורי שניהם יהיה כפל מורי האחד כי שוים הם במורים וכל זה ברור בטעם
 +
|-
 +
|It becomes clear also when we multiply a surface.
 +
|style="text-align:right;"|גם זה יתבאר בשאנו כופלים ב{{#annot:term|814,1310|5Pke}}שטח{{#annotend:5Pke}}
 +
|-
 +
|For, when we say about the surface: 3 times 4, it as our saying that the length is 4 [and the width is 4].
 +
:<math>\scriptstyle{\color{blue}{3\times4}}</math>
 +
|style="text-align:right;"|כי כאשר אנו או[מרי]ם בשטח ג' פעמים ד' הוא כאומרנו שיש ב{{#annot:term|316,1489|x8jj}}ארך{{#annotend:x8jj}} ד&#x202B;'
 +
|-
 +
|If its width were only 1, it would have been only 4.
 +
:<math>\scriptstyle{\color{blue}{4\times1=4}}</math>
 +
|style="text-align:right;"|ואלו לא היה ברחבו כי אם א' לא היו כי אם ד&#x202B;'
 +
|-
 +
|Since every unit that we note in the surface has 1 in length and 1 in width.
 +
|style="text-align:right;"|לפי שכל אחד שאנו אומרים בשטח הוא שיהיה לו א' באורך וא' ב{{#annot:term|317,1488|Ykal}}רוחב{{#annotend:Ykal}}
 +
|-
 +
|Likewise in the solid: 1 in length, 1 in width, and 1 in height.
 +
|style="text-align:right;"|וכן ב{{#annot:term|587,1850|eHwo}}גשם{{#annotend:eHwo}} א' ב{{#annot:term|316,1489|wbTk}}אורך{{#annotend:wbTk}} וא' ברוחב ואחד ב{{#annot:term|1111,1490|B53n}}גובה{{#annotend:B53n}}
 +
|-
 +
|Therefore, the square of one does not increase and neither the cube, for our saying: one, concerning the surface, is as our saying: one square, and the same concerning the cube solid.
 +
:<math>\scriptstyle{\color{blue}{1=1^2=1^3}}</math>
 +
|style="text-align:right;"|לזה לא יתרבה מרובע האחד ולא גם המעוקב כי אומרנו אחד בשטח הוא כאומרנו אחד {{#annot:term|590,1263|LjAq}}מרובע{{#annotend:LjAq}} וכן ב{{#annot:term|1102,1828|n3HE}}גשם מעוקב{{#annotend:n3HE}}
 +
|-
 +
|When it is 4 in length and 3 in width, it is as 3 stripes of 4, which is as our saying: 3 times 4, and so on.
 +
:<math>\scriptstyle{\color{blue}{3\times4}}</math>
 +
|style="text-align:right;"|וכאשר היו ד' באורך וג' ברוחב הרי הם ג' רצועות של ד' ד' והוא כאומרנו ג' פעמים ד' <s>ול</s> וכן לעולם
 +
|-
 +
|But, when we multiply a fraction by a fraction:
 +
|style="text-align:right;"|אבל כשא[א]&#x202B;<ref>marg.</ref>נו כופלים שבר בשבר
 +
|-
 +
|
 +
:*Example: 3-quarters by 4-fifths, it is as our saying that its length is 4-fifths of the whole and its width is 3-quarters of the whole.
 +
::<math>\scriptstyle{\color{blue}{\frac{3}{4}\times\frac{4}{5}}}</math>
 +
|style="text-align:right;"|המשל ג' רביעיות בד' חמישיות הוא כאומרנו שארכו ד' חמישיות השלם ורחבו ג' רביעיות השלם
 +
|-
 +
|
 +
::If its length were a whole unit, [its area] were 3-quarters of the whole, because the whole square lacks the quarter that is subtracted from its width. This is understandable with a bit of study.
 +
::<math>\scriptstyle{\color{blue}{\frac{3}{4}\times1=1-\frac{1}{4}=\frac{3}{4}}}</math>
 +
|style="text-align:right;"|ואם ארכו אחד שלם היה ג' רביעיות שלם כי מן השלם המרובע חסר הרביע שנפצל מרחבו וזה מובן במעט עיון
 +
|-
 +
|
 +
::But, since a fifth is subtracted from its length also, it is as subtracting from 3-quarters their fifth and their 4-fifths remain. So the area is 4-fifths of 3-quarters and each fifth of them is a fifth of 3-quarters, which is three-quarters of a fifth. For, a fifth of a quarter is as a quarter of a fifth. Therefore, the 4-fifths of 3-quarters are 4 times 3-quarters of a fifth, which are 12 [fifths of a quarter].
 +
::<math>\scriptstyle{\color{blue}{\frac{3}{4}\times\frac{4}{5}=\frac{3}{4}-\left(\frac{1}{5}\sdot\frac{3}{4}\right)=\left(\frac{1}{5}\sdot\frac{3}{4}\right)\sdot4=4\sdot\left(\frac{3}{4}\sdot\frac{1}{5}\right)=\frac{12}{4}\sdot\frac{1}{5}}}</math>
 +
|style="text-align:right;"|אבל לפי שמארכו נפצל ג"כ חמישיתו הנה הוא כמי שהסיר מהג' רביעיות חמישיתם ונשארו ד' חמישיותיהם הנה השטח הוא ד' חמישיות מג' רביעיות [וכל חמישית מהם היא חמישית ג' רביעיות שהוא כשלש רביעיות חמישית כי כך הוא חמישית רביעית כרביעית חמישית א"כ הד' החמישיות מג' רביעיות הם ד' פעמים&#x202B;]&#x202B;<ref>marg.</ref> הם ד' פעמים ג' רביעיות &#x202B;<ref>62r</ref>רביעיות חמישית שהם י"ב
 +
|-
 +
|Therefore, we multiply the numerator by the numerator, [when extracting] the root, and it all comes down to the same thing.
 +
|style="text-align:right;"|ולזה אנו כופלים בהכאה מספר השברים במספר השברים וכן בשרש והכל עולה לענין אחד
 +
|-
 +
|After we have explained that the denominators of the square are the duplication of the denominators of the root and that the numerator of the square is as the square of the numerator of the root, it is clear that if the square has duplicated denominators, i.e. 4 and 4, or 5 and 5 etc., we do not need to multiply by the denominators, but to extract the root of the numerator alone, as in the way of the integers, and the denominators of the root are half the denominators of the square. So, we divide [the root of the numerator] by half the denominators [of the square].
 +
:<math>\scriptstyle{\color{OliveGreen}{\left(\frac{a}{b}\right)^2\longrightarrow\sqrt{\frac{a}{b}\sdot\frac{1}{b}}=\frac{\sqrt{a}}{b}}}</math>
 +
|style="text-align:right;"|ואחר שביארנו שמורי המרובע הם נשנים ממורי השרש ומספר שברי המרובע הוא כמרובע מספר שברי השרש נתבא' שאם היו לזה המרובע מורים נכפלים ר"ל ד'ד' או ה'ה' וכדומה לזה שלא היינו צריכים לכפול במורי<s>ו</s><sup>ם</sup> כי אם להוציא השרש לבד מהמספר שב[..]ו כ[ער]ך בשלמים ומורי השרש היוצא היו חצי מורי<s>ו</s> המרובע ונחלקנו אליהם ר"ל לחצי מוריו
 +
|-
 +
|Even if not all [the denominators] are duplicate, but each of those that are not twice in it are multiplied by themselves, i.e. they are squares as 4, or 9, take the root of that denominator of the square as a denominator of the root, i.e. 2 instead of 4, 3 instead of 9. Because you can write 2 and 2 as the denominators of the square, instead of the 4, or 3 and 3 instead of 9, then you take one of them for the root and all this is clear.
 +
:<math>\scriptstyle{\color{OliveGreen}{\sqrt{\frac{a}{b^2}}=\frac{\sqrt{a}}{b}}}</math>
 +
:*<math>\scriptstyle{\color{blue}{\sqrt{\frac{a}{9}}=\frac{\sqrt{a}}{3}}}</math>
 +
:*<math>\scriptstyle{\color{blue}{\sqrt{\frac{a}{4}}=\frac{\sqrt{a}}{2}}}</math>
 +
|style="text-align:right;"|וכן אפי' אם לא היו כלם כפולים אבל שכל אחד מאשר אינם בו פעמים הוא כפול ר"ל כי אם הם כפולים בעצמם ר"ל שהם מרובעים כד' או כט' תקח שרש המורה ההוא אשר למרובע במקומו למורה השרש ר"ל הב' במקום ד' והג' במקו' הט' וזה שהרי בידיך לשום כמורי המרובע במקום הד' השנים או במקום הט' ג'ג' ותקח אחד מהם בשרש וכל זה ברור
 +
|-
 +
|This will be further explained in the chapter on factorization that is in a section I intend to write the end of the book.
 +
|style="text-align:right;"|ויתבאר עוד במאמ' ההתכה אשר בכלל אשר ייעדתי לשום בסוף הספר
 +
|-
 +
|If there are of those and of those, multiply the numerator by those that are not duplicate and are not squares, and add them to half those that are duplicate and to the roots of the square denominators that you take instead of them. Divide the integer resulting in the root by them and the fractions resulting in the root are parts of one part of these denominators, by which you divide the integers of the root. 
 +
:<math>\scriptstyle{\color{OliveGreen}{\sqrt{\frac{a}{b^2\sdot c}}=\sqrt{\frac{a\sdot c}{b^2\sdot c^2}}=\frac{\sqrt{a\sdot c}}{b\sdot c}}}</math>
 +
|style="text-align:right;"|ואם יהיו שם מאלו ומאלו תכפול מספר שברי המרובע באשר אינם נכפלים ולא מרובעים ותוסיפם על חצי הנכפלים ושרשי המורים המרובעים אשר לקחת במקו<sup>מם</sup> ועליהם תחלק השלימים היוצאים בשרש והשברים היוצאים בשרש הם חלקים מחלק אחד מאלו המורים אשר להם תחלק שלימי השרש
 +
|-
 +
|All is clarified in practice and reason.
 +
|style="text-align:right;"|והכל נתבאר במעשה ובטעם
 +
|-
 +
|In order not to confuse you by examining if they are duplicate and taking their half, or taking the roots of the squares, I instruct you to multiply it by all [the denominators], so that the required square has now twice the denominators that it had originally and we divide the numerator by [the denominators] it had originally that are half of those it has now.
 +
:<math>\scriptstyle{\color{OliveGreen}{\sqrt{\frac{a}{b^2}}=\sqrt{\frac{a\sdot b^2}{b^2\sdot b^2}}=\frac{\sqrt{a\sdot b^2}}{b\sdot b}}}</math>
 +
|style="text-align:right;"|אכן כדי שלא לבלבלך בזה לראות אם הם נכפלים ולקחת חציים או לקחת מהמרובעים שרשם במקומם <s>ציויתיך</s> <sup>צויתיך</sup> לכפלו בכלם ויהיו לו ר"ל למרובע הנשאל כפל המורים אשר לו עתה ונחלק מספר &#x202B;<ref>62v</ref>שברי השרש לאשר לו בתחלה שהם חצי מאשר לו עתה
 +
|-
 +
|It is best for you to bother, even if it is not necessary, so as not to get confused, if you are not well versed in the procedure.
 +
|style="text-align:right;"|וטוב שתטרח ואם לו לצורך כדי שלא תתבלבל אם אינך בקי במלאכה
 +
|-
 +
|But, if you see your self deserve to be prayer leader, a Cohen who lifts his hands, you can make the procedure easier for you.
 +
|style="text-align:right;"|ואם ראית בעצמך שאתה ראוי להיות <s>שצו</s> ש'צ' כהן הנושא כפיו תוכל להקל מעליך העבודה ואתה רשאי ולא אני
 +
|-
 +
|}
 +
{|
 +
|-
 +
|
 +
 
 +
== <span style=color:Green>General Rules for Operations with Fractions</span> ==
 +
|
 +
|-
 +
|After we have completed the six chapters on fractions, we start with all that we have designated that is beneficial to all.
 +
|style="width:45%; text-align:right;"|ואחר אש' השלמנו הו' פרקים אשר בשברים נתחיל בכל אשר ייעדנו שהוא מועיל לכלם
 +
|-
 +
|
 +
=== <span style=color:Green>Finding the Common Denominator</span> ===
 +
|
 +
|-
 +
|The rule that is useful for all fractions.
 +
|style="text-align:right;"|<big>הכלל המועיל</big> לכל השברים
 +
|-
 +
|If you wish to solve all the issues of the chapters on fractions perfectly, seek for one great denominator that includes all the numbers, i.e. a common denominator for all their denominators in question, by which you will clearly find everything you want, i.e. you will be able to find through this common denominator how much is the quarter, the fifth, or any of the fractions you need.
 +
|style="text-align:right;"|אם תרצה להוציא כל ענייני פרקי השברים על השלימות תבקש לכל המספרים מורה א' גדול כולל אותם ר"ל אם כל מוריהם ושם תמצא כל מבוקשך בברור ר"ל שתוכל למצוא במורה ההוא כמה הוא הרביעית והחמישית או כל מה שתצטרך בכל השברים ההם
 +
|-
 +
|
 +
*For example, if we say: sum 3-quarters of a ninth with 4-fifths of a ninth and 7-fifths of a seventh.
 +
:<math>\scriptstyle\left(\frac{3}{4}\sdot\frac{1}{9}\right)+\left(\frac{4}{5}\sdot\frac{1}{9}\right)+\left(\frac{7}{5}\sdot\frac{1}{7}\right)</math>
 +
|style="text-align:right;"|כי המשל אם אמר<sup>נ</sup>ו חבר ג' רביעיות תשי<sup>עית</sup> עם ד' חמישיות תשיעית עם 7 חמישיות שביעית
 +
|-
 +
|
 +
:*The great denominator of these numbers is, as said, the common denominator of these four denominators, which is [received] by multiplying one by the other and the product by the other until they end; it is 1260.
 +
:::<math>\scriptstyle{\color{blue}{4\sdot5\sdot7\sdot9=1260}}</math>
 +
|style="text-align:right;"|הנה מורה החשבונים הגדול אשר אמרתי הוא אם ד' מורים אלו והוא בהכפל זה בזה והעולה באחר עד תומם ויהיה 1260
 +
|-
 +
|
 +
::We consider one integer as 1260 parts.
 +
|style="text-align:right;"|והוא שעשינו האחד השלם 1260 חלקים
 +
|-
 +
|
 +
::*The ninth is 140, which is the product of three of the mentioned denominators, i.e. their common denominator.
 +
:::<math>\scriptstyle{\color{blue}{\frac{1}{9}\sdot1260={\color{red}{4\sdot5\sdot7}}=140}}</math>
 +
|style="text-align:right;"|והנה תשיעית הוא ק"מ והוא ככפל הג' מורים הנזכרים ר"ל באמם
 +
|-
 +
|
 +
:::A quarter of the ninth is a quarter of it; it is 35 and it is the common denominator of the mentioned denominators, i.e. the product of 5 by 7.
 +
:::<math>\scriptstyle{\color{blue}{\left(\frac{1}{4}\sdot\frac{1}{9}\right)\sdot1260=\frac{1}{4}\sdot140=5\sdot7=35}}</math>
 +
|style="text-align:right;"|ורביעית התשיעית יהיה ברביעית זה והוא ל"ה והוא אם המורים הנזכרים ר"ל ככפל ה' בז&#x202B;'
 +
|-
 +
|
 +
:::3-quarters of the ninth are three times 35, which is 105.
 +
:::<math>\scriptstyle{\color{blue}{\left(\frac{3}{4}\sdot\frac{1}{9}\right)\sdot1260=3\sdot35=105}}</math>
 +
|style="text-align:right;"|והג' רביעיות התשיעית יהיו שלשה פעמים ל"ה שהם 105
 +
|-
 +
|
 +
::*The seventh is the common denominator of the three that remain; it is 180.
 +
:::<math>\scriptstyle{\color{blue}{\frac{1}{7}\sdot1260={\color{red}{4\sdot5\sdot9}}=180}}</math>
 +
|style="text-align:right;"|ושביעית המורה הוא אם השלשה הנשארים והם 180
 +
|-
 +
|
 +
:::A fifth of a seventh is a fifth of it; it is 36 and it is the common denominator of the remaining.
 +
:::<math>\scriptstyle{\color{blue}{\left(\frac{1}{5}\sdot\frac{1}{7}\right)\sdot1260=\frac{1}{5}\sdot180=4\sdot9=36}}</math>
 +
|style="text-align:right;"|וחמישית שביעית הוא חמישית זה והוא ל"ו והוא אם הנשארים
 +
|-
 +
|
 +
:::4-fifths of a seventh are 4 times 36, or if you want to say: 4 times the product of the two denominators by each other, i.e. 9 by 4, which is 36; the result is 144.
 +
:::<math>\scriptstyle{\color{blue}{\left(\frac{4}{5}\sdot\frac{1}{7}\right)\sdot1260=4\sdot36=4\sdot\left(4\sdot9\right)=144}}</math>
 +
|style="text-align:right;"|והד' חמישיות שביעית הם ד' פעמים ל"ו או אם תרצה לומר ד' פעמים כפל הב' מורים זה בזה ר"ל ט' בד' שהוא ל"ו והעולה יהיה 144
 +
|-
 +
|
 +
:Sum it up with 105 that are the 3-quarters of a ninth; the result is 249 of 1260 parts of a whole, for this denominator is the large denominator that you take and each part of them is one part of all these denominators.
 +
:<math>\scriptstyle{\color{blue}{\left(\frac{3}{4}\sdot\frac{1}{9}\right)+\left(\frac{4}{5}\sdot\frac{1}{7}\right)=\frac{105+144}{5}\sdot\frac{1}{7}\sdot\frac{1}{4}\sdot\frac{1}{9}=\frac{249}{5}\sdot\frac{1}{7}\sdot\frac{1}{4}\sdot\frac{1}{9}=\frac{249}{1260}}}</math>
 +
|style="text-align:right;"|&#x202B;<ref>63r</ref>ותחברם עם הה'10 שעלו הג' רביעיות תשיעית יעלו 249 ב0ובא חלקים בשלם כי זה מורה הוא מספר המורה הגדול אשר לקחת וכל חלק מאלו הוא חלק מכל אלו המורים
 +
|-
 +
|
 +
::This is because 140 is one-ninth,
 +
|style="text-align:right;"|וזה כי 140 הם תשיעיות אחד
 +
|-
 +
|
 +
::35, which is its quarter, is a quarter of a ninth.
 +
|style="text-align:right;"|ול"ה שהם רביעיתם הם רביעית תשיעית
 +
|-
 +
|
 +
::5, which is a seventh of 35, is a seventh of a quarter of a ninth.
 +
|style="text-align:right;"|והה' שהם שביעית הל"ה הם שביעית רביעית תשיעית
 +
|-
 +
|
 +
::1, which is a fifth of 5, is a fifth of a ninth of a quarter of a seventh.
 +
|style="text-align:right;"|והא' שהוא חמישית הה' הוא חמישית תשיעית רביעית שביעית
 +
|-
 +
|
 +
:So, the 249 are fifths of a ninth of a quarter of a seventh.
 +
|style="text-align:right;"|א"כ אלו ה249 הם חמישיות תשיעית רביעית שביעית
 +
|-
 +
|
 +
:If you want to know how much they are, divide them by 5, since every 5 of them are ninths of a quarter of a [seventh]; the result are sevenths of a quarter of a ninth.
 +
|style="text-align:right;"|ואם תרצה לידע מה המה אלה הנה אחר שכל ה' מהם הם תשיעיות רביעית תשיעית תחלקם לה' והיוצא יהיו שביעיות רביעית תשיעית
 +
|-
 +
|
 +
:If something remains, it is fifths of a ninth of a quarter of a seventh as in the beginning.
 +
|style="text-align:right;"|ואם נשאר דבר הוא כבתחלה חמישיות תשיעית רביעית שביעית
 +
|-
 +
|
 +
:When you divide the sevenths of a quarter of a ninth by 7, the result are quarters of a ninth.
 +
|style="text-align:right;"|ומהשביעית רביעיות תשיעית וכאשר תחלק לז' יהיה היוצא רביעיות תשיעיות
 +
|-
 +
|
 +
:When you this by 4, the result are ninths.
 +
|style="text-align:right;"|וכשתחלק זה היוצא לד' יהיה היוצא תשיעית
 +
|-
 +
|
 +
:When you it by 9, the result are integers.
 +
|style="text-align:right;"|וכשתחלקנו לט' <s>ה</s> יהיה היוצא שלימים
 +
|-
 +
|The whole aforementioned procedure itself is as stated in diagrams that are not in the book, for the order is unimportant. Deduce from this.
 +
|style="text-align:right;"|וכל זה <s>אי</s> המעשה הנזכר למעלה עין בעין כמו שנרמז בצורות הרמוזות מחוץ לספר כי הסדר לא יזיק דוק ותשכח
 +
|-
 +
|
 +
:The result from summing the required fractions, in each of the methods, for they are all the same, is one-seventh, a quarter of a seventh, 4-ninths of a quarter of a seventh, and 4-fifths of a ninth of a quarter of a seventh.
 +
|style="text-align:right;"|והנה העולה מחבור השברים הנשאלות על כל א' מהדרכים כי הכל אחד הוא שביעית אחת ורביעית שביעית וד' תשיעיות רביעית שביעית וד' חמישיות תשיעית רביעית שביעית
 +
|-
 +
|Deduce on that in all the other chapters.
 +
|style="text-align:right;"|והקש על זה בכל שאר הפרקים
 +
|-
 +
|
 +
 
 +
=== Completion of Fractions ===
 +
|style="text-align:right;"|<big>מאמר ההשלמה</big>
 +
|-
 +
|Completion is when we have known fractions or fractions of fractions and we need to subtract them from other fractions or fractions of fractions that we have of the same types. It happens in the extraction of roots [for instance], as written in chapter six of this section.
 +
|style="text-align:right;"|ההשלמה הוא כאשר יש בידינו שבורים ידועים או שברי שברים ואנו צריכים לגרעם משברים או שברי שברים אחרים שיש בידינו ממיניהם וזה יקרה בהוצאת השרשים כמו &#x202B;<ref>63v</ref>כפי שנכתב בפ' ו' מזה החלק
 +
|-
 +
|Sometimes the subtracted fractions of fractions are greater than those from which they are subtracted, but there are many fractions or integers to complete our deficiency.
 +
|style="text-align:right;"|ולפעמים השברי שברים {{#annot:term|182,1365|DOGq}}הנגרעי'{{#annotend:DOGq}} הם רבים מאשר {{#annot:term|181,1365|QX0c}}יגרע מהם{{#annotend:QX0c}} אכן יש שם שברי רבים או שלימים למלאת די מחסורנו
 +
|-
 +
|Therefore, when we take the integer or the greater fraction, to subtract from it these fractions of fractions, we need to know easily the remainder from that integer or that great fraction after we subtract from it the deficiency of these fractions of fractions for a whole unit or for a larger fraction, and this is their complement for one.
 +
:<math>\scriptstyle{\color{OliveGreen}{a-b=\left(a-c\right)+\left(c-b\right)}}</math>
 +
|style="text-align:right;"|לכן אנו צריכים לידע כאשר נקח השלם או השבר הגדול להוציא ממנו שברי שברים אלו שנדע בקלות הנשאר מהשלם או <sup>מ</sup>השבר הגדול [ההוא אחר שהוצאנו ממנו שזה הוא מה שחסרים אלו השברי שברים מאחד שלם או שבר גדול&#x202B;]&#x202B;<ref>marg.</ref> <s>להוציא ממנו שברי שברים אלו שנדע בקלות הנשאר מהשלם או מהשבר הגדול להוציא ממנו שברי שברים אלו שנדע בקלות הנשאר מהשלם או מהשבר הגדול ההוא אחר שהוצאנו ממנו שזה הוא מה שחסרים אלו השברי ה' שברים מאחד שלם או שבר גדול</s> וזו<sup>הי</sup> השלמתן לאחד
 +
|-
 +
|When we know their complement for one, if we have fractions of fractions of their type, after we subtract from them those that we have that are smaller, we add this complement to them and the sum is the remainder.
 +
|style="text-align:right;"|ואחר שנדע השלמתן לאחד אם היו לנו שברי שברים ממינם כאשר נגרע מהם אלו שהיו מעט אשר בידינו נחבר זאת ההשלמה עמהן ו{{#annot:term|388,1220|76oh}}המחובר{{#annotend:76oh}} יהיה הנשאר
 +
|-
 +
|
 +
*{{#annot:(3+⁵/₉+³/₇·⅑+²/₄·⅐·⅑)-(⁷/₉+⁵/₇·⅑+¾·⅐·⅑)|678|eMzX}}Example: we wish to subtract 7-ninths, 5-sevenths of a ninth, and 3-quarters of a seventh of a ninths, from 3 integers, 5-ninths, and three-sevenths of a ninth.
 +
:<math>\scriptstyle\left[3+\frac{5}{9}+\left(\frac{3}{7}\sdot\frac{1}{9}\right)+\left(\frac{2}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]-\left[\frac{7}{9}+\left(\frac{5}{7}\sdot\frac{1}{9}\right)+\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]</math>
 +
|style="text-align:right;"|<big>המשל</big> רצינו לגרוע ז' תשיעיות וה' שביעיות תשיעית וג' רביעיות שביעית תשיעית מג' שלמים וה' תשיעיות ושלש שביעיות תשיעית{{#annotend:eMzX}}
 +
|-
 +
|
 +
::Since 3-quarter is greater than 2-[quarters] and so is 5-sevenths than 3-[sevenths] and 7-ninths than 5-[ninths], we have to take one integer to supplement our deficiency; 2 integers remain.
 +
|style="text-align:right;"|הנה להיות הג' רביעיות רב מהב' גם הה' שביעיות מהג' גם הז' תשיעיות מהה' נצטרך לקחת אחד שלם למלאת די מחסורינו וישארו ב' שלמים
 +
|-
 +
|In order to know how much remains from it after we take enough, we have to complete it to a whole integer and the complement is the remainder. The reason is clear.
 +
|style="text-align:right;"|ולדעת כמה ישאר ממנו אחר קחתנו ממנו די ספקנו נצטרך להשלימם לאחד שלם וההשלמה הוא השארית וזה ברור בטעם
 +
|-
 +
|Then, we add the complement to the fractions that we had that were not enough for us, for they have ''the right of redemption'' [Jeremiah 32, 7], and the sum is the remainder.
 +
|style="text-align:right;"|וזאת ההשלמה נחברנה עם השברים אשר היו לנו ולא היה בהם די ספקנו כי להם ''משפט הגאולה''&#x202B;<ref group=note>ירמיה לב, ז</ref> והמחובר הוא הנשאר
 +
|-
 +
|
 +
::We say: what is the complement of 3-quarters of a seventh of a ninth for a seventh of a ninth? One quarter. We write 1 beneath them.
 +
::<math>\scriptstyle{\color{blue}{\left(\frac{1}{7}\sdot\frac{1}{9}\right)-\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)=\frac{1}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}}}</math>
 +
|style="text-align:right;"|ונאמר ג' רביעיות שביעית תשיעית בכמה יהיו שביעית תשיעית ברביע אחד נשים א' תחתיהם
 +
|-
 +
|
 +
::We also say: we have completed [one-seventh of a ninth and with the five-sevenths of a ninth that we had they are 6. What is their complement for one whole ninth? One. We write it beneath them.
 +
::<math>\scriptstyle{\color{blue}{\frac{1}{9}-\left[\left(\frac{1}{7}\sdot\frac{1}{9}\right)+\left(\frac{5}{7}\sdot\frac{1}{9}\right)\right]=\frac{1}{9}-\left(\frac{6}{7}\sdot\frac{1}{9}\right)=\frac{1}{7}\sdot\frac{1}{9}}}</math>
 +
|style="text-align:right;"|עוד נאמר הרי השלמנו [לשביעית תשיעית אחד וחמש שביעיות תשיעית שהיו לנו הרי ו' ובכמה ישלומו לתשיעית אחד&#x202B;]&#x202B;<ref>marg.</ref> לתשיעית אחד שלמה באחד נשימנו &#x202B;<ref>64r</ref>תחתיו
 +
|-
 +
|
 +
::We say: we have completed a whole ninth and with the 7 that we have in our hand there are 8. What is their complement for one integer? One. We write it beneath them.
 +
::<math>\scriptstyle{\color{blue}{1-\left(\frac{1}{9}+\frac{7}{9}\right)=1-\frac{8}{9}=\frac{1}{9}}}</math>
 +
|style="text-align:right;"|ונאמר הרי השלמנו לתשיעית שלמה וז' שיש בידינו הרי כאן ח' בכמה ישלמו לשלם באחד נשים תחתיהם א&#x202B;'
 +
|-
 +
|
 +
::We are left with one-ninth, one-seventh of a ninth, and one-quarter of a seventh of a ninth from the one integer. We add them to what is above; the result is 2 integers, 6-ninths, 4-[sevenths] of a ninth [and 3-quarters of a seventh of a ninth] that are left in our hand. The reason for this is clear.
 +
|style="text-align:right;"|הרי לנו שנשאר מהאחד השלם תשיעית אחת ושביעית תשיעית ורביעית שביעית תשיעית ונחברם עם אשר בעליונה ויעלה שנשאר בידינו ב' שלימים וו' תשיעיות וד' <s>רביעיות</s> שביעית תשיעית [וג' רביעיות שביעית תשיעית&#x202B;]&#x202B;<ref>marg.</ref> וכל זה ברור בטעם
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\begin{align}&\scriptstyle
 +
\left[3+\frac{5}{9}+\left(\frac{3}{7}\sdot\frac{1}{9}\right)+\left(\frac{2}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]-\left[\frac{7}{9}+\left(\frac{5}{7}\sdot\frac{1}{9}\right)+\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]\\&\scriptstyle=\left[\left(3-1\right)+\frac{5}{9}+\left(\frac{3}{7}\sdot\frac{1}{9}\right)+\left(\frac{2}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]+\left[1-\left[\frac{7}{9}+\left(\frac{5}{7}\sdot\frac{1}{9}\right)+\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]\right]\\&\scriptstyle=\left[2+\frac{5}{9}+\left(\frac{3}{7}\sdot\frac{1}{9}\right)+\left(\frac{2}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]+\left[\frac{1}{9}+\left(\frac{1}{7}\sdot\frac{1}{9}\right)+\left(\frac{1}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]=2+\frac{6}{9}+\left(\frac{4}{7}\sdot\frac{1}{9}\right)+\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\\\end{align}}}</math>
 +
{|
 +
|-
 +
|In order to make the procedure easier for you, I shall give you a rule: we write the complement of the numerator for its denominator under the last [fraction] to the left.
 +
|style="width:45%; text-align:right;"|<big>וכדי</big> להקל מעליך המעשה אתן לך כלל כי לאחרון אשר לצד שמאל אשר שם יתחיל הצורך נשים תחתיו כדי השלמת מספר שבריו למורה אשר עליו שוה בשוה
 +
|-
 +
|
 +
::I.e. 3-quarters: what is the complement of 3 for 4, which is the denominator that above it? It is 1. We write it beneath it. <span style=color:Green>[= 1 under ¾ indicates that ¼ is its complement]</span>
 +
::<math>\scriptstyle{\color{blue}{1-\frac{3}{4}=\frac{4-3}{4}=\frac{1}{4}}}</math>
 +
|style="text-align:right;"|ר"ל הג' רביעיות בכמה ישלימו הג' לד' שהוא המורה אשר עליו בא' נשימנו תחתיו
 +
|-
 +
|For all the others, until we find enough to take from it the one that we need, we always write beneath the numerator its complement for its denominator minus one and this is the one that is supplemented in what preceded to the left.
 +
|style="text-align:right;"|ובכל האחרים עד אשר נמצא מקום רב אשר משם נקח האחד אשר הוצרכנו לעולם נשים תחת מספר השברים כדי השלמתן למורה אשר עליהם חסר אחד והוא האחד אשר הושלם כבר באשר אחריו לצד שמאל
 +
|-
 +
|If we want, we can apply the method that we use for integers, and then we do not need completion at all.
 +
|style="text-align:right;"|<big>ואם</big> היינו רוצים היינו עושים כדרך שאנו עושי' בשלימי' ולא נצטרך להשלמה כלל
 +
|-
 +
|<span style=color:Green>Borrowing one unit from a fraction of a higher type, and marking the loan with a dot as a reminder:</span>
 +
|
 +
|-
 +
|
 +
::We say concerning the quarters, which is the last [fraction]: 3 cannot be subtracted from 2. [We Take] 1 from the sevenths that precede them and mark a dot above the number of the sevenths to be subtracted, in order to remind us to subtract it with them when we get there, as the way we do with integers, when we add 1 to the subtrahend for the dot, and then we subtract all from its corresponding. 
 +
|style="text-align:right;"|והוא שנאמ' ברביעיות שהוא אחרון ג' מב' לא יוכלו לצאת כלו הא' ממקום השביעיות אשר לפניו ונשים נקודה על מספר השביעיות אשר לנו לגרוע כדי שנזכור להסירו עמהם בהגיענו שם כדרך שאנו עושים בשלימים להוסיף על {{#annot:term|182,1365|siXg}}הנגרעים{{#annotend:siXg}} א' בשביל הנקודה ונסירה כלו ממינו
 +
|-
 +
|
 +
::After we have borrowed one and marked a dot, we take the denominator, which is 4, as this one, and say: 4 plus 2 is 6. We subtract 3 from it; 3 remains.
 +
|style="text-align:right;"|ואחר שלוינו האחד ושמנו זה הנקודה נקח בעד זה האחד כמורה שהוא ד' ונאמ' ד' וב' הם ו' נסיר מהם הג' ישארו ג&#x202B;'
 +
|}
 +
::<math>\scriptstyle{\color{blue}{\left[\left(\frac{4}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)+\left(\frac{2}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]-\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)=\left(\frac{6}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)-\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)=\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}}}</math>
 +
{|
 +
|-
 +
|
 +
::We say: 5-sevenths and a dot are 6. We cannot subtract them from 3. We mark a dot above the 7-ninths to be subtracted and say: this one is 7 as the denominator, with 3 it is 10. We subtract 6 from it; 4 remains.
 +
|style="width:45%; text-align:right;"|ונאמר ה' שביעיות ונקודה הם ו' לא נוכל להסירם מהג' נשים נקודה על הז' תשיעיות אשר לנו לגרוע ונאמר &#x202B;<ref>64v</ref>זה האחד הוא ז' כמורה וג' הרי י' נסיר מהם ו' ישארו ד&#x202B;'
 +
|}
 +
::<math>\scriptstyle{\color{blue}{\left[\left(\frac{7}{7}\sdot\frac{1}{9}\right)+\left(\frac{3}{7}\sdot\frac{1}{9}\right)\right]-\left[\left(\frac{1}{7}\sdot\frac{1}{9}\right)+\left(\frac{5}{7}\sdot\frac{1}{9}\right)\right]=\left(\frac{10}{7}\sdot\frac{1}{9}\right)-\left(\frac{6}{7}\sdot\frac{1}{9}\right)=\left(\frac{4}{7}\sdot\frac{1}{9}\right)}}</math>
 +
{|
 +
|-
 +
|
 +
::We also say: 7 and a dot are eight, which cannot be subtracted from 5. We mark a dot above the place that should have been designated for integers if we had integers and say: this one is 9 as the denominator, with 5 it is 14. We subtract 8 from it; 6 remains.
 +
::<math>\scriptstyle{\color{blue}{\left(\frac{9}{9}+\frac{5}{9}\right)-\left(\frac{1}{9}+\frac{7}{9}\right)=\frac{14}{9}-\frac{8}{9}=\frac{6}{9}}}</math>
 +
|style="width:45%; text-align:right;"|עוד נאמר ז' ונקודה הם שמונה לא יצאו מה' נשים נקודה מחוץ במקום הראוי לשלימים אם היו לנו שלימים ונאמר זה האחד הוא ט' כמורה וה' הרי י"ד נסיר מהם ח' ישארו &#x202B;[ו&#x202B;'
 +
|-
 +
|
 +
::We subtract the dot, which is 1 integer, from the 3 integers; 2 remains.
 +
::<math>\scriptstyle{\color{blue}{3-1=2}}</math>
 +
|style="text-align:right;"|עוד נסיר הנקודה שהוא א' שלם מהג' שלימים ישארו ב'&#x202B;]&#x202B;<ref>marg.</ref> ב' שלימים
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\left[3+\frac{5}{9}+\left(\frac{3}{7}\sdot\frac{1}{9}\right)+\left(\frac{2}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]-\left[\frac{7}{9}+\left(\frac{5}{7}\sdot\frac{1}{9}\right)+\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]=2+\frac{6}{9}+\left(\frac{4}{7}\sdot\frac{1}{9}\right)+\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)}}</math>
 +
{|
 +
|-
 +
|Thus, these procedures are the same and the reason is clear.
 +
|style="width:45%; text-align:right;"|והנה כל המעשה אחד והכל ברור בטעם
 +
|-
 +
|It is enough for the one who understands.
 +
|style="text-align:right;"|ודי למבין
 +
|-
 +
|
 +
 
 +
=== Discussion on the Decomposing and Composing of Fractions ===
 +
|style="width:45%; text-align:right;"|<big>מאמר {{#annot:term|2614,1558|rzvM}}התכת{{#annotend:rzvM}}</big> השברים ו{{#annot:term|2490,1958|vWrI}}הרכבתן{{#annotend:vWrI}} או שתיהן יחד
 +
|-
 +
|Since sometimes there is a need to convert denominators to other denominators when expanding and reducing, I thought to explain how one denominator is decomposed to two denominators.
 +
|style="text-align:right;"|לפי שלפעמים יצטרך להשיב מורים למורים אחרים בהשואה ובכלילת יופי להוציאם מן הכלל ראיתי לבאר איך {{#annot:term|2615,2492|t3lA}}יותך{{#annotend:t3lA}} מורה אחד לשני מורים
 +
|-
 +
|This is when the denominator is composed.
 +
|style="text-align:right;"|וזהו כאשר המורה מורכב
 +
|-
 +
|
 +
::Such as 6, which is composed of 2 and 3, so we remove it and replace it with 2, 3.
 +
::<math>\scriptstyle{\color{blue}{6=2\sdot3}}</math>
 +
|style="text-align:right;"|כו' שהוא מורכב מב' וג' שנסירהו ונשים <sup>תחתיו</sup> ב'ג&#x202B;'
 +
|-
 +
|
 +
::Also 3, 3 instead of 9.
 +
::<math>\scriptstyle{\color{blue}{9=3\sdot3}}</math>
 +
|style="text-align:right;"|וכן בעד ט' ג' ג&#x202B;'
 +
|-
 +
|
 +
::And 2, 4 instead of 8.
 +
::<math>\scriptstyle{\color{blue}{8=2\sdot4}}</math>
 +
|style="text-align:right;"|ובעד ח' ב' ד&#x202B;'
 +
|-
 +
|This is the rule: the product of the replacing denominators is the same as the removed [original denominator]
 +
:<math>\scriptstyle{\color{OliveGreen}{\frac{1}{a\sdot b}=\frac{1}{a}\sdot\frac{1}{b}}}</math>
 +
|style="text-align:right;"|זה הכלל שכפל המורים המושמים תחתיו יהיה כמו המוסר
 +
|-
 +
|
 +
*Sometimes we do the opposite, that we replace the two with one, i.e. we [remove] the 2 and the 4 and replace them with 8.
 +
:<math>\scriptstyle{\color{blue}{2\sdot4=8}}</math>
 +
|style="text-align:right;"|ולפעמים נעשה להפך <sup>ש</sup>נשים הב' אחד ר"ל שנשים הב' והד' ונשים תחתיו הח' וכן בכללן
 +
|-
 +
|
 +
:This as placing the common denominator instead of the denominators, or the denominators instead of the common denominator.
 +
|style="text-align:right;"|וזהו כמו לשים האם תחת המורים או המורים תחת האם
 +
|-
 +
|
 +
*Other times we need both.
 +
|style="text-align:right;"|ולפעמים נצטרך הכל
 +
|-
 +
|
 +
::Such as when we have 6, 4 and we need 3,8.
 +
::<math>\scriptstyle{\color{blue}{6\sdot4=3\sdot8}}</math>
 +
|style="text-align:right;"|כגון שיש בידינו ו' ד' ואנו צריכים ג' ח&#x202B;'
 +
|-
 +
|
 +
::Or, when we have 3, 4 and we need 6, 2.
 +
::<math>\scriptstyle{\color{blue}{3\sdot4=6\sdot2}}</math>
 +
|style="text-align:right;"|או שיש בידינו ג' ד' ואנו צריכים ו' ב&#x202B;'
 +
|-
 +
|This is the rule:
 +
|style="text-align:right;"|זה הכלל
 +
|-
 +
|
 +
*If what we place is one instead of numerous, this number should be the same as the product of the denominators multiplied by each other.
 +
:<math>\scriptstyle{\color{OliveGreen}{\frac{1}{a}\sdot\frac{1}{b}=\frac{1}{a\sdot b}}}</math>
 +
|style="text-align:right;"|אם אשר שמנו הוא א' במקום רבים צריך שיהיה מספרו ככפל המורים זה בזה
 +
|-
 +
|
 +
*If numerous instead of one, their product by each other should be the same as the removed number.
 +
:<math>\scriptstyle{\color{OliveGreen}{\frac{1}{a\sdot b}=\frac{1}{a}\sdot\frac{1}{b}}}</math>
 +
|style="text-align:right;"|ואם רבים תחת אחד שיהיה כפלם זה בזה כמספר המוסר
 +
|-
 +
|
 +
*If numerous instead of numerous, their product by each other [should be the same as the product of the others by each other]
 +
:<math>\scriptstyle{\color{OliveGreen}{a\sdot b=c\sdot d\longrightarrow \frac{1}{a}\sdot\frac{1}{b}=\frac{1}{c}\sdot\frac{1}{d}}}</math>
 +
|style="text-align:right;"|ואם רבים במקום רבים שיעלה כפל אלו זה בזה
 +
|-
 +
|This is enough for the one who understands.
 +
|style="text-align:right;"|ודי למבין
 +
|-
 +
|}
 +
{|
 +
|-
 +
|
 +
 
 +
== Short Rule for all Chapters on Fractions ==
 +
|style="text-align:right;"|<big>כלל קצר</big> לכל פרקי השברים
 +
|-
 +
|
 +
=== Addition ===
 +
|style="width:45%; text-align:right;"|<big>החבור</big>
 +
|-
 +
|Multiply the [numerator] whose denominator or denominators are smaller by the excess of the denominators of the other over its denominators, then divide [the product] by the smaller denominators. Add the result of division to the numerators of both [and the sum is] the parts of the denominator or the denominators of the greater.
 +
:<math>\scriptstyle{\color{OliveGreen}{b>d\longrightarrow\frac{a}{b}+\frac{c}{d}=\frac{a+c+\frac{c\sdot\left(b-d\right)}{d}}{b}}}</math>
 +
|style="text-align:right;"|תכפול אשר מורהו או מוריו קטנים בתוספת מורי האחרת על מוריו ותחלקנו למורים הקטנים והיוצא בחילוק תחברנו לשברי שניהם חלקי המורה או המורים הגדולים
 +
|-
 +
|
 +
*If something remains from the first division, it is a part of all the denominators, of the greater and the smaller.
 +
|style="text-align:right;"|ואם &#x202B;<ref>65r</ref>בחלוקה הראשונה ישאר דבר הוא חלק מכל המורים גדולים וקטנים
 +
|-
 +
|
 +
*{{#annot:³/₇+⅔|677|Gi6C}}Example: if it is said: add 3-sevenths to 2-thirds.
 +
:<math>\scriptstyle\frac{3}{7}+\frac{2}{3}</math>
 +
|style="text-align:right;"|המשל אם אמרו חבר ג' שביעיות עם ב' שלישיות{{#annotend:Gi6C}}
 +
|-
 +
|
 +
:Multiply 2 by 4; it is 8. Divide it by 3; the result of division is 2 and 2 remains.
 +
|style="text-align:right;"|כפול הב' בד' יהיו ח' חלקם לג' ויצא בחלוק ב' וישארו ב&#x202B;'
 +
|-
 +
|
 +
:Add the 2 resulting in the division to 3 and 2 that are the numerators of both numbers; the sum is 7.
 +
|style="text-align:right;"|וב' אלו שיצאו בחלוק חברם עם הג' והב' שהם שברי שני המספרי' ויעלה הכל ז&#x202B;'
 +
|-
 +
|
 +
:Divide it by 7; the result is 1 and nothing remains.
 +
|style="text-align:right;"|חלקם לז' יעלה א' ולא נשאר דבר
 +
|-
 +
|
 +
:The 1 resulting in the division is 1 integer.
 +
|style="text-align:right;"|וזה האחד היוצא בחלוק הוא א' שלם
 +
|-
 +
|
 +
:If there were anything left, it would have been sevenths.
 +
|style="text-align:right;"|ואם היה נשאר דבר היה שביעיות
 +
|-
 +
|
 +
:The 2 that remains from the first division are thirds of a seventh.
 +
|style="text-align:right;"|והב' שנשארו בחלוקה ראשון הם שלישיות שביעית
 +
|-
 +
|
 +
:We find that their total sum is one integer and two-thirds of a seventh.
 +
|style="text-align:right;"|נמצא שעלה מחבורם אחד שלם ושתי שלשיות שביעית
 +
|}
 +
:<math>\scriptstyle{\color{blue}{\frac{3}{7}+\frac{2}{3}=\frac{3+2+\frac{2\sdot\left(7-3\right)}{3}}{7}=\frac{3+2+\frac{2\sdot4}{3}}{7}=\frac{3+2+\frac{8}{3}}{7}=\frac{3+2+2+\frac{2}{3}}{7}=\frac{7+\frac{2}{3}}{7}=1+\left(\frac{2}{3}\sdot\frac{1}{7}\right)}}</math>
 +
{|
 +
|-
 +
|If you wish, multiply the numerator of the one by the denominator of the other, then divide by its own denominator and add the result of division to the numerator of the other; [the result] are parts of the denominator of the other.
 +
:<math>\scriptstyle{\color{OliveGreen}{\frac{a}{b}+\frac{c}{d}=\frac{a+\frac{c\sdot b}{d}}{b}}}</math>
 +
|style="width:45%; text-align:right;"|[ו]אם תרצה כפול שברי האחד במורי האחרת וחלקנו למורי עצמה והיוצא ב בחלוק חברם לשברי האחרת ויהיו חלקים ממורי האחרת
 +
|-
 +
|
 +
*If something remains from the division, it is parts of the denominators of both.
 +
|style="text-align:right;"|ואם נשאר שום דבר בחלוקה הם חלקים ממורי שתיהן
 +
|-
 +
|
 +
:Example: multiply 2 by 7; the result is 14. Divide it by 3; the result is 3 and 2 remains.
 +
|style="text-align:right;"|המשל כפול ב' בז' יעלו י"ד חלקם לג' יצאו ד' וישארו ב&#x202B;'
 +
|-
 +
|
 +
:Add the 4 to the 3 that is the numerator of the other; the sum is 7 and it is 7-sevenths, which is 1 integer. The 2 that remains from the division are 2-thirds of a seventh.
 +
:<math>\scriptstyle{\color{blue}{\frac{3}{7}+\frac{2}{3}=\frac{3+\frac{2\sdot7}{3}}{7}=\frac{3+\frac{14}{3}}{7}=\frac{3+4+\frac{2}{3}}{7}=\frac{7+\frac{2}{3}}{7}=1+\left(\frac{2}{3}\sdot\frac{1}{7}\right)}}</math>
 +
|style="text-align:right;"|חבר הד' לג' שהם שברי האחרת יעלו ז' והם ז' שביעי[ו]ת שהם א' שלם והב' שנשארו בחלוקה הם ב' שלשיות שביעית
 +
|-
 +
|It all comes down to one way.
 +
|style="text-align:right;"|והכל עולה לדרך אחד
 +
|-
 +
|
 +
 
 +
=== Subtraction ===
 +
|style="text-align:right;"|<big>החסרון</big>
 +
|-
 +
|Multiply the numerator of the greater by the denominator of the smaller, then divide the product by the denominator of the greater. Subtract the numerator of the smaller from the result of division and divide the [remainder] by the denominator of the [smaller]. The [result] are parts of the denominators of the smaller.
 +
:<math>\scriptstyle{\color{OliveGreen}{\frac{a}{b}-\frac{c}{d}=\frac{\frac{a\sdot d}{b}-c}{d}}}</math>
 +
|style="text-align:right;"|כפול שברי הגדולה במורי הקטנה והעולה תחלקנו למורי הגדולה ומהיוצא בחילוק תחסר שברי הקטנה והעולה תחלקנו למורי הגדולה והנשאר הוא חלקים ממורי הקטנה <s>והגדולה</s>
 +
|-
 +
|If there is something left from the first division, they are parts of the denominators of the smaller and the greater.
 +
|style="text-align:right;"|&#x202B;[ואם נשאר דבר בחלוקה ראשונה הם חלקים ממורי הקטנה והגדולה]&#x202B;<ref>marg.</ref>
 +
|-
 +
|
 +
*{{#annot:¾-²/₈|678|ZncT}}Example: we wish to subtract 2-eighths from 2-quarters.
 +
:<math>\scriptstyle\frac{3}{4}-\frac{2}{8}</math>
 +
|style="text-align:right;"|המשל רצינו לחסר ב' שמיניות מג' רביעיות{{#annotend:ZncT}}
 +
|-
 +
|
 +
:We multiply 3 by 8; the result is 24. We divide it by 4; the result of division is 6. We subtract 2 from it; 4 remains and they are 4-eighth, which is the remainder.
 +
:<math>\scriptstyle{\color{blue}{\frac{3}{4}-\frac{2}{8}=\frac{\frac{3\sdot8}{4}-2}{8}=\frac{\frac{24}{4}-2}{8}=\frac{6-2}{8}=\frac{4}{8}}}</math>
 +
|style="text-align:right;"|נכפול הג' בח' ויעלו כ"ד נחלקם לד' יצא בחילוק ו' נסיר מהם הב' ישארו ד' והם ד' שמיניות והוא הנשאר
 +
|-
 +
|
 +
:If there were anything left in the first division, it would have been quarters of an eighth.
 +
|style="text-align:right;"|ואם בחלוקה הראשונה היה נשאר שום דבר היה רביעיות שמיניות
 +
|-
 +
|
 +
 
 +
=== Multiplication ===
 +
|style="text-align:right;"|ההכאה
 +
|-
 +
|It was already suggested that there is no need but to multiply the numerator by the numerator and the result are parts of the denominators.
 +
:<math>\scriptstyle{\color{OliveGreen}{\frac{a}{b}\times\frac{c}{d}=\frac{a\sdot c}{b}\sdot\frac{1}{d}}}</math>
 +
|style="text-align:right;"|כבר נרמז שאין צריך כי אם לכפול השברים בשברים והעולה הוא חלקים מכל המורים
 +
|-
 +
|
 +
*{{#annot:⁴/₇×⅚|17|sNi1}}Example: we wish to multiply 4-sevenths from 5-sixths.
 +
:<math>\scriptstyle\frac{4}{7}\times\frac{5}{6}</math>
 +
|style="text-align:right;"|המשל רצינו לכפול ד' שביעיות בה' שישיות{{#annotend:sNi1}}
 +
|-
 +
|
 +
:Multiply 4 by 5; the result is 20 and they are 20-sixths of a seventh. Divide them by them; the result is 3-sevenths and 2-sixths of a seventh.
 +
:<math>\scriptstyle{\color{blue}{\frac{4}{7}\times\frac{5}{6}=\frac{4\sdot5}{6}\sdot\frac{1}{7}=\frac{20}{6}\sdot\frac{1}{7}=\frac{3}{7}+\left(\frac{2}{6}\sdot\frac{1}{7}\right)}}</math>
 +
|style="text-align:right;"|הכה ד' בה' ויעלה כ' והם כ' שישיות שביעית וחלקם &#x202B;<ref>65v</ref>עליהם ויעלה ג' שביעיות וב' שישיות שביעית
 +
|-
 +
|
 +
 
 +
=== Division ===
 +
|style="text-align:right;"|<big>החלוק</big>
 +
|-
 +
|Multiply the numerators of the greater by the denominators of the smaller, then divide the product by the denominators of the greater and the numerator of the smaller, considering them as denominators.
 +
:<math>\scriptstyle{\color{OliveGreen}{\frac{a}{b}\div\frac{c}{d}=\frac{a\sdot d}{b}\sdot\frac{1}{c}}}</math>
 +
|style="text-align:right;"|כפול שברי הגדולה במורי הקטנה והעולה חלקנו למורי הגדולה ושברי הקטנה בקחתך אותם למורים
 +
|-
 +
|
 +
*{{#annot:⁶/₇÷⅖|552|WIah}}Example: we wish to divide 6-sevenths by 2-fifths.
 +
:<math>\scriptstyle\frac{6}{7}\div\frac{2}{5}</math>
 +
|style="text-align:right;"|<big>המשל</big> רצינו לחלק ו' שביעיות על ב' חמישיות{{#annotend:WIah}}
 +
|-
 +
|
 +
:Multiply 6 by 5; the result is 30, which are halves of sevenths. Divide them by [2 and 7]; the result is 2 integers and a seventh.
 +
:<math>\scriptstyle{\color{blue}{\frac{6}{7}\div\frac{2}{5}=\frac{6\sdot5}{2}\sdot\frac{1}{7}=\frac{30}{2}\sdot\frac{1}{7}=2+\frac{1}{7}}}</math>
 +
|style="text-align:right;"|כפול ו' בה' ויעלה ל' והם חצאי שביעיות חלקם עליהם יעלה ב' שלימים ושביעית אחת
 +
|-
 +
|
 +
 
 +
=== Proportions ===
 +
|style="text-align:right;"|הערכים
 +
|-
 +
|Multiply the numerators of the second by the numerators of the third, multiply the product by the denominator of the first and the result are parts of the numerators of the first [multiplied by] the denominators of the second and the third.
 +
:<math>\scriptstyle{\color{OliveGreen}{\frac{a_1}{b_2}:\frac{a_2}{b_2}=\frac{a_3}{b_3}:X\longrightarrow X=\frac{a_2\sdot a_3\sdot b_1}{a_1}\sdot\frac{1}{b_2}\sdot\frac{1}{b_3}}}</math>
 +
|style="width:45%; text-align:right;"|כפול שברי השנית בשברי השלישית והעולה כפול אותו במורה הראשונה והעולה הם חלקים משברי הראשונה ומורי השנית והשלישית
 +
|-
 +
|
 +
*{{#annot:³/₇÷⁸/₉=⅘÷X|567|VvVa}}Example: we wish to know, if 3-sevenths are equal to 8-ninths, how much are 4-fifths equal to?
 +
:<math>\scriptstyle\frac{3}{7}:\frac{8}{9}=\frac{4}{5}:X</math>
 +
|style="text-align:right;"|המשל רצינו לידע אם ג' שביעיות שוים ח' תשיעיות ד' חמישיות כמה הם שוות{{#annotend:VvVa}}
 +
|-
 +
|
 +
:We multiply the 8 by 4; the result is 32. We multiply it by 7; the result is 224, which are thirds of a ninth of a fifth. We divide them by [3, 9, and 5]; the result is 1 integer, 3-fifths, 2-ninths of a fifth and 2-thirds of a ninth of a fifth.
 +
:<math>\scriptstyle{\color{blue}{X=\frac{8\sdot4\sdot7}{3}\sdot\frac{1}{9}\sdot\frac{1}{5}=\frac{32\sdot7}{3}\sdot\frac{1}{9}\sdot\frac{1}{5}=\frac{224}{3}\sdot\frac{1}{9}\sdot\frac{1}{5}=1+\frac{3}{5}+\left(\frac{2}{9}\sdot\frac{1}{5}\right)+\left(\frac{2}{3}\sdot\frac{1}{9}\sdot\frac{1}{5}\right)}}</math>
 +
|style="text-align:right;"|נכפול הח' בד' ויעלה ל"ב נכפול בז' יעלו 224 והם שלישיות תשיעית חמישית ונחלקם עליהם ויצא א' שלם וג' חמישיות וב' תשיעיות חמישית וב' שלישיות תשיעית חמישית
 +
|-
 +
|
 +
 
 +
=== Roots ===
 +
|style="text-align:right;"|<big>השרשים</big>
 +
|-
 +
|Multiply the numerator of the number by its denominators, then extract the root of the product, as written above and the result is the parts of its denominators.
 +
:<math>\scriptstyle{\color{OliveGreen}{\sqrt{\frac{a}{b}}=\frac{\sqrt{a\sdot b}}{b}}}</math>
 +
|style="text-align:right;"|כפול שברי המספר במוריו ומהעולה נוציא שרשו כמו שכתו' למעלה ויהיה חלקים ממוריו
 +
|-
 +
|
 +
*{{#annot:√²/₈|439|5dVA}}Example: we wish to know the root of 2-eighths.
 +
:<math>\scriptstyle\sqrt{\frac{2}{8}}</math>
 +
|style="text-align:right;"|המשל רצינו לדעת שרש ב' שמיניות{{#annotend:5dVA}}
 +
|-
 +
|
 +
:We multiply 2 by 8; the result is 16. We extract its root; it is 4, which are 4-eighths, and this is the root.
 +
:<math>\scriptstyle{\color{blue}{\sqrt{\frac{2}{8}}=\frac{\sqrt{2\sdot8}}{8}=\frac{\sqrt{16}}{8}=\frac{4}{8}}}</math>
 +
|style="text-align:right;"|נכפול ב' בח' יעלו י"ו נקח שרשו והוא ד' והם ד' שמיניות והוא השרש
 +
|-
 +
|
 +
 
 +
=== <span style="color:Green>Additional rule for division of fractions</span> ===
 +
|
 +
|-
 +
|In order to abbreviate the division operation further and to give a correct answer immediately, I saw it fitting to contrive and reverse it into multiplication by inverting the smaller - the numerator into denominator and the denominator into numerator.
 +
|style="width:45%; text-align:right;"|ולקצר עוד מעשה החלוק <sup>ו</sup>להשיב מיד תשובה נכונה לכל שואל ראיתי לתחבל ולהחזירו להכאה בהפוך הקטנה השברים למורים והמורים לשברים
 +
|-
 +
|
 +
*{{#annot:⁶/₇÷⅖|552|KqBF}}Example: if you are told in our first example: we wish to divide 6-sevenths by 2-fifths.
 +
:<math>\scriptstyle\frac{6}{7}\div\frac{2}{5}</math>
 +
|style="text-align:right;"|המשל אם אמרו לך במשלינו הראשון רצינו לחלק <s>ב'</s> [ו'] שביעיות על ב' חמישיות{{#annotend:KqBF}}
 +
|-
 +
|
 +
:You answer immediately that they are 6-sevenths of 5-halves. Multiply them and it is as the first procedure itself.
 +
:<math>\scriptstyle{\color{blue}{\frac{6}{7}\div\frac{2}{5}=\frac{6}{7}\sdot\frac{5}{2}}}</math>
 +
|style="text-align:right;"|תשיב מיד שהם ו' שביעיות מה' חצאין והכה אותן והרי הוא כמעשה הראשון בעינו
 +
|-
 +
|
 +
 
 +
=== <span style="color:Green>Additional rule for proportions of fractions</span> ===
 +
|
 +
|-
 +
|In proportions also reverse the first and return to multiplication.
 +
|style="width:45%; text-align:right;"|וכן בערכים הפוך הראשונה ותחזור להכאה
 +
|-
 +
|
 +
*{{#annot:³/₇÷⁸/₉=⅘÷X|567|FSi7}}I.e. in our example, when we say: if 3-sevenths equal 8-ninths, how much are 4-fifths equal?
 +
:<math>\scriptstyle\frac{3}{7}:\frac{8}{9}=\frac{4}{5}:X</math>
 +
|style="text-align:right;"|פי' במשלנו כאשר אמרנו אם ג' שביעיות שוים ח' תשיעיות ד' חמישיות כמה הם שוים{{#annotend:FSi7}}
 +
|-
 +
|
 +
:Answer immediately that they are 7-thirds of 8-ninths of 4-fifths. Multiply them and it is the same as the first procedure.
 +
:<math>\scriptstyle{\color{blue}{X=\frac{3}{7}\sdot\frac{8}{9}\sdot\frac{4}{5}}}</math>
 +
|style="text-align:right;"|תשיב מיד שהם ז' שלישיות מח' תשיעיות מד' חמישיות והכה אותן והרי הוא כמעשה הראשון
 +
|-
 +
|Over and done, thanks to the Creator of the world.
 +
|style="text-align:right;"|תם ונשלם ת"ל בורא עולם
 +
|-
 +
|}
 +
 
 +
== Notes ==
 +
 
 +
<div style="text-align: right;"><div class="mw-collapsible mw-collapsed"><div class="mw-collapsible-content">
 +
<br>
 +
<references group=note/>
 +
</div></div></div>
 +
 
 +
== Apparatus ==
 +
<div class="mw-collapsible mw-collapsed"><div class="mw-collapsible-content">
 +
<references />
 +
</div></div>
 +
 
 +
== Appendix I: Glossary of Terms ==
 +
<div class="mw-collapsible mw-collapsed"><div class="mw-collapsible-content">
 +
{|
 +
|-
 +
|rank
 +
|style="text-align:right;"|מדרגה, מעלה
 +
|-
 +
|dividend
 +
|style="text-align:right;"|המתחלק
 +
|-
 +
|divisor
 +
|style="text-align:right;"|אשר נחלק עליו
 +
|-
 +
|quotient
 +
|style="text-align:right;"|היוצא בחילוק
 +
|-
 +
|common denominator
 +
|style="text-align:right;"|אם המורים
 +
|}
 +
{|
 +
|-
 +
|treatise
 +
|style="text-align:right;"|קצור, קיצור
 +
|-
 +
|book
 +
|style="text-align:right;"|ספר (ה), ספרי
 +
|-
 +
|section
 +
|style="text-align:right;"|חלק (ה... ב)
 +
|-
 +
|chapter
 +
|style="text-align:right;"|כלל
 +
|-
 +
|chapter
 +
|style="text-align:right;"|פרק (ה / ה.. ב), פרקי ה, פרקים (ב / ה)
 +
|-
 +
|chapter
 +
|style="text-align:right;"|שער (ה / ה... ב), שערים
 +
|-
 +
|discussion
 +
|style="text-align:right;"|מאמר (ה)
 +
|-
 +
|
 +
|style="text-align:right;"|בחלק ה... בפרק ה... ממנו
 +
|-
 +
|introduction
 +
|style="text-align:right;"|מבוא ב, מבוא ל
 +
|-
 +
|introduction
 +
|style="text-align:right;"|הקדמה
 +
|-
 +
|to preface
 +
|style="text-align:right;"|אקדים
 +
|-
 +
|word
 +
|style="text-align:right;"|תיבה, הברותיו
 +
|-
 +
|letter
 +
|style="text-align:right;"|אות
 +
|-
 +
|language
 +
|style="text-align:right;"|בלשון
 +
|-
 +
|alien tongue
 +
|style="text-align:right;"|לשון נכרי
 +
|-
 +
|Hebrew language
 +
|style="text-align:right;"|לשון עברי
 +
|-
 +
|number
 +
|style="text-align:right;"|מספר (ה), מספרים, מספרינו, מספרך, מספרם, מספרן
 +
|-
 +
|
 +
|style="text-align:right;"|חשבון (ה), חשבונך, חשבוננו, החשבונים
 +
|-
 +
|number
 +
|style="text-align:right;"|מנין
 +
|-
 +
|digit
 +
|style="text-align:right;"|אות (ה), אותיות
 +
|-
 +
|digit
 +
|style="text-align:right;"|רושם, רשמים, רושם ה, רשמי ה
 +
|-
 +
|digit
 +
|style="text-align:right;"|מספר, מספרים, מספרי ה
 +
|-
 +
|zero
 +
|style="text-align:right;"|סיפרא, סיפרות, ספרות
 +
|-
 +
|prime number
 +
|style="text-align:right;"|מספר פשוט, פשוט, פשוטים
 +
|-
 +
|odd
 +
|style="text-align:right;"|נפרד, חשבון נפרד, החשבון הנפרד, מספר נפרד, הנפרדים, נפרדת
 +
|-
 +
|even
 +
|style="text-align:right;"|זוג, חשבון זוג, זוגי (ה), מספר זוגי
 +
|-
 +
|pair
 +
|style="text-align:right;"|זוגי
 +
|-
 +
|unit
 +
|style="text-align:right;"|אחד, אחדים, אחדי (ה), ידות
 +
|-
 +
|units
 +
|style="text-align:right;"|אחדים, אחדי (ה)
 +
|-
 +
|units
 +
|style="text-align:right;"|הפרט
 +
|-
 +
|product of tens, none-units
 +
|style="text-align:right;"|כלל
 +
|-
 +
|tens
 +
|style="text-align:right;"|עשרות, עשרי
 +
|-
 +
|hundreds
 +
|style="text-align:right;"|מאות
 +
|-
 +
|thousands
 +
|style="text-align:right;"|אלפים
 +
|-
 +
|ten thousand
 +
|style="text-align:right;"|רבבה, רבבות
 +
|-
 +
|millions
 +
|style="text-align:right;"|חשבונות
 +
|-
 +
|rank
 +
|style="text-align:right;"|דרגה
 +
|-
 +
|
 +
|style="text-align:right;"|מדרגה, מדרגת ה, מדרגתה ה, מדרגות, מדרגתם, מדרגותיה, מדרגותיו
 +
|-
 +
|
 +
|style="text-align:right;"|מעלה (ה), מעלות (ה), מעלת ה, מעלתה, מעלתו, מעלתן, מעלותיו, מעלותיהן
 +
|-
 +
|empty rank
 +
|style="text-align:right;"|מעלה חלקה ממספר, מעלה החלקה ממספר, מעלות חלקות מהמספר
 +
|-
 +
|positional value (relation)
 +
|style="text-align:right;"|ערך המעלות
 +
|-
 +
|positional value
 +
|style="text-align:right;"|בערך (ב / ה), כערך, ערך מקום ה, בערך המעלה, בערך מעלת ה
 +
|-
 +
|decimal place
 +
|style="text-align:right;"|מקום (ה), מקום הנחת, מקום ההנחה, מקומו ה, מקומו הוא ב
 +
|-
 +
|place
 +
|style="text-align:right;"|מקום (ה / ש), מקומו, מקומות
 +
|-
 +
|place holding
 +
|style="text-align:right;"|שמירת המדרגות
 +
|-
 +
|line
 +
|style="text-align:right;"|קו, קוים
 +
|-
 +
|point, dot
 +
|style="text-align:right;"|נקודה, נקדה, נקודות, נקדות
 +
|-
 +
|row, line
 +
|style="text-align:right;"|שורה, שורות, שורת (ה / ה... מה), שורתו
 +
|-
 +
|
 +
|style="text-align:right;"|טור (ה), טורים
 +
|-
 +
|surface
 +
|style="text-align:right;"|שטח
 +
|-
 +
|body
 +
|style="text-align:right;"|גשם
 +
|-
 +
|cube
 +
|style="text-align:right;"|מעוקב, המעוקב
 +
|-
 +
|stripe
 +
|style="text-align:right;"|רצועות של
 +
|-
 +
|length
 +
|style="text-align:right;"|ארך, אורך, באורך, ארכו
 +
|-
 +
|width
 +
|style="text-align:right;"|רוחב, רחבו, ברוחב
 +
|-
 +
|height
 +
|style="text-align:right;"|גובה
 +
|-
 +
!addition
 +
|
 +
|-
 +
|addition
 +
|style="text-align:right;"|חבור, חיבור
 +
|-
 +
|
 +
|style="text-align:right;"|בחברך אליהם ה
 +
|-
 +
|
 +
|style="text-align:right;"|לחבר (ל / על ה / עמהם ה / ... עם / ה... על ה / כל ה / יחד כל), לחברו (ל / עם, עמו), לחברם (עם / עם ה), לחבירו עם
 +
|-
 +
|
 +
|style="text-align:right;"|חבר ( ... עם / ה... ל / ה... עם / הכל יחד)
 +
|-
 +
|
 +
|style="text-align:right;"|חברהו (ל / עם), חברם ל, חברם עם ה, חברנו ה... עם, חברת אותם
 +
|-
 +
|
 +
|style="text-align:right;"|יחבר ה... עם
 +
|-
 +
|
 +
|style="text-align:right;"|יחברם
 +
|-
 +
|
 +
|style="text-align:right;"|מחברים (אותו עליהם / אותם אליהם)
 +
|-
 +
|
 +
|style="text-align:right;"|נחבר (אליהם / אליהם ה / ל / להם ה / ה... ל / ... עמהן)
 +
|-
 +
|
 +
|style="text-align:right;"|נחברנה עם ה, נחברהו אל ה
 +
|-
 +
|
 +
|style="text-align:right;"|נחברם (אליהם /  אליהם ה / יחד / ל / להם ה / עם / כלם)
 +
|-
 +
|
 +
|style="text-align:right;"|תחבר (אליהם ה / להם ה / לו ה)
 +
|-
 +
|
 +
|style="text-align:right;"|תחברם (יחד / יחד ... עם / כלם / עם ה)
 +
|-
 +
|
 +
|style="text-align:right;"|תחברנו (עם / עם ה / ל)
 +
|-
 +
|to be summed
 +
|style="text-align:right;"|מחובר, מחוברות יחד
 +
|-
 +
|sum
 +
|style="text-align:right;"|המתחבר, המחובר
 +
|-
 +
|sum
 +
|style="text-align:right;"|המקובץ
 +
|-
 +
|sum
 +
|style="text-align:right;"|סך
 +
|-
 +
|summed
 +
|style="text-align:right;"|המקובץ (מ / מה)
 +
|-
 +
|summed
 +
|style="text-align:right;"|מחובר עם ה
 +
|-
 +
|
 +
|style="text-align:right;"|עלה חיבורם, עלה מחבורם, עולה חיבורם, העולה מהחיבור, העולה מחבור ה
 +
|-
 +
|addition
 +
|style="text-align:right;"|תוספת (אשר ל / בהם / ה / על ה)
 +
|-
 +
|to add
 +
|style="text-align:right;"|להוסיף (אותו על ה / אחד / מה / על ה / ... ב), להוסיפו (על ה / עליו), להוסיפם על ה
 +
|-
 +
|
 +
|style="text-align:right;"|הוסיף ...על ה, הוסיף עליו זה התוספת
 +
|-
 +
|
 +
|style="text-align:right;"|הוסף (על ה / עליו)
 +
|-
 +
|
 +
|style="text-align:right;"|הוספנו (על / עליהם / ... מעל ה / ... על ה / עליהם ה)
 +
|-
 +
|
 +
|style="text-align:right;"|הוספנוהו על ה
 +
|-
 +
|
 +
|style="text-align:right;"|יוסיף לעולם על
 +
|-
 +
|
 +
|style="text-align:right;"|מוסיפים (... ב / עליו)
 +
|-
 +
|
 +
|style="text-align:right;"|נוסיף (ב / עליהם / עליו / ... ב / ... על / ... על ה / ה...על ה / ה... עם ה)
 +
|-
 +
|
 +
|style="text-align:right;"|נוסיפנו
 +
|-
 +
|
 +
|style="text-align:right;"|תוסיף (עליו / ... על / ה... על), תוסיפם על, תוסיפנו על ה
 +
|-
 +
|
 +
|style="text-align:right;"|המתוסף ב, המתוסף עתה ב, המתוסף על ה
 +
|-
 +
|
 +
|style="text-align:right;"|יתוסף ב, נתוסף, ניתוסף ב, ניתוסף דבר ב, נתוספו (ב / לו... על), מתוסף
 +
|-
 +
|
 +
|style="text-align:right;"|בהוספת ה
 +
|-
 +
|added
 +
|style="text-align:right;"|מוסף על ה, מוספים על
 +
|-
 +
|
 +
|style="text-align:right;"|נוסף, נוספות, נוספים (ב... על / ב... על ה / על ה), נוספת ב... על
 +
|-
 +
|
 +
|style="text-align:right;"|תוסף ב
 +
|-
 +
|
 +
|style="text-align:right;"|יוסיף ב
 +
|-
 +
|
 +
|style="text-align:right;"|מוסיף (על / על ה)
 +
|-
 +
|
 +
|style="text-align:right;"|קיבוץ כל השורות יחד
 +
|-
 +
|plus
 +
|style="text-align:right;"|בתוספת (ה)
 +
|-
 +
|by addition
 +
|style="text-align:right;"|לתוספת
 +
|-
 +
|addition
 +
|style="text-align:right;"|מתוספת ב
 +
|-
 +
|additive, additional
 +
|style="text-align:right;"|היה לתוספת, היו לתוספת
 +
|-
 +
|exceeding
 +
|style="text-align:right;"|מוסיפים על ה
 +
|-
 +
!subtraction
 +
|
 +
|-
 +
|subtraction
 +
|style="text-align:right;"|המגרעת
 +
|-
 +
|to subtract
 +
|style="text-align:right;"|ונסור ה
 +
|-
 +
|subtraction
 +
|style="text-align:right;"|בהסר מה
 +
|-
 +
|
 +
|style="text-align:right;"|לגרוע (... מ), לגרעם מ
 +
|-
 +
|
 +
|style="text-align:right;"|גרע (... ממנו / ממנו ה)
 +
|-
 +
|
 +
|style="text-align:right;"|נגרע (ה... מה / מהם)
 +
|-
 +
|
 +
|style="text-align:right;"|הנגרעים
 +
|-
 +
|
 +
|style="text-align:right;"|יגרע (מהם)
 +
|-
 +
|
 +
|style="text-align:right;"|החסרו מ
 +
|-
 +
|
 +
|style="text-align:right;"|חסרון (מ), החסרון אשר ב... מה, חסרונו
 +
|-
 +
|
 +
|style="text-align:right;"|לחסר (מה / ... מ / ה... מ), לחסרו (מ / מן ה), לחסרם מה
 +
|-
 +
|
 +
|style="text-align:right;"|לחסו' ... מ
 +
|-
 +
|
 +
|style="text-align:right;"|חסר מ, חסר ... מ
 +
|-
 +
|
 +
|style="text-align:right;"|חסרם מ
 +
|-
 +
|
 +
|style="text-align:right;"|חסרנו (ה / מ / ממנו / ממנו ה)
 +
|-
 +
|
 +
|style="text-align:right;"|חסרת
 +
|-
 +
|
 +
|style="text-align:right;"|יחסר (כ / מ / מה / ממנו כ / ... מ / ... מה / ... כ / ה... מה)
 +
|-
 +
|
 +
|style="text-align:right;"|יחסר יותר
 +
|-
 +
|
 +
|style="text-align:right;"|יחסרהו מ
 +
|-
 +
|
 +
|style="text-align:right;"|נחסר (ה / אלו ... מה / ה...מה / ה... מן ה / ... מה)
 +
|-
 +
|
 +
|style="text-align:right;"|נחסרה
 +
|-
 +
|
 +
|style="text-align:right;"|נחסרנו (מה), נחסרנו לעולם מה, נחסרהו לעולם מה
 +
|-
 +
|
 +
|style="text-align:right;"|נחסרם זה מזה
 +
|-
 +
|
 +
|style="text-align:right;"|תחסר (ה / מה / מהם ה / הכל מה), תחסרנו ממנו
 +
|-
 +
|
 +
|style="text-align:right;"|מחוסר
 +
|-
 +
|
 +
|style="text-align:right;"|מחסרים, מחסרים עתה מה
 +
|-
 +
|
 +
|style="text-align:right;"|מן ... חסר ה
 +
|-
 +
|
 +
|style="text-align:right;"|חסרים אלו ה... מ
 +
|-
 +
|minus
 +
|style="text-align:right;"|חסר, חסר אחת
 +
|-
 +
|
 +
|style="text-align:right;"|אשר חסרנו ממנו
 +
|-
 +
|
 +
|style="text-align:right;"|אשר חסרת, אשר חסרת ממנו
 +
|-
 +
|
 +
|style="text-align:right;"|יחסר מעלה ממקום ה
 +
|-
 +
|
 +
|style="text-align:right;"|בהסיר, בהסר מהם ה, להסירו, להסירם מה, הסירך ה
 +
|-
 +
|to subtract
 +
|style="text-align:right;"|הסיר מה, הסר, הסרת (ה)
 +
|-
 +
|
 +
|style="text-align:right;"|נסיר (ה / ... מה / ה ... מה / ה... מ / מה / מהם / מהם ה / ממנו ה)
 +
|-
 +
|
 +
|style="text-align:right;"|נסירה (ממנו / כלו ממינו), נסירהו
 +
|-
 +
|
 +
|style="text-align:right;"|נסירם (מה / ממנה)
 +
|-
 +
|
 +
|style="text-align:right;"|נסירנו מה
 +
|-
 +
|
 +
|style="text-align:right;"|תסיר (ה / מהם / ... מה), תסירנה, תסירנו
 +
|-
 +
|subtraction
 +
|style="text-align:right;"|הוצאת... מ
 +
|-
 +
|
 +
|style="text-align:right;"|להוציא (מה / ממנו / ... מ / ה... מה)
 +
|-
 +
|
 +
|style="text-align:right;"|להוציאו מהם
 +
|-
 +
|
 +
|style="text-align:right;"|להוציאם (מה / מהם ה)
 +
|-
 +
|
 +
|style="text-align:right;"|הוצא (ה / מ / ה... מ)
 +
|-
 +
|
 +
|style="text-align:right;"|הוצאנו ממנו
 +
|-
 +
|
 +
|style="text-align:right;"|הוצאת (מהם / ה... מה / ה... מן)
 +
|-
 +
|
 +
|style="text-align:right;"|הוציא... מה
 +
|-
 +
|
 +
|style="text-align:right;"|הוציאהו מ
 +
|-
 +
|
 +
|style="text-align:right;"|הוציאנו (מה)
 +
|-
 +
|
 +
|style="text-align:right;"|יוציא כל ה
 +
|-
 +
|
 +
|style="text-align:right;"|מוציאים מה
 +
|-
 +
|
 +
|style="text-align:right;"|נוציא (כל / מ / מה / מהם ה / ה... מה / ... מ)
 +
|-
 +
|
 +
|style="text-align:right;"|נוציאם מה
 +
|-
 +
|
 +
|style="text-align:right;"|נוציאנו (מ / מה / מאשר על)
 +
|-
 +
|
 +
|style="text-align:right;"|תוציא (ה... מן / ... מ)
 +
|-
 +
|
 +
|style="text-align:right;"|להוציא כ"כ פעמים המספרים
 +
|-
 +
|to be subtracted, to be consumed
 +
|style="text-align:right;"|ויצא כל זה ה, יצא הכל
 +
|-
 +
|
 +
|style="text-align:right;"|לא תוציא ל
 +
|-
 +
|to subtract
 +
|style="text-align:right;"|תוציאנו מה
 +
|-
 +
|
 +
|style="text-align:right;"|ומהכל תוציא אשר
 +
|-
 +
|
 +
|style="text-align:right;"|אשר עליו להוציא
 +
|-
 +
|to be subtracted
 +
|style="text-align:right;"|לצאת (ה / כלו / מהם / מאשר על), יצא, יצאו (מ / ... מ)
 +
|-
 +
|
 +
|style="text-align:right;"|בלי תוספת ומגרעת, מבלי תוספת ומגרעת
 +
|-
 +
|
 +
|style="text-align:right;"|מבלי תוספת, מבלי תוספת ה
 +
|-
 +
|
 +
|style="text-align:right;"|לבד בלי תוספת אחד כלל
 +
|-
 +
|
 +
|style="text-align:right;"|ואם יחסר או יעדיף
 +
|-
 +
!Multiplication
 +
|
 +
|-
 +
|multiplication of fractions
 +
|style="text-align:right;"|הכאה, הכאת ... ב
 +
|-
 +
|
 +
|style="text-align:right;"|להכות (ה... ב)
 +
|-
 +
|
 +
|style="text-align:right;"|הכה (אותן /  ... ב)
 +
|-
 +
|
 +
|style="text-align:right;"|נכה (ב / ה / ה... ב), נכם ב
 +
|-
 +
|
 +
|style="text-align:right;"|תכה הצריך להכאה
 +
|-
 +
|
 +
|style="text-align:right;"|לעשות הכאה, נעשה הכאה ל, עשה להם הכאה, תעשה להם ג"כ ההכאה
 +
|-
 +
|
 +
|style="text-align:right;"|ונכם זה בזה
 +
|-
 +
|
 +
|style="text-align:right;"|הוכה (ב), הוכה... על, הוכו, הוכתה בהם
 +
|-
 +
|
 +
|style="text-align:right;"|לבעלי ההכאה
 +
|-
 +
|product
 +
|style="text-align:right;"|כפל (ב / ה / עם / ... ב / ... על / ... עם / ה... ב / ה... על / זה ה... ב / ... זה בזה / ה... זה בזה / כל ה)
 +
|-
 +
|
 +
|style="text-align:right;"|כפליהן, כפלו על
 +
|-
 +
|product
 +
|style="text-align:right;"|המחובר
 +
|-
 +
|product
 +
|style="text-align:right;"|מקובץ
 +
|-
 +
|product
 +
|style="text-align:right;"|אשר עלה לידיך מכפל ... ב
 +
|-
 +
|multiplying
 +
|style="text-align:right;"|בהכפל (ה / ... ב), בכופלנו אותו ב, בכפול (אותו ב / ה... ב / ... אחד באחד / אותם זה בזה / ... ב), הכפלו ב, הכפלם (ב / כלם ב)
 +
|-
 +
|
 +
|style="text-align:right;"|בכפול זה בזה, בהכפל זה בזה
 +
|-
 +
|to multiply
 +
|style="text-align:right;"|כפלת ה... ב
 +
|-
 +
|
 +
|style="text-align:right;"|בכפלנו אותו ב
 +
|-
 +
|
 +
|style="text-align:right;"|לכפול (ב / בהם / בהם ה / ה / ה ... ב / ה... עם / ... ב / ... על / כל ה... בהם / כל ה.... עם ה)
 +
|-
 +
|
 +
|style="text-align:right;"|לכפלה עם, לכפלו (ב / בכלם), לכפלם ב
 +
|-
 +
|
 +
|style="text-align:right;"|כופל ב, כופלים (אותה ב / אותו / ב / ה / כל ה / ... ב /  ה... ב)
 +
|-
 +
|
 +
|style="text-align:right;"|כפול (אותו ב / אותו... ב / ... ב / ... על / ה... ב / ה... על /  ... פעמים)
 +
|-
 +
|
 +
|style="text-align:right;"|כפלהו (ב / שנית ב), כפלהו אותם ב
 +
|-
 +
|
 +
|style="text-align:right;"|כפלו (ב / על / עם / ... ב)
 +
|-
 +
|
 +
|style="text-align:right;"|כפלם זה בזה
 +
|-
 +
|
 +
|style="text-align:right;"|כפלנו (אותם ב / בהם / ה... ב / ... ב / ... על)
 +
|-
 +
|
 +
|style="text-align:right;"|כפלנוהו ב
 +
|-
 +
|
 +
|style="text-align:right;"|כפלנום ב
 +
|-
 +
|
 +
|style="text-align:right;"|כפלת
 +
|-
 +
|
 +
|style="text-align:right;"|נכפול (אותם ב / ב / בהם / בו / זה ב / אותו... ב / ... ב / ... על / ה... ב)
 +
|-
 +
|
 +
|style="text-align:right;"|נכפלהו ב, נכפלו... עם
 +
|-
 +
|
 +
|style="text-align:right;"|נכפלם (ב / על ה / עוד ב / ... ב)
 +
|-
 +
|
 +
|style="text-align:right;"|נכפלנו (ב / בהם)
 +
|-
 +
|
 +
|style="text-align:right;"|תכפול (אותו ב / בו / ה... ב / ה... עם / ... ב / ... בו / ... על / ... ב... פעמים)
 +
|-
 +
|
 +
|style="text-align:right;"|תכפלם (ב / ... על ה)
 +
|-
 +
|
 +
|style="text-align:right;"|תכפלנו (ב / בהם)
 +
|-
 +
|to multiply
 +
|style="text-align:right;"|כופלים בהכאה ... ב
 +
|-
 +
|
 +
|style="text-align:right;"|כפל אלו זה בזה
 +
|-
 +
|
 +
|style="text-align:right;"|כפלו ב... פעמים
 +
|-
 +
|product by itself
 +
|style="text-align:right;"|כפלתו בעצמו
 +
|-
 +
|
 +
|style="text-align:right;"|כפלו (בעצמו / על עצמו)
 +
|-
 +
|
 +
|style="text-align:right;"|כפל... בעצמו, כפל ... על עצמו, כפל ה... בעצמו
 +
|-
 +
|
 +
|style="text-align:right;"|כפל... בעצמם, כפל ה... על עצמם
 +
|-
 +
|
 +
|style="text-align:right;"|ככפלו לעצמו
 +
|-
 +
|
 +
|style="text-align:right;"|לכפול על כולם ועל עצמו
 +
|-
 +
|
 +
|style="text-align:right;"|כופלים ה... בכמותו
 +
|-
 +
|
 +
|style="text-align:right;"|כפול אותו על עצמו, כפול ... על עצמם
 +
|-
 +
|
 +
|style="text-align:right;"|כפלם בעצמם
 +
|-
 +
|
 +
|style="text-align:right;"|כפלנו ... על עצמם, כפלנוהו בעצמו, כפלנוהו על עצמו
 +
|-
 +
|
 +
|style="text-align:right;"|נכפול (על עצמו / ... על עצמו / ה... על עצמו / ה... בעצמו / זה על עצמו)
 +
|-
 +
|
 +
|style="text-align:right;"|נכפלנו (בעצמו / על עצמו)
 +
|-
 +
|
 +
|style="text-align:right;"|תכפול (ה... בעצמו / אותו ה... על עצמו)
 +
|-
 +
|
 +
|style="text-align:right;"|תכפלנו על עצמו
 +
|-
 +
|
 +
|style="text-align:right;"|כפולים בעצמם
 +
|-
 +
|multiple
 +
|style="text-align:right;"|כפלי (ה / מ), כפלים
 +
|-
 +
|multiplied
 +
|style="text-align:right;"|כפול, כפולים
 +
|-
 +
|
 +
|style="text-align:right;"|פעמים כפל ה... זה בזה
 +
|-
 +
|
 +
|style="text-align:right;"|כפל הכפלים ההם
 +
|-
 +
|
 +
|style="text-align:right;"|לכופליו
 +
|-
 +
|
 +
|style="text-align:right;"|כופלו
 +
|-
 +
|
 +
|style="text-align:right;"|אנו לוקחים אותם כפולות
 +
|-
 +
|to be multiplied
 +
|style="text-align:right;"|הוכפל ה, הוכפלה בה, הוכפלו בהם, יוכפל כפלים ב
 +
|-
 +
|product
 +
|style="text-align:right;"|עולה מהכפל, העולה מהכפל (ה / הזה), העולים מהכפל (... ב / ה... ב), העולים בכפל, העולות מזה הכפל, העולה מכפלו עם ה, העולה מכפלם
 +
|-
 +
|
 +
|style="text-align:right;"|שעלה בכפל
 +
|-
 +
|
 +
|style="text-align:right;"|תעלה מ...
 +
|-
 +
|
 +
|style="text-align:right;"|היוצא אחר הכפל
 +
|-
 +
|
 +
|style="text-align:right;"|נכפלו, נכפלו בהם
 +
|-
 +
|
 +
|style="text-align:right;"|הכפלים, מנין הכפלים
 +
|-
 +
|
 +
|style="text-align:right;"|כפול, כפולים
 +
|-
 +
|
 +
|style="text-align:right;"|נכפל, נכפלים ב
 +
|-
 +
|
 +
|style="text-align:right;"|הנכפל, הנכפלים, מספרים הנכפלים, המספרים הנכפלים, הנכפלים זה בזה
 +
|-
 +
|
 +
|style="text-align:right;"|נכפל פעמים רבות
 +
|-
 +
|
 +
|style="text-align:right;"|אשר אינם נכפלים
 +
|-
 +
|to be duplicate
 +
|style="text-align:right;"|ישנו (ב / בהם), נשנים (ב / מ)
 +
|-
 +
|duplicated
 +
|style="text-align:right;"|כפול, נכפלים
 +
|-
 +
|to duplicate
 +
|style="text-align:right;"|לכפלו, ישנך
 +
|-
 +
|duplication
 +
|style="text-align:right;"|כפל ה
 +
|-
 +
|duplication
 +
|style="text-align:right;"|השינוי
 +
|-
 +
|double
 +
|style="text-align:right;"|כפול, כפל (ה), כפלו
 +
|-
 +
|doubling
 +
|style="text-align:right;"|כפל
 +
|-
 +
|to double
 +
|style="text-align:right;"|כפול (ה), כפלת ה, נכפול ה, תכפול, תכפלנו
 +
|-
 +
!Division
 +
|style="text-align:right;"|חלוקה, לחלוקה על ה... עליו, חלוקת ה, חלוק (ה), חילוק (ב / ה / ... ב), בחילוק, בחילוק על ה, חלוקנו, בחלוקנו ל, בחלקך ל, בחלקנו (אותו ל / ה / ה... ל / ה... עליהם / אותו ל / אותם ל / ... ל), בחלקינו... ל
 +
|-
 +
|
 +
|style="text-align:right;"|בחלקנום אותם על
 +
|-
 +
|
 +
|style="text-align:right;"|לחלק (ל / ... ל / ... על / ה... ל / ה... עליהם / אותן על / אליהם אלו ה / עליהם / על הכל)
 +
|-
 +
|
 +
|style="text-align:right;"|לחלקה עתה להם, לחלקו (ב / ל / על / עליו)
 +
|-
 +
|
 +
|style="text-align:right;"|לחלקם (ל / להם / על / על ה / עליהם / עליו / ראשונה על ה)
 +
|-
 +
|
 +
|style="text-align:right;"|חלק (ל / עליו / ה... ל / ה... על / ה... עליהם / זה ה... על / אליו זה ה / ... על)
 +
|-
 +
|
 +
|style="text-align:right;"|חלקהו ל
 +
|-
 +
|
 +
|style="text-align:right;"|חלקם (ל / עליהם)
 +
|-
 +
|
 +
|style="text-align:right;"|חלקנו (אותו על / ה / ה... ב / ה... על / ל / על / על ה / עליהם ה / עליו / ... ל /  ... על / ... על ה)
 +
|-
 +
|
 +
|style="text-align:right;"|חלקנוהו (על / על ה / עליו), חלקנום (ב / ל / על / על ה / עליו)
 +
|-
 +
|
 +
|style="text-align:right;"|חלקת (ה... על ה / הכל ל)
 +
|-
 +
|
 +
|style="text-align:right;"|יחלק ... על
 +
|-
 +
|
 +
|style="text-align:right;"|מחלקים (אותו ל / אל / ... ל)
 +
|-
 +
|
 +
|style="text-align:right;"|נחלוק ... ל
 +
|-
 +
|
 +
|style="text-align:right;"|נחלק (אלו ה / אליהם / אליהם ה / ה / ל / לו / על / עליה / עליהם / עליהם ה / עליו / ... ל / ...על / ה... ל / ה... על / ה... על ה / אלו ה... ל / אלו ה... אל ה)
 +
|-
 +
|
 +
|style="text-align:right;"|נחלק זה החשבון ל, נחלק חשבוננו זה עליו, נחלק מספרינו על
 +
|-
 +
|
 +
|style="text-align:right;"|נחלק זה היוצא ל, נחלק זה היוצא על ה
 +
|-
 +
|
 +
|style="text-align:right;"|נחלקם (ל / על / על ה / עליהם / עליו / תחלה ל)
 +
|-
 +
|
 +
|style="text-align:right;"|נחלקם על מינו, נחלקנו למינו
 +
|-
 +
|
 +
|style="text-align:right;"|נחלקנו (אליהם / ב / ל / על / עליו)
 +
|-
 +
|
 +
|style="text-align:right;"|תחלק (... ל / ... על ה / על ה / עליו / ה... ל / ה... על / ה... על ה);  תחלק (ל / עליהם); תחלק על כלם ה, תחלק כל החשבון ל, תחלק אליו לשלימים
 +
|-
 +
|
 +
|style="text-align:right;"|תחלקה
 +
|-
 +
|
 +
|style="text-align:right;"|תחלקם ל
 +
|-
 +
|
 +
|style="text-align:right;"|תחלקנה ל
 +
|-
 +
|
 +
|style="text-align:right;"|תחלקנו (ל / על)
 +
|-
 +
|
 +
|style="text-align:right;"|יתחלק ל, יתחלק ... ל, יתחלקו
 +
|-
 +
|
 +
|style="text-align:right;"|המחלק ... על
 +
|-
 +
|
 +
|style="text-align:right;"|נחלק ל
 +
|-
 +
|
 +
|style="text-align:right;"|נתחלק הכל
 +
|-
 +
|
 +
|style="text-align:right;"|נתחלק על כל ה, נתחלק להם המספר
 +
|-
 +
|
 +
|style="text-align:right;"|בחלוקה הראשונה
 +
|-
 +
|
 +
|style="text-align:right;"|חלקתי הספר לב' חלקים
 +
|-
 +
|
 +
|style="text-align:right;"|אשר אתה מחלק עליו
 +
|-
 +
|
 +
|style="text-align:right;"|אשר רצינו לחלק (על ה / עליהם / עליהם ה / עליו / ל), שרצינו לחלק (עליו)
 +
|-
 +
|
 +
|style="text-align:right;"|אשר רצית לחלק (עליו)
 +
|-
 +
|
 +
|style="text-align:right;"|אשר תרצה לחלק (עליו)
 +
|-
 +
|
 +
|style="text-align:right;"|אשר חלקנו (עליהם / עליו), שחלקנו עליהם
 +
|-
 +
|
 +
|style="text-align:right;"|אשר חלקת עליו
 +
|-
 +
|
 +
|style="text-align:right;"|אשר חלקת עליהם
 +
|-
 +
|
 +
|style="text-align:right;"|אשר חלקנו כבר עליהם
 +
|-
 +
|
 +
|style="text-align:right;"|אשר נחלק (אל / עליו), אשר נחלקו עליו
 +
|-
 +
|
 +
|style="text-align:right;"|אשר תחלק עליו
 +
|-
 +
|
 +
|style="text-align:right;"|עליהם תחלק ה
 +
|-
 +
|
 +
|style="text-align:right;"|אשר להם תחלק
 +
|-
 +
|
 +
|style="text-align:right;"|המתחלק (ל), החשבון המתחלק, המספר המתחלק, מספר המתחלק
 +
|-
 +
|quotient
 +
|style="text-align:right;"|היוצא מן החלוק ה, היוצא בחלוק, היוצא בחילוק, היוצא בחלוקו, היוצאים בחלוק, היוצאים בחילוק
 +
|-
 +
|
 +
|style="text-align:right;"|יוצאים בחילוק
 +
|-
 +
|
 +
|style="text-align:right;"|יצא בחלוק, יצא בחילוק, יצא בחילוק (ה / ל), יצא לנו בחלוק, יצא זה בחלוק ה, יצא בחילוק ה... ל, יצאו בחלוק, יצא ה... בחילוק, יצאו... בחילוק, יצא בו בחלוק
 +
|-
 +
|
 +
|style="text-align:right;"|יצא בחלוקה, יצא מהחלוקה
 +
|-
 +
|
 +
|style="text-align:right;"|יצא בחלוקנו, יצא בחלוקם, יצא בחילוקם
 +
|-
 +
|
 +
|style="text-align:right;"|העולה שיצא לנו בחלוק ה ... על ה
 +
|-
 +
|
 +
|style="text-align:right;"|תצא ... בחילוק
 +
|-
 +
|
 +
|style="text-align:right;"|יצא בחילוק מבלי שארית, היוצא בחילוק בצמצום, היוצא בחלוק בצמצום
 +
|-
 +
|
 +
|style="text-align:right;"|יצא בחילוק לכל אחד
 +
|-
 +
|
 +
|style="text-align:right;"|יצא בחילוק מספר מה
 +
|-
 +
|
 +
|style="text-align:right;"|אשר יוצא עתה בחילוק
 +
|-
 +
|
 +
|style="text-align:right;"|אשר יצא לנו בחילוק, אשר יצא בחילוק באחרונה, אשר יצא באחרונה בחלוק
 +
|-
 +
|
 +
|style="text-align:right;"|אשר יצאו בחילוק, אשר יצאו בחלוק, אשר יצאו בחלוק באחרונה, שיצאו בחילוק
 +
|-
 +
|
 +
|style="text-align:right;"|יצא לך בחלוק על
 +
|-
 +
|
 +
|style="text-align:right;"|יצאו בחלוק
 +
|-
 +
|
 +
|style="text-align:right;"|ויצא ... בחלוק, ויצא בחילו'
 +
|-
 +
|
 +
|style="text-align:right;"|עלה בחלוק
 +
|-
 +
|factor, divisor
 +
|style="text-align:right;"|מורה (ל / לו), מורים (ל), מורי, מוריו
 +
|-
 +
|part, divisor
 +
|style="text-align:right;"|חלקיו
 +
|-
 +
|true divisor
 +
|style="text-align:right;"|מורה צדק
 +
|-
 +
|indivisible
 +
|style="text-align:right;"|לא נחלק לשלמים אל חשבון, לא יוכל להתחלק עליו, שלא יוכל להתחלק לשלמים, לא יתחלק כלו לשלמים
 +
|-
 +
|
 +
|style="text-align:right;"|לא יתחלק לשום מספר בשלימות מבלי שארית
 +
|-
 +
|divisible
 +
|style="text-align:right;"|יתחלק כלו לשלימים, הנחלק למספר מה, יתחלק אליו לשלימים מבלי שארית
 +
|-
 +
|divisible by two
 +
|style="text-align:right;"|יש לו מחצית, יש לו ב'
 +
|-
 +
|divisible by three
 +
|style="text-align:right;"|יש לו שלישית, יהיה לו שלישית, יש לו ג', היה לו שלישית
 +
|-
 +
|divisible by four
 +
|style="text-align:right;"|יש לו רביעית, יש לו ד', יש לה רביעית, יש להם רביעית, יש לחשבון רביעית, היה להם רביעית, היה לו רביעית
 +
|-
 +
|indivisible by four
 +
|style="text-align:right;"|אין לו רביעית, אין לנו רביעית
 +
|-
 +
|divisible by five
 +
|style="text-align:right;"|יש לו חמישית, יש לו חמישיות שלמות, יש לזה ה... חמישית, היה לו ה'
 +
|-
 +
|divisible by six
 +
|style="text-align:right;"|יש לו שישית
 +
|-
 +
|indivisible by six
 +
|style="text-align:right;"|אין לו שישית
 +
|-
 +
|divisible by seven
 +
|style="text-align:right;"|יש לו שביעית
 +
|-
 +
|indivisible by seven
 +
|style="text-align:right;"|אין לו ז'
 +
|-
 +
|divisible by eight
 +
|style="text-align:right;"|יש לה שמינית, יש לו שמינית, יש לו ח', יש להם שמינית
 +
|-
 +
|indivisible by eight
 +
|style="text-align:right;"|אין לה שמינית
 +
|-
 +
|divisible by nine
 +
|style="text-align:right;"|יש לו תשיעית, יש לו ט', יש למספר תשיעית
 +
|-
 +
|divisible by ten
 +
|style="text-align:right;"|יש לו עשירית, יש לו עשר, יש לה י'
 +
|-
 +
|divisible by eleven
 +
|style="text-align:right;"|יש לו י"א, יש לו הי"א, יתחלק לי"א על השלימות
 +
|-
 +
|indivisible by eleven
 +
|style="text-align:right;"|אין לו י"א
 +
|-
 +
|divisible by thirteen
 +
|style="text-align:right;"|יש לו י"ג, יש לו הי"ג
 +
|-
 +
|divisible by seventeen
 +
|style="text-align:right;"|יש לו י"ז
 +
|-
 +
|
 +
|style="text-align:right;"|יצא הכל לשביעיות
 +
|-
 +
|
 +
|style="text-align:right;"|יצא הכל ז' ז'
 +
|-
 +
|
 +
|style="text-align:right;"|השלך לעולם הז' ז'
 +
|-
 +
|
 +
|style="text-align:right;"|השלך אותו ח' ח'
 +
|-
 +
|casting out by nines
 +
|style="text-align:right;"|הסרת התשיעיות, חסר כל ט' ט', תוציא הט' ט'
 +
|-
 +
|to be cast out by nines
 +
|style="text-align:right;"|יצא הכל לט' ט', יצא החשבון לט' ט', יצא כולו תשיעיות
 +
|-
 +
|to be cast out by 11
 +
|style="text-align:right;"|יושלך כלו י"א י"א, יושלך לי"א י"א
 +
|-
 +
|to cast out by 13
 +
|style="text-align:right;"|הוצא הי"ג י"ג, הוצאת הי"ג
 +
|-
 +
|to be cast out by 13
 +
|style="text-align:right;"|יוצא לי"ז י"ז
 +
|-
 +
|to extract the factors
 +
|style="text-align:right;"|תוציא המורים מ
 +
|-
 +
|to extract the factor
 +
|style="text-align:right;"|המצאת מורה ה
 +
|-
 +
!fractions
 +
|
 +
|-
 +
|integer
 +
|style="text-align:right;"|שלמים, שלימים, מספר שלם
 +
|-
 +
|fraction
 +
|style="text-align:right;"|שבר, שברים (מ / מה), שבורים, שברי (ה), שבריהם
 +
|-
 +
|fraction
 +
|style="text-align:right;"|חלק מ, חלקים (מ / מה), חלקי (ה)
 +
|-
 +
|fraction of fraction
 +
|style="text-align:right;"|שברי שברים (מ), שבר שבר
 +
|-
 +
|fractional
 +
|style="text-align:right;"|הנשבר
 +
|-
 +
|portion
 +
|style="text-align:right;"|שברים מ
 +
|-
 +
|part
 +
|style="text-align:right;"|חלק (ה / מ), חלקים מ, חלק אחד מ, חלקי ה, חלקיו
 +
|-
 +
|
 +
|style="text-align:right;"|חלקים מחלק, חלקים מחלק מ
 +
|-
 +
|
 +
|style="text-align:right;"|ב... חלקים בשלם
 +
|-
 +
|
 +
|style="text-align:right;"|מ... חלקים בשלם
 +
|-
 +
|
 +
|style="text-align:right;"|חלקי... בשלם; חלקי... מ... בשלם
 +
|-
 +
|
 +
|style="text-align:right;"|חלקים משלם מ, חלקים מ... בשלם; חלקים מ... שבשלם; חלקים מה ... בשלם
 +
|-
 +
|
 +
|style="text-align:right;"|חלקים מ... באחד
 +
|-
 +
|
 +
|style="text-align:right;"|חלקים מחלקי ה... בשלם; חלקים מ... חלקים בשלם; חלקים מ... חלקים מ... שלם
 +
|-
 +
|
 +
|style="text-align:right;"|חלק מ... ב; חלק מ... בשלם; חלק מ... שבשלם; חלק ... מ... בשלם; חלק ... מ... שבשלם
 +
|-
 +
|
 +
|style="text-align:right;"|אחד מ... בשלם; חלק א' מ; חלק אחד מ... בשלם; חלק אחד מ... שבשלם; חלק א' מ... שבשלם
 +
|-
 +
|
 +
|style="text-align:right;"|חלק א' מ... מ... שב; חלק א' מ... מ... השלם; חלק אחד מ... מ... בשלם; חלק אחד מ... מ... שבשלם
 +
|-
 +
|
 +
|style="text-align:right;"|השברים מהשלם
 +
|-
 +
|numerator
 +
|style="text-align:right;"|מספר השברים, מספר שברים, מספר שברי (ה), מספר שבריו, מספר שבריך, מספר המורה, מספר החלקים, מנין שברים, מנין השברים, שברים מה
 +
|-
 +
|
 +
|style="text-align:right;"|החלק על המורים
 +
|-
 +
|denominator
 +
|style="text-align:right;"|מורה (ה), מורהו, מורים (ל), מורי (ה), מוריה, מוריו (ה), מוריך, מורינו, המורה החלק, מורה החלק
 +
|-
 +
|
 +
|style="text-align:right;"|הוצאת המורים, הוצאת מורי ה
 +
|-
 +
|to extract the denominator
 +
|style="text-align:right;"|להוציא המורים (ל), הוצא את מוריו, נוציא מורה ה, נוציא מורי ה, נוציא מוריו, נוציא המורים ל, תוציא המורים
 +
|-
 +
|to be extracted
 +
|style="text-align:right;"|יצאו ממנו המורים
 +
|-
 +
|
 +
|style="text-align:right;"|לקחתו ... למורה, בקחתך אותם למורים
 +
|-
 +
|
 +
|style="text-align:right;"|נקח למורה, נקח ... למורה, נקח מוריהם, נקחם למורים, נקחנו למורה
 +
|-
 +
|
 +
|style="text-align:right;"|תקח מורה, תקחם למורים
 +
|-
 +
|
 +
|style="text-align:right;"|לוקחים מתחלה ה... למורה
 +
|-
 +
|
 +
|style="text-align:right;"|נשים ה... למורה, נשים... למורה, נשימם למורה
 +
|-
 +
|common denominator
 +
|style="text-align:right;"|אם, אם המורים, אם כל מוריהם, אם אלו המורים, אם המורים כלם, אם ... מורים, האם (ה), אמם
 +
|-
 +
|to extract a common denominator
 +
|style="text-align:right;"|הוצאת האם למורים, נוציא אם כל המורים
 +
|-
 +
|in reduction
 +
|style="text-align:right;"|בצמצום
 +
|-
 +
|reduced
 +
|style="text-align:right;"|שלמים
 +
|-
 +
|
 +
|style="text-align:right;"|כלילת יופי, ובכלילת יופי
 +
|-
 +
|
 +
|style="text-align:right;"|בעשותך כלילת יופי
 +
|-
 +
|
 +
|style="text-align:right;"|לעשות לשברים אלו כלילת יופי
 +
|-
 +
|
 +
|style="text-align:right;"|לעשות לה כלילת יופי, לעשות להם כלילת יופי
 +
|-
 +
|
 +
|style="text-align:right;"|נעשה כלילת יופי ל, נעשה להם כלילת יופי, נעשה לו כלילת יופי (על)
 +
|-
 +
|
 +
|style="text-align:right;"|עשה להם כלילת יופי
 +
|-
 +
|
 +
|style="text-align:right;"|תעשה להם כלילת יופי, תעשה מהם כלילת יופי
 +
|-
 +
|
 +
|style="text-align:right;"|הוא כעושה כלילת יופי
 +
|-
 +
|
 +
|style="text-align:right;"|עשותנו להם כלילת יופי שהן
 +
|-
 +
|unification
 +
|style="text-align:right;"|אחדות, לעשות בדרך האחדות
 +
|-
 +
!completion
 +
|style="text-align:right;"|ההשלמה, השלמתם, השלמתן (ל / לאחד)
 +
|-
 +
|to complete
 +
|style="text-align:right;"|השלמנו (ה / ל), להשלימם לאחד שלם, המשלימות אותו לאחד שלם
 +
|-
 +
|to be completed
 +
|style="text-align:right;"|הושלם כבר ב, ישלומו ל, ישלמו ל, ישלימו ה... ל, שלמו ה
 +
|-
 +
|
 +
|style="text-align:right;"|כדי השלמת מספר
 +
|-
 +
|complement
 +
|style="text-align:right;"|המשלים אותו כ, השלמה, השלמתו (ל / לאחד), השלמתם (לשלם / לאחד)
 +
|-
 +
|complement
 +
|style="text-align:right;"|מה שיש מה... עד תשלום
 +
|-
 +
|complement
 +
|style="text-align:right;"|קצתו האחר
 +
|-
 +
|to finish
 +
|style="text-align:right;"|השלמת ל, נשלים ה, תשלים (ל / לשורה / השורה)
 +
|-
 +
!decomposing
 +
|style="text-align:right;"|התכה, התכת השברים
 +
|-
 +
|to decompose
 +
|style="text-align:right;"|התיכנו אותו, נתיך ה
 +
|-
 +
|
 +
|style="text-align:right;"|יותך ...ל
 +
|-
 +
!composing
 +
|style="text-align:right;"|הרכבתן
 +
|-
 +
|composed
 +
|style="text-align:right;"|מורכב, מורכב מ, מורכב מהם
 +
|-
 +
!factorization
 +
|style="text-align:right;"|פריטה, פריטת (ה), פריטתינו, פריטתה, פריטת השברים, מספר פריטת השברים
 +
|-
 +
|
 +
|style="text-align:right;"|חלקי הפריטה
 +
|-
 +
|fractionalizing
 +
|style="text-align:right;"|כפורט
 +
|-
 +
|to fractionalize
 +
|style="text-align:right;"|לפרטם ל
 +
|-
 +
|
 +
|style="text-align:right;"|לעשות פריטה, עשות להם פריטה, נעשה פריטה ל, עשה הפריטה ל, נעשה תחלה פריטה ל, תעשה פריטה ל
 +
|-
 +
|
 +
|style="text-align:right;"|עשה פריטה לכל אלו השברים
 +
|-
 +
|
 +
|style="text-align:right;"|פורטים אותה עוד ל
 +
|-
 +
|
 +
|style="text-align:right;"|נפרטות (מ), נפרטים, החלקים הנפרטו' השברים הנפרטות, השברים הנפרטים
 +
|-
 +
|
 +
|style="text-align:right;"|נפרוט (ה)
 +
|-
 +
|
 +
|style="text-align:right;"|נפרטו, נפרט (ה)
 +
|-
 +
|
 +
|style="text-align:right;"|תפרוט
 +
|-
 +
!conversion
 +
|style="text-align:right;"|המרה
 +
|-
 +
|
 +
|style="text-align:right;"|המרנו ה... ל, תמירם אליהם, תמירם ל, תמירם למין אחר
 +
|-
 +
|
 +
|style="text-align:right;"|מורה המרה, מורי ההמרה
 +
|-
 +
|
 +
|style="text-align:right;"|החזרת השברים, חזרת השלימים לחלקים
 +
|-
 +
|
 +
|style="text-align:right;"|השבת השברים, להשיבם פרוטות
 +
|-
 +
|
 +
|style="text-align:right;"|משיב הכללים לפרטים
 +
|-
 +
|to convert
 +
|style="text-align:right;"|להחזירם מ
 +
|-
 +
|to convert
 +
|style="text-align:right;"|להחליפם אליו
 +
|-
 +
|
 +
|style="text-align:right;"|להשיב ה, להשיבם, להשיבם לחלק אחר
 +
|-
 +
|
 +
|style="text-align:right;"|להשיב למין אחד
 +
|-
 +
|
 +
|style="text-align:right;"|להשיב כלם מהמין, להשיב הכל ממין השברי', להשיבם כלם מהמין הראשון
 +
|-
 +
|
 +
|style="text-align:right;"|להשיבם כלם ממין אחד
 +
|-
 +
|
 +
|style="text-align:right;"|להשיב ... לכללים
 +
|-
 +
|
 +
|style="text-align:right;"|להשיב שברים... לחלק אחד
 +
|-
 +
|
 +
|style="text-align:right;"|להשיב מורים למורים אחרים
 +
|-
 +
|
 +
|style="text-align:right;"|נשיבם, נשיבם ל, נשיבם כלם, נשיבם כלם ממין אחד, נשיבם עוד
 +
|-
 +
|
 +
|style="text-align:right;"|נשיב ראשונה ה... ל
 +
|-
 +
|
 +
|style="text-align:right;"|השיבם ל, נשיבהו, תשיבם, תושיבם
 +
|-
 +
|
 +
|style="text-align:right;"|נשיבם כלם ראשונה
 +
|-
 +
|
 +
|style="text-align:right;"|להשיב הכל לקדמותו
 +
|-
 +
|to be converted
 +
|style="text-align:right;"|ישובו, ישוב הכל מ, שב, שבו כלם
 +
|-
 +
|to be converted
 +
|style="text-align:right;"|יומר
 +
|-
 +
!comparing fractions
 +
|style="text-align:right;"|השואה, השוואה, ההשואה שעשינו
 +
|-
 +
|
 +
|style="text-align:right;"|בעשותך השואה זו, לעשות בזה ההשואה
 +
|-
 +
|
 +
|style="text-align:right;"|נעשה ההשואה ל, נעשה להם השוואה, תעשה ההשואה, אשר עשינו בהשואה
 +
|-
 +
|
 +
|style="text-align:right;"|להשוות ... עם, להשוותם, נשוה, תשוה ה... אחד אל אחד
 +
|-
 +
|
 +
|style="text-align:right;"|לעשות תחלה פריטה והכאה, לעשות לשבריך פריטה גם הכאה, לעשות לכל א' מ... פריטה והכאה, לעשות שני המעשים ר"ל הפריטה והכאה, עשותנו הפריטה וההכאה לכל אחד מהם
 +
|-
 +
|
 +
|style="text-align:right;"|נעשה פריטה והכאה ל, נעשה לה הכאה גם פריטה, נעשה ל... פריטה והכאה, נעשה לכל אחד פריטה והכאה
 +
|-
 +
|
 +
|style="text-align:right;"|עשותך הפריטה וההכאה וההשואה, עשותנו הפריטה וההכאה וההשוואה
 +
|-
 +
!extraction of roots
 +
|
 +
|-
 +
|root
 +
|style="text-align:right;"|שרש (ה), שרשו, שרשים, שרשנו, שרשי ה
 +
|-
 +
|square
 +
|style="text-align:right;"|מרובע (ה), מרובעו, מרובעם, מרובעים
 +
|-
 +
|none square
 +
|style="text-align:right;"|ולא מרובעים
 +
|-
 +
|cube
 +
|style="text-align:right;"|מעוקב ה
 +
|-
 +
|to extract the root
 +
|style="text-align:right;"|ולקחת חציים
 +
|-
 +
|extracted root
 +
|style="text-align:right;"|השרש אשר הוצאת, שרש ה... אשר הוצאנו
 +
|-
 +
|
 +
|style="text-align:right;"|הוצאת השרשים
 +
|-
 +
|to extract a root
 +
|style="text-align:right;"|להוציא השרש, להוציא שורש, הוצא השרש, נוציא שורש, נוציא שרשו
 +
|-
 +
|
 +
|style="text-align:right;"|לבקש שרש
 +
|-
 +
|
 +
|style="text-align:right;"|בקשנו שרש, בקשת השרש, בקשת שרשו
 +
|-
 +
|
 +
|style="text-align:right;"|לדעת שרש, לדעת שרשו
 +
|-
 +
|
 +
|style="text-align:right;"|לידע שרש, לידע שרשו, לידע שרשו האמיתי
 +
|-
 +
|
 +
|style="text-align:right;"|לקחתו השרש
 +
|-
 +
|
 +
|style="text-align:right;"|נקח שרשו
 +
|-
 +
|
 +
|style="text-align:right;"|מרובע השרש
 +
|-
 +
|
 +
|style="text-align:right;"|בעל השרש
 +
|-
 +
|
 +
|style="text-align:right;"|השרש היוצא
 +
|-
 +
|
 +
|style="text-align:right;"|השרש המתוסף
 +
|-
 +
|
 +
|style="text-align:right;"|השרש המחוסר, השרש הזה המחוסר
 +
|-
 +
|
 +
|style="text-align:right;"|נעשה מהכל שרש אחת
 +
|-
 +
|
 +
|style="text-align:right;"|השרש הקרוב
 +
|-
 +
|
 +
|style="text-align:right;"|אשר לא יודע בהם שרש אמיתי לעולם כי בקירוב
 +
|-
 +
|
 +
|style="text-align:right;"|היה זה השרש אמיתי
 +
|-
 +
|
 +
|style="text-align:right;"|יהיה שרש קרוב מאד אל האמת
 +
|-
 +
|
 +
|style="text-align:right;"|בקרוב
 +
|-
 +
|
 +
|style="text-align:right;"|אין זה שרש אמיתי
 +
|-
 +
|
 +
|style="text-align:right;"|הקרוב
 +
|-
 +
|
 +
|style="text-align:right;"|אשר בשרשו, אשר יצאו בשרש
 +
|-
 +
|
 +
|style="text-align:right;"|שלימי השרש, השלימים היוצאים בשרש, השלמים אשר יצאו בשרש
 +
|-
 +
|
 +
|style="text-align:right;"|השברים היוצאים בשרש
 +
|-
 +
|
 +
|style="text-align:right;"|השרש בעצמו
 +
|-
 +
|
 +
|style="text-align:right;"|אשר בקשנו שרשו
 +
|-
 +
|
 +
|style="text-align:right;"|כשורש בעינו, שהוא כמו השרש
 +
|-
 +
!Proportions
 +
|
 +
|-
 +
|proportion, ratio
 +
|style="text-align:right;"|ערך, ערכים, ערכי ה
 +
|-
 +
|
 +
|style="text-align:right;"|הערך ל
 +
|-
 +
|
 +
|style="text-align:right;"|ערך ... אצל, הערך שיש ל... אצל, הערך שיש ל... אצל ה
 +
|-
 +
|
 +
|style="text-align:right;"|הערך אשר ל... אצל, הערך אשר ל... אצל ה
 +
|-
 +
|
 +
|style="text-align:right;"|הערך שיש ל... אצל
 +
|-
 +
|
 +
|style="text-align:right;"|כערך ... אצל, כערך אשר ל... אצל
 +
|-
 +
|
 +
|style="text-align:right;"|הערך בעצמו יש ל... אצל, הערך בעצמו שיש ל... אצל
 +
|-
 +
|
 +
|style="text-align:right;"|הוא הערך בעצמו אשר ל... אצל
 +
|-
 +
|
 +
|style="text-align:right;"|למי יש ערך אצל, למי יש זה הערך אצל
 +
|-
 +
|
 +
|style="text-align:right;"|אצל מי יש ערך זה ל, אצל מי יש לו זה הערך
 +
|-
 +
|
 +
|style="text-align:right;"|אצל מי יש ל... זה הערך
 +
|-
 +
|
 +
|style="text-align:right;"|אצל ... למי יש לו זה הערך
 +
|-
 +
|
 +
|style="text-align:right;"|ל... אצל מי יש לו זה הערך, ל... אצל מי יש לו זה הערך בעצמו
 +
|-
 +
|
 +
|style="text-align:right;"|למי יש לו זה הערך בעצמו אצל
 +
|-
 +
|
 +
|style="text-align:right;"|אצל איזה מספר יש לו אותו הערך בעצמו
 +
|-
 +
|rule of three
 +
|style="text-align:right;"|הג' מספרים נערכים
 +
|-
 +
|related, proportional
 +
|style="text-align:right;"|הנערך, הנערך אליהם, הנערך אצל (כל), נערכים
 +
|-
 +
|to relate
 +
|style="text-align:right;"|לקשרם יחד
 +
|-
 +
|mean
 +
|style="text-align:right;"|האמצעי, האמצעיים
 +
|-
 +
|first term
 +
|style="text-align:right;"|ראשון, הראשון שב, ראשון ל
 +
|-
 +
|second term
 +
|style="text-align:right;"|שני, שני שבהם, שני ל, השני מה
 +
|-
 +
|related
 +
|style="text-align:right;"|נערך, הנערך, הנערך אצל
 +
|-
 +
|related
 +
|style="text-align:right;"|נקשר ב, נקשרות, נקשרים (בו / ...ל / זה בזה / זו בזו)
 +
|-
 +
|unrelated
 +
|style="text-align:right;"|הבלתי נקשרות
 +
|-
 +
|what we relate to it
 +
|style="text-align:right;"|אשר אליו אנו מעריכים
 +
|-
 +
|
 +
|style="text-align:right;"|אשר מעריך אצלו
 +
|-
 +
|relation to
 +
|style="text-align:right;"|ערכם אל ה
 +
|-
 +
|in relation to
 +
|style="text-align:right;"|בערך (ה)
 +
|-
 +
|according to this relation
 +
|style="text-align:right;"|על הערך הזה
 +
|-
 +
|
 +
!א.מ.ר.
 +
|-
 +
|saying
 +
|style="text-align:right;"|אומרו, אמרנו, אומרנו (כי / ש)
 +
|-
 +
|
 +
|style="text-align:right;"|אומרנו... כאומרנו
 +
|-
 +
|
 +
|style="text-align:right;"|כאומרנו (ש), הוא כאומרנו ש, היא כאומרנו, שהוא כאומרנו
 +
|-
 +
|
 +
|style="text-align:right;"|והנה אומרנו, והוא כי אומרנו, וזה כי אומרנו, שהוא אומרנו
 +
|-
 +
|
 +
|style="text-align:right;"|הוא כאומרך
 +
|-
 +
|
 +
|style="text-align:right;"|כך הוא אומרנו
 +
|-
 +
|to say
 +
|style="text-align:right;"|לומר (ש), לו' ש, אומר כי, אומרים ש, אמרנו (ב / כי / ש / ב... ש), אמרו (לך ב / לך ש / לנו), אמרתי, יאמרו לך (ל), נאמר (ב), תאמר (ש)
 +
|-
 +
|to say
 +
|style="text-align:right;"|כאשר אמרנו, כאשר אמרתי
 +
|-
 +
|
 +
|style="text-align:right;"|לאומרם
 +
|-
 +
|
 +
|style="text-align:right;"|רצוני לומר
 +
|-
 +
|
 +
|style="text-align:right;"|כאלו אמרו, כאלו אמרו לנו, כאלו אמרנו
 +
|-
 +
|
 +
|style="text-align:right;"|הוא כאלו אמרו ש, והרי הוא כאלו אמרו, הוא כאלו אמרו לנו, והרי הוא כאלו אמרו לנו
 +
|-
 +
|
 +
|style="text-align:right;"|אומרים ב
 +
|-
 +
|
 +
|style="text-align:right;"|נאמרו
 +
|-
 +
|
 +
|style="text-align:right;"|מה שאמרנו ב
 +
|-
 +
|
 +
!ב.א.ר.
 +
|-
 +
|explanation
 +
|style="text-align:right;"|ביאור (הכל)
 +
|-
 +
|to explain
 +
|style="text-align:right;"|לבאר (איך / ה), לבארו ב, אבאר, אבארנו (ב / בטעם), ביארנו כי / ש, נבאר זה ב
 +
|-
 +
|
 +
|style="text-align:right;"|וזה מה שרצינו לבאר
 +
|-
 +
|
 +
|style="text-align:right;"|כמו שבארנו, כמו שביארנו, כמו שביארנו ב, כמו שביארנו למעלה
 +
|-
 +
|
 +
|style="text-align:right;"|כאשר ביארנו, כאשר ביארנו ב, כאשר ביארנו למעלה
 +
|-
 +
|
 +
|style="text-align:right;"|וכן ביארנוהו למעלה
 +
|-
 +
|
 +
|style="text-align:right;"|הרי ביארנו ש, הנה ביארנו כי
 +
|-
 +
|
 +
|style="text-align:right;"|כבר ביארנו כי, כבר ביארנו ש
 +
|-
 +
|
 +
|style="text-align:right;"|שביארנו
 +
|-
 +
|
 +
|style="text-align:right;"|כאשר אבאר ב
 +
|-
 +
|
 +
|style="text-align:right;"|כאשר ביאר ב
 +
|-
 +
|
 +
|style="text-align:right;"|יתבאר בש, יתבאר עוד ב, נתבאר
 +
|-
 +
|it is clear
 +
|style="text-align:right;"|נתבא' ש
 +
|-
 +
|
 +
|style="text-align:right;"|כאשר התבאר, כאשר יתבאר (ב)
 +
|-
 +
|
 +
|style="text-align:right;"|כמו שיתבאר (ב), כמו שנתבאר (ב)
 +
|-
 +
|
 +
|style="text-align:right;"|כמו שנתבאר פעמים רבות כי
 +
|-
 +
|
 +
|style="text-align:right;"|כמו שנתבאר למעלה
 +
|-
 +
|
 +
|style="text-align:right;"|וכל זה יתבאר מעשהו ב
 +
|-
 +
|
 +
|style="text-align:right;"|ועוד נתבאר איך, ועוד נתבאר אחר זה איך
 +
|-
 +
|
 +
|style="text-align:right;"|וכל זה נתבאר הטב ב
 +
|-
 +
|
 +
|style="text-align:right;"|מבואר באר הטב
 +
|-
 +
|
 +
|style="text-align:right;"|להרחיב ביאור אבארנו בעודו בעינו
 +
|-
 +
|
 +
|style="text-align:right;"|והנה יתבאר מ... כי
 +
|-
 +
|
 +
|style="text-align:right;"|מבואר כי
 +
|-
 +
|
 +
|style="text-align:right;"|מבוארים
 +
|-
 +
|
 +
|style="text-align:right;"|וזה מבואר
 +
|-
 +
|
 +
|style="text-align:right;"|והכל מבואר למבין
 +
|-
 +
|
 +
|style="text-align:right;"|וכל זה מבואר, והכל מבואר ב
 +
|-
 +
|
 +
|style="text-align:right;"|וזה מבואר בטעם
 +
|-
 +
|
 +
|style="text-align:right;"|וכל זה מבואר בטעם ובצורה, הוא מבואר בטעם ובצורה
 +
|-
 +
|
 +
|style="text-align:right;"|והכל נתבאר במעשה ובטעם
 +
|-
 +
|
 +
!ב.ו.א.
 +
|-
 +
|to result
 +
|style="text-align:right;"|יבא ה
 +
|-
 +
|
 +
!ב.ח.נ.
 +
|-
 +
|check, examination
 +
|style="text-align:right;"|בחינה (ב / ש), בחינת (ה), בחינות
 +
|-
 +
|to check, to examine
 +
|style="text-align:right;"|לבחון (אותו), אבחן, בחנהו
 +
|-
 +
|to be examined
 +
|style="text-align:right;"|להבחן ב
 +
|-
 +
|
 +
|style="text-align:right;"|להבחין אם עשית כדין וכשורה
 +
|-
 +
|
 +
|style="text-align:right;"|לבחון אם עשית כדין אם לאו
 +
|-
 +
|
 +
|style="text-align:right;"|להבחין מעשיך, לבחון מעשיך
 +
|-
 +
|to distinguish, to separate
 +
|style="text-align:right;"|תבחין בין ה... ל
 +
|-
 +
|
 +
!ב.י.נ.
 +
|-
 +
|to understand
 +
|style="text-align:right;"|להבנה, להבין, להבינו
 +
|-
 +
|understanding
 +
|style="text-align:right;"|הבנות, הבנתי
 +
|-
 +
|understandable
 +
|style="text-align:right;"|מובן
 +
|-
 +
|
 +
|style="text-align:right;"|ודי למבין
 +
|-
 +
|
 +
!ב.ל.ב.ל.
 +
|-
 +
|to confuse
 +
|style="text-align:right;"|לבלבלך בזה
 +
|-
 +
|
 +
|style="text-align:right;"|יבלבל עליך
 +
|-
 +
|
 +
|style="text-align:right;"|יתבלבל (ב), נתבלבל, תתבלבל
 +
|-
 +
|
 +
!ב.ק.ש.
 +
|-
 +
|to seek
 +
|style="text-align:right;"|לבקש (לו), לבקשו, לבקש אחד מהם
 +
|-
 +
|
 +
|style="text-align:right;"|בקשת, בקשנו (ל), מבקשים ל, מבקש, תבקש (ל)
 +
|-
 +
|
 +
|style="text-align:right;"|נבקש מספר (ל / ש / אשר), תבקש מספר
 +
|-
 +
|
 +
|style="text-align:right;"|לבקש מורים ל, נבקש מורים ל, נבקש עוד מורים ל
 +
|-
 +
|
 +
|style="text-align:right;"|לבקש לו מורה, נבקש לו מורה, נבקש לו מורים
 +
|-
 +
|
 +
|style="text-align:right;"|נבקש מורה, תבקש מורי ה
 +
|-
 +
|
 +
|style="text-align:right;"|אשר בקשת לו כל המורים
 +
|-
 +
|sought-after
 +
|style="text-align:right;"|המבוקש, הוא המבוקש
 +
|-
 +
|sought-after
 +
|style="text-align:right;"|מבוקשך, מבוקשנו, מבוקשינו
 +
|-
 +
|to ask for
 +
|style="text-align:right;"|לבקש
 +
|-
 +
|
 +
!ב.ר.ר.
 +
|-
 +
|
 +
|style="text-align:right;"|על דרך ברור
 +
|-
 +
|to clarify
 +
|style="text-align:right;"|ולברר
 +
|-
 +
|to be made clear
 +
|style="text-align:right;"|נתברר
 +
|-
 +
|clear, certain, evident
 +
|style="text-align:right;"|ברור (כי), וזה ברור (ב / כי / ש), הוא ברור כי
 +
|-
 +
|
 +
|style="text-align:right;"|ברור ומבורר
 +
|-
 +
|
 +
|style="text-align:right;"|וזה דבר ברור, וכל זה ברור, והכל ברור
 +
|-
 +
|
 +
|style="text-align:right;"|וזה ברור בטעם
 +
|-
 +
|
 +
|style="text-align:right;"|והוא ברור במעשה ובטעם
 +
|-
 +
|
 +
|style="text-align:right;"|כי הכל ברור המעשה והטעם
 +
|-
 +
|
 +
|style="text-align:right;"|וכל זה תראה ברור ומפורש בטעם
 +
|-
 +
|
 +
|style="text-align:right;"|וכל זה מבורר בטעם הראשון למבין
 +
|-
 +
|
 +
|style="text-align:right;"|וכל זה ברור בטעם, וכל זה ברור בטעם למבין, והכל ברור בטעם ודי למבין
 +
|-
 +
|
 +
|style="text-align:right;"|ובזה תראה ברור מה שאמרתי ש
 +
|-
 +
|clarification
 +
|style="text-align:right;"|ברור
 +
|-
 +
|
 +
!ה.פ.כ.
 +
|-
 +
|inverse operation
 +
|style="text-align:right;"|הפך ה, הפכים, להפכו
 +
|-
 +
|to be inverted
 +
|style="text-align:right;"|יתהפך
 +
|-
 +
|
 +
!ז.כ.ר.
 +
|-
 +
|to note, to mention
 +
|style="text-align:right;"|הזכירו, הזכרנו (ב / למעלה כי), הזכרתי (ב), זכרנו, נזכיר (ב)
 +
|-
 +
|above mentioned
 +
|style="text-align:right;"|הנזכר למעלה
 +
|-
 +
|
 +
|style="text-align:right;"|זכר לדבר
 +
|-
 +
|mentioned
 +
|style="text-align:right;"|הנזכר, הנזכרת, הנזכרים, הנזכרות, הנזכרים
 +
|-
 +
|as mentioned
 +
|style="text-align:right;"|כנזכר, כנזכרים ב, כנזכר למעלה
 +
|-
 +
|
 +
|style="text-align:right;"|כמו שנזכר, כמו שהזכרנו (ב / ש), כמו שנזכר למעלה, ונזכר כבר ב
 +
|-
 +
|
 +
|style="text-align:right;"|יזכר ש
 +
|-
 +
|to remember
 +
|style="text-align:right;"|זכור לעולם (כי / ש)
 +
|-
 +
|
 +
|style="text-align:right;"|נזכור ל
 +
|-
 +
|
 +
!ח.ד.ש.
 +
|-
 +
|to generate
 +
|style="text-align:right;"|לחדש, חדשנו
 +
|-
 +
|to be generated
 +
|style="text-align:right;"|נתחדש, נתחדש מ, נתחדשו (ב / מ), יתחדש
 +
|-
 +
|created, attained
 +
|style="text-align:right;"|המתחדש, מתחדש, המתחדשים
 +
|-
 +
|created
 +
|style="text-align:right;"|מחודש
 +
|-
 +
|
 +
!ח.פ.צ.
 +
|-
 +
|
 +
|style="text-align:right;"|נחפוץ (מהם)
 +
|-
 +
|
 +
|style="text-align:right;"|כחפצנו, ככל חפצנו, בחפצם
 +
|-
 +
|
 +
!ח.ש.ב.
 +
|-
 +
|to think
 +
|style="text-align:right;"|לחשוב כי, אחשוב זאת
 +
|-
 +
|
 +
!ט.ע.ה.
 +
|-
 +
|to mistake, to err
 +
|style="text-align:right;"|טעינו, טעית (ב), נטעה, תטעה (ב / ל / מל)
 +
|-
 +
|mistake, error
 +
|style="text-align:right;"|טעות, טעיות
 +
|-
 +
|to mislead
 +
|style="text-align:right;"|יטעך ש
 +
|-
 +
|
 +
!י.ג.ע.
 +
|-
 +
|effort
 +
|style="text-align:right;"|יגיעה
 +
|-
 +
|to exert oneself, to endeavor
 +
|style="text-align:right;"|ניגע
 +
|-
 +
|
 +
!י.ד.ע.
 +
|-
 +
|
 +
|style="text-align:right;"|נדע תחלה כמה ... הוא, נדע תחלה כמה ... הם
 +
|-
 +
|
 +
|style="text-align:right;"|נדע כמה ....יעלה
 +
|-
 +
|to know
 +
|style="text-align:right;"|לידע (אם / כלם / ל / מה / באיזה / כמה), לדעת (אם / ה / כי / ש / כמה / מה / מאיזו)
 +
|-
 +
|
 +
|style="text-align:right;"|דע (כי / ש / לך ש), דע לך ש, ידע כי, ידעו, ידענו (ה / כי / ש), ידעת (כי / ש), ידעתי, נדע (אם / כמה / ש), תדע (ה / כי ה / ש / כמה)
 +
|-
 +
|
 +
|style="text-align:right;"|נדע בקלות ה... מה
 +
|-
 +
|
 +
|style="text-align:right;"|ביודעינו ש
 +
|-
 +
|
 +
|style="text-align:right;"|וזה יודע, יודע ב, יודע ה
 +
|-
 +
|
 +
|style="text-align:right;"|נודע (ה / ש / מזה שה), נודעים, נודעו ה, הנודעים
 +
|-
 +
|
 +
|style="text-align:right;"|הידוע
 +
|-
 +
|
 +
|style="text-align:right;"|אשר בהם נודע
 +
|-
 +
|
 +
|style="text-align:right;"|בהודע ה
 +
|-
 +
|
 +
|style="text-align:right;"|ואין דעתך
 +
|-
 +
|
 +
|style="text-align:right;"|אין דעתינו ל
 +
|-
 +
|
 +
|style="text-align:right;"|מיודעים
 +
|-
 +
|knowledge
 +
|style="text-align:right;"|ידיעות
 +
|-
 +
|
 +
|style="text-align:right;"|דעת, דעתי, מדעתי, מדעתנו
 +
|-
 +
|
 +
|style="text-align:right;"|ידע יודע ה
 +
|-
 +
|
 +
|style="text-align:right;"|אשר לא יודע
 +
|-
 +
|it is known
 +
|style="text-align:right;"|בידוע ש, וידוע הוא כי, וידוע כי, ידוע הוא ... כי
 +
|-
 +
|
 +
!י.ע.ד.
 +
|-
 +
|to designate
 +
|style="text-align:right;"|ייעדתי ל, ייעדנו
 +
|-
 +
|
 +
!י.ע.ל.
 +
|-
 +
|benefit
 +
|style="text-align:right;"|תועלתם
 +
|-
 +
|to be useful
 +
|style="text-align:right;"|יועיל
 +
|-
 +
|beneficial, useful
 +
|style="text-align:right;"|מועיל ל, מועילים ל
 +
|-
 +
|to apportion
 +
|style="text-align:right;"|להועיל ממנו ל
 +
|-
 +
|
 +
!י.צ.א.
 +
|-
 +
|to result
 +
|style="text-align:right;"|יצא (ה / כ / ל / לך / תחת ה), יצאו (ה / לנו), יוצאות, יוצאים, תצא ה
 +
|-
 +
|
 +
|style="text-align:right;"|יצא באחרונה, יצא לך באחרונה
 +
|-
 +
|result
 +
|style="text-align:right;"|היוצא (ב / מ / מה / באחרונה / לנו), היוצאים
 +
|-
 +
|to receive, to obtain
 +
|style="text-align:right;"|יצא לך מ, יצא לנו (כי / ה / מזה / מזה ש / מכך כי), שיוצא ל, יצאו לך, יצאו לנו, ויצא לנו עוד מזה ש, היוצא ל
 +
|-
 +
|
 +
|style="text-align:right;"|יצא לכל אחד מהם
 +
|-
 +
|to be gone
 +
|style="text-align:right;"|יצא
 +
|-
 +
|it follows that
 +
|style="text-align:right;"|ויצא מזה כי
 +
|-
 +
|to become possible
 +
|style="text-align:right;"|יצא לנו ל
 +
|-
 +
|to derive
 +
|style="text-align:right;"|ממנה יצאו
 +
|-
 +
|to find out
 +
|style="text-align:right;"|יצא לנו ש
 +
|-
 +
|
 +
|style="text-align:right;"|להוציאם מן הכלל, יצאו מן הכלל, ויצאו הם מן הכלל
 +
|-
 +
|
 +
|style="text-align:right;"|יצא כלו בהם בשוה
 +
|-
 +
|
 +
|style="text-align:right;"|לצאת
 +
|-
 +
|
 +
|style="text-align:right;"|כמה פעמים יצא (מה / ה... מה)
 +
|-
 +
|to actualize
 +
|style="text-align:right;"|להוציא
 +
|-
 +
|
 +
!י.צ.ע.
 +
|-
 +
|to explain, to introduce
 +
|style="text-align:right;"|להציע, אציע ש, הצענו
 +
|-
 +
|premise
 +
|style="text-align:right;"|הצעה, הצעות
 +
|-
 +
|
 +
!י.ר.ד.
 +
|-
 +
|to lower
 +
|style="text-align:right;"|להורידם, הורדנום (ב' מעלות), מורידים (אותם), מורידין ה, נוריד, נורידנו, נורידם (מעלה אחת), תורידם (מעלה אחת)
 +
|-
 +
|lowering
 +
|style="text-align:right;"|הורדה, הורדת מעלה, הורדתם
 +
|-
 +
|to be lowered
 +
|style="text-align:right;"|יורדו, ירד
 +
|-
 +
|to decrease
 +
|style="text-align:right;"|יוריד, מוריד
 +
|-
 +
|
 +
|style="text-align:right;"|אינו מעלה ומוריד
 +
|-
 +
|
 +
!י.ת.ר.
 +
|-
 +
|to remain
 +
|style="text-align:right;"|נותר (דבר)
 +
|-
 +
|remainder
 +
|style="text-align:right;"|הנותר, הנותרים (מה)
 +
|-
 +
|
 +
!כ.ל.ה.
 +
|-
 +
|end, complete
 +
|style="text-align:right;"|כלה... ה, כלה ה, יכלה ה, יכלו (ה), יכלו ב, יכלו מה, כלו ה, כלו אלו ה
 +
|-
 +
|
 +
|style="text-align:right;"|תכלה המנין
 +
|-
 +
|
 +
|style="text-align:right;"|כלות ה, ככלות ה
 +
|-
 +
|
 +
|style="text-align:right;"|עד כלות ה, עד כלותם, עד כלותו
 +
|-
 +
|
 +
|style="text-align:right;"|כלינו מעשינו
 +
|-
 +
|
 +
|style="text-align:right;"|כלית כל מלאכתך, כלית כל מלאכתך על השלמות
 +
|-
 +
|
 +
|style="text-align:right;"|כלינו כל מלאכתנו, כלינו מלאכתנו מכל וכל
 +
|-
 +
|to be gone
 +
|style="text-align:right;"|כלה כל ה
 +
|-
 +
|to eliminate
 +
|style="text-align:right;"|לכלות
 +
|-
 +
|
 +
!כ.ת.ב.
 +
|-
 +
|to write
 +
|style="text-align:right;"|אכתבנו ב, כתבתי (עליה), כתבתיו
 +
|-
 +
|to be written
 +
|style="text-align:right;"|נכתב ב
 +
|-
 +
|
 +
|style="text-align:right;"|כמו שכתו' למעלה
 +
|-
 +
|
 +
!ל.ו.ה.
 +
|-
 +
|to loan
 +
|style="text-align:right;"|לוינו האחד, נלוה אחד מ, נלוה אחד מה, נלוה א' מ, תלוה אחד מה
 +
|-
 +
|
 +
|style="text-align:right;"|אשר ממנו לוית האחד, אשר ממנה לוית האחד
 +
|-
 +
|
 +
|style="text-align:right;"|זה האחד אשר לוית
 +
|-
 +
|
 +
|style="text-align:right;"|היות לווה ממנה
 +
|-
 +
|
 +
!ל.מ.ד.
 +
|-
 +
|learning
 +
|style="text-align:right;"|בלומדי, לומדם
 +
|-
 +
|to learn
 +
|style="text-align:right;"|ללמוד ב, להתלמד, תתלמד
 +
|-
 +
|to teach
 +
|style="text-align:right;"|ללמדך על
 +
|-
 +
|
 +
!ל.ק.ח.
 +
|-
 +
|to take
 +
|style="text-align:right;"|בקחת ה... מה, בקחתך (אותם ל / ה... ל)
 +
|-
 +
|
 +
|style="text-align:right;"|ליקח (... מה), לקחת (אותם מ / מן ה / מה... במקומם / מה / מהם / ממנה / משם / ה... מ / ה... מה / ה... מהם / ... מה / ל / בעבורה), לקחתו (מ)
 +
|-
 +
|
 +
|style="text-align:right;"|יקח (ה / מ / כל אחד מה), יקחו (מ / מה)
 +
|-
 +
|
 +
|style="text-align:right;"|לוקח (מה / משם), לוקחים משם
 +
|-
 +
|
 +
|style="text-align:right;"|לקח (ה / מה / ה... מה), לקחו (ה / כל ה / כלם / ממנה ה / ה... מה)
 +
|-
 +
|
 +
|style="text-align:right;"|לקחנו (... ל / ... מהם / ה... ל / ה... מ / ה... מהם / משם ל) , לקחנוהו ל
 +
|-
 +
|
 +
|style="text-align:right;"|נקח (ה / כל ה / ל / לו מה / מ / מה / מהם / מהם ה / עוד / ...ה / ה... מה / ... מה / ... מהם / משם ה / משם... ל), ניקח מ
 +
|-
 +
|
 +
|style="text-align:right;"|נקח (בעבור / בעבורו / בעבורם / בעד זה), נקחם מה, נקחנו בעצמו ל
 +
|-
 +
|
 +
|style="text-align:right;"|קח (ה / ... מה / בעבורו), קחתנו (אלו ה / ממנו), תקח (בעבורו / ה... ל / ... ל), תקחנו ל
 +
|-
 +
|to be taken
 +
|style="text-align:right;"|ויקחו מ
 +
|-
 +
|
 +
|style="text-align:right;"|אשר יש לנו לקחת משם
 +
|-
 +
|
 +
|style="text-align:right;"|מקום לקיחתם
 +
|-
 +
|to consider as
 +
|style="text-align:right;"|לוקחים ... לאחדים
 +
|-
 +
|
 +
|style="text-align:right;"|לקחת עמו ה
 +
|-
 +
|
 +
!מ.נ.ה.
 +
|-
 +
|to count
 +
|style="text-align:right;"|מונה, נמנה מה, תמנה (מ / מה / משם)
 +
|-
 +
|
 +
!מ.צ.א.
 +
|-
 +
|to find
 +
|style="text-align:right;"|למצוא ב
 +
|-
 +
|
 +
|style="text-align:right;"|מוצא, מצאנו (שם / תחתיו), מצאנוהו, מצאת (ב / ה / לו / מ / שם), מצאתו, מצאתם, מצינו
 +
|-
 +
|
 +
|style="text-align:right;"|נמצא (לו / ש / שם / תחת / תחתיו), נמצאנו שם
 +
|-
 +
|
 +
|style="text-align:right;"|תמצא (ב / לפניו / עליהם / על ראשו / תחתיו / לו / שם / ... תחת ה), תמצאם, תמצאנו
 +
|-
 +
|
 +
|style="text-align:right;"|הנמצא (ב / תחת ה / תחתיו), הנמצאת שם, הנמצאים (ב)
 +
|-
 +
|
 +
|style="text-align:right;"|לא נמצא ל
 +
|-
 +
|
 +
|style="text-align:right;"|אשר נמצא תחתיו דבר
 +
|-
 +
|
 +
|style="text-align:right;"|היה נמצא דבר זה
 +
|-
 +
|
 +
|style="text-align:right;"|אשר מצאנו ל
 +
|-
 +
|
 +
|style="text-align:right;"|אשר לא מצאת ל
 +
|-
 +
|
 +
|style="text-align:right;"|אשר תמצא אשר לפניה
 +
|-
 +
|to be found
 +
|style="text-align:right;"|ימצא (על ראשו / תחת ה), נמצא (ב / תחת ה / תחתיו)
 +
|-
 +
|to be found
 +
|style="text-align:right;"|הנמצא ב
 +
|-
 +
|
 +
|style="text-align:right;"|תמצא לכל אחד מהמספרים שום מורה
 +
|-
 +
|
 +
|style="text-align:right;"|מה שתמצא מ
 +
|-
 +
|
 +
|style="text-align:right;"|אשר לא תמצא לו
 +
|-
 +
|
 +
|style="text-align:right;"|לא תמצא שם
 +
|-
 +
|to invent, to create
 +
|style="text-align:right;"|להמציא, אמציא, המצאת, המצאת ה
 +
|-
 +
|invention
 +
|style="text-align:right;"|המצאות
 +
|-
 +
|
 +
!נ.ג.ע.
 +
|-
 +
|to result
 +
|style="text-align:right;"|הגיע ל... מה, יגיע ל, יגיעו ל... מה, אשר הגיעו ל
 +
|-
 +
|to receive, to obtain
 +
|style="text-align:right;"|הגיע לכל א', הגיע לכל אחד מהם, יגיע לכל א', יגיע לכל אחד, יגיע לכל א' מה, יגיע לכל אחד מהם, יגיעו לכל אחד מהם, יגיע ממנו לכל א' מה
 +
|-
 +
|to reach
 +
|style="text-align:right;"|בהגיענו שם, בהיגיענו שם, הגיענו אל ה, הגיעו ל, הגענו (אל / ל), הגעת ל, יגיע (אליהם / ל), יגיעו ל, תגיע ל
 +
|-
 +
|
 +
!נ.ו.ח.
 +
|-
 +
|to place, to put
 +
|style="text-align:right;"|תניח ה... עם ה
 +
|-
 +
|to be placed
 +
|style="text-align:right;"|הונח
 +
|-
 +
|positioning
 +
|style="text-align:right;"|בהנחתם
 +
|-
 +
|placing
 +
|style="text-align:right;"|הנחת ה
 +
|-
 +
|
 +
!נ.ש.ג.
 +
|-
 +
|to achieve
 +
|style="text-align:right;"|השגנו
 +
|-
 +
|to attain
 +
|style="text-align:right;"|תשיגנה
 +
|-
 +
|
 +
!ס.ד.ר.
 +
|-
 +
|order, arrangement
 +
|style="text-align:right;"|סדור (ה)
 +
|-
 +
|by the order, successively
 +
|style="text-align:right;"|על הסדר ש
 +
|-
 +
|to arrange
 +
|style="text-align:right;"|לסדר (ה... זה אחר זה / עם), לסדרם, מסדרים, נסדר (... לפניהם), נסדרהו, נסדרם (זה על זה), תסדר ה
 +
|-
 +
|
 +
|style="text-align:right;"|הסדר, בסדר, כסדרם
 +
|-
 +
|
 +
|style="text-align:right;"|על סדר שביארנו
 +
|-
 +
|emanation
 +
|style="text-align:right;"|סידורה
 +
|-
 +
|
 +
!ס.פ.ק.
 +
|-
 +
|to result
 +
|style="text-align:right;"|נספק
 +
|-
 +
|sufficiency
 +
|style="text-align:right;"|ספקנו, די ספקנו
 +
|-
 +
|to be satisfied
 +
|style="text-align:right;"|למסתפק ב
 +
|-
 +
|
 +
!ע.ב.ר.
 +
|-
 +
|
 +
|style="text-align:right;"|נעביר עליו
 +
|-
 +
|to cross out with a pen
 +
|style="text-align:right;"|נעביר עליו הקולמוס, נעביר עליו קולמוס, נעביר קולמוס על ה, תעבור הקולמוס על ה
 +
|-
 +
|
 +
|style="text-align:right;"|שעבר עליו הקולמוס
 +
|-
 +
|
 +
!ע.ד.פ.
 +
|-
 +
|to exceed
 +
|style="text-align:right;"|יעדף ה... על ה... כ, יעדפו עליהם
 +
|-
 +
|exceeding
 +
|style="text-align:right;"|עודף על ה, העודף (ב... על ה), העודפים, העודפים (ב... על ה)
 +
|-
 +
|excess
 +
|style="text-align:right;"|עודף
 +
|-
 +
|
 +
!ע.י.נ.
 +
|-
 +
|to examine
 +
|style="text-align:right;"|לעיין, נעיין (אם), עיין (אם / ה), תעיין
 +
|-
 +
|consideration
 +
|style="text-align:right;"|עיון אל
 +
|-
 +
|study
 +
|style="text-align:right;"|עיון
 +
|-
 +
|
 +
!ע.ל.ה.
 +
|-
 +
|to result
 +
|style="text-align:right;"|יעלה (כ / ל / הכל / מ / ש), יעלו, עולים (ל), עולה (ה / הכל / ל / מה), עלה (הכל / ל), עלו (ה / ל)
 +
|-
 +
|result
 +
|style="text-align:right;"|העולה (מ / מה), אשר יעלה
 +
|-
 +
|
 +
|style="text-align:right;"|העולה לכל אחד מהן
 +
|-
 +
|
 +
|style="text-align:right;"|עלה לנו (כל ה / מ)
 +
|-
 +
|
 +
|style="text-align:right;"|עלה לכל אחד מהם, יעלה לכל אחד, יעלה לכל אחד מהם
 +
|-
 +
|
 +
|style="text-align:right;"|יעלה בידך, עלה בידינו ש, יעלה בידינו ש
 +
|-
 +
|
 +
|style="text-align:right;"|כמה יעלה לכל אחד
 +
|-
 +
|to increase
 +
|style="text-align:right;"|יעלה, מעלה
 +
|-
 +
|to rise
 +
|style="text-align:right;"|יעלה מעלה אחר מעלה
 +
|-
 +
|to reach
 +
|style="text-align:right;"|יעלה... ל
 +
|-
 +
|to exceed by
 +
|style="text-align:right;"|יעלה ... על, יעלה
 +
|-
 +
|to raise
 +
|style="text-align:right;"|תעלה
 +
|-
 +
|
 +
|style="text-align:right;"|כמה ... יעלו, כמה יעלו
 +
|-
 +
|
 +
!ע.ש.ה.
 +
|-
 +
|procedure, technique
 +
|style="text-align:right;"|מעשה (ה), מעשהו, מעשיך (ב), מעשינו, מעשים (ב)
 +
|-
 +
|operation
 +
|style="text-align:right;"|במעשיו
 +
|-
 +
|to do, to proceed
 +
|style="text-align:right;"|עשותך, עשותך כל זה
 +
|-
 +
|
 +
|style="text-align:right;"|בעשותינו זה, בעשותך זה
 +
|-
 +
|
 +
|style="text-align:right;"|לעשות (זה), לעשותו
 +
|-
 +
|
 +
|style="text-align:right;"|אעשה, יעשו, נעשה (ל / לכל אחד / ממנו), נעשנו, עושים (ב), עשה, עשינו (לכל אחד מהם), עשית (ב / זה ל), תעשה (ה / ל / להם)
 +
|-
 +
|to be done
 +
|style="text-align:right;"|יעשה (... ב)
 +
|-
 +
|
 +
|style="text-align:right;"|וכן תעשה, וכן תעשה לעולם ש, ועשה כן לעולם
 +
|-
 +
|
 +
|style="text-align:right;"|וכן תעשה עד תומם
 +
|-
 +
|
 +
|style="text-align:right;"|וכן נעשה לעולם בטעם
 +
|-
 +
|
 +
|style="text-align:right;"|נעשה במעשה
 +
|-
 +
|
 +
|style="text-align:right;"|לעשות כל אשר עשינו ה
 +
|-
 +
|
 +
|style="text-align:right;"|לעשות מעשינו זה, עושים מעשינו, עשינו זה המעש'
 +
|-
 +
|
 +
|style="text-align:right;"|מעשינו ה
 +
|-
 +
|
 +
|style="text-align:right;"|במעשינו
 +
|-
 +
|
 +
|style="text-align:right;"|כמעשינו ב
 +
|-
 +
|
 +
|style="text-align:right;"|נעשה לזה כאשר ל, נעשה לזה כאשר עשינו ל
 +
|-
 +
|
 +
|style="text-align:right;"|נעשה בתוספת, נעשה בתוספת א' על
 +
|-
 +
|
 +
|style="text-align:right;"|נעשה להפך ש
 +
|-
 +
|
 +
|style="text-align:right;"|לעשות ממנו שורה אחת, יעשה ממנה שורה אחת, תעשה ממנו שורה שנית, תעשה שורתו
 +
|-
 +
|
 +
|style="text-align:right;"|תעשה אחד מ2 דברים
 +
|-
 +
|
 +
|style="text-align:right;"|עשה כדרכים
 +
|-
 +
|
 +
|style="text-align:right;"|כמו שעשית ל... עם ה
 +
|-
 +
|
 +
|style="text-align:right;"|כמו שעשינו בתחלה ב
 +
|-
 +
|
 +
|style="text-align:right;"|תעשה זה ( ... ל)
 +
|-
 +
|to make
 +
|style="text-align:right;"|נעשה ממנו, עושה מה, תעשה ממנו
 +
|-
 +
|
 +
|style="text-align:right;"|לעשותם חלק אחד
 +
|-
 +
|
 +
|style="text-align:right;"|נעשה א' שלם... חלקים, עשינו האחד השלם ... חלקים
 +
|-
 +
|
 +
|style="text-align:right;"|נעשה הא' השלם
 +
|-
 +
|
 +
|style="text-align:right;"|עשינו ... חלקים שוים, עשינו מהם... חלקים שוים
 +
|-
 +
|
 +
|style="text-align:right;"|עשינו אותו ...חלקים, עשינו אותם ... חלקים שוים
 +
|-
 +
|
 +
|style="text-align:right;"|לעשות כל שברים מהם ממין האחדים
 +
|-
 +
|
 +
|style="text-align:right;"|לעשות מהפרטים כללים
 +
|-
 +
|
 +
|style="text-align:right;"|לעשות בעד כל סיפרא מהן סיפרא אחת
 +
|-
 +
|
 +
|style="text-align:right;"|אעשה משל אחר (מ)
 +
|-
 +
|
 +
!צ.ו.ה.
 +
|-
 +
|to instruct
 +
|style="text-align:right;"|נצוה ל, צוינו ל, ציויתי ל, ציויתיו, צוויתיך, ציויתיך ל, צויתיך ל
 +
|-
 +
|
 +
!צ.ר.כ.
 +
|-
 +
|need to
 +
|style="text-align:right;"|צריך (ל), צריכים (ל), הצריכים, צריכין, צריך אתה לעולם ל, הצריך להם
 +
|-
 +
|to be needed
 +
|style="text-align:right;"|הוצרך אליה, הוצרך מ
 +
|-
 +
|
 +
|style="text-align:right;"|צורך
 +
|-
 +
|
 +
|style="text-align:right;"|לצורך (ה)
 +
|-
 +
|should
 +
|style="text-align:right;"|צריך ש
 +
|-
 +
|no need
 +
|style="text-align:right;"|לו לצורך, אין צורך, ואין צורך אלא ש, שאין לו צורך ל
 +
|-
 +
|
 +
|style="text-align:right;"|אין צריך כי אם ל
 +
|-
 +
|
 +
|style="text-align:right;"|הוצרכנו, הוצרכנו לזה
 +
|-
 +
|
 +
|style="text-align:right;"|יצטרך ל, נצטרך ל, נצטרך הכל, תצטרך ל
 +
|-
 +
|
 +
|style="text-align:right;"|אשר מהם יצטרך, אשר יצטרך מהם, אשר מהן יצטרך ל
 +
|-
 +
|
 +
|style="text-align:right;"|אשר יצטרך, אשר תצטרך
 +
|-
 +
|
 +
|style="text-align:right;"|מה שיצטרכו מהם
 +
|-
 +
|
 +
|style="text-align:right;"|כל מה שתצטרך
 +
|-
 +
|
 +
!ק.ר.א.
 +
|-
 +
|to name, to call
 +
|style="text-align:right;"|יקראו, נקרא (ל / לו), נקראנוהו, קראנו לזה, קראנוהו, קראתי (לו), קראתיו, קרינו ... ל
 +
|-
 +
|to be called
 +
|style="text-align:right;"|יקרא, נקרא (ה / ... מה), נקראה (ה), הנקראים, הנקרא
 +
|-
 +
|to denominate
 +
|style="text-align:right;"|ותקרא לו שם מ
 +
|-
 +
|to denominate
 +
|style="text-align:right;"|לקרוא להם שם, נקרא להם שם
 +
|-
 +
|
 +
!ק.ר.ב.
 +
|-
 +
|to come close to, to approach
 +
|style="text-align:right;"|להתקרב (אל האמת / מאד), יתקרב אל (האמת), יתקרב ל... ב, נתקרבת אל (האמת), תתקרב אליו
 +
|-
 +
|to come closer to
 +
|style="text-align:right;"|להתקרב יותר אל (האמת), להתקרב עוד אל (האמת / השרש), יתקרב מאד מאד, מתקרב יותר, נתקרב יותר אל (האמת), תתקרב יותר אל ה
 +
|-
 +
|to be close to
 +
|style="text-align:right;"|קרוב אל (האמת)
 +
|-
 +
|
 +
|style="text-align:right;"|יתקרב אל האמת לחסרון
 +
|-
 +
|
 +
|style="text-align:right;"|יתקרב אל האמת לתוספת
 +
|-
 +
|
 +
!ר.א.ה.
 +
|-
 +
|to see
 +
|style="text-align:right;"|לראות (אם / ... ב), אראה, נראה (אם / כמה), ראה (אם / ה), ראית ... ש, תראה (ב / ש)
 +
|-
 +
|
 +
|style="text-align:right;"|היה נראה ש
 +
|-
 +
|to consider
 +
|style="text-align:right;"|ראה ל, ראיתי ל
 +
|-
 +
|
 +
!ר.ח.ק.
 +
|-
 +
|
 +
|style="text-align:right;"|יתרחק מן האמת, יתרחק מן האמת ב
 +
|-
 +
|
 +
|style="text-align:right;"|רחוקו מן האמת מ, ריחוקו מן האמת
 +
|-
 +
|difference
 +
|style="text-align:right;"|מרחק (... מ / ה... מה), מרחקו מ, מרחקם מ, רחוקו מ, רחוקם, ריחוק, ריחוקים, ריחוקם מה
 +
|-
 +
|difference
 +
|style="text-align:right;"|הרחקתם מ
 +
|-
 +
|to become distanced from
 +
|style="text-align:right;"|אשר נתרחקו מ, שנתרחקו מה, יתרחק, תתרחק, מרוחקת ... מה
 +
|-
 +
|distance
 +
|style="text-align:right;"|מרוחק ה
 +
|-
 +
|
 +
!ר.מ.ז.
 +
|-
 +
|to be determined
 +
|style="text-align:right;"|נרמז ב, נרמז ש
 +
|-
 +
|determined
 +
|style="text-align:right;"|רמוז ב, הרמוזות
 +
|-
 +
|designation
 +
|style="text-align:right;"|ברמז
 +
|-
 +
|
 +
!ר.צ.ה.
 +
|-
 +
|to want
 +
|style="text-align:right;"|ירצה (ל), נרצה (ל) , רוצה ל, רוצים (ל / ש), רצה ב, רצו ל, רצינו (ל), רצית ל, תרצה (ל)
 +
|-
 +
|
 +
|style="text-align:right;"|מי שירצה
 +
|-
 +
|
 +
|style="text-align:right;"|רצונך ל, רצוננו
 +
|-
 +
|
 +
|style="text-align:right;"|הרוצה ל
 +
|-
 +
|as one wish
 +
|style="text-align:right;"|כרצונך, כרצונו, כרצוננו
 +
|-
 +
|
 +
!ר.ש.מ.
 +
|-
 +
|written
 +
|style="text-align:right;"|הרשום, הרשומה
 +
|-
 +
|noted
 +
|style="text-align:right;"|הרשומים
 +
|-
 +
|
 +
|style="text-align:right;"|לרשום, ארשום
 +
|-
 +
|
 +
|style="text-align:right;"|ורשום קו דיו תחתיהן, ותרשום קו דיו תחתיהן
 +
|-
 +
|
 +
|style="text-align:right;"|נרשום קו דיו עליהם
 +
|-
 +
|
 +
|style="text-align:right;"|תרשום קו דיו תחת
 +
|-
 +
|
 +
|style="text-align:right;"|נרשום תחת כל השורות קו דיו
 +
|-
 +
|
 +
|style="text-align:right;"|ונרשום קו על כל הנשאר
 +
|-
 +
|
 +
|style="text-align:right;"|תרשום קו על הכל
 +
|-
 +
|
 +
|style="text-align:right;"|ונרשום על... קו דיו
 +
|-
 +
|to be marked by
 +
|style="text-align:right;"|ירשמו ב
 +
|-
 +
|
 +
!ש.א.ל.
 +
|-
 +
|to ask
 +
|style="text-align:right;"|ישאלו לך (על... ש), שאל, שאלו לך (ש), שאלו לנו (כמה / ל), שאלו (כמה), שואל, שאל השואל
 +
|-
 +
|question
 +
|style="text-align:right;"|שאלה, שאלתנו
 +
|-
 +
|in question, to be asked
 +
|style="text-align:right;"|נשאל, הנשאל, הנשאל לנו, הנשאלים, הנשאלות, שנשאל
 +
|-
 +
|
 +
!ש.א.ר.
 +
|-
 +
|to remain
 +
|style="text-align:right;"|ישאר (ב / ה / דבר / לנו מ / ממנו), ישארו, נשאר (ב / מ / מה / דבר / על ה / עוד ב), נשארו (ב / עוד... ב)
 +
|-
 +
|remainder
 +
|style="text-align:right;"|הנשאר (ב / מ / מה), הנשארים (מה), הנשארות, הנשארת
 +
|-
 +
|remainder
 +
|style="text-align:right;"|שארית (ה / מה), השארית הנשארה, שאריתנו
 +
|-
 +
|
 +
|style="text-align:right;"|נשאר לנו (ב) / בידינו
 +
|-
 +
|
 +
|style="text-align:right;"|תשאר מל
 +
|-
 +
|
 +
|style="text-align:right;"|שנשארו בחלוקה
 +
|-
 +
|to be left
 +
|style="text-align:right;"|ישארו לנו ל
 +
|-
 +
|
 +
!ש.ג.ח.
 +
|-
 +
|
 +
|style="text-align:right;"|ישגיח ב
 +
|-
 +
|
 +
|style="text-align:right;"|להשגיח בסדורו
 +
|-
 +
|
 +
|style="text-align:right;"|בהשגחה
 +
|-
 +
|observation
 +
|style="text-align:right;"|השגחה
 +
|-
 +
|
 +
!ש.ו.ה.
 +
|-
 +
|equalizing
 +
|style="text-align:right;"|השיווי
 +
|-
 +
|to equalize
 +
|style="text-align:right;"|נשוום יחד
 +
|-
 +
|to be equalized
 +
|style="text-align:right;"|הושווה (ל)
 +
|-
 +
|to be equal
 +
|style="text-align:right;"|שוה (ל / ממש ל), יהיה שוה ל, שוים (ה / בכל), שוים הם ב
 +
|-
 +
|
 +
|style="text-align:right;"|השוה ל
 +
|-
 +
|equal
 +
|style="text-align:right;"|שוים, שווים, שוות, שוה לכלם
 +
|-
 +
|
 +
!ש.ו.מ.
 +
|-
 +
|to place, to put
 +
|style="text-align:right;"|לשום (ב / ה / תחתיו), לשומו לפני ה, לשומם (במקומה / ... ב), לשים (ביניהם ה / עמהם ה / תחתנו / ... תחת), לשים במקום, לשים ... במקום על
 +
|-
 +
|to define
 +
|style="text-align:right;"|לשום כ ... ה, לשים אותה עצמה ל, שם ה, שמת (ה)
 +
|-
 +
|to be placed
 +
|style="text-align:right;"|הושמו ה... במקומם, יושם ... ב
 +
|-
 +
|defined, positioned
 +
|style="text-align:right;"|המושם, המושמים (ב)
 +
|-
 +
|
 +
|style="text-align:right;"|ובהשימך (ה), להשימם תחת ה, לשום ב... ל
 +
|-
 +
|
 +
|style="text-align:right;"|נשים (... אחר ה / ... ב / אותם / ה / עליו / ה... על ה / לפני / לפניהם / ... לפניו / ה... לפניו /  ... לפניהם / ה... לפני ה / עמהם ה / תחת / תחתיה אלו ה / תחתיו / תחתיו ה / תחתיהם / ... תחת ה / ... תחתיהם / ... תחתיו / ה... תחת ה)
 +
|-
 +
|
 +
|style="text-align:right;"|נשים המספרים זה על זה
 +
|-
 +
|
 +
|style="text-align:right;"|נשימה (תחת)
 +
|-
 +
|
 +
|style="text-align:right;"|נשימהו (ב / ל / עליו / חוץ ל / לפני ה / תחת ה / תחתיו)
 +
|-
 +
|
 +
|style="text-align:right;"|נשימם (ב / עליה / עליהם / עליו / על ה / עם / זו על זו / זה אחר זה / תחת ה / תחתיו / ה... תחת ה / מחוץ / במקומו / במקוצו עם ה / לו על זה / ... על)
 +
|-
 +
|
 +
|style="text-align:right;"|נשימנו (לפני / לפני ה / לפניהם / מחוץ / עליהם / עליו / על ה / תחת ה / תחתיו)
 +
|-
 +
|
 +
|style="text-align:right;"|נשימם ראשונה ב
 +
|-
 +
|
 +
|style="text-align:right;"|שים (ה / ה... ל / על / אותו תחת ה / תחת ה / תחתיו)
 +
|-
 +
|
 +
|style="text-align:right;"|שימהו (על ה / תחתיו)
 +
|-
 +
|
 +
|style="text-align:right;"|שימם ב
 +
|-
 +
|
 +
|style="text-align:right;"|שמים (ל / לפניהם / תחתיו / אותו תחתיו / ... תחתיו)
 +
|-
 +
|
 +
|style="text-align:right;"|שמנו (ב / ה / ה... לפני ה / ה... תחת ה / תחתיו / במקומו / מיד ה / זה ה)
 +
|-
 +
|
 +
|style="text-align:right;"|שמנוהו תחתיו
 +
|-
 +
|
 +
|style="text-align:right;"|שמנום תחת ה
 +
|-
 +
|
 +
|style="text-align:right;"|שמנוהו מעלה אחת לפניהם
 +
|-
 +
|
 +
|style="text-align:right;"|שמת (אותו / בהם / תחת ה / תחתיו / ... ב / שם ה)
 +
|-
 +
|
 +
|style="text-align:right;"|תשים (... אחר / ... אחר ה / אחריהם / ב / ב... תחת / בראש / ה... ל / ה ... על / ה... תחת ה / לפניהם /  ... לפניהם / ... לפני ה  / ... כנגד / על ה / עליו ה / תחת ה / ... תחת / ... תחת ה / תחתיו /תחתיו ה)
 +
|-
 +
|
 +
|style="text-align:right;"|תשי' לעולם ה
 +
|-
 +
|
 +
|style="text-align:right;"|תשים ריוח בין זו לזו
 +
|-
 +
|
 +
|style="text-align:right;"|תשימה
 +
|-
 +
|
 +
|style="text-align:right;"|תשימהו (תחת ה / תחתיו)
 +
|-
 +
|
 +
|style="text-align:right;"|תשימם (ב / עמהם / תחת ה / תחתיו / במקומה אחר ה)
 +
|-
 +
|
 +
|style="text-align:right;"|תשימנה אחר ה
 +
|-
 +
|
 +
|style="text-align:right;"|תשימנו (ב / על ה / מבחוץ)
 +
|-
 +
|
 +
|style="text-align:right;"|נשים ... בעד ה... במקומה
 +
|-
 +
|
 +
|style="text-align:right;"|נשים ה... למקומה, נשים במקומו, נשים ... במקומם
 +
|-
 +
|
 +
|style="text-align:right;"|נשים ...ל... במקומה
 +
|-
 +
|
 +
|style="text-align:right;"|נשים נקודה (על / על ה)
 +
|-
 +
|
 +
|style="text-align:right;"|נשים נקדה תחתיה, ונשים תחתיה נקדה
 +
|-
 +
|
 +
|style="text-align:right;"|נשים נקודה מחוץ במקום ה
 +
|-
 +
|
 +
|style="text-align:right;"|שים נקדה אחת על ה
 +
|-
 +
|
 +
|style="text-align:right;"|ותשים עליה נקודה אחת בעדו
 +
|-
 +
|
 +
|style="text-align:right;"|ושמת שם נקודה
 +
|-
 +
|
 +
|style="text-align:right;"|ותשים ... אחת תחת הקו בעד ה
 +
|-
 +
|
 +
|style="text-align:right;"|ותשים נקדה אחת (עליה / תחת ה)
 +
|-
 +
|
 +
|style="text-align:right;"|תשים תחתיה נקדה, תשים תחתיה נקודה
 +
|-
 +
|
 +
|style="text-align:right;"|תשימם לשארית תחת הקו
 +
|-
 +
|
 +
|style="text-align:right;"|תשים בעד כל סיפרא שב
 +
|-
 +
|
 +
|style="text-align:right;"|לשים ה... בסדר
 +
|-
 +
|
 +
|style="text-align:right;"|אשים להם סדר
 +
|-
 +
|
 +
|style="text-align:right;"|ישים ... זו על זו על הסדר
 +
|-
 +
|
 +
|style="text-align:right;"|נשימם על הסדר, נשימם ... על הסדר זה אחר זה
 +
|-
 +
|
 +
|style="text-align:right;"|נשימם זה על זה על הסדר, נשימם ב... זה על זה על הסדר
 +
|-
 +
|
 +
|style="text-align:right;"|שמנו ה... כזה הסדר
 +
|-
 +
|
 +
|style="text-align:right;"|תשים ה... זה על זה על הסדר
 +
|-
 +
|
 +
|style="text-align:right;"|תשימם על הסדר
 +
|-
 +
|to denote
 +
|style="text-align:right;"|שמתי להם
 +
|-
 +
|
 +
!ש.כ.ח.
 +
|-
 +
|to forget
 +
|style="text-align:right;"|תשכח (מ), תשכחהו, תשכחם
 +
|-
 +
|to be forgotten
 +
|style="text-align:right;"|(שלא) ישכח
 +
|-
 +
|examine it carefully
 +
|style="text-align:right;"|דוק, דוק ותשכח
 +
|-
 +
|
 +
!ש.מ.ר.
 +
|-
 +
|keep
 +
|style="text-align:right;"|נשמור, שומר ש, שמור (ה / ... על ה), תשמור (ה / ה... ל)
 +
|-
 +
|
 +
|style="text-align:right;"|השמור, השמור בידינו מה, השמורים
 +
|-
 +
|
 +
|style="text-align:right;"|תשמר (ה... ל)
 +
|-
 +
|
 +
|style="text-align:right;"|נשמר ה... לאחדים בידינו
 +
|-
 +
|
 +
|style="text-align:right;"|תשמרם לאחדים ל
 +
|-
 +
|
 +
|style="text-align:right;"|לשמור משמרתי
 +
|-
 +
|to beware, to be careful
 +
|style="text-align:right;"|שמר, השמר לך, שמור נפשך
 +
|-
 +
|
 +
!ת.ח.ל.
 +
|-
 +
|to begin, to start
 +
|style="text-align:right;"|להתחיל מה, אחל ל, נתחיל (ב / ל), תתחיל (ל / מה)
 +
|-
 +
|
 +
|style="text-align:right;"|מתחילות מה
 +
|-
 +
|
 +
|style="text-align:right;"|וקודם התחילי ב
 +
|-
 +
|
 +
|style="text-align:right;"|יתחיל ה
 +
|-
 +
|beginning
 +
|style="text-align:right;"|התחלת, תחלת ה, בתחלת ה, מתחלת ב
 +
|-
 +
|
 +
|style="text-align:right;"|ותשרט קו דיו על
 +
|-
 +
|
 +
|style="text-align:right;"|כפי המזדמן
 +
|-
 +
|
 +
|style="text-align:right;"|כאשר הזדמן, כאשר יזדמן
 +
|-
 +
|
 +
|style="text-align:right;"|שעלו בידך משום מעלה
 +
|-
 +
|
 +
|style="text-align:right;"|תחוש (ל / להם), אל תחוש ל, לא נחוש ל
 +
|-
 +
|
 +
|style="text-align:right;"|אינך צריך לחוש מה
 +
|-
 +
|to be
 +
|style="text-align:right;"|היות (ב / ה), היותם
 +
|-
 +
|to be
 +
|style="text-align:right;"|להיות (ה / ל), להיותה, להיותו ב, להיותם, היותך, בהיותך, היותם, היה, היו, היינו, הינו, שהיו, יהיו (ה), יהיה (ב / ה / כ), תהיה, היתה, יהא
 +
|-
 +
|were it
 +
|style="text-align:right;"|ההיתה
 +
|-
 +
|
 +
|style="text-align:right;"|אינך
 +
|-
 +
|to become
 +
|style="text-align:right;"|יהיה (ל / ב... ל / ל... על ה / לנו ל), יהיו (ל / לנו ל), הוא ל
 +
|-
 +
|to become
 +
|style="text-align:right;"|היה בידך ל, יהיה ל... בידך, היו ל... בידך, יהיו ל... בידך
 +
|-
 +
|
 +
|style="text-align:right;"|אשר הם ל... בידך
 +
|-
 +
|to have
 +
|style="text-align:right;"|ולהיות לנו ב, היה ל, היה להם, היה לו, היה לנו, היו ל, היו לך, היו לנו, יהיה לו, יהיה לך, יהיו להם, יהיו לו, יהיו לך, יש ל, יש לה, יש לו (ה), יש לך, יש לנו
 +
|-
 +
|owner of, having
 +
|style="text-align:right;"|בעל (ה / אלו ה)
 +
|-
 +
|to have
 +
|style="text-align:right;"|אשר להם, אשר לו, אשר לך, אשר לנו
 +
|-
 +
|
 +
|style="text-align:right;"|בידינו, בידך
 +
|-
 +
|
 +
|style="text-align:right;"|אשר היו בידו, אשר בידו
 +
|-
 +
|
 +
|style="text-align:right;"|יש בידיך, יש בידך ה, יש בידינו, יש בידינו מ
 +
|-
 +
|
 +
|style="text-align:right;"|שיש בידינו
 +
|-
 +
|
 +
|style="text-align:right;"|שבידך, שבידיך, שבידינו
 +
|-
 +
|
 +
|style="text-align:right;"|אשר בידך, אשר בידינו, אשר היו בידינו
 +
|-
 +
|
 +
|style="text-align:right;"|כל אשר בידינו
 +
|-
 +
|
 +
|style="text-align:right;"|להיות בידינו ה
 +
|-
 +
|
 +
|style="text-align:right;"|היות בידך, היות בידינו
 +
|-
 +
|
 +
|style="text-align:right;"|היה בידך ה, היו בידיך, היו בידך, יהיו בידך
 +
|-
 +
|
 +
|style="text-align:right;"|היה בידינו, היה בידינו ה, היו בידינו
 +
|-
 +
|
 +
|style="text-align:right;"|בידיך ל, בידינו ל
 +
|-
 +
|
 +
|style="text-align:right;"|כאלו היו בידינו
 +
|-
 +
|
 +
|style="text-align:right;"|כאלו יש לנו בידינו
 +
|-
 +
|
 +
|style="text-align:right;"|והנה עלה בידינו ש
 +
|-
 +
|not having
 +
|style="text-align:right;"|אין ל, איננו לו
 +
|-
 +
|
 +
|style="text-align:right;"|אין לו
 +
|-
 +
|
 +
|style="text-align:right;"|אין בידך מאומה
 +
|-
 +
|
 +
|style="text-align:right;"|אין שם דבר
 +
|-
 +
|to discuss
 +
|style="text-align:right;"|אדבר בזה ב
 +
|-
 +
|name
 +
|style="text-align:right;"|שם (ה), שמות, ששמה
 +
|-
 +
|to explain
 +
|style="text-align:right;"|להטעים
 +
|-
 +
|reason
 +
|style="text-align:right;"|טעם (ב / ה / בזה / כי / ש / כל ה), טעמי', טעמו ב, טעמיהם
 +
|-
 +
|by reason
 +
|style="text-align:right;"|בטעם
 +
|-
 +
|reason
 +
|style="text-align:right;"|לסבה (ה / ש), בסבת
 +
|-
 +
|proof
 +
|style="text-align:right;"|מופת, מופתי (ה / כל), מופתיהם, מופתיו
 +
|-
 +
|example
 +
|style="text-align:right;"|דמיון, דמיוננו, דמיונות
 +
|-
 +
|example
 +
|style="text-align:right;"|משל (ב / ש / בזה / לזה ב / על / על ה), משלים, משלי (ה), משלינו (ה), במשלנו, כבמשל, כבמשלנו, כמשלינו זה ש
 +
|-
 +
|for example
 +
|style="text-align:right;"|ועל דרך משל, על ד"מ
 +
|-
 +
|to give example, to demonstrate
 +
|style="text-align:right;"|אביא משל (... ל), אביא ... משלים, אמשול, אמשול משל ל
 +
|-
 +
|form, diagram
 +
|style="text-align:right;"|צורה (ה), צורות, צורת ה, צורות מספרים
 +
|-
 +
|figure
 +
|style="text-align:right;"|צורות
 +
|-
 +
|
 +
|style="text-align:right;"|בא בזאת הצורה, בא בצורה הזאת
 +
|-
 +
|
 +
|style="text-align:right;"|זאת הצורה ה
 +
|-
 +
|
 +
|style="text-align:right;"|כפי צורה זו, כפי הצורה, כמו שהוא בצורה הזאת
 +
|-
 +
|
 +
|style="text-align:right;"|בצורה (ה / הזאת / הנזכרת)
 +
|-
 +
|diagram
 +
|style="text-align:right;"|בתמונה
 +
|-
 +
|to answer
 +
|style="text-align:right;"|יענו כי
 +
|-
 +
|to answer
 +
|style="text-align:right;"|ולהשיב... ל, תשיב ... ש
 +
|-
 +
|answer
 +
|style="text-align:right;"|תשובה
 +
|-
 +
|
 +
|style="text-align:right;"|משפט אחד להנה
 +
|-
 +
|method, way
 +
|style="text-align:right;"|בדרך (ה / ש), ובדרך זה, דרכים, דרכי ה, דרכם, כדרכו ב, כדרכנו, על דרך ה, ע"ד
 +
|-
 +
|
 +
|style="text-align:right;"|על הצד ש
 +
|-
 +
|to proceed, to walk
 +
|style="text-align:right;"|דרכתי, נדרוך ב
 +
|-
 +
|to go, to proceed
 +
|style="text-align:right;"|בלכתך ל, ללכת, לך אל ה, נלך ל, תלך ל
 +
|-
 +
|skill, procedure
 +
|style="text-align:right;"|מלאכה, מלאכתך, מלאכת ה, מלאכתינו
 +
|-
 +
|action, operation
 +
|style="text-align:right;"|פועל
 +
|-
 +
|to repeat the procedure
 +
|style="text-align:right;"|להכפל (ה / זה ה), להכפיל (המעשה / המעשים)
 +
|-
 +
|
 +
|style="text-align:right;"|המכפיל פעמי המעשה
 +
|-
 +
|repetitive procedure
 +
|style="text-align:right;"|בהכפל (ה)
 +
|-
 +
|end, complete
 +
|style="text-align:right;"|תמו כל ה
 +
|-
 +
|explanation
 +
|style="text-align:right;"|פי' ה
 +
|-
 +
|explained
 +
|style="text-align:right;"|מפורש ב
 +
|-
 +
|to become
 +
|style="text-align:right;"|עולה לעשר מאשר לפניה, עולה עשר ידות מאשר לפניה
 +
|-
 +
|
 +
|style="text-align:right;"|בערך אל אשר לפניה
 +
|-
 +
|
 +
|style="text-align:right;"|בערך אשר לפניה, בערך אשר לפניו
 +
|-
 +
|to be able to
 +
|style="text-align:right;"|יוכל ל, יוכלו ל, יכולים ל, יכולנו ל, נוכל ל, תוכל ל
 +
|-
 +
|as much / great as possible
 +
|style="text-align:right;"|היותר שנוכל, היותר שתוכל (ל), היותר ... שיוכל
 +
|-
 +
|to be able to
 +
|style="text-align:right;"|היה הרשות בידך ל
 +
|-
 +
|should
 +
|style="text-align:right;"|אשר לך ל, אשר לנו ל, היה לו ל, היה לך ל, היה לנו ל, יהיה לו ל, יש לו ל, יש לך ל, יש לנו ל, עליך ל, עלינו ל
 +
|-
 +
|should not
 +
|style="text-align:right;"|אין לנו ל, אין לנו עוד ל, אין לנו ל... כלל, אין לנו ל... כי אם
 +
|-
 +
|should
 +
|style="text-align:right;"|ראוי ל, ראוי לו ל, ראוי לנו ל, ולזה ראוי לנו ל
 +
|-
 +
|should be
 +
|style="text-align:right;"|ראויין להיות
 +
|-
 +
|
 +
|style="text-align:right;"|לא תחדל מ
 +
|-
 +
|
 +
|style="text-align:right;"|ומהכל
 +
|-
 +
|
 +
|style="text-align:right;"|ויהיה לעש' במעלה זו
 +
|-
 +
|
 +
|style="text-align:right;"|ואם במקום הנקודה
 +
|-
 +
|
 +
|style="text-align:right;"|ואם לא יהיה במעלה שאחר שום מספר
 +
|-
 +
|
 +
|style="text-align:right;"|דבר שכלתה כבר ה
 +
|-
 +
|
 +
|style="text-align:right;"|מהמעלה אשר הנקדה תחתיה אם יש שם מספר
 +
|-
 +
|
 +
|style="text-align:right;"|שכבר נשלם
 +
|-
 +
|
 +
|style="text-align:right;"|במעלה שאחר זו
 +
|-
 +
|
 +
|style="text-align:right;"|תשוב כבתחלה
 +
|-
 +
|
 +
|style="text-align:right;"|באמצע
 +
|-
 +
|
 +
|style="text-align:right;"|? והנה בא על מתכונתו ש
 +
|-
 +
|to become
 +
|style="text-align:right;"|וישוב
 +
|-
 +
|beginning
 +
|style="text-align:right;"|ראש ה, בראש זה ה
 +
|-
 +
|end
 +
|style="text-align:right;"|סוף ה, בסוף ה
 +
|-
 +
|end
 +
|style="text-align:right;"|תכליתם
 +
|-
 +
|
 +
|style="text-align:right;"|הדומה ל, הדומה לה, הדומה לו, הדומה להם, הדומה לזה
 +
|-
 +
|
 +
|style="text-align:right;"|כדומה לו, כדומה לזה
 +
|-
 +
|
 +
|style="text-align:right;"|ודומיהן
 +
|-
 +
|
 +
|style="text-align:right;"|כאלו דומים ל
 +
|-
 +
|by how much
 +
|style="text-align:right;"|בכמה הוא
 +
|-
 +
|
 +
|style="text-align:right;"|כמה פעמים יש
 +
|-
 +
|
 +
|style="text-align:right;"|כמה כפלי כפלים
 +
|-
 +
|
 +
|style="text-align:right;"|כי כבר נשלם
 +
|-
 +
|
 +
|style="text-align:right;"|נשלם
 +
|-
 +
|
 +
|style="text-align:right;"|נשלמה
 +
|-
 +
|
 +
|style="text-align:right;"|כמה שיהיו מהם
 +
|-
 +
|
 +
|style="text-align:right;"|כמה... הם / כמה ... הן / כמה הם
 +
|-
 +
|
 +
|style="text-align:right;"|כמה ... יש ב, כמה ... יש בהם
 +
|-
 +
|
 +
|style="text-align:right;"|כמה הוא ה
 +
|-
 +
|
 +
|style="text-align:right;"|בכמה יהיו
 +
|-
 +
|
 +
|style="text-align:right;"|בכמה
 +
|-
 +
|
 +
|style="text-align:right;"|כמה הם יותר
 +
|-
 +
|
 +
|style="text-align:right;"|כמה פעמים ה... ב
 +
|-
 +
|
 +
|style="text-align:right;"|כמה פעמים יש בהם
 +
|-
 +
|to be unknown
 +
|style="text-align:right;"|נעלם לנו ה, נעלם ה
 +
|-
 +
|known
 +
|style="text-align:right;"|הידוע, הידועים, ידועים, מספר ידוע
 +
|-
 +
|unknown
 +
|style="text-align:right;"|הנעלם, נעלם (ה / ממנו), הוא הנעלם, הנעלמים
 +
|-
 +
|to dictate
 +
|style="text-align:right;"|נותן ל
 +
|-
 +
|excess
 +
|style="text-align:right;"|יותר על
 +
|-
 +
|to exceed
 +
|style="text-align:right;"|יותר על ה
 +
|-
 +
|to exceed by
 +
|style="text-align:right;"|יהיה יותר על ה ... ב
 +
|-
 +
|with excess
 +
|style="text-align:right;"|לתוספת
 +
|-
 +
|plus
 +
|style="text-align:right;"|עם תוספת
 +
|-
 +
|to increase
 +
|style="text-align:right;"|יתרבה, יתרבה המספר ב, מתרבה (בכפל)
 +
|-
 +
|to be missing
 +
|style="text-align:right;"|יחסר... מה, חסר ב... מה
 +
|-
 +
|to be lessened
 +
|style="text-align:right;"|יחסר
 +
|-
 +
|to fall short of
 +
|style="text-align:right;"|היו למגרעת, יחסר
 +
|-
 +
|deficit
 +
|style="text-align:right;"|חסרון
 +
|-
 +
|with deficit
 +
|style="text-align:right;"|למגרעת
 +
|-
 +
|to continue, to keep
 +
|style="text-align:right;"|תוסיף ל
 +
|-
 +
|amount
 +
|style="text-align:right;"|מנין
 +
|-
 +
|people
 +
|style="text-align:right;"|אנשים, אנשי, איש
 +
|-
 +
|spacious
 +
|style="text-align:right;"|מרווחות, מרווחים
 +
|-
 +
|when ever
 +
|style="text-align:right;"|בכל עת ש
 +
|-
 +
|enough
 +
|style="text-align:right;"|די
 +
|-
 +
|to be enough
 +
|style="text-align:right;"|די ב, די ל
 +
|-
 +
|not enough
 +
|style="text-align:right;"|ואין די, ואין בו די, אין די ל, אין דיו ל, אין שם כדאי ל, ואין ב... כדאי ל, אין ... כדי, ולא יהיה בו די ל
 +
|-
 +
|and that is it
 +
|style="text-align:right;"|ודי
 +
|-
 +
|to harm
 +
|style="text-align:right;"|יזיק, מזיק
 +
|-
 +
|?
 +
|style="text-align:right;"|בשום פנים
 +
|-
 +
|to indicate
 +
|style="text-align:right;"|להראות, להורות, הורה, המורה על ה, מורה לנו ש, מורי' על ה
 +
|-
 +
|
 +
|style="text-align:right;"|ויקח ... פעמים
 +
|-
 +
|
 +
|style="text-align:right;"|להתחלק עליו לשלמים
 +
|-
 +
|to discuss
 +
|style="text-align:right;"|נדבר
 +
|-
 +
|to bring
 +
|style="text-align:right;"|הבאתי ב, יגיעם כלם ל
 +
|-
 +
|
 +
|style="text-align:right;"|הנה לנו ש
 +
|-
 +
|to elaborate
 +
|style="text-align:right;"|להאריך בזה עוד, אאריך
 +
|-
 +
|to elaborate
 +
|style="text-align:right;"|להרחיב ה
 +
|-
 +
|to give
 +
|style="text-align:right;"|לתת לך, אתן לך, יתנו
 +
|-
 +
|general, inclusive
 +
|style="text-align:right;"|כולל
 +
|-
 +
|ancients
 +
|style="text-align:right;"|הראשונים
 +
|-
 +
|to consider as
 +
|style="text-align:right;"|הבט... כאלו
 +
|-
 +
|all are the same
 +
|style="text-align:right;"|כלם שוים
 +
|-
 +
|to be contained in
 +
|style="text-align:right;"|בו, יהיה בו ה, אשר ב, אשר בו
 +
|-
 +
|contradiction
 +
|style="text-align:right;"|בחילוף
 +
|-
 +
|so is
 +
|style="text-align:right;"|וכן הוא ה, כן הוא
 +
|-
 +
|they themselves
 +
|style="text-align:right;"|הם הם
 +
|-
 +
|total
 +
|style="text-align:right;"|היה הכל, יהיה הכל, יהיו הכל, יהיו כולם
 +
|-
 +
|in order that
 +
|style="text-align:right;"|יען
 +
|-
 +
|as they are
 +
|style="text-align:right;"|כמות שהם
 +
|-
 +
|the same as
 +
|style="text-align:right;"|כך הוא... כמו
 +
|-
 +
|as
 +
|style="text-align:right;"|כדרך שה
 +
|-
 +
|at present
 +
|style="text-align:right;"|אשר בנתים
 +
|-
 +
|at once
 +
|style="text-align:right;"|ברגע
 +
|-
 +
|with little
 +
|style="text-align:right;"|במעט
 +
|-
 +
|
 +
|style="text-align:right;"|בכל עת
 +
|-
 +
|large
 +
|style="text-align:right;"|הרבה
 +
|-
 +
|with respect to
 +
|style="text-align:right;"|על ה
 +
|-
 +
|
 +
|style="text-align:right;"|לכופלו
 +
|-
 +
|to be attained
 +
|style="text-align:right;"|שבא ב, אשר באו לך
 +
|-
 +
|to indicate
 +
|style="text-align:right;"|המורה על ה
 +
|-
 +
|diagonal
 +
|style="text-align:right;"|האלכסונים
 +
|-
 +
|difference
 +
|style="text-align:right;"|שינוי ב
 +
|-
 +
|to stand
 +
|style="text-align:right;"|עומד
 +
|-
 +
|to be difficult
 +
|style="text-align:right;"|יקשה עלינו
 +
|-
 +
|difficult
 +
|style="text-align:right;"|קשה
 +
|-
 +
|effort
 +
|style="text-align:right;"|עמל
 +
|-
 +
|to ease, to make it easy
 +
|style="text-align:right;"|להקל ה... מעלינו, להקל מעליך (ה), להקל מעלינו (ה), להקל עלינו ה
 +
|-
 +
|to assign
 +
|style="text-align:right;"|הקצתי לו, הקציתי לו
 +
|-
 +
|extreme
 +
|style="text-align:right;"|הקצוות
 +
|-
 +
|money
 +
|style="text-align:right;"|ממון
 +
|-
 +
|golden
 +
|style="text-align:right;"|זהב, אלו של זהב, של זהב, מזהב
 +
|-
 +
|silver
 +
|style="text-align:right;"|כסף, של כסף, אלו של כסף
 +
|-
 +
|dinar
 +
|style="text-align:right;"|דינר, דינרי, דינרים
 +
|-
 +
|peraḥim
 +
|style="text-align:right;"|פרחים
 +
|-
 +
|zehuvim, golden coin
 +
|style="text-align:right;"|זהובים
 +
|-
 +
|peruṭot
 +
|style="text-align:right;"|פרוטות
 +
|-
 +
|zuzim
 +
|style="text-align:right;"|זוזים
 +
|-
 +
|disappeared
 +
|style="text-align:right;"|נעדרת
 +
|-
 +
|
 +
|style="text-align:right;"|בכל מאויו
 +
|-
 +
|
 +
|style="text-align:right;"|באחד המעשים ב
 +
|-
 +
|to require
 +
|style="text-align:right;"|יחייב
 +
|-
 +
|given
 +
|style="text-align:right;"|מונח ל
 +
|-
 +
|side, factor
 +
|style="text-align:right;"|צלעות
 +
|-
 +
|generation
 +
|style="text-align:right;"|הולדה
 +
|-
 +
|meaning, instruction
 +
|style="text-align:right;"|הוראה, הוראת
 +
|-
 +
|indicator
 +
|style="text-align:right;"|מורי
 +
|-
 +
|
 +
|style="text-align:right;"|ומ"מ
 +
|-
 +
|as necessary
 +
|style="text-align:right;"|בכל הצורך
 +
|-
 +
|too much
 +
|style="text-align:right;"|יותר מדאי
 +
|-
 +
|portion of
 +
|style="text-align:right;"|קצת ה
 +
|-
 +
|smaller portion
 +
|style="text-align:right;"|מעוטו
 +
|-
 +
|greater portion
 +
|style="text-align:right;"|רובו
 +
|-
 +
|portion
 +
|style="text-align:right;"|חלקי ה, חלקים
 +
|-
 +
|to hurry
 +
|style="text-align:right;"|חששתי ל
 +
|-
 +
|to investigate
 +
|style="text-align:right;"|לדקדק, דקדקתי
 +
|-
 +
|pedantic
 +
|style="text-align:right;"|מדקדקים
 +
|-
 +
|matter
 +
|style="text-align:right;"|דברים
 +
|-
 +
|thing
 +
|style="text-align:right;"|דבר, דברים
 +
|-
 +
|any thing
 +
|style="text-align:right;"|שום דבר
 +
|-
 +
|issue, matter
 +
|style="text-align:right;"|ענין, ענייני ה, עניינים
 +
|-
 +
|concerning, in the matter of
 +
|style="text-align:right;"|בענין ש
 +
|-
 +
|type
 +
|style="text-align:right;"|מין (ה / מה מ), מינים, מינה, מינו, מינם, מיניהם, מיני
 +
|-
 +
|
 +
|style="text-align:right;"|שהוא ממינו, אשר ממינו
 +
|-
 +
|
 +
|style="text-align:right;"|שאינו מינו
 +
|-
 +
|
 +
|style="text-align:right;"|מין בשאינו מינו
 +
|-
 +
|
 +
|style="text-align:right;"|מין על מינו
 +
|-
 +
|to be eliminated
 +
|style="text-align:right;"|יתבטל
 +
|-
 +
|to wonder
 +
|style="text-align:right;"|תתמה ש
 +
|-
 +
|to remove
 +
|style="text-align:right;"|הסרנו אותו מהם
 +
|-
 +
|change
 +
|style="text-align:right;"|שינוי ביניהם
 +
|-
 +
|no difference between
 +
|style="text-align:right;"|אין חלוף בין ... ל
 +
|-
 +
|forward
 +
|style="text-align:right;"|בקדימה
 +
|-
 +
|backward
 +
|style="text-align:right;"|ואיחור
 +
|-
 +
|intention
 +
|style="text-align:right;"|כונה, כוונות, כונתינו, כוונתי, בכוונה מכוונה
 +
|-
 +
|lowest
 +
|style="text-align:right;"|הגרועים מהם
 +
|-
 +
|detail
 +
|style="text-align:right;"|פרט
 +
|-
 +
|gleanings?
 +
|style="text-align:right;"|עוללות
 +
|-
 +
|beauty
 +
|style="text-align:right;"|היופי
 +
|-
 +
|true
 +
|style="text-align:right;"|האמיתי, אמיתיות
 +
|-
 +
|
 +
|style="text-align:right;"|ואותו
 +
|-
 +
|
 +
|style="text-align:right;"|ועל דרך היופי
 +
|-
 +
|to be difficult
 +
|style="text-align:right;"|תכבד ה
 +
|-
 +
|work
 +
|style="text-align:right;"|עבודה
 +
|-
 +
|
 +
|style="text-align:right;"|האמרה
 +
|-
 +
|plus
 +
|style="text-align:right;"|עם ה, ועוד (ה)
 +
|-
 +
|like
 +
|style="text-align:right;"|כעין
 +
|-
 +
|descendant
 +
|style="text-align:right;"|ילדתם
 +
|-
 +
|to change
 +
|style="text-align:right;"|לשנותו
 +
|-
 +
|
 +
|style="text-align:right;"|נחבר ב
 +
|-
 +
|to consist of
 +
|style="text-align:right;"|הורכב מה
 +
|-
 +
|to be composed
 +
|style="text-align:right;"|הורכב, הורכבה מהם
 +
|-
 +
|to insert
 +
|style="text-align:right;"|להכניס
 +
|-
 +
|to be absent
 +
|style="text-align:right;"|יעדר
 +
|-
 +
|high
 +
|style="text-align:right;"|גבוהים
 +
|-
 +
|to be verified
 +
|style="text-align:right;"|נתאמת
 +
|-
 +
|truth
 +
|style="text-align:right;"|אמת
 +
|-
 +
|
 +
|style="text-align:right;"|הנה אמת, הנה אמת הנה נכון, הנה נכון הנה אמת
 +
|-
 +
|
 +
|style="text-align:right;"|והנה כל מעשינו אמת, הנה כל מעשינו אמת ויציב, הלא מעשיך אמת ויציב, הנה מעשיך אמת ונכון
 +
|-
 +
|
 +
|style="text-align:right;"|כל מעשינו בצדק ובמשפט
 +
|-
 +
|false
 +
|style="text-align:right;"|שקר
 +
|-
 +
|absurd
 +
|style="text-align:right;"|שקר
 +
|-
 +
|rule
 +
|style="text-align:right;"|דין, הוא הדין, כלל (ה / ... ל / כי / ש)
 +
|-
 +
|the rule requires
 +
|style="text-align:right;"|היה הדין נותן
 +
|-
 +
|to change
 +
|style="text-align:right;"|משתנה, ישתנה
 +
|-
 +
|time
 +
|style="text-align:right;"|פעם, פעמים, פעמי ה
 +
|-
 +
|
 +
|style="text-align:right;"|כפעם בפעם, פעם בפעם
 +
|-
 +
|every time
 +
|style="text-align:right;"|בכל פעם, בכל פעם ופעם
 +
|-
 +
|time after time
 +
|style="text-align:right;"|פעם אחר פעם
 +
|-
 +
|greatest number of times
 +
|style="text-align:right;"|מספר הרב הפעמים, היותר פעמים מב, יותר רב פעמים
 +
|-
 +
|to split
 +
|style="text-align:right;"|שנפצל מ, מ... נפצל
 +
|-
 +
|to bother
 +
|style="text-align:right;"|תטרח
 +
|-
 +
|deduce from this
 +
|style="text-align:right;"|והקש על זה, והקש על זה ב
 +
|-
 +
|to happen, to occur
 +
|style="text-align:right;"|יקרה (ב / כאשר)
 +
|-
 +
|
 +
|style="text-align:right;"|נביאנו
 +
|-
 +
|
 +
|style="text-align:right;"|אינו כלל
 +
|-
 +
|
 +
|style="text-align:right;"|?זה פירושם
 +
|-
 +
|
 +
|style="text-align:right;"|שבא הכל כאלו
 +
|-
 +
|for panic
 +
|style="text-align:right;"|לבהלה
 +
|-
 +
|for naught
 +
|style="text-align:right;"|לבטלה
 +
|-
 +
|to fill, to fulfill
 +
|style="text-align:right;"|למלאת, מלאתיו, תמלא
 +
|-
 +
|to satisfy
 +
|style="text-align:right;"|למלאת את
 +
|-
 +
|to train
 +
|style="text-align:right;"|להרגילך ב, להרגילך עוד ב
 +
|-
 +
|style, form
 +
|style="text-align:right;"|בסגנון
 +
|-
 +
|removed
 +
|style="text-align:right;"|המוסר
 +
|-
 +
|
 +
|style="text-align:right;"|מספרו
 +
|-
 +
|one and the same
 +
|style="text-align:right;"|והנה כל ה... אחד, אחד בעצמו
 +
|-
 +
|
 +
|style="text-align:right;"|והכל עולה לדרך אחד
 +
|-
 +
|
 +
|style="text-align:right;"|והכל עולה לסך אחד
 +
|-
 +
|
 +
|style="text-align:right;"|והכל עולה לענין אחד
 +
|-
 +
|to shorten
 +
|style="text-align:right;"|ולקצר
 +
|-
 +
|to contrive
 +
|style="text-align:right;"|לתחבל
 +
|-
 +
|half
 +
|style="text-align:right;"|חצי ה, חצי מ, חצאין, חצאי, חציו, מחצית ה
 +
|-
 +
|to reverse
 +
|style="text-align:right;"|בהפוך ה... ל, הפוך ה
 +
|-
 +
|to return
 +
|style="text-align:right;"|חזרו ל, תחזור ל
 +
|-
 +
|to return
 +
|style="text-align:right;"|להחזירו ל
 +
|-
 +
|to return
 +
|style="text-align:right;"|נשוב (ו / ל / עוד), תשוב (ל)
 +
|-
 +
|meaning
 +
|style="text-align:right;"|כלומר ש
 +
|-
 +
|meaning
 +
|style="text-align:right;"|פי' (כי / ש)
 +
|-
 +
|wise
 +
|style="text-align:right;"|חכם, חכמים
 +
|-
 +
|Sages of the Gentiles
 +
|style="text-align:right;"|חכמי הגוים
 +
|-
 +
|science
 +
|style="text-align:right;"|חכמה, חוכמות, חכמתם
 +
|-
 +
|mathematics
 +
|style="text-align:right;"|חכמת הלימודיות
 +
|-
 +
|natural science
 +
|style="text-align:right;"|חכמת הטבע
 +
|-
 +
|arithmetic
 +
|style="text-align:right;"|חכמת המספר, במספר
 +
|-
 +
|philosophers
 +
|style="text-align:right;"|מתפלספים
 +
|-
 +
|rational soul
 +
|style="text-align:right;"|נפשם משכלת
 +
|-
 +
|rationalism
 +
|style="text-align:right;"|התבוניות, תבונה
 +
|-
 +
|rational concept
 +
|style="text-align:right;"|המושכלות
 +
|-
 +
|intellect
 +
|style="text-align:right;"|שכלו, שכלי, שכלנו
 +
|-
 +
|subject
 +
|style="text-align:right;"|נושאיהם
 +
|-
 +
|essence
 +
|style="text-align:right;"|עצמים
 +
|-
 +
|accident
 +
|style="text-align:right;"|מקרים
 +
|-
 +
|straightness
 +
|style="text-align:right;"|יושר
 +
|-
 +
|a while
 +
|style="text-align:right;"|כמה
 +
|-
 +
|to reveal
 +
|style="text-align:right;"|לגלות
 +
|-
 +
|treasures
 +
|style="text-align:right;"|מצפוניה
 +
|-
 +
|to influence
 +
|style="text-align:right;"|תאצילני
 +
|-
 +
|to translate
 +
|style="text-align:right;"|להשיבו ב
 +
|-
 +
|to elaborate
 +
|style="text-align:right;"|בהרחבת
 +
|-
 +
|to long
 +
|style="text-align:right;"|חשקתיך
 +
|-
 +
|desire
 +
|style="text-align:right;"|תאותך
 +
|-
 +
|to grant
 +
|style="text-align:right;"|ולתת את
 +
|-
 +
|request
 +
|style="text-align:right;"|שאלתך
 +
|-
 +
|trouble
 +
|style="text-align:right;"|טרדות ה
 +
|-
 +
|to allow
 +
|style="text-align:right;"|מסכימות ל, מסכימים
 +
|-
 +
|to engage in
 +
|style="text-align:right;"|להתעסק ב
 +
|-
 +
|to live
 +
|style="text-align:right;"|יחיו
 +
|-
 +
|in the eyes
 +
|style="text-align:right;"|בעיני, בעיניהם
 +
|-
 +
|master
 +
|style="text-align:right;"|אלופים
 +
|-
 +
|possible
 +
|style="text-align:right;"|איפשר
 +
|-
 +
|heart
 +
|style="text-align:right;"|לבם
 +
|-
 +
|attached
 +
|style="text-align:right;"|נקשר
 +
|-
 +
|succeed
 +
|style="text-align:right;"|יכשר
 +
|-
 +
|to rule over
 +
|style="text-align:right;"|להשתרר
 +
|-
 +
|to overcome
 +
|style="text-align:right;"|ולנצח
 +
|-
 +
|time
 +
|style="text-align:right;"|זמן
 +
|-
 +
|years
 +
|style="text-align:right;"|שנות
 +
|-
 +
|youth
 +
|style="text-align:right;"|זמן הנערות
 +
|-
 +
|maturity
 +
|style="text-align:right;"|זמן הבחרות
 +
|-
 +
|less and more
 +
|style="text-align:right;"|בפחות וביתר
 +
|-
 +
|senseless
 +
|style="text-align:right;"|תפל
 +
|-
 +
|defect
 +
|style="text-align:right;"|דופי
 +
|-
 +
|mockery
 +
|style="text-align:right;"|התול
 +
|-
 +
|slander
 +
|style="text-align:right;"|לעז
 +
|-
 +
|to ridicule
 +
|style="text-align:right;"|לעגו
 +
|-
 +
|to joke
 +
|style="text-align:right;"|יתלוצצו
 +
|-
 +
|to be told
 +
|style="text-align:right;"|יסופר
 +
|-
 +
|engagement
 +
|style="text-align:right;"|עסקם ב
 +
|-
 +
|simple things
 +
|style="text-align:right;"|פשוטות
 +
|-
 +
|perceptible
 +
|style="text-align:right;"|מושגות ב
 +
|-
 +
|outstanding, prominent
 +
|style="text-align:right;"|מסויימים
 +
|-
 +
|to encamp
 +
|style="text-align:right;"|חונים
 +
|-
 +
|division by division
 +
|style="text-align:right;"|דגלים דגלים
 +
|-
 +
|path by path
 +
|style="text-align:right;"|שבילים שבילים
 +
|-
 +
|wanderer
 +
|style="text-align:right;"|נעים ונדים
 +
|-
 +
|to sway
 +
|style="text-align:right;"|מתנודדים
 +
|-
 +
|to rob
 +
|style="text-align:right;"|יגזלו מ
 +
|-
 +
|to steal
 +
|style="text-align:right;"|יגנוב ה
 +
|-
 +
|to deceive
 +
|style="text-align:right;"|להונות, יונה
 +
|-
 +
|to exploit
 +
|style="text-align:right;"|ולעשוק
 +
|-
 +
|poverty
 +
|style="text-align:right;"|עוני
 +
|-
 +
|glory
 +
|style="text-align:right;"|הודם
 +
|-
 +
|might
 +
|style="text-align:right;"|מאודם
 +
|-
 +
|business
 +
|style="text-align:right;"|מסחרים
 +
|-
 +
|to eat
 +
|style="text-align:right;"|יאכל
 +
|-
 +
|word
 +
|style="text-align:right;"|דברו
 +
|-
 +
|to strengthen
 +
|style="text-align:right;"|להחזיק
 +
|-
 +
|to encourage
 +
|style="text-align:right;"|החזיקו יד
 +
|-
 +
|to grasp, to take hold
 +
|style="text-align:right;"|החזיקתני
 +
|-
 +
|strong
 +
|style="text-align:right;"|חזק, חזקות, חזקים
 +
|-
 +
|to be held
 +
|style="text-align:right;"|מוחזקות בידיהם, ומוחזק
 +
|-
 +
|to raise up
 +
|style="text-align:right;"|להקים
 +
|-
 +
|guilt
 +
|style="text-align:right;"|אשם
 +
|-
 +
|to be careful
 +
|style="text-align:right;"|נזהר מ
 +
|-
 +
|pegs
 +
|style="text-align:right;"|יתדות
 +
|-
 +
|to emanate
 +
|style="text-align:right;"|אצל
 +
|-
 +
|friend
 +
|style="text-align:right;"|רעהו
 +
|-
 +
|to choose
 +
|style="text-align:right;"|בחר מ
 +
|-
 +
|bad luck
 +
|style="text-align:right;"|רוע מזלו
 +
|-
 +
|to be well with
 +
|style="text-align:right;"|טוב לו
 +
|-
 +
|to continue
 +
|style="text-align:right;"|ולהתמיד
 +
|-
 +
|righteousness
 +
|style="text-align:right;"|צדקו
 +
|-
 +
|to carve
 +
|style="text-align:right;"|לחקוק אותו
 +
|-
 +
|forever
 +
|style="text-align:right;"|לנצח
 +
|-
 +
|affection
 +
|style="text-align:right;"|וחבתן
 +
|-
 +
|to overpower
 +
|style="text-align:right;"|גברה
 +
|-
 +
|to tearing down, to break
 +
|style="text-align:right;"|פרצתי
 +
|-
 +
|definition
 +
|style="text-align:right;"|גדר ה
 +
|-
 +
|humility
 +
|style="text-align:right;"|ענוה
 +
|-
 +
|to stand
 +
|style="text-align:right;"|קמתי בפניהם
 +
|-
 +
|to give honor to
 +
|style="text-align:right;"|אחלוק הכבוד
 +
|-
 +
|to be enriched
 +
|style="text-align:right;"|להעשר
 +
|-
 +
|to compose
 +
|style="text-align:right;"|חברתי
 +
|-
 +
|goodness
 +
|style="text-align:right;"|טוב
 +
|-
 +
|to weaken
 +
|style="text-align:right;"|מחלישים
 +
|-
 +
|to come
 +
|style="text-align:right;"|באתי ל
 +
|-
 +
|wonderful and fearful things
 +
|style="text-align:right;"|נפלאות ונוראות
 +
|-
 +
|lights
 +
|style="text-align:right;"|אורות
 +
|-
 +
|to inform
 +
|style="text-align:right;"|יודיעו
 +
|-
 +
|argument
 +
|style="text-align:right;"|טענות
 +
|-
 +
|apology
 +
|style="text-align:right;"|התנצלותי
 +
|-
 +
|virtue
 +
|style="text-align:right;"|מעלה
 +
|-
 +
|to leave
 +
|style="text-align:right;"|עזב את ה
 +
|-
 +
|queens
 +
|style="text-align:right;"|גבירות
 +
|-
 +
|to expand
 +
|style="text-align:right;"|מרבות
 +
|-
 +
|boughs and branch
 +
|style="text-align:right;"|סנסנים ופארות
 +
|-
 +
|fruit
 +
|style="text-align:right;"|פירות
 +
|-
 +
|extended his hand
 +
|style="text-align:right;"|פשט ידו ב
 +
|-
 +
|humiliating
 +
|style="text-align:right;"|כמבזה
 +
|-
 +
|to grasp
 +
|style="text-align:right;"|אחז את
 +
|-
 +
|hidden
 +
|style="text-align:right;"|צפון
 +
|-
 +
|concealed
 +
|style="text-align:right;"|נעלם
 +
|-
 +
|to admit
 +
|style="text-align:right;"|יעיד על עצמו
 +
|-
 +
|to admit
 +
|style="text-align:right;"|להודות כי
 +
|-
 +
|today
 +
|style="text-align:right;"|היום
 +
|-
 +
|to estimate
 +
|style="text-align:right;"|אומדים
 +
|-
 +
|foundation
 +
|style="text-align:right;"|יסוד, יסודה
 +
|-
 +
|building
 +
|style="text-align:right;"|בניינה, בניינם
 +
|-
 +
|consists of
 +
|style="text-align:right;"|הבנויות על ה
 +
|-
 +
|room
 +
|style="text-align:right;"|חדרים
 +
|-
 +
|to open
 +
|style="text-align:right;"|לפתוח
 +
|-
 +
|entrance
 +
|style="text-align:right;"|פתח
 +
|-
 +
|lenient and stringent
 +
|style="text-align:right;"|קל וחומר
 +
|-
 +
|right
 +
|style="text-align:right;"|נכונים
 +
|-
 +
|known, recognized
 +
|style="text-align:right;"|מפורסם, מפורסמים
 +
|-
 +
|to rely
 +
|style="text-align:right;"|נשענים
 +
|-
 +
!pronoun
 +
|
 +
|-
 +
|
 +
|style="text-align:right;"|אני, אנו, הננו, אתה, הוא (ה), היא, הם (מ), המה, הן, הנה
 +
|-
 +
|
 +
|style="text-align:right;"|והוא גם הוא
 +
|-
 +
|
 +
|style="text-align:right;"|אותו ה, אותה ה, מאותה ה
 +
|-
 +
|
 +
|style="text-align:right;"|ההיא (בעצמה), ההוא, ההם, ההן
 +
|-
 +
|which are / is
 +
|style="text-align:right;"|שהוא, שהיא, שהם, שהן, שהוא ה, והוא ש, שהנו
 +
|-
 +
|
 +
|style="text-align:right;"|שיהיו שם
 +
|-
 +
|
 +
|style="text-align:right;"|שזהו
 +
|-
 +
|
 +
|style="text-align:right;"|זה (ה / הוא / ש), זו (ה), זאת (ה / היא), וזהו, וזוהי
 +
|-
 +
|
 +
|style="text-align:right;"|זה... וזה
 +
|-
 +
|
 +
|style="text-align:right;"|אלו (ה / הם / הם ה / אשר / ש), אלה, האלה, האלו
 +
|-
 +
|of these
 +
|style="text-align:right;"|מאלו, מאלו ומאלו
 +
|-
 +
|of them
 +
|style="text-align:right;"|שבהם, מהם, מהן, מאלו, ממנו
 +
|-
 +
|
 +
|style="text-align:right;"|הוא ב
 +
|-
 +
|
 +
|style="text-align:right;"|כזה
 +
|-
 +
|
 +
|style="text-align:right;"|מזה ה
 +
|-
 +
|
 +
|style="text-align:right;"|לזה, לזאת
 +
|-
 +
|
 +
|style="text-align:right;"|אשר
 +
|-
 +
|
 +
|style="text-align:right;"|אשר הם
 +
|-
 +
|itself / themselves
 +
|style="text-align:right;"|עצמה, עצמו, עצמם, בעצמה (ה), בעצמו, בעצמם
 +
|-
 +
|by itself
 +
|style="text-align:right;"|בפני עצמו, לעצמו
 +
|-
 +
|by our selves
 +
|style="text-align:right;"|בעצמינו
 +
|-
 +
|your self
 +
|style="text-align:right;"|בעצמך
 +
|-
 +
|any, certain
 +
|style="text-align:right;"|שום, שום ה, משום
 +
|-
 +
|certain
 +
|style="text-align:right;"|איזה
 +
|-
 +
|certain
 +
|style="text-align:right;"|מה
 +
|-
 +
|every one
 +
|style="text-align:right;"|כל אחד (ש)
 +
|-
 +
|every
 +
|style="text-align:right;"|כל
 +
|-
 +
|every… of them
 +
|style="text-align:right;"|כל... מהם
 +
|-
 +
|every thing
 +
|style="text-align:right;"|כל דבר, הכל
 +
|-
 +
|some thing
 +
|style="text-align:right;"|דבר מה
 +
|-
 +
|all
 +
|style="text-align:right;"|הכל, כל (ה), כל אשר, כלם, כל זה, כולה, כלה, היה כלה, בכל, יהיו כלם, כולם
 +
|-
 +
|all of
 +
|style="text-align:right;"|כולם מה
 +
|-
 +
|each
 +
|style="text-align:right;"|כל, כל ... מהם, כל ... ו... מהם, בכל ... ו...
 +
|-
 +
|
 +
|style="text-align:right;"|כ"א, כל אחד, כל אחת, כל א' (מ), כל אחד מ, כל אחד מאלו ה, כל אחד מה, כל אחד מהם, כל אחת מהם
 +
|-
 +
|one of
 +
|style="text-align:right;"|אחד (ה / מ / מה / מהם), א' מה
 +
|-
 +
|for each
 +
|style="text-align:right;"|על כל, לכולם
 +
|-
 +
|by each other
 +
|style="text-align:right;"|זו בזו
 +
|-
 +
|to each other
 +
|style="text-align:right;"|זה לזה
 +
|-
 +
|one after the other
 +
|style="text-align:right;"|זה אחר זה
 +
|-
 +
|for each
 +
|style="text-align:right;"|לכל
 +
|-
 +
|
 +
|style="text-align:right;"|וכל ש
 +
|-
 +
|the rest
 +
|style="text-align:right;"|שאר (ה), כל שאר ה, כבשאר ה
 +
|-
 +
|both
 +
|style="text-align:right;"|שניהם, שתיהן
 +
|-
 +
|
 +
|style="text-align:right;"|או
 +
|-
 +
|
 +
|style="text-align:right;"|גם, וכן, וכן כולם, וכן כלם, וכן לכלם, וכן בכללן, וכן ב
 +
|-
 +
|
 +
|style="text-align:right;"|גם ה... גם ה, הן ... הן, הן ל... הן ל, הן מן .... הן מן ...
 +
|-
 +
|
 +
|style="text-align:right;"|בין ש... או ש
 +
|-
 +
|
 +
|style="text-align:right;"|בין... בין אם
 +
|-
 +
|
 +
|style="text-align:right;"|בין ... או
 +
|-
 +
|
 +
|style="text-align:right;"|או ... או
 +
|-
 +
|
 +
|style="text-align:right;"|הן ... או
 +
|-
 +
|
 +
|style="text-align:right;"|בה, בו, בהם, בכלן
 +
|-
 +
|
 +
|style="text-align:right;"|זה אשר
 +
|-
 +
|
 +
|style="text-align:right;"|אשר ב, יהיה ב, אשר בו (ה), אשר היו ב
 +
|-
 +
|
 +
|style="text-align:right;"|אשר מה
 +
|-
 +
|
 +
|style="text-align:right;"|בזה... ובזה
 +
|-
 +
|which
 +
|style="text-align:right;"|איזה ... הם, איזהו ה
 +
|-
 +
|by which
 +
|style="text-align:right;"|ממנו
 +
|-
 +
|from which
 +
|style="text-align:right;"|אשר ממנה, אשר ממנו
 +
|-
 +
|that
 +
|style="text-align:right;"|מה ש
 +
|-
 +
|that
 +
|style="text-align:right;"|הוא ש, הוא אשר
 +
|-
 +
|what
 +
|style="text-align:right;"|מה ש
 +
|-
 +
|who
 +
|style="text-align:right;"|מי ש
 +
|-
 +
|whichever
 +
|style="text-align:right;"|איזה מהם שיהיה
 +
|-
 +
|
 +
|style="text-align:right;"|זה בזה
 +
|-
 +
|which
 +
|style="text-align:right;"|איזה, אי זה
 +
|-
 +
|which is
 +
|style="text-align:right;"|שזהו
 +
|-
 +
|which is
 +
|style="text-align:right;"|והוא כי
 +
|-
 +
|which is of
 +
|style="text-align:right;"|שהוא מ
 +
|-
 +
|the same as
 +
|style="text-align:right;"|הוא כ
 +
|-
 +
|
 +
|style="text-align:right;"|כמי ש
 +
|-
 +
|
 +
|style="text-align:right;"|כי כך הוא
 +
|-
 +
|
 +
|style="text-align:right;"|והנה, הנה, הנה ה
 +
|-
 +
|
 +
|style="text-align:right;"|הנה ש
 +
|-
 +
|by this
 +
|style="text-align:right;"|בזה
 +
|-
 +
|one by one
 +
|style="text-align:right;"|אחד אחד
 +
|-
 +
!negative clause
 +
|
 +
|-
 +
|without
 +
|style="text-align:right;"|בלי, מבלי, מבלי... כלל, בלי... כלל
 +
|-
 +
|without
 +
|style="text-align:right;"|מבלתי (ה), בלתי
 +
|-
 +
|
 +
|style="text-align:right;"|בלא
 +
|-
 +
|not
 +
|style="text-align:right;"|בלתי
 +
|-
 +
|
 +
|style="text-align:right;"|בלתי ... כלל
 +
|-
 +
|
 +
|style="text-align:right;"|אין ... דבר
 +
|-
 +
|
 +
|style="text-align:right;"|אין לך ל... דבר
 +
|-
 +
|
 +
|style="text-align:right;"|אין בה... כלל כי אם
 +
|-
 +
|
 +
|style="text-align:right;"|אין ... כלל, אין... כלל כי אם ה... לבד
 +
|-
 +
|
 +
|style="text-align:right;"|אינו כי אם
 +
|-
 +
|
 +
|style="text-align:right;"|אין... כי אם, אינו... כי אם, אינך... כי אם
 +
|-
 +
|
 +
|style="text-align:right;"|אין ב... כי אם; אין שם ... כי אם
 +
|-
 +
|
 +
|style="text-align:right;"|אין אנו ... אלא
 +
|-
 +
|
 +
|style="text-align:right;"|אין אנו... כלל, אינך ... כלל
 +
|-
 +
|
 +
|style="text-align:right;"|אין לו, אין לו... כלל
 +
|-
 +
|
 +
|style="text-align:right;"|אין לו כי אם
 +
|-
 +
|
 +
|style="text-align:right;"|אין לך... כי אם
 +
|-
 +
|
 +
|style="text-align:right;"|אין בידיך כי אם
 +
|-
 +
|
 +
|style="text-align:right;"|אין בידיך ל
 +
|-
 +
|
 +
|style="text-align:right;"|אין בידינו ... כלל
 +
|-
 +
|
 +
|style="text-align:right;"|ואין לו ל... כי אם; אין לך ל... כי אם, אין לנו ל... כי אם
 +
|-
 +
|
 +
|style="text-align:right;"|אין לך ... כי עם
 +
|-
 +
|
 +
|style="text-align:right;"|לא... כלל כי אם
 +
|-
 +
|
 +
|style="text-align:right;"|לא... כי אם
 +
|-
 +
|
 +
|style="text-align:right;"|לא... כלל
 +
|-
 +
|
 +
|style="text-align:right;"|לא ... לעולם
 +
|-
 +
|
 +
|style="text-align:right;"|לא... כל
 +
|-
 +
|
 +
|style="text-align:right;"|לא ... דבר
 +
|-
 +
|
 +
|style="text-align:right;"|לא ... מאומה
 +
|-
 +
|
 +
|style="text-align:right;"|לא ... שום
 +
|-
 +
|
 +
|style="text-align:right;"|ואלו לא היה ב... כי אם
 +
|-
 +
|
 +
|style="text-align:right;"|אין בכאן
 +
|-
 +
|
 +
|style="text-align:right;"|לא... שום דבר
 +
|-
 +
|
 +
|style="text-align:right;"|לא... אלא
 +
|-
 +
|
 +
|style="text-align:right;"|אין מ... ל
 +
|-
 +
|even not
 +
|style="text-align:right;"|אף לא
 +
|-
 +
|not even
 +
|style="text-align:right;"|אין גם
 +
|-
 +
|
 +
|style="text-align:right;"|לא ... אפי', לא... אפילו
 +
|-
 +
|
 +
|style="text-align:right;"|אין ה... ולא ה
 +
|-
 +
|
 +
|style="text-align:right;"|אין ... לא ... ולא
 +
|-
 +
|
 +
|style="text-align:right;"|לא ... ולא, לא... ולא גם
 +
|-
 +
|do not
 +
|style="text-align:right;"|ואל, אין, אינו, אינך
 +
|-
 +
|is / are not
 +
|style="text-align:right;"|אינה, איננו, אינו, אינם
 +
|-
 +
|not
 +
|style="text-align:right;"|לאו
 +
|-
 +
|at all
 +
|style="text-align:right;"|בשום פנים
 +
|-
 +
|at all
 +
|style="text-align:right;"|כלל
 +
|-
 +
|no, there is no
 +
|style="text-align:right;"|אין, אין ב, אין ה, אין זה, אין כאן ה
 +
|-
 +
|is / are not
 +
|style="text-align:right;"|אינם (מ), אינו, איננו
 +
|-
 +
|
 +
|style="text-align:right;"|אין בה, אין בו, אינו ב, אינו בה, איננו בו, אינם בו, אין ... ב
 +
|-
 +
|
 +
|style="text-align:right;"|אם לא, ואם לאו
 +
|-
 +
|
 +
|style="text-align:right;"|ואם לאו לאו
 +
|-
 +
|neither… nor
 +
|style="text-align:right;"|לא... ולא
 +
|-
 +
|
 +
|style="text-align:right;"|לא היה לו
 +
|-
 +
|
 +
|style="text-align:right;"|אין ל, ואין לנו ל
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\frac{3}{4}\sdot\left[\frac{2}{5}+\left(\frac{3}{4}\sdot\frac{1}{5}\right)\right]\sdot\left[\frac{4}{6}+\left(\frac{1}{3}\sdot\frac{1}{6}\right)\right]&\scriptstyle=\frac{3}{4}\sdot\left(\frac{11}{4}\sdot\frac{1}{5}\right)\sdot\left(\frac{13}{3}\sdot\frac{1}{6}\right)\\&\scriptstyle=\frac{3\sdot11\sdot13}{4}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}\\&\scriptstyle=\frac{33\sdot13}{4}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}\\&\scriptstyle=\frac{429}{4}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}\\\end{align}}}</math>
+
|style="text-align:right;"|אין לו אחד מהם, אין לו שום אחד מה
|style="text-align:right;"|ותתחיל להכות ולומר שלשה בי"א הם ל"ג ול"ג בי"ג הם 429, הרי עלו כל השברים הנשאלים 429 רביעית חמישית שלישית שישית, כזה&#x202B;:
 
 
|-
 
|-
 
|
 
|
|
+
|style="text-align:right;"|עוד, ועוד
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
|-
 
| 4 || 4 || 5 || 3 || 6
 
|-
 
| 429
 
|}
 
|-
 
|Then the product is divided by the denominators
 
|style="text-align:right;"|ותחלק אלו ה429 למורים אלו, ר"ל לד' והיוצא לד' האחר והיוצא לה' וכן לכלם עד כלותם
 
|-
 
|The remainder of division by a certain denominator is written beneath that denominator
 
|style="text-align:right;"|וכאשר ישאר דבר בשום חלוקה מהן, תשימהו תחת המורה ההוא
 
|-
 
|The most beautiful arrangement: dividing firstly by the denominator the division by which generates the smallest remainder, preferably dividing first by the divisors of the product if there are any among the denominators and placing these denominators at the end [to the right] starting from the largest to the smallest
 
|style="text-align:right;"|וככלות החשבון קודם כלות המורים ויצא לך בחלוק על אחד מהן פחות מהמורה אשר לפניו, תשים אותו היוצא תחת המורה הזה אשר לפני. ואז תדע כמה שישיות, או כמה שלישיות שישיות הן. וזה נקרא כלילת יופי כמו שנזכר למעלה, לפי שהוא לעשות מהפרטים כללים, יען יהיו השברים יותר גדולים ויותר יפים
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|והיופי האמיתי כשתעיין בתחלה המספר המתחלק, אם יש לו שום אחד מהמורים ההם ואותו תשים אחרון וכן בשנית ביוצא וכן בשלישית וכן לעולם
+
|style="text-align:right;"|הרי, הרי ש, הרי לך, הרי לנו (כי / ש), והרי, שהרי
|-
 
|For equalization purpose only, there is no need to divide by the denominators
 
|style="text-align:right;"|ולא תעשה זה כי אם כאשר ישאלו לך כמה עולים חלקים אלו הנשארות, אכן אם עשית זה לצורך ההשואה, או לצורך אחד מהשערים הבאים, לא תחלקהו על המורים כלל, כי לא כתבתיו כאן, כי אם ללמדך על המעשה ואם אין זה מקומו ונזכר כבר במקומות אחרים
 
 
|-
 
|-
 
|
 
|
:*<math>\scriptstyle{\color{blue}{\frac{429}{4}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}=\left(\frac{107}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)+\left(\frac{1}{4}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)}}</math>
+
|style="text-align:right;"|הרי הוא כאלו, הרי זה כאלו
|style="text-align:right;"|ובעשותך זה בדמיוננו זה ר"ל שתחלק ה429 על הד' שהוא המורה האחרון, יצא בחילוק 107 וישאר א' ותשימהו תחתיו
 
 
|-
 
|-
 
|
 
|
:*<math>\scriptstyle{\color{blue}{\frac{107}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}=\left(\frac{26}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)+\left(\frac{3}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)}}</math>
+
|style="text-align:right;"|כי אם
|style="text-align:right;"|&#x202B;[ותחלק זה היוצא לד' הקודם לו יצא בחלוק כ"ו וישארו ג' תשימם תחתיו
 
 
|-
 
|-
 
|
 
|
:*<math>\scriptstyle{\color{blue}{\frac{26}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}=\left(\frac{5}{3}\sdot\frac{1}{6}\right)+\left(\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)}}</math>
+
|style="text-align:right;"|ככה
|style="text-align:right;"|ותחלק זה היוצא לה' ויצא בחלוק ה' וישאר א' ותשימהו תחתיו
 
 
|-
 
|-
 
|
 
|
:*<math>\scriptstyle{\color{blue}{\frac{5}{3}\sdot\frac{1}{6}=\frac{1}{6}+\left(\frac{2}{3}\sdot\frac{1}{6}\right)}}</math>
+
|style="text-align:right;"|כמה
|style="text-align:right;"|ותחלק]&#x202B; ותחלק ה' אלו על הג' ויצא א' וישארו ב' ותשימם תחתיו
 
 
|-
 
|-
|
+
|indeed
|style="text-align:right;"|וזה הא' אם היה גדול מהו' מדות שהוא המורה אשר לפני אלו הסמוך להם היה לנו לחלקם עליו והיוצא בחלוק היה שלימים
+
|style="text-align:right;"|אכן
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|אחר שהוא ראשון וכבר כלו המורים והנשאר הינו שמים אותו תחתיו והיה שישיות שלמות
+
|style="text-align:right;"|ככה
|}
 
 
 
:<math>\scriptstyle{\color{blue}{\frac{3}{4}\sdot\left[\frac{2}{5}+\left(\frac{3}{4}\sdot\frac{1}{5}\right)\right]\sdot\left[\frac{4}{6}+\left(\frac{1}{3}\sdot\frac{1}{6}\right)\right]=\frac{1}{6}+\left(\frac{2}{3}\sdot\frac{1}{6}\right)+\left(\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)+\left(\frac{3}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)+\left(\frac{1}{4}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)}}</math>
 
{|
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|אכן לפי שהוא פחות ממנו נשימם תחתיו מיד ויצא לנו מזה שהשברים הנשארים עלו ששית א' שלמה וב' שלישיות ששית וחמישית שלישית שישית וג' רביעיות חמישית שלישית שישית ורביעית רביעית חמישית שלישית שישית
+
|style="text-align:right;"|בעבור ה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ועל דרך היופי ר"ל לשים המורים בסדר בהשגחה יצאו החלקים כפי הצורה השנית והכל עולה לסך אחד
+
|style="text-align:right;"|שאינו ראשון, שאינו ראשון לו
 
|-
 
|-
 
|
 
|
*If one of the denominators appears the same number of times in all numbers to be equalized, there is no need to multiply any of the numbers by this denominator<br>
+
|style="text-align:right;"|בעת ההיא, בפעם ההיא
:<math>\scriptstyle\frac{a}{b}\sdot\frac{1}{n}\quad\frac{c}{d}\sdot\frac{1}{n}</math>
 
|style="text-align:right;"|וכדי להקל מעליך כאשר תעשה ההשואה אם תמצא לכל אחד מהמספרים שום מורה שוה לכלם פעמים שוות ר"ל ע'ד'מ' שהח' בכל אחת מהם פעם אחת או פעמי' שלש לא תכפול שום המספרים ההם במור[ר]ה ההוא כלל ובהשימך כל המורים לא תשימה כי אם כפעמים שישנו באחד מהמספרי&#x202B;'
 
 
|-
 
|-
 
|
 
|
*If one of the denominators appears different number of times in all numbers to be equalized, each number should be multiplied by this denominator as the number of times its maximal appearance in one of these numbers exceeds its appearance in the present number<br>
+
|style="text-align:right;"|הם מ
:<math>\scriptstyle\frac{a}{b}\sdot\frac{1}{n}=\frac{a}{b}\sdot\frac{1}{n}\sdot\frac{n}{n}\sdot\frac{n}{n}\quad\frac{c}{d}\sdot\frac{1}{n}\sdot\frac{1}{n}\sdot\frac{1}{n}</math>
 
|style="text-align:right;"|ואם הוא בכלם, אבל אינו בהם פעמים שוות, אבל בזה פעם אחת ובזה שנים, או שלשה ע'ד'מ', אשר ישנו שם פעמים, לא תכפלנו במורה זה [כלל וכל אחד משאר המספרים תכפלנו במורה זה] כ"כ פעמים, כפעמים שהוא יותר כמספר הרב הפעמים שבמספר הזה הנכפל בו עתה
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ובהשימך המורה לא תשימנו כי אם כפעמים אשר הוא באשר הוא יותר פעמים
+
|style="text-align:right;"|את, אותם
 
|-
 
|-
 +
!Prepositions
 
|
 
|
*If one of the denominators appears in a few of the numbers to be equalized but not in all of them, each number should be multiplied by this denominator as the number of times its maximal appearance in one of these numbers exceeds its appearance in the present number<br>
 
:<math>\scriptstyle\frac{a}{b}=\frac{a}{b}\sdot\frac{n}{n}\sdot\frac{n}{n}\quad\frac{c}{d}\sdot\frac{1}{n}\sdot\frac{1}{n}</math>
 
|style="text-align:right;"|ואם אינו בכלן כי אם בשנים, או בג' מהם, המספרי' אשר אינו בהם כלל תכפול כל אחד מהם במורה זה, כמספר הפעמים אשר הוא באשר הוא יותר פעמים והמספר אשר הוא בו יותר פעמים לא תכפלנו כלל והמספרים אשר ישנו בהם תכפול כל אחד בו כמספר הפעמים העודפים באשר הוא היותר פעמים מבזה הנכפל
 
 
|-
 
|-
|
+
|after
|style="text-align:right;"|ואם הוא בהם פעמים שוות, לא תכפול בו שום אחד מהמספרים אשר הוא בו ובהשימך המורים לא תשימנו כי אם כפעמים אשר הוא באשר הוא יותר רב פעמים
+
|style="text-align:right;"|אחר (ה), אחר ש, אחר אשר, אחרי, אחרי אשר, אחרי ש, שאחרי ה, אחר זה, אחריה (ה), אחריו (ה), אחריהם, אחריהן
 
|-
 
|-
|
+
|before
:<math>\scriptstyle{\color{blue}{\frac{78}{4}\sdot\frac{1}{8}\quad\frac{51}{7}\sdot\frac{1}{8}}}</math>
+
|style="text-align:right;"|לפני ה, לפניהם, לפניו (ה), שלפני ה, שלפניהם, קודם (ה / זה / ש)
|style="text-align:right;"|ויצא מזה כי במשל ההשואה שעשינו בתחלת שער זה לא היה לנו לכפול הע"ח רביעיות שמינית בח' כלל, גם לא השמיניות שביעית, להיותו בשניהם בשוה<br>
 
גם לא היה לנו לשום הח' כי אם פעם אחת, כאשר הוא באחד מהאחרים<br>
 
ובמורים לא היה לנו לשום הח' כי אם פעם אחת, כפעמים אשר ישנו באחד מהם וכל זה אינו מזיק אם לא יעשה, אבל כי תכבד העבודה
 
 
|-
 
|-
|}
+
|before
{|
+
|style="text-align:right;"|טרם
 
|-
 
|-
|
+
|by
 
+
|style="text-align:right;"|והוא ב, בש, וזה ב, וזה בש, וזה יהיה ב, בזה
== Chapter One: Addition ==
 
!style="text-align:right;"|<big>הפרק האחד <s>עשר</s> בחבור</big>
 
 
|-
 
|-
|Summing fractions with integers or fractions with fractions
+
|between
|style="text-align:right;"|בחיבור ובו מאמ' האמרה והאחדות
+
|style="text-align:right;"|בין ה, בין כל ה, מה שבין ה, בין ה...ובינו, בין... ל, בין ה... וה, בין ה... להנה, ביניהם
 
|-
 
|-
|
+
|among
|style="text-align:right;"|כאשר תרצה לחבר שברים עם שלמים ושברים, [או] עם שברים ממין אחר
+
|style="text-align:right;"|בהם
 
|-
 
|-
|The procedure: the numbers are converted to the lowest type of fraction, then their numerators are multiplied, and they are equalized; at the end the numerators are summed and the result is divided by the denominators
+
|with, plus
|style="text-align:right;"|בתחלה תפרוט כל אחד מהמספרים לבדו אשר יצטרך פריטה, גם תכה הצריך להכאה, ואחר שתפרוט וכל אחד מהם הצריך להם, או לאחד מהם, ר"ל לפריטה או להכאה, תשוה המספרים אחד אל אחד, עד שיהיו כלם ממין אחד והעולה בכל אחד מהם חבר הכל יחד, ר"ל מספר השברים וחלקנו על כל המורים אשר לכל אחד השברים
+
|style="text-align:right;"|עם, עם ה, עמו, עמהם
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle\left[2+\frac{3}{8}+\left(\frac{2}{4}\sdot\frac{1}{8}\right)\right]+\frac{4}{5}+\left[\frac{6}{7}+\left(\frac{3}{8}\sdot\frac{1}{7}\right)\right]</math>
+
|style="text-align:right;"|שעמו, אשר עמהם
|style="text-align:right;"|כי ע'ד'מ' אם במשלנו אשר עשינו בהשואה בתחלת השער הג' שאלו לך שתחברם ותאמ' כמה הם
 
 
|-
 
|-
|
+
|bellow
:<math>\scriptstyle{\color{blue}{\begin{align}&\scriptstyle\left[2+\frac{3}{8}+\left(\frac{2}{4}\sdot\frac{1}{8}\right)\right]+\frac{4}{5}+\left[\frac{6}{7}+\left(\frac{3}{8}\sdot\frac{1}{7}\right)\right]\\&\scriptstyle=\left(\frac{21840}{8}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{8}\right)+\left(\frac{7168}{8}\sdot\frac{1}{7}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{5}\right)+\left(\frac{8160}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\sdot\frac{1}{7}\right)\\&\scriptstyle=\frac{37168}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\sdot\frac{1}{7}\\\end{align}}}</math>
+
|style="text-align:right;"|למטה (מהם)
|style="text-align:right;"|היה לך לעשות כל אשר עשינו הפריטה לכל אחד וההשואה לכלם, עד שיגיעו לאשר הגיעו<br>
 
והוא שהשנים השלמים וג' שמיניות וב' רביעיות שמינית עלו ל21840 [שמיניות שביעית חמשית רביעית שמינית<br>
 
והד' חמשיות עלו ל8160] מכל המורים<br>
 
ואחר עשותך כל זה, היה לך לחבר יחד כל מספרי השברים, ר"ל ה21840 עם ה7168 ועם ה8160 ויעלו 37168 והם מהה' מורים הנזכרים, ר"ל ה8 וה4 והה' והז' והח', שהם כל מורי המספרים הראשונים
 
 
|-
 
|-
 
|
 
|
*The order of the denominators in the sum is unimportant
+
|style="text-align:right;"|לשמאל, לצד שמאל (מה), לצד שמאלי
|style="text-align:right;"|ותשימם על הסדר כאשר תרצה, או בהשגחה כאשר הזכרנו בפרק הרביעי, כדי שיצאו החלקים יותר נאותים ושם תמצאנו מבואר באר הטב
 
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{\begin{align}&\scriptstyle\left[2+\frac{3}{8}+\left(\frac{2}{4}\sdot\frac{1}{8}\right)\right]+\frac{4}{5}+\left[\frac{6}{7}+\left(\frac{3}{8}\sdot\frac{1}{7}\right)\right]\\&\scriptstyle=\frac{37168}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\sdot\frac{1}{7}\\&\scriptstyle=\frac{4646}{7}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\\&\scriptstyle=\left(\frac{663}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\right)+\left(\frac{5}{7}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\right)\\&\scriptstyle={\color{red}{\left(\frac{165}{5}\sdot\frac{1}{8}\right)+\left(\frac{3}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\right)+\left(\frac{5}{7}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\right)}}\\&\scriptstyle=\frac{33}{8}+\left(\frac{3}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\right)+\left(\frac{5}{7}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\right)\\&\scriptstyle=4+\frac{1}{8}+\left(\frac{3}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\right)+\left(\frac{5}{7}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\right)\\\end{align}}}</math>
+
|style="text-align:right;"|הימין
|style="text-align:right;"|ולהיות לזה החשבון 37168 המתחלק שמינית, שהוא אחד מהמורים, נשימנו אחרון, ר"ל הראשון<br>
 
ונחלק חשבונננו זה עליו, ר"ל 7 ויצא בחילוק 663 [נ' 3] וישארו ה' ונשימם תחתיו<br>
 
ונחלקם על הד' ויצא בחילוק ל"ג ולא ישאר דבר<br>
 
ונחלקם אלו הל"ג היוצאים בחילוק על הח' שהוא המורה הנשאר ויצא בחלוק ד' ד' והם שלמים לפי שכבר כלו כל המורים ונשימם מחוץ וישאר א' והוא שמינית שלימה ונשימה תחת כזה&#x202B;:
 
 
|-
 
|-
 
|
 
|
|
+
|style="text-align:right;"|לימין, לצד ימין (מה)
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
|-
 
| 4 || 7 || 4 || 5 || 8
 
|-
 
| &nbsp;|| 5 || 3 || &nbsp;|| 1
 
|}
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|הנה עלה בידינו שכאשר חברנו השנים שלמים וג' שמיניות וב' רביעיות שמינית עם ד' חמישיות ועם ו שביעיות וג' שמיניות שביעית, שעלה הכל ד' שלמים ושמינית אחת וג' רביעיות חמישית שמינית וה' שביעיות רביעית חמישית שמינית והקש על זה
+
|style="text-align:right;"|לצד ימין מהמקום
 
|-
 
|-
|
+
|above
|style="text-align:right;"|והה' והוא הטעם אם אמרו לך מספרים רבים והיו בהם שצריכין ג"כ הכאה קודם השיווי, שתעשה להם ג"כ ההכאה קודם השיווי ואחר כך ההשוואה וא'ח'כ' החבור כנזכר
+
|style="text-align:right;"|למעלה
 
|-
 
|-
|
+
|above, on
*If its is asked how many of a certain type of fractions is the sum<br>
+
|style="text-align:right;"|מעל ה, על (ה / הכל), עליהם, עליהן, עליו, על ראש, על ראשו, על ראשם
:*If the certain type of fractions is one of the given denominators of the sum - then this denominator is placed first among the denominators of the sum
 
|style="text-align:right;"|ואולם אם לא שאלו לך בסתם כמה הם
 
 
|-
 
|-
|
+
|beneath
::Example: how many fifths is the above sum?
+
|style="text-align:right;"|תחת ה, תחתיהם, תחתיהן, תחתיו
|style="text-align:right;"|אבל אמרו לך ע'ד'מ' כמה חמישיות הם, אחר שזה הה' הוא במורים, אינך צריך לעשות פועל חדש, כי אם שתשים הה' הראשון מהמורים כזה&#x202B;:
 
 
|-
 
|-
 
|
 
|
|
+
|style="text-align:right;"|זו תחת זו
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
 
|-
 
|-
| 4 || 7 || 4 || 8 || 5
+
|out of
 +
|style="text-align:right;"|ומתוך
 
|-
 
|-
| &nbsp;|| 5 || 3 || 25 || &nbsp;
+
|until
|}
+
|style="text-align:right;"|עד, עד ש, עד אשר
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{\begin{align}&\scriptstyle\left[2+\frac{3}{8}+\left(\frac{2}{4}\sdot\frac{1}{8}\right)\right]+\frac{4}{5}+\left[\frac{6}{7}+\left(\frac{3}{8}\sdot\frac{1}{7}\right)\right]\\&\scriptstyle=4+\frac{1}{8}+\left(\frac{3}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\right)+\left(\frac{5}{7}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\right)\\&\scriptstyle=4+\left(\frac{25}{8}\sdot\frac{1}{5}\sdot\frac{1}{5}\right)+\left(\frac{3}{4}\sdot\frac{1}{8}\sdot\frac{1}{5}\right)+\left(\frac{5}{7}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{5}\right)\\\end{align}}}</math>
+
|style="text-align:right;"|כנגד ה, כנגד אותה ה, כנגדה
|style="text-align:right;"|ויעלה בידך ד' שלמים כ"ה שמיניות חמישית חמישית וג' רביעיות שמינית חמישית וה' שביעיות רביעית שמינית חמישית והכל אחד ודי למבין
 
 
|-
 
|-
|
+
|in
:*If the certain type of fractions is not one of the given denominators of the sum
+
|style="text-align:right;"|אשר היה ב, בזה
|style="text-align:right;"|אכן אם אמרו לך להחזירם ממין אחר שאינו במורי&#x202B;'
 
 
|-
 
|-
|
+
|in
::Example: how many ninths is the above sum?
+
|style="text-align:right;"|בתוך ה
|style="text-align:right;"|המשל שאמרו לך כמה תשיעיות הן
 
 
|-
 
|-
|
+
|for
:Conversion: after fractionalizing, multiplying, and equalizing - multiplying the result by the denominator of the specific fraction required (9 in the above example) - then dividing by the denominators of the given fractions<br>
+
|style="text-align:right;"|בעד ה, בעדה, בעדו, בעדן
:<math>\scriptstyle{\color{blue}{\begin{align}&\scriptstyle\left[2+\frac{3}{8}+\left(\frac{2}{4}\sdot\frac{1}{8}\right)\right]+\frac{4}{5}+\left[\frac{6}{7}+\left(\frac{3}{8}\sdot\frac{1}{7}\right)\right]\\&\scriptstyle=\frac{37168}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\sdot\frac{1}{7}\\&\scriptstyle=\frac{37168\sdot9}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\\&\scriptstyle=\frac{334512}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\\&\scriptstyle=\frac{41814}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\\&\scriptstyle=\left(\frac{10453}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\right)+\left(\frac{2}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\right)\\&\scriptstyle={\color{red}{\left(\frac{2090}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\right)+\left(\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\right)+\left(\frac{2}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\right)}}\\&\scriptstyle=\left(\frac{298}{8}\sdot\frac{1}{9}\right)+\left(\frac{4}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\right)+\left(\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\right)+\left(\frac{2}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\right)\\&\scriptstyle=\frac{37}{9}+\left(\frac{2}{8}\sdot\frac{1}{9}\right)+\left(\frac{4}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\right)+\left(\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\right)+\left(\frac{2}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\right)\\&\scriptstyle=4+\frac{1}{9}+\left(\frac{2}{8}\sdot\frac{1}{9}\right)+\left(\frac{4}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\right)+\left(\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\right)+\left(\frac{2}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\right)\\\end{align}}}</math>
 
|style="text-align:right;"|זה יקרא '''מאמר ההמרה''' והוא שאחרי עשותך הפריטה וההכאה וההשואה, קודם שתחלקם למורים הנזכרים, תכפול כל חשבון השברים, ר"ל ה37168, בזה המורה אשר רצו להחליפם אליו, ר"ל הט', שהוא המורה התשיעית ויעלו 334512 ונשים הט' למורה ראשון וכל המורים האחרי' אחריו, אם כאשר יזדמן, אם בהשגחה<br>
 
ובחלקנו ראשונה לח' ויצא בחילוק 41814 ולא ישאר דבר<br>
 
ונחלק זה היוצא לד' ויצא בחילוק 10453 וישארו ב' ונשימם תחתיו<br>
 
ונחלקנו לז' ויצא בחילוק 298 וישארו ד' ונשימם תחתיו<br>
 
ונחלק זה היוצא על הח' ויצא בחילוק ל"ז וישארו ב' ונשימם תחתיו<br>
 
ונחלק זה היוצא על הט' ויצא בחילוק ד' והם שלמים וישאר א' ונשימהו תחתיו והנה המרנו החלקים, ר"ל השברים, לתשיעית וחלקי תשיעית
 
 
|-
 
|-
!The rule of conversion
+
|for
|style="text-align:right;"|כלל זה מאמר זה הוא שכאשר ישאלו לך על חלקי' ידועים שונים ובלתי שונים, שתמירם למין אחר, בין אם יאמרו לך לשבר, או לשבר שבר
+
|style="text-align:right;"|שהי' לה ל, יהיה לו ל, לו, הוא ל, הוא לו ל
 
|-
 
|-
|
+
|for
*Example: converting to <math>\scriptstyle\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}</math>
+
|style="text-align:right;"|בשביל (ה)
|style="text-align:right;"|כמו שיאמרו לך השיבם לחמישיות שביעית שמינית, או הדומה לזה
 
 
|-
 
|-
|Fractionalizing, multiplying, and equalizing the given fractions, then summing the resulted fractions and multiplying the sum by the denominator of the fraction into which the sum should be converted
+
|from
|style="text-align:right;"|יש לך לעשות תחלה פריטה והכאה והשואה לשברים, אם היו שונים, ושוב תחברם יחד ושוב תכפלם כלם ביחד על המורה, או המורים אשר רוצים שתמירם אליהם
+
|style="text-align:right;"|ממנה, ממנו
 
|-
 
|-
|
+
|except
:*Example: converting to <math>\scriptstyle\frac{1}{5}</math> &rarr; multiplying by 5
+
|style="text-align:right;"|מלבד
|style="text-align:right;"|ר"ל שאם אמרו לך שתמירם לחמישיות, תכפלם בה' לבד
 
 
|-
 
|-
|
+
|except
:*Example: converting to <math>\scriptstyle\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}</math> &rarr; multiplying by 8, 7, and 5
+
|style="text-align:right;"|בלתי ה, זולתי (ה), מזולת ה, זולתם
|style="text-align:right;"|ואם אמרו לך לחמישיות שביעית שמינית, תכפלם בח' והעולה בז' והעולה בה&#x202B;'
 
 
|-
 
|-
|The denominators of the fractions into which the sum should be converted are written first in the final result, then the denominators of the given summed fractions
+
|except
|style="text-align:right;"|ואחר עשותך כל זה, תשים מורה, או מורה ההמרה, ראשונה לצד ימין על הסדר שנשאל הח' תחלה ואחריו הז' ואחריו הה' ושוב תסדר אחריהם מורה שבידך, כפי המזדמן, או בהשגחה, ותחלק על כלם המספר אשר עלה לידיך מכפל מספר שבריך במורה ,או מורי ההמרה וכל זה ברור בטעם
+
|style="text-align:right;"|מבלעדיו
 
|-
 
|-
|
+
|or
|style="text-align:right;"|כי לעולם אם תכפול אשר בידך במורים מונחים, הנה יהיה למקובץ מורים אלו מוספים על מוריו הראשונים ולכן כאשר תרצה לעשות להם כלילת יופי, ר"ל להשיב שברים אלו הנפרטות לכללים וחלקים יפים, יש לך לסדר עם מוריו הראשונים אלו המורים אשר הוכפלו בהם והסדר לא יזיק ולפי ששאלו כמה חלקים הם מהמורים האלו, לכן נשימם ראשונה במלאכה
+
|style="text-align:right;"|או
|-
 
|'''ha-Aḥdut''' (unification) - converting the sum of fractions into one fraction (one denominator)
 
|style="text-align:right;"|אכן אם יאמרו לך להשיבם לחלק אחר הגדול שאיפשר, לכן נקראה '''האחדות''' והוא ענין נכבד, כי ממנו יצא לנו לחלק מעט על רב ולחדש מורים ב בעצמינו, מבלי הוצאת מורי המספר שרצינו לחלק עליו, או גם להוסיף על מוריו
 
|-
 
|
 
|style="text-align:right;"|לזה הקצתי לו מאמר לבדו ואכתבנו בזה הפרק, לפי שהוא כעין חבור
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|וקראתי לו שם שם האחדות, לפי שאנו רוצים לעשותם חלק אחד אם איפשר ואם הוא בלתי איפשר
+
|style="text-align:right;"|לבדו, כל אחד לבדו
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואם הוא בלתי איפשר, יש לנו להוסיף אחד במלאכה כאש' יתבאר
+
|style="text-align:right;"|יהיה עם הכל
 
|-
 
|-
|The term aḥdut has two meaning, as will be explained below
+
|it is all the same
|style="text-align:right;"|לב' כוונות אלו קראתי לו שם האחדות
+
|style="text-align:right;"|הכל אחד, הכל א'
 
|-
 
|-
 
|
 
|
===Summing fractions to one fraction===
+
|style="text-align:right;"|כולל, כולל אותם
!style="text-align:right;"|<big>מאמר האחדות</big>
 
 
|-
 
|-
|
+
|so much, so an so
|style="text-align:right;"|אם רצית להשיב שברים שוים שוים, או שונים, לחלק אחד אם איפשר, או לגדול שאיפשר
+
|style="text-align:right;"|כ"כ
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle\left(\frac{2}{5}\sdot\frac{2}{9}\sdot2\right)+\left[\left[\frac{1}{8}+\left(\frac{2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left[\frac{1}{4}+\left(\frac{2}{6}\sdot\frac{1}{4}\right)\right]\right]</math>
+
|style="text-align:right;"|ואליהם
|style="text-align:right;"|המשל שני חמישיות מב' תשיעיות מב' שלמים ועוד שמינית אחת ושני תשיעיות שביעית שמינית מרביעית ושתי ששיות רביעית, תשימם על הסדר כזה&#x202B;:
 
 
|-
 
|-
 
|
 
|
|
+
|style="text-align:right;"|על ידי
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
|-
 
| colspan=2 |&nbsp;|| 2
 
|-
 
| &nbsp;|| 9
 
|-
 
| 5 || 2
 
|-
 
| 2
 
|}
 
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
|-
 
| colspan=3 |&nbsp;|| 6 || 4
 
|-
 
| 9 || 7 || 8 || 2 || 1
 
|-
 
| 2 || &nbsp;|| 1
 
|}
 
|-
 
|The order of the operations: fractionalization, multiplication, equalization, and summing
 
|style="text-align:right;"|תעשה להם פריטה והכאה והשוואה וחיבור
 
|-
 
|
 
|style="text-align:right;"|וכדי להרגילך עוד במעשה אעשה אחת אחת&#x202B;:
 
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\begin{align}&\scriptstyle\left[\frac{1}{8}+\left(\frac{2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left[\frac{1}{4}+\left(\frac{2}{6}\sdot\frac{1}{4}\right)\right]\\&\scriptstyle=\left[\frac{\left(1\sdot7\sdot9\right)+2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right]\sdot\left[\frac{\left(1\sdot6\right)+2}{6}\sdot\frac{1}{4}\right]\\&\scriptstyle=\left(\frac{63+2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\sdot\left(\frac{6+2}{6}\sdot\frac{1}{4}\right)\\&\scriptstyle=\left(\frac{65}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\sdot\left(\frac{8}{6}\sdot\frac{1}{4}\right)\\\end{align}}}</math>
+
|style="text-align:right;"|להם
|style="text-align:right;"|נעשה פריטה לרביעית ושתי שישיות רביעית: נכפול א' בו', יהיו ו' ונחבר להם הפרט אשר נמצא תחתיו, ר"ל הב', יעלו ח' שישיות רביעית<br>
 
עוד נעשה פריטה לשביעית וב' תשיעיות שביעית שמינית: נכפול א' בז', נכפלם עוד בט', יהיו ס"ג ונחבר להם השנים ויעלו ס"ה תשיעיות שביעיות שמינית<br>
 
והרי הוא כאלו אמרו ס"ה תשיעיות שביעית שמינית מח' שישיות רביעית כזה&#x202B;:
 
 
|-
 
|-
 
|
 
|
|
+
|style="text-align:right;"|בכלל ובפרט
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
|-
 
| colspan=3 |&nbsp;|| 6 || 4
 
|-
 
| 9 || 7 || 8 || 8
 
|-
 
|65
 
|}
 
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\frac{2}{5}\sdot\frac{2}{9}\sdot2&\scriptstyle=\frac{2\sdot2\sdot2}{5}\sdot\frac{1}{9}\\&\scriptstyle=\frac{4\sdot2}{5}\sdot\frac{1}{9}\\&\scriptstyle=\frac{8}{5}\sdot\frac{1}{9}\\\end{align}}}</math>
+
|style="text-align:right;"|אלא ש
|style="text-align:right;"|עוד נעשה הכאה לשני מספרי' שבידינו<br>
 
ונתחיל במספ' הראשון: ונאמ ב' בב' הם ד', נכפלם עוד בשני השלמים, יהיו ח' חמישיות תשיעית שלימה כזה&#x202B;:
 
 
|-
 
|-
 
|
 
|
|
+
|style="text-align:right;"|בפעם הזאת
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
|-
 
| 5 || 9
 
|-
 
| 8 || &nbsp;
 
|}
 
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\begin{align}&\scriptstyle\left[\frac{1}{8}+\left(\frac{2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left[\frac{1}{4}+\left(\frac{2}{6}\sdot\frac{1}{4}\right)\right]\\&\scriptstyle=\left(\frac{65}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\sdot\left(\frac{8}{6}\sdot\frac{1}{4}\right)\\&\scriptstyle=\frac{65\sdot8}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}\\&\scriptstyle=\frac{520}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}\\\end{align}}}</math>
+
|style="text-align:right;"|מאשר
|style="text-align:right;"|עוד נכה במספר השני השמונה ששיות רביעית בס"ה ויעלו 520 תשיעיות שביעית שמינית שישית רביעית כזה&#x202B;:
 
 
|-
 
|-
 
|
 
|
|
+
|style="text-align:right;"|באשר
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
 
|-
 
|-
| 9 || 7 || 8 || 6 || 4
+
|corresponding
 +
|style="text-align:right;"|כנגד (ה), נגדו
 
|-
 
|-
| 520 || &nbsp;|| &nbsp;|| &nbsp;|| &nbsp;
+
|for
|}
+
|style="text-align:right;"|בעד ה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ונעשה ההשואה לאלו השני מספרים&#x202B;:
+
|style="text-align:right;"|לפעמים
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|ואחר היות בכל אחת מהם מורה הט' פעם אחת, לא נכפול בו שום אחד מהמספרים ולא נסדרהו כי אם פעם אחת, כאשר הזכרתי בסוף השער הג&#x202B;'
+
|style="text-align:right;"|ג"כ
 
|-
 
|-
 
|
 
|
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\frac{2}{5}\sdot\frac{2}{9}\sdot2&\scriptstyle=\frac{8}{5}\sdot\frac{1}{9}\\&\scriptstyle=\frac{8\sdot4\sdot6\sdot8\sdot7}{5}\sdot\frac{1}{9}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{8}\sdot\frac{1}{7}\\&\scriptstyle=\frac{32\sdot6\sdot8\sdot7}{5}\sdot\frac{1}{9}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{8}\sdot\frac{1}{7}\\&\scriptstyle=\frac{192\sdot8\sdot7}{5}\sdot\frac{1}{9}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{8}\sdot\frac{1}{7}\\&\scriptstyle=\frac{1536\sdot7}{5}\sdot\frac{1}{9}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{8}\sdot\frac{1}{7}\\&\scriptstyle=\frac{10752}{5}\sdot\frac{1}{9}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{8}\sdot\frac{1}{7}\\\end{align}}}</math>
+
|style="text-align:right;"|א"כ
|style="text-align:right;"|ונכפול הח' חמישיות תשיעיות בכל מורה המספר האחר, זולתי הט' כאשר התבאר ונאמר שמונה בד' יעלה ל"ב<br>
 
נכפלם בו', יעלו 192<br>
 
נכפלם בח', יעלו 1536<br>
 
נכפלם בז', יעלו 10752
 
 
|-
 
|-
|
+
|i.e.
::<math>\scriptstyle{\color{blue}{\begin{align}&\scriptstyle\left[\frac{1}{8}+\left(\frac{2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left[\frac{1}{4}+\left(\frac{2}{6}\sdot\frac{1}{4}\right)\right]\\&\scriptstyle=\frac{520}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}\\&\scriptstyle=\frac{520\sdot5}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}\sdot\frac{1}{5}\\&\scriptstyle=\frac{2600}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}\sdot\frac{1}{5}\\\end{align}}}</math>
+
|style="text-align:right;"|ר"ל, ר"ל ש, ר"ל כי, ר"ל אשר
|style="text-align:right;"|עוד נשוב לכפול ה520, שהם מספ' השברים האחרים, בה' שהוא מורה חבריהם ולא בט' כנזכר ויעלו 2600 נסדרם זה על זה כזה&#x202B;:
 
 
|-
 
|-
 
|
 
|
|
+
|style="text-align:right;"|ר"ל ע'ד'מ' ש
{| style="margin-left: auto; margin-right: 0px; text-align:center;"
 
| style="text-align: left;" | 10752
 
|-
 
| style="text-align: left;" | <u>&#8199;2600</u>
 
|-
 
| style="text-align: left;" | 13352
 
|}
 
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{\begin{align}&\scriptstyle\left(\frac{2}{5}\sdot\frac{2}{9}\sdot2\right)+\left[\left[\frac{1}{8}+\left(\frac{2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left[\frac{1}{4}+\left(\frac{2}{6}\sdot\frac{1}{4}\right)\right]\right]\\&\scriptstyle=\left(\frac{10752}{5}\sdot\frac{1}{9}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{8}\sdot\frac{1}{7}\right)+\left(\frac{2600}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)\\&\scriptstyle=\left(\frac{13352}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{9}\right)\\\end{align}}}</math>
+
|style="text-align:right;"|עד"מ, ע'ד'מ'
|style="text-align:right;"|ונחברם יחד יעלו 13352<br>
 
נסדר כל המורים, ר"ל כל מורי שני המספרי' בלתי הט', שלא נשימנו כי אם פעם אחת, ונשים מספרינו תחת המורה האחרון, לפי שהוא שברים נפרטות מכל אלו המורים<br>
 
והרי זה כאלו שאלו לנו 13352 שביעיות שמינית שישית רביעית חמישית תשיעית, איזה חלק הם, אם הם חלק אחד ממש, או החלק הגדול שאפשר
 
 
|-
 
|-
|Finding the common denominator - by multiplying all the denominators one by one
+
|etc.
|style="text-align:right;"|נעיין תחלה איזהו המספר שהוא בעל אלו המורים כלם לבדם, ר"ל שהוא מורכב מהם ונקרא למספר הזה אם המורים, כי היא ילדתם וממנה יצאו, וזה יודע בכפול כל המורים אחד באחד והעולה באחר וכן כלם עד כלותם&#x202B;:
+
|style="text-align:right;"|וכו'
 
|-
 
|-
|
+
|all the more so
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle9\sdot5\sdot4\sdot6\sdot8\sdot7&\scriptstyle=45\sdot4\sdot6\sdot8\sdot7\\&\scriptstyle=180\sdot6\sdot8\sdot7=1080\sdot8\sdot7=8640\sdot7=60480\\\end{align}}}</math>
+
|style="text-align:right;"|כ"ש
|style="text-align:right;"|ונאמ' ט' בה' יעלו מ"ה, נכפלם בד', יעלו [180, נכפלם בו', יעלו 1080, נכפלם בח', יעלו] 8640, נכפלם בז', יעלו 60480
 
|
 
 
|-
 
|-
|
+
|also
::<math>\scriptstyle{\color{blue}{\frac{68480}{13352}}}</math>
+
|style="text-align:right;"|ג"כ
|style="text-align:right;"|ולזאת קרינו אם המורים למספר השברים, ר"ל שנחלק ה68480 ל13352 ואם יתחלק כלו לשלימים, בלי תוספת ומגרעת, הנה היוצא בחילוק בצמצום הוא מורה החלק, אשר הם כל השברים הנשאלים יחד מהשלם, ר"ל רביעית אחד, או הדומ' לו
 
|-
 
|Dividing the common denominator by the summed numerator
 
|
 
|-
 
|
 
:No remainder:<br>
 
:<math>\scriptstyle\frac{a\sdot n}{a}=n\longrightarrow\frac{a}{a\sdot n}=\frac{1}{n}</math>
 
|style="text-align:right;"|ואם לא יתחלק כלו לשלמים בלי תוספת ומגרעת, הנה היוצא בחלוק בצמצום הוא מורה החלק, אשר הם כל השברים הנשאלים יחד מהשלם, ר"ל רביעית אחת, או הדומה לו
 
 
|-
 
|-
 +
!adjectives
 
|
 
|
:There is a remainder:<br>
 
:<math>\scriptstyle\frac{\left(a\sdot n\right)+r}{a}=n+\frac{r}{a}\longrightarrow\frac{a}{\left(a\sdot n\right)+r}=\frac{1}{n+1}+\frac{a-r}{\left(n+1\right)\sdot\left[\left(a\sdot n\right)+r\right]}</math>
 
|style="text-align:right;"|ואם לא יתחלק כלו לשלמים וישאר שום מספר
 
 
|-
 
|-
|
+
|many
:<math>\scriptstyle{\color{blue}{\scriptstyle\frac{68480}{13352}=4+\frac{7072}{13352}\longrightarrow}}</math><br>
+
|style="text-align:right;"|רבות, רבים
|style="text-align:right;"|כמשלינו זה, שיצא בחילוק ד' ונשאר 7072
 
 
|-
 
|-
|
+
|many
:<math>\scriptstyle{\color{blue}{\begin{align}&\scriptstyle\left(\frac{2}{5}\sdot\frac{2}{9}\sdot2\right)+\left[\left[\frac{1}{8}+\left(\frac{2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left[\frac{1}{4}+\left(\frac{2}{6}\sdot\frac{1}{4}\right)\right]\right]\\&\scriptstyle=\left(\frac{13352}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{9}\right)\\&\scriptstyle=\frac{13352}{68480}\\&\scriptstyle=\frac{1}{4+1}+\frac{13352-7072}{5\sdot68480}\\&\scriptstyle=\frac{1}{5}+\left(\frac{6280}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{5}\right)\\\end{align}}}</math>
+
|style="text-align:right;"|הרבה
|style="text-align:right;"|נוסיף א' על היוצא בחילוק ויהיה ה' והוא מורה החלק הגדול שאפשר, ר"ל חמשית אחת<br>
 
עוד נחסר ה7072 הנשארים מה13352 אשר חלקנו עליו וישאר 6280, שהוא חלקים מכל המורים מזה החלק, ר"ל מחמישית אחת<br>
 
ר"ל שיצא לנו שכל השברים הנשאלים הם חמישית אחת ו6280 שביעיות שמינית שישית רביעית חמישית תשיעית חמישית כזה&#x202B;:
 
 
|-
 
|-
|
+
|numerous
|
+
|style="text-align:right;"|רבים
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
 
|-
 
|-
| 5 || 9 || 5 || 4 || 6 || 8 || 7
+
|more than
 +
|style="text-align:right;"|רבים מ
 
|-
 
|-
| 1 || &nbsp;|| &nbsp;|| &nbsp;|| &nbsp;|| &nbsp;|| 0826
+
|few
|}
+
|style="text-align:right;"|כמה
 
|-
 
|-
|The order of the denominators of compound fractions of fractions is unimportant, but the denominator of the simple fraction should be placed separately, on the right
+
|few
|style="text-align:right;"|[ואם תרצה לעשות לשברים אלו כלילת יופי, ר"ל לחלקם על המורים, תסדרם] תסדרם כפי שהם עתה, או כפי המזדמן, או בהשגחה כנזכר למעלה ובלבד שתניח הה' ראשון לצד ימין עם הא' אשר תחתיו, כי זה אין בידיך לשנותו וכל האחרים נקשרים בו, ר"ל שהם כלם שברים ושברי שברים ממנו, ר"ל מחמשית מהשלם
+
|style="text-align:right;"|קצת
 
|-
 
|-
|
+
|few
:<math>\scriptstyle{\color{blue}{\begin{align}&\scriptstyle\left(\frac{2}{5}\sdot\frac{2}{9}\sdot2\right)+\left[\left[\frac{1}{8}+\left(\frac{2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left[\frac{1}{4}+\left(\frac{2}{6}\sdot\frac{1}{4}\right)\right]\right]\\&\scriptstyle=\frac{1}{5}+\left(\frac{6280}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{5}\right)\\&\scriptstyle=\frac{1}{5}+\left(\frac{6280}{8}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{9}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\&\scriptstyle=\frac{1}{5}+\left(\frac{785}{5}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{9}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\&\scriptstyle=\frac{1}{5}+\left(\frac{157}{4}\sdot\frac{1}{6}\sdot\frac{1}{9}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\&\scriptstyle=\frac{1}{5}+\left(\frac{39}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\&\scriptstyle=\frac{1}{5}+\left(\frac{6}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{3}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\&\scriptstyle=\frac{1}{5}+\left(\frac{2}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{3}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\\end{align}}}</math>
+
|style="text-align:right;"|מצומצמות
|style="text-align:right;"|ונחלקם תחלה לח' ויצא בחלוק 785 ולא ישאר דבר<br>
 
ונחלק זה היוצא לה' ויצא בחילוק 157 ולא ישאר דבר<br>
 
ונחלקם לד' ויצא בחילוק ל"ט וישאר א' ונשימנו תחתיו<br>
 
ונחלקם לו' ויצא בחילוק ו' וישארו ג&#x202B;'<br>
 
[ונ]תיך הט', ר"ל שנעשה ממנו ב' מורים, שהם ג' ג', כי כך הוא שלישית שלישית, כמו תשיעית ועוד אדבר בזה בכלל האחרון ב"ה י"ת<br>
 
ונחלק הו', אשר יצאו בחלוק באחרונה, על האחד מהם, ר"ל על הג' ויצא בחילוק ב' ולא ישאר דבר<br>
 
ואלו הב', אחר שהוא מספר קטן משאר המורים, אין לנו עוד לחלקם, רק להשימם תחת המורה הסמוך אשר נשים לפניהם ויהיו הג' השני כדי שלא ישכח ונשימם תחתיו<br>
 
ונסדר עוד הט [הו'] המורה הנשאר לפניהם ולפניו הה' ראשונה ונשים תחתיו הא', אשר היה תחתיו, שהוא המורה היותר חלק גדול הגדול שאיפשר אשר בקשנו<br>
 
הנה יצא לנו שהשברים הנשאלים יעלו חמשית א' שלמה וב' שלישיות שביעית חמישית וג' ששיות שלישית שלישית שביעית חמישית ורביעית שישית שלישית שלישית שביעית חמישית כזה
 
 
|-
 
|-
 
|
 
|
|
+
|style="text-align:right;"|האחד, האחת
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
|-
 
| 4 || 6 || 3 || 3 || 7 || 5
 
|-
 
| 1 || 3 || 0 || 2 || 0 || 1
 
|}
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|והקש על זה
+
|style="text-align:right;"|אחרון, אחרונה, אחרונים, אחרון ל
|-
 
|'''The reason that if there is no remainder the result is''' <br>
 
:<math>\scriptstyle\frac{a\sdot n}{a}=n\longrightarrow\frac{a}{a\sdot n}=\frac{1}{n}</math>
 
|style="text-align:right;"|וטעם אומרנו שאם לא ישאר דבר, שהיוצא בחילוק בעצמו הוא מורה החלק אשר השברים מהשלם
 
|-
 
|The portions of the denominators are the portions of their common denominator in one unit<br>
 
:<math>\scriptstyle\frac{a}{b}\sdot\frac{c}{d}=\frac{a\sdot c}{b\sdot d}</math>
 
|style="text-align:right;"|הוא לפי שאמרנו אלו החלקים מאלו המורים הוא כאלו אמרנו כ"כ מחלקי אם המורים בשלם
 
 
|-
 
|-
|
+
|other
*<math>\scriptstyle\frac{2}{3}\sdot\frac{1}{4}</math>
+
|style="text-align:right;"|חבירו, חבירתה, חבר, חברותיה, חבריהם, חברתה
|style="text-align:right;"|ר"ל כי ע'ד'מ' אם היו לנו ב' שלישיות רביעית
 
 
|-
 
|-
|
+
|other
:<math>\scriptstyle{\color{blue}{\frac{2}{3}\sdot\frac{1}{4}=\frac{2}{3\sdot4}=\frac{2}{12}}}</math>
+
|style="text-align:right;"|אחר, אחרת, אחרות, אחרים
|style="text-align:right;"|הוא כאומרנו שני חלקים מי"ב בשלם, שהיא אם אלו המורים, ר"ל שהוא מורכב מהם, שכפל ג' בד' עולה י"ב
 
 
|-
 
|-
|
+
|other
*<math>\scriptstyle\frac{3}{4}\sdot\frac{1}{2}\sdot\frac{1}{3}</math>
+
|style="text-align:right;"|זולתו, זולתם
|style="text-align:right;"|וכן אומרנו ג' רביעיות חצי שלישית
 
 
|-
 
|-
|
+
|better that
:<math>\scriptstyle{\color{blue}{\frac{3}{4}\sdot\frac{1}{2}\sdot\frac{1}{3}=\frac{3}{24}}}</math>
+
|style="text-align:right;"|וטוב ש
|style="text-align:right;"|היא כאומרנו ג' חלקים מכ"ד בשלם, שהוא אם שלש מורים אלו וזה ברור
 
 
|-
 
|-
|The fractions are fractions of  fractions of their common denominator in one unit
+
|more
|style="text-align:right;"|ועוד נחבר בפ' הרביעי מהחלק הא' הנה ידענו שאלו השברים הם חלקים מחלקי האם בשלם
+
|style="text-align:right;"|יותר
 
|-
 
|-
|
+
|greater, more than
*<math>\scriptstyle{\color{blue}{\frac{\frac{1}{3}\sdot a}{a}=\frac{1}{3}\sdot1}}</math>
+
|style="text-align:right;"|יותר (מ / מה / ממנו)
|style="text-align:right;"|ואם הם היה שלישיתם, הם שלישית השלם
 
 
|-
 
|-
|
+
|much greater
*<math>\scriptstyle{\color{blue}{\frac{\frac{1}{4}\sdot a}{a}=\frac{1}{4}\sdot1}}</math>
+
|style="text-align:right;"|הרבה מאד יותר מה
|style="text-align:right;"|ואם רביעיתם, רביעית
 
 
|-
 
|-
|
+
|great
*<math>\scriptstyle{\color{blue}{\frac{1\sdot a}{a}=1\sdot1}}</math>
+
|style="text-align:right;"|רב, הרבה
|style="text-align:right;"|ואם כמותם הם א' שלם
 
 
|-
 
|-
|
+
|greater
*<math>\scriptstyle{\color{blue}{\frac{\frac{1}{5}\sdot a}{a}=\frac{1}{5}\sdot1\longrightarrow\frac{a}{\frac{1}{5}\sdot a}=5}}</math>
+
|style="text-align:right;"|רב, רב מאד מה, רב (מה / ממנו), מספר רב, המספר הרב
|style="text-align:right;"|וע'ד'מ' אם מספר השברים היה חמישית האם, ר"ל חמישית השלם, בחלקנו האם עליהם היה היוצא בחלוק ה' ולא היה נשאר דבר
 
 
|-
 
|-
|
+
|great/greater
*<math>\scriptstyle{\color{blue}{\frac{\frac{1}{4}\sdot a}{a}=\frac{1}{4}\sdot1\longrightarrow\frac{a}{\frac{1}{4}\sdot a}=4}}</math>
+
|style="text-align:right;"|הגדול (ב), הגדולה, גדולה (מה), גדולים (מהם), הגדולים
|style="text-align:right;"|ואם היה רביעית, יצאו ד&#x202B;'
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|הרי לנו שהיוצא בחילוק הוא המורה החלק אשר השברים מהשלם וזה ברור בטעם, כאשר נתחלק הכל ולא נשאר דבר
+
|style="text-align:right;"|גדול (מ / מה / מהם / ממנו), גדול ה... מה
 
|-
 
|-
|'''The reason that if there is a remainder the result is'''<br>
+
|greatest
:<math>\scriptstyle\frac{\left(a\sdot n\right)+r}{a}=n+\frac{r}{a}\longrightarrow\frac{a}{\left(a\sdot n\right)+r}=\frac{1}{n+1}+\frac{a-r}{\left(n+1\right)\sdot\left[\left(a\sdot n\right)+r\right]}</math>
+
|style="text-align:right;"|גדול שאיפשר, הגדול שאפשר, הגדול שאיפשר, היותר גדול שאיפשר
|style="text-align:right;"|ולברר טעם אומרנו שכאשר נשאר שם דבר, שנוסיף א' על היוצאות וכו', אביא משל אח&#x202B;':
 
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle\frac{3}{4}\sdot\frac{1}{7}</math>
+
|style="text-align:right;"|היותר שאפשר, היותר שאיפשר, היותר שאפש' מ
|style="text-align:right;"|המשל היו בידינו ג' רביעיות שביעית
 
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{\frac{3}{4}\sdot\frac{1}{7}=\frac{3}{28}}}</math>
+
|style="text-align:right;"|יותר גדולים, יותר גדול מה
|style="text-align:right;"|ר"ל שלשה חלקים מכ"ח, שהוא אם המורים בשלם
 
 
|-
 
|-
|
+
|small
:<math>\scriptstyle{\color{blue}{\frac{28}{3}=9+\frac{1}{3}\longrightarrow\frac{3}{28}=\frac{1}{9+1}+{\color{red}{\frac{3-1}{\left(9+1\right)\sdot28}}}=\frac{1}{10}+{\color{red}{\frac{3-1}{10\sdot28}}}}}</math>
+
|style="text-align:right;"|מעט, מועט
|style="text-align:right;"|ואם נחלק אלו הכ"ח אל הג', יצאו ט' בחילוק וישאר א&#x202B;'<br>
 
נוסיף א' על הט' היוצא בחילוק, יעלה עשרה, המורה על העשירית
 
 
|-
 
|-
|
+
|little
:::<math>\scriptstyle{\color{blue}{\frac{30}{3}=10\longrightarrow\frac{3}{30}=\frac{1}{10}}}</math>
+
|style="text-align:right;"|הקטן
|style="text-align:right;"|ואם החלקים הראשונים היו ג' חלקים מל' באחד, היו עשירית אחד בצמצום, כי בחלקנו הל' בשלשה היו יוצאים ולא היה נשאר דבר ואז היו עשירית שלמה כמו שביארנו
 
 
|-
 
|-
|
+
|smaller
:::<math>\scriptstyle{\color{blue}{28\sdot30=840\longrightarrow\frac{1}{840}=\frac{1}{30}\sdot\frac{1}{28}=\frac{1}{28}\sdot\frac{1}{30}}}</math>
+
|style="text-align:right;"|קטן, קטון, קטנה, קטן (מ / מה / מהם / ממנו), קטנים, קטן במנין
|style="text-align:right;"|אכן להיותם ג' חלקים מכ"ח בשלם יותר מעשירית אחת ולדעת כמה הם יותר, נכפול הכ"ח בל' ויעלו 840 והנה אומרנו חלק אחד מ840 בשלם הוא כאומרנו חלק אחד מל' מכ"ח בשלם, או חלק אחד מכ"ח מל' בשלם, כי הם המורים אשר מהם הורכב וכל זה נתבאר הטב בפרק הד' מהחלק הא&#x202B;'
 
 
|-
 
|-
|
+
|smaller
:::<math>\scriptstyle{\color{blue}{\frac{30}{840}=\frac{1}{28}}}</math>
+
|style="text-align:right;"|מעט, המספר המעט
|style="text-align:right;"|וא"כ הל' חלקים מה840 בשלם הם חלק אחד מכ"ח בשלם
 
 
|-
 
|-
|
+
|smaller, less than
:::<math>\scriptstyle{\color{blue}{\frac{28}{840}=\frac{1}{30}}}</math>
+
|style="text-align:right;"|פחות (מ / מה / ממנו), הפחות מה
|style="text-align:right;"|וכן הכ"ח חלקים מ840 בשלם הם חלק אחד מל' בשלם
 
 
|-
 
|-
|
+
|inferior
:::<math>\scriptstyle{\color{blue}{\frac{1}{30}=\frac{28}{840}}}</math>
+
|style="text-align:right;"|שפל
|style="text-align:right;"|הרי לנו שהחלק אחד מל' בשלם הוא כ"ח חלקים מ840 בשלם
 
 
|-
 
|-
|
+
|upper
:::<math>\scriptstyle{\color{blue}{\frac{1}{28}=\frac{30}{840}}}</math>
+
|style="text-align:right;"|עליון, עליונה, עליונים
|style="text-align:right;"|וכן החלק מכ"ח בשלם הוא ל' חלקים מ840
 
|-
 
|
 
:::<math>\scriptstyle{\color{blue}{\frac{3}{28}=\frac{3\sdot30}{840}=\frac{90}{840}}}</math>
 
|style="text-align:right;"|נמצא שהג' חלקי' מכ"ח בשלם הוא ג' פעמים ל', שהם 90 חלקים מ840 בשלם
 
 
|-
 
|-
|
+
|bottom
:::<math>\scriptstyle{\color{blue}{\frac{3}{30}=\frac{3\sdot28}{840}=\frac{84}{840}}}</math>
+
|style="text-align:right;"|תחתון, תחתונה, תחתונים, תחתונות
|style="text-align:right;"|והג' חלקים מל' בשלם הם ג' פעמים הם כ"ח שהם פ"ד חלקים מ840
 
 
|-
 
|-
|
+
|last
:::<math>\scriptstyle{\color{blue}{\frac{3}{28}-\frac{3}{30}=\frac{90}{840}-\frac{84}{840}=\frac{6}{840}=\frac{6}{30\sdot28}}}</math>
+
|style="text-align:right;"|אחרון (שב), אחרונה, אחרונים, אחרונו'
|style="text-align:right;"|הנה יעדפו עליהם ו' חלקים מ840 בשלם, ר"ל ו' חלקים מל' מכ"ח בשלם, כי הם מוריו
 
 
|-
 
|-
|
+
|first
:::<math>\scriptstyle{\color{blue}{\frac{3}{840}=\frac{1}{10}\sdot\frac{30}{840}=\frac{1}{10}\sdot\frac{1}{28}=\frac{1}{28}\sdot\frac{1}{10}=\frac{1}{4}\sdot\frac{1}{7}\sdot\frac{1}{10}}}</math>
+
|style="text-align:right;"|קודם
|style="text-align:right;"|וכל ג' חלקים מאלו הם עשירית הל', שהם, ר"ל שהם הל', הם חלקי א' מכ"ח בשלם כמו שנתבאר, א"כ כל שלשה מהם הם עשירית [חלק מכ"ח בשלם, ר"ל חלק מכ"ח מעשירית בשלם, שהוא] הל' שהם ר"ל הל' הם חלקי א' מכ"ח בשלם כמו שנתבאר א"כ כל שלשה מהם הם עשירית הל' חלק מכ"ח בשלם ר"ל חלק מכ"ח מעשירית בשלם שהוא רביעית שביעית עשירית מהשלם
 
 
|-
 
|-
|
+
|first
:::<math>\scriptstyle{\color{blue}{\frac{3}{28}-\frac{3}{30}=\frac{6}{840}=\frac{2}{4}\sdot\frac{1}{7}\sdot\frac{1}{10}}}</math>
+
|style="text-align:right;"|ראש
|style="text-align:right;"|והששה הנוספות, אשר מצאנו לג' חלקים מכ"ח אשר היו בידינו, על הג' חלקים מל', אשר מצאנו לג' חלקים, היו עשירית שלמה, יעלו א"כ ב' רביעיות שביעית עשירית
 
 
|-
 
|-
|
+
|first, former
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\frac{28}{3}=9+\frac{1}{3}\longrightarrow\frac{3}{28}&\scriptstyle=\frac{1}{9+1}+\frac{3-1}{\left(9+1\right)\sdot28}\\&\scriptstyle=\frac{1}{10}+\frac{2}{10\sdot28}\\&\scriptstyle=\frac{1}{10}+\left(\frac{3}{28}-\frac{3}{30}\right)\\&\scriptstyle=\frac{1}{10}+\left(\frac{2}{4}\sdot\frac{1}{7}\sdot\frac{1}{10}\right)\\\end{align}}}</math>
+
|style="text-align:right;"|ראשון (מאלו / מה / מן / מן ה / שב), ראשונה (מה), המספר הראשון, החשבון הראשון, ראשונים, הראשונים
|style="text-align:right;"|הרי לנו שכאשר חלקנו הכ"ח, שהוא האם, על הג', שהיו מספר החלקים, ויצא ט' ונשאר א', שכאשר הוספנו אחד על הט' ועלה י' והורה עשירית, שנשאר לנו לתוספת ב' רביעיות שביעית עשירית, שהם התוספת אשר למספר אשר חלקנו עליו, שהיה ג' על השארית שהיה א', ר"ל שאלו הב' הם חלקים מהמורים, שהיו רביעית שמינית מהמורה שנתחדש, שהוא עשירית וכל זה ברור בטעם למבין והקש על זה
 
 
|-
 
|-
|'''Dividing a small number by a greater number''' - without [divisors] or with [divisors]
+
|second
|style="text-align:right;"|ויצא לנו מזה שהרוצה לחלק מעט על רב, שיוכל לחלקו בלי הוצאת המורים, או בהוצאת המורים ויצאו לנו ג"כ החלק היותר גדול שאיפשר בשם אחד
+
|style="text-align:right;"|שני (ב / ל / לו / מאלו / מה / מן / שב), ב' מאלו, שנית (מה)
 
|-
 
|-
|The method is very effective for division of a prime number (that has no [divisors]), such as 101
+
|third
|style="text-align:right;"|וזה יועיל מאד כאשר אנו רוצים לחלק למספר פשוט, כמו ק"א, או כדומה לו, שאין לו מורים
+
|style="text-align:right;"|שלישי, שלישית (ל), שלישיים ל
 
|-
 
|-
|
+
|fourth
:Two examples - with divisors and without divisors
+
|style="text-align:right;"|רביעי, רביעית
|style="text-align:right;"|וכדי לבאר הענין יפה יפה, אביא שני משלים: אחד עם הוצאת המורים ואחד מבלי הוצאת המורים
 
 
|-
 
|-
|
+
|fifth
:*Example with divisors: <math>\scriptstyle73\div240</math>
+
|style="text-align:right;"|חמישית
|style="text-align:right;"|המשל רצינו לחלק 73 על 240
 
 
|-
 
|-
|
+
|sixth
:::<math>\scriptstyle{\color{blue}{240=6\sdot8\sdot5}}</math>
+
|style="text-align:right;"|שישית
|style="text-align:right;"|והנה מוריו הם אלו ו' ח' ה', כי מהם מורים הוא מורכב והוא האם
 
 
|-
 
|-
|
+
|prior
:::<math>\scriptstyle{\color{blue}{\frac{240}{73}=3+\frac{21}{73}}}</math>
+
|style="text-align:right;"|מוקדם
|style="text-align:right;"|ונחלק האם, שהוא המספר הגדול אשר רצינו לחלק עליו, על המספר הקטן, ר"ל ה73, אשר הוא המספר אשר רצינו לחלק עליו על המספר הקטן, ר"ל ה73, אשר הוא המספר אשר רצינו לחלק ויצא בחילוק ג' וישארו כ"א
 
 
|-
 
|-
|
+
|latter
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle73\div240&\scriptstyle=\frac{1}{3+1}+\frac{73-21}{\left(3+1\right)\sdot240}\\&\scriptstyle=\frac{1}{4}+\frac{52}{240}\sdot\frac{1}{4}\\&\scriptstyle=\frac{1}{4}+\left(\frac{52}{5}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}\right)\\&\scriptstyle=\frac{1}{4}+\left(\frac{1}{5}\sdot\frac{1}{4}\right)+\left(\frac{4}{8}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}\right)\\\end{align}}}</math>
+
|style="text-align:right;"|מאוחר
|style="text-align:right;"|נוסיף א' על היוצא, יהיה ד' והוא המורה החלק גדול והוא רביעית אחת ונשימנו ראשונה ונשים תחתיו א', עוד נשים הכ"א הנותרים מהע"ג, שהוא החשבון אשר חלקנו עליו עתה, ישארו נ"ב והם מוסיפים על הרביעית, ר"ל שהעולה שיצא לנו בחלוק ה73 המספר הקטן על ה240, שהוא המספר הגדול, רביעית אחת ונ"ב חלקים מ240 מרביעית<br>
 
או אם תרצה, תקח מורה במקומו ותאמר רביעית אחת ונ"ב חמישיות שמינית שישית רביעית<br>
 
ואם תרצה תעשה להם כלילת יופי ויעלו רביעית אחת וחמישית רביעית וד' שמיניות שישית חמישית רביעית והקש על זה
 
 
|-
 
|-
|
+
|preceding
:*Example without divisors - illustrating that the procedure can be used repeatedly until reaching to a simple fraction (whose numerator is 1) -
+
|style="text-align:right;"|העובר, העוברים, אשר לפניו, הקודמת, הקודמים
|style="text-align:right;"|ועוד אעשה משל אחר מאשר אין לו מורים כלל
 
 
|-
 
|-
|
+
|preceding
|style="text-align:right;"|ושם אאריך, שאנו יכולים לעשות מעשינו זה פעם אחר פעם עד כלות המספר והגיעו לחלק אחד, כי גם לזה קראתיו '''אחדות''', כי יגיעם כלם לאחד ואפי' בין כל המורים למורה האחרון, נוכל להכניס מורה חדש ככל חפצנו
+
|style="text-align:right;"|אשר לפני (ה), אשר לפניו, אשר לפניה, אשר לפניהם, שלפני זאת, שלפניו, שלפניהם
 
|-
 
|-
 
|
 
|
:*Example without divisors: <math>\scriptstyle38\div101</math>
+
|style="text-align:right;"|אשר לפני פניו
|style="text-align:right;"|המשל לחלק ל"ח לק"א, כי זה המספר, ר"ל ק"א
 
 
|-
 
|-
 
|
 
|
:::<math>\scriptstyle{\color{blue}{\frac{101}{38}=2+\frac{25}{38}}}</math>
+
|style="text-align:right;"|לאשר לפניו ולפני פניו
|style="text-align:right;"|ונחלק הק"א לל"ח [ויצאו בחלוק ב' וישארו כ"ה
 
 
|-
 
|-
|
+
|preceding, previous
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle38\div101&\scriptstyle=\frac{1}{2+1}+\frac{38-25}{\left(2+1\right)\sdot101}\\&\scriptstyle=\frac{1}{3}+\left(\frac{13}{101}\sdot\frac{1}{3}\right)\\\end{align}}}</math>
+
|style="text-align:right;"|הקודם (לו / לזה), קודם, הקודמת, קודמת (ל), קודמים
|style="text-align:right;"|נוסיף א' על הב', יהיו ג' ונשימהו למורה ראשון ונשים תחתיו א' ונגרע השארית מהל"ח אשר] אשר חלקנו עליו עתה וישארו י"ג<br>
 
ואם לא היו כ"כ, הינו שמים למורה שני הק"א והינו שמים זה השארית, ר"ל אלו הי"ג, תחתיו והינו אומרים שהמחלק ל"ח על ק"א, שיגיע לכל אחד מהם שלישית אחת וי"ג חלקים מק"א משלישית שלמה
 
 
|-
 
|-
|
+
|previous
:::<math>\scriptstyle{\color{blue}{\frac{101}{13}=7+\frac{10}{13}}}</math>
+
|style="text-align:right;"|שעבר
|style="text-align:right;"|אכן להיותם הרבה וכדי שנמצא חלקים יותר נאותות, נשוב לחלק הק"א לאלו הי"ג ויצא בחילוק ז' וישאר י&#x202B;'
 
 
|-
 
|-
|
+
|next to
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle38\div101&\scriptstyle=\frac{1}{3}+\frac{13}{101}\sdot\frac{1}{3}\\&\scriptstyle=\frac{1}{3}+\frac{1}{3}\sdot\left[\frac{1}{7+1}+\frac{13-10}{\left(7+1\right)\sdot101}\right]\\&\scriptstyle=\frac{1}{3}+\frac{1}{3}\sdot\left[\frac{1}{8}+\frac{3}{8\sdot101}\right]\\&\scriptstyle=\frac{1}{3}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)+\left(\frac{3}{101}\sdot\frac{1}{3}\sdot\frac{1}{8}\right)\\\end{align}}}</math>
+
|style="text-align:right;"|סמוך, הסמוך ל, הסמוך להם, הסמוך לו
|style="text-align:right;"|ונשים זה הז' בתוספת אחד והוא ח' למורה שני ונשים תחתיו א' ונשים הי', שהם השארית מהי"ג אשר חלקנו עליהם עתה וישארו ג&#x202B;'<br>
 
ואם תרצה, כבר כלית כל מלאכתך ותשים הק"א למורה שלישי ותשים למורה שלישי ותשים אלו הג' תחתיו שהם השארית הנשארה
 
 
|-
 
|-
|
+
|following, succeeding
:::<math>\scriptstyle{\color{blue}{\frac{101}{3}=33+\frac{2}{3}}}</math>
+
|style="text-align:right;"|הנמשך, הנמשך אליו, הנמשכת ל, נמשך אחר הנמשך
|style="text-align:right;"|אכן אם תרצה עוד להכפל המעשיך, יען תגיע לאחדות גמורה, ר"ל שלא יהיו שם מנין שברים כי אם אחד אחד, תשוב תחלק הק"א על אלו הג' ויצא בחילוק ל"ג וישארו ב&#x202B;'
 
 
|-
 
|-
|
+
|following
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle38\div101&\scriptstyle=\frac{1}{3}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)+\left(\frac{3}{101}\sdot\frac{1}{3}\sdot\frac{1}{8}\right)\\&\scriptstyle=\frac{1}{3}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)+\left[\frac{1}{3}\sdot\frac{1}{8}\sdot\left[\frac{1}{33+1}+\frac{3-2}{\left(33+1\right)\sdot101}\right]\right]\\&\scriptstyle=\frac{1}{3}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)+\left[\frac{1}{3}\sdot\frac{1}{8}\sdot\left[\frac{1}{34}+\frac{1}{34\sdot101}\right]\right]\\&\scriptstyle=\frac{1}{3}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)+\left(\frac{1}{3}\sdot\frac{1}{8}\sdot\frac{1}{34}\right)+\left(\frac{1}{3}\sdot\frac{1}{8}\sdot\frac{1}{34}\sdot\frac{1}{101}\right)\\\end{align}}}</math>
+
|style="text-align:right;"|הבא אחריו, הבא אחריהם, הבא אחריהן, הבא אחר זה, הבאה, הבאה אחריה, הבאה אחריהן, הבאה אחר ה, הבאים, הבאים אחריה
|style="text-align:right;"|ונוסיף א' על הל"ג ויהיו ל"ד ונשימם למורה שלמי ונשים א' תחתיו ונחסר אלו שני הנשארים מהג' אשר חלקנו עליהם עתה וישאר א' וכבר הגענו לאחדות הגמור וכלינו מלאכתנו מכל וכל ונשים ק"א למורה [...] ונשים א' תחתיו
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|הרי לך שלש צורות שכלם אמיתיות ותוכל להשיב כאשר תרצה מהם וכן היה הרשות בידך לעשות זה פעם אחר פעם, [כאשר [..] מחלק אם המורים, כבמשל הא', ונשים כל המורים המתחדשים פעם אחר פעם זה] זה אחר זה כ"א תחת כל אחד
+
|style="text-align:right;"|שאחר ה
|-
 
|'''Aḥdut''' (unification)- reminder for placing 1 [as a numerator of the simple fractions] beneath each denominator
 
|style="text-align:right;"|כי לכל זה יועיל שם האחדות, שלא תשכח מלשים א' תחת כל מורה מתחדש ואחר תשים האם עצמה, או מוריה במקומה
 
 
|-
 
|-
 
|
 
|
:*If the unification is complete - [the final fraction is simple i.e. its numerator is 1] - placing 1 beneath the last denominator
+
|style="text-align:right;"|העולה
|style="text-align:right;"|ותחת האחרון א', אם הגעת לאחדות הגמורה
 
 
|-
 
|-
|
+
|itself
:*If the unification is incomplete - placing the remainder beneath the last denominator
+
|style="text-align:right;"|בעינו, בעינה
|style="text-align:right;"|ואם אין, תשים תחתיו הנשאר באחרונה, אחרי הסירך הנשאר מהמספר אשר אתה מחלק עליו בעת ההיא באחרונה [.]השארית האחרונה ההיא תשים תחת המורה האחרון אשר לאם
 
 
|-
 
|-
|
+
|very, itself
:The option to continue the procedure when the remainder is greater than 1, by dividing the denominator by the remainder
+
|style="text-align:right;"|ממש
|style="text-align:right;"|ואם יהיה רב ממנו, תעשה מהם כלילת יופי, רצוני לומר לחלק השארית הא' ההיא על המורה האחרון והיוצא שלפניו והנשאר תשים תחתיו וכן לעולם עד כלותו וכל זה מבואר ונכפל פעמים רבות
 
 
|-
 
|-
|
+
|other, another
|style="text-align:right;"|וגם בכל מספר אחר, אשר חלקת הכל למורים, אם תראה שאשר שמת תחת המורה האחרון הוא מספר רב ותרצה להמציא בין כל המורים הראשונים זה האחרון אשר לצד שמאל משום מורה מחודש, או מורים, חלק המורה האחרון על אשר תחתיו
+
|style="text-align:right;"|אחר, אחרת, אחרים
 
|-
 
|-
|
+
|others
|style="text-align:right;"|כאשר עשית במה שבין הצורה השנית והשלישית, שהרי הק"א היה המורה האחרון בצורה הראשונה ולפי שמצאת הי"ג, שהם מספר רב, תחתיו, המצאת המורה הח' ששמת שני והוא שלישי בידך, שבא בצורה השנית
+
|style="text-align:right;"|אחרים, האחרות
 
|-
 
|-
|
+
|short
|style="text-align:right;"|וכן עשית פעם אחת מהצורה השנית לשלישית והמצאת מורה אחר והוא הל"א ושמת הק"א רביעי
+
|style="text-align:right;"|קצר, קצרה
 
|-
 
|-
|
+
|correct
:The procedure continues considering the common denominator - the last denominator to the left
+
|style="text-align:right;"|נכון, נכונה
|style="text-align:right;"|ובלבד שלא תעשה זה כי אם למורה האחרון אשר לצד שמאל וכל זה מבורר בטעם הראשון למבין
 
 
|-
 
|-
|
+
|correct
:Considering other divisors - fractionalizing the common denominator
+
|style="text-align:right;"|אמת
|style="text-align:right;"|ואם תרצה להוציא המורים בין המורים האמצעיים, תצטרך להוציא המורים לכל המורה האחרון אשר לצד שמאל והאם ההיא תחלק למנין השברים, אשר היו תחת המספר המורים ההם, אחרי עשות להם פריטה, אם כבר נתחלק להם המספר וכל זה ברור בטעם
 
 
|-
 
|-
|
+
|various
|style="text-align:right;"|כי אחר שהוצאת האם למורים האם, הרי שבו כלם כמורה אחד ואתה מבקש בין הראשונים ובינו מורה, או מורים אחדים ואחר שהמצאת המורים אשר רצית, תשים האם הזאת אחריהם לצד שמאל, או המורים אשר הורכבה מהם, זה אחר זה במקומה, כי הכל אחד ודי למבין
+
|style="text-align:right;"|שונים
 
|-
 
|-
|'''Checking the unification''': fractionalization
+
|indifferent
|style="text-align:right;"|ואם תרצה לבחון מעשיך, עשה פריטה לכל אלו השברים אשר באו לך
+
|style="text-align:right;"|בלתי שונים
 
|-
 
|-
|
+
|different
:'''Division of a small number by a greater number''': if one of the denominators is the given large number by which the smaller number should be divided - dividing the numerator which is the result of the fractionalization by all the denominators except for the large number - the result of division should be the small number divided originally
+
|style="text-align:right;"|משונים, שונים
 
 
|style="text-align:right;"|ואם יש במוריך אלו המספר הגדול אשר רצית לחלק עליו, ר"ל הק"א במשל האחרון, חלק זה העולה מהשברים הנפרטים על כל שאר המורים מבלעדיו זה אחר זה, או על אמם ויצא לך באחרונה כמנין המספר הקטן אשר רצית לחלק ולא נשאר דבר בשום חלוקה מאלו, הנה מעשיך אמת ונכון, ואם לאו, דע שטעית
 
 
|-
 
|-
|
+
|corresponding
:'''A sum of fractions''': dividing the numerators by the unified denominators
+
|style="text-align:right;"|אשר כנגדו
|style="text-align:right;"|גם במשל הראשון, אם יש במוריך אלו הם המורים הראשונים, או המורים עצמם, חלק כל מספר השברים הנפרטות על שאר המורים שנתחדשו במלאכת האחדות, או על אמם ואם לא ישאר לעולם דבר ויצא באחרונה כמספר הקטן אש' רצית לחלק, או כשברים הנפרטים במשל ראש המאמר, הנה אמת הנה נכון ואם לאו דע שטעית
 
 
|-
 
|-
|If the large number or the common denominator does not appear as a denominator in the final result - multiplying the numerators of the result by this large number or the common denominator and dividing the product by the other denominators - the result of division should be the small number to be divided, or the original numerators
+
|corresponding
|style="text-align:right;"|ואם אין במלאכתך זאת, ר"ל במוריך, לא אם המורים ולא המורים עצמם, כפול כל המספר השברים הנפרטים בחשבון הגדול אשר רצית לחלק עליו, אם באם המורים מהחלקים הנשאלים, כבמשל הראשון אשר בראש זה המאמר, אם במספר הגדול אשר רצית לחלק עליו, כבמשל השני והעולה חלקנו לכל מוריך אלו, או לאמם ואם יצא כמספר השברים הנפרטים הנשאלים במשל הראשון, או כמספר הקטן אשר רצית לחלק במשל השני, מבלי שארית כלל, הנה אמת ואם לאו שקר
+
|style="text-align:right;"|בת גילה
 
|-
 
|-
|Checking the above three examples:
+
|worthy of
|style="text-align:right;"|וקודם התחילי בטעם בחינה זאת, כדי להרגילך במעשה, אעשה בחינה בכל אחד משלשת המשלים הנזכרים&#x202B;:
+
|style="text-align:right;"|ראוי ל
 
|-
 
|-
|
+
|appropriate
*<math>\scriptstyle\left(\frac{2}{5}\sdot\frac{2}{9}\sdot2\right)+\left[\left[\frac{1}{8}+\left(\frac{2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left[\frac{1}{4}+\left(\frac{2}{6}\sdot\frac{1}{4}\right)\right]\right]</math>
+
|style="text-align:right;"|הראוי ל, הראויה ל, הראוי לו, הראויה לו, הראויות להם
|style="text-align:right;"|הנה פריטת המשל הראשון
 
 
|-
 
|-
|
+
|appropriate
:<math>\scriptstyle{\color{blue}{\begin{align}&\scriptstyle\frac{1}{5}+\left(\frac{2}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{3}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\&\scriptstyle=\left(\frac{\left(3\sdot7\right)+2}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{3}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\&\scriptstyle=\left(\frac{21+2}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{3}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\&\scriptstyle=\left(\frac{\left(23\sdot3\sdot6\right)+3}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\&\scriptstyle=\left(\frac{\left(69\sdot6\right)+3}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\&\scriptstyle=\left(\frac{414+3}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\&\scriptstyle=\frac{\left(417\sdot4\right)+1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\\&\scriptstyle=\frac{1668+1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\\&\scriptstyle=\frac{1669\sdot5}{5}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\\&\scriptstyle=\frac{8345\sdot8}{8}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\\&\scriptstyle=\frac{66760}{8}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\\\end{align}}}</math>
+
|style="text-align:right;"|נאות, נאותים, נאותות
|style="text-align:right;"|היה 7 ב3 21, 23 ב3 69, 69 ב6 414 וה3 הם 417 וב4 1668, 1668 ו1 1669, 5 1669 8345, 8345 ב8 66760 והנה עלה בידינו שהפריטה היא 66760
 
 
|-
 
|-
|
+
|new, renewed
|style="text-align:right;"|ואם לא היו בידינו כל המורים הראשונים, היו כופלים זה בכל המורים הראשונים והעולה היינו מחלקים אל כל שמונת מורים אלו אחד אחד אחד, או לאמם והיא יוצא מספר פריטת השברים הנשאלים והיא 13352
+
|style="text-align:right;"|חדש, חדשים
 
|-
 
|-
|
+
|absolute
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle=\frac{66760}{8}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}&\scriptstyle=\frac{66760}{5}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\\&\scriptstyle=\frac{13352}{8}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\\\end{align}}}</math>
+
|style="text-align:right;"|גמור, גמורה
|style="text-align:right;"|אכן אחרי היות בידינו כל המורים הראשונים, ר"ל כל מורה השברים הנשאלים ואל יטעך שאין כאן הט', שהרי במקומו ג' ג', שהם מוריו<br>
 
ונחלוק זה אשר עלה לנו מפריטתינו זאת, ר"ל ה66760, למורים שנתחדשו במלאכתינו, ר"ל לה' הראשון לבדו, כי לא נתחדשו עוד ויצא בחילוק 13352, שהוא מספר פריטת השברים הנשאלים ולא נשאר דבר והנה אמת
 
 
|-
 
|-
|
+
|well versed in
*<math>\scriptstyle73\div240</math>
+
|style="text-align:right;"|בקי ב
|style="text-align:right;"|ובמשל השני
 
 
|-
 
|-
|
+
|entitled
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\frac{1}{4}+\left(\frac{1}{5}\sdot\frac{1}{4}\right)+\left(\frac{4}{8}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}\right)&\scriptstyle=\left(\frac{\left(1\sdot5\right)+1}{5}\sdot\frac{1}{4}\right)+\left(\frac{4}{8}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}\right)\\&\scriptstyle=\left(\frac{5+1}{5}\sdot\frac{1}{4}\right)+\left(\frac{4}{8}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}\right)\\&\scriptstyle=\frac{\left(6\sdot6\sdot8\right)+4}{8}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}\\&\scriptstyle=\frac{\left(36\sdot8\right)+4}{8}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}\\&\scriptstyle=\frac{288+4}{8}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}\\&\scriptstyle\frac{292}{4}\sdot\frac{1}{240}\\&\scriptstyle=\frac{73}{240}\\\end{align}}}</math>
+
|style="text-align:right;"|רשאי
|style="text-align:right;"|הוא הפריטה א' בה' ה', וא' ו&#x202B;'<br>
 
ו'בו' ל"ו, בח' 288<br>
 
ו4 292<br>
 
נחלקם לד', שהוא המורה המתחדש, יצא בחילוק מבלי שארית 73, שהוא המספר הקטן שרצינו לחלק והנה אמת
 
 
|-
 
|-
|
+
|easy
*<math>\scriptstyle38\div101</math>
+
|style="text-align:right;"|קלה
|style="text-align:right;"|ובמשל השלישי
 
 
|-
 
|-
|
+
|necessary
:<math>\scriptstyle{\color{blue}{\scriptstyle\frac{1}{3}+\left(\frac{13}{101}\sdot\frac{1}{3}\right)=\frac{114}{3}\sdot\frac{1}{101}=\frac{38}{101}}}</math>
+
|style="text-align:right;"|מחוייב
|style="text-align:right;"|בצורה הראשונה, הנה הפריטה עולה 114, נחלקם לג', שהוא המורה המתחדש, יצאו הל"ח, שהוא המספר הקטן אשר רצינו לחלק
 
 
|-
 
|-
|
+
|given
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\frac{1}{3}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)+\left(\frac{3}{101}\sdot\frac{1}{3}\sdot\frac{1}{8}\right)&\scriptstyle=\frac{912}{3}\sdot\frac{1}{8}\sdot\frac{1}{101}\\&\scriptstyle=\frac{304}{8}\sdot\frac{1}{101}\\&\scriptstyle=\frac{38}{101}\\\end{align}}}</math>
+
|style="text-align:right;"|מונחים
|style="text-align:right;"|ובצורה השנית הפריטה 912, נחלקם לג' ולח', שהם המורים החדשי', תחלה לג', יצא 304, נחלקם לח' ויצאו הל"ח
 
 
|-
 
|-
|
+
|important
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\frac{1}{3}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)+\left(\frac{1}{3}\sdot\frac{1}{8}\sdot\frac{1}{34}\right)+\left(\frac{1}{3}\sdot\frac{1}{8}\sdot\frac{1}{34}\sdot\frac{1}{101}\right)&\scriptstyle=\frac{31008}{3}\sdot\frac{1}{8}\sdot\frac{1}{34}\sdot\frac{1}{101}\\&\scriptstyle=\frac{10336}{8}\sdot\frac{1}{34}\sdot\frac{1}{101}\\&\scriptstyle=\frac{1292}{34}\sdot\frac{1}{101}\\&\scriptstyle=\frac{38}{101}\\\end{align}}}</math>
+
|style="text-align:right;"|נכבד
|style="text-align:right;"|ובצורה השלישית הפריטה 31008, נחלקם לג', יצא 10336, נחלקם לח', יצא 1292, נחלקם לל"ד, שהוא המורה הנשאר מהמורים החדשים, יצא הל"ח והנה אמת
 
 
|-
 
|-
|'''The reason for checking the unification by fractionalization''': fractionalizing means finding the numerator of the fraction that consists of all the denominators - the original denominators and the renewed denominators - therefore by dividing this numerator by the renewed denominators the original numerator will be received
+
|beautiful, proper
|style="text-align:right;"|וטעם בחינה זה הוא ברור, כי כשיש במורינו המורי' הראשונים, או האם או האם, או המספר הגדול אשר רצינו לחלק עליו, הנה הפריטה היא מספר שברים מכל המורים חדשים גם שנים וזה ברור כמו שנתבאר פעמים רבות
+
|style="text-align:right;"|יפים
 
|-
 
|-
|
+
|nice
|style="text-align:right;"|כי הפריטה הוא להשיבם פרוטות כי הפריטה הוא מספר שברים מכל המורים, שהוא המין האחרון והוא נקשר בכל המורים וכאשר נחלקם על המורים המתחדשים, הוא כעושה כלילת יופי, כי הסדר לא יזיק ואחר שנתחלק על כל החדשים ולא נשאר דבר, הנה יצאו מן הכלל והיוצא באחרונה הם שברים מהמורים הראשונים, או מאמם כבראשונה, או מהמספר הגדול
+
|style="text-align:right;"|יפים
 
|-
 
|-
|
+
|nice
|style="text-align:right;"|ר"ל שהל"ח שיצאו לנו, אחר שחלקנו הפריטה במורים החדשי' ויצאו הם מן הכלל, הם חלקים מק"א חלקים בשלם, כי לכל אחד מהל"ח יעלה לכל אחד חלק אחד מק"א בשלם ומהל"ח ל"ח
+
|style="text-align:right;"|הנאה
 
|-
 
|-
|'''The reason for multiplying the fractionalized numerator by the original denominators, if the original denominators do not appear in the final result after it was fractionalized''': multiplying by the original denominators means further fractionalizing the numerator to be a numerator of the original denominators as well
+
|thin
|style="text-align:right;"|וטעם אומרנו שאם אין המורים הראשונים, או אמם, או המספר הגדול במורינו, שנכפול הפריטה במורים הראשונים, או באמם, או במספר הגדול ונחלקנו בכל המורים, שיצא מבלי שארית כמספר פריטת השברים הנשאלים במשל הראשון, או כמספר הקטן במשל השני, הוא לפי שהפריטה היא שברים מכל אלו המורים וכאשר אנו כופלים אותה במורים הראשונים, או באמם, או במספר הגדול, הוא שאנו פורטים אותה עוד לשברי שברים מהראשונים
+
|style="text-align:right;"|רזה
 
|-
 
|-
|
+
|poor
*<math>\scriptstyle\frac{3}{4}\sdot\frac{1}{8}</math>
+
|style="text-align:right;"|דלה
|style="text-align:right;"|ר"ל כי אם יש בידינו ג' רביעיות שמינית ע'ד'מ&#x202B;'
 
 
|-
 
|-
|
+
|despicable
:<math>\scriptstyle{\color{blue}{\frac{3}{4}\sdot\frac{1}{8}=\frac{7\sdot3}{7}\sdot\frac{1}{4}\sdot\frac{1}{8}}}</math>
+
|style="text-align:right;"|בזויה
|style="text-align:right;"|אם נכפלם בז', היוצא שביעית רביעית שמינית וזה נתברר פעמים רבות
 
 
|-
 
|-
|Therefore, the product by the original denominators is a numerator of a fraction that consists of the renewed denominators as well as the original denominators and when divided by the renewed denominators, the result of division should be a numerator of a fraction that consists of the original denominators - the original numerator
+
|despicable
|style="text-align:right;"|והנה במעשינו היוצא אחר הכפל יהיו שברים מכל אלו המורים אשר לנו ומהראשונים, או מאמם, או מהמספר הגדול שהוספנו עליהם עתה וכאשר נחלקנו למורינו, ר"ל מבלתי הראשונים אשר הוספנו עתה, או מבלתי אמם, או מבלתי המספר הגדול אשר הוספנו עתה, כי להן לא נחלקם, ישאר היוצא שברים מהמורים הראשונים, או מאמם, או מהמספר הגדול
+
|style="text-align:right;"|נקלה
 
|-
 
|-
|
+
|included
|style="text-align:right;"|והנה אם היוצא היה כמספר פריטת השברים הנשאלים במשל הראשון, או כמספר הקטן בשני, הנה שב כבתחלה והנה כל מעשינו אמת ויציב
+
|style="text-align:right;"|נכלל
 
|-
 
|-
|
+
|whole
*Note: if the denominator or the large number [by which the small number is divided] is a prime number (such as 101) - it cannot be converted or be absent after the unification procedure, since it has no divisors and therefore cannot be divided by another number without a remainder
+
|style="text-align:right;"|כולו
|style="text-align:right;"|ודע כי המספר הפשוט, ר"ל אם היה המספר הגדול מספר פשוט, שאין לו מורים, כבמשל השלישי שהוא קי"א, כי לעולם לא יעדר ולא יומר וזה ברור, כי הוא לא יתחלק לשום מספר בשלימות מבלי שארית, אחר שהוא פשוט
 
 
|-
 
|-
|}
+
|whole
{|
+
|style="text-align:right;"|השלם, שלם, שלימה, שלמה, שלמות, שלמים
 
|-
 
|-
|
+
|the whole
 
+
|style="text-align:right;"|כל ה... בכללו, בכללו
== Chapter Two: Subtraction ==
 
!style="text-align:right;"|<big>הפרק השני בחסרון</big>
 
 
|-
 
|-
|
+
|possible
*<math>\scriptstyle\left[\left[\frac{8}{9}+\left(\frac{3}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\right)\right]\sdot\left(\frac{5}{6}\sdot3\right)\right]-\left[\left[\frac{3}{4}+\left(\frac{2}{5}\sdot\frac{1}{4}\right)\right]\sdot\frac{2}{9}\right]</math>
+
|style="text-align:right;"|איפשר
|style="text-align:right;"|המשל אם אמרו לך שלש רביעיות ושתי חמישיות רביעית משתי תשיעיות, חסרם משמונה תשיעיות ושלש שביעיות חמשית תשיעית מחמש ששיות מג' שלמים
 
 
|-
 
|-
|
+
|impossible
:The written subtrahend - the smaller number
+
|style="text-align:right;"|בלתי איפשר, נמנע
|style="text-align:right;"|תשים הצורה הראשונה והוא המעט, כזה&#x202B;:
 
 
|-
 
|-
 +
!adverb
 
|
 
|
|
 
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
|-
 
| colspan=2 |&nbsp;|| 9
 
 
|-
 
|-
| 5 || 4 || 2
+
|there is/are
 +
|style="text-align:right;"|יש, יש ב, יש... ב , יש ב... ה, יש בכל ה, יש שם
 
|-
 
|-
| 2 || 3
+
|from there
|}
+
|style="text-align:right;"|משם
 
|-
 
|-
|
+
|vice versa
:The written subtracted - the larger number
+
|style="text-align:right;"|בהפך, להפך ש
|style="text-align:right;"|והצורה השנית והוא הרב, תשים כזה&#x202B;:
 
 
|-
 
|-
|
+
|again
|
+
|style="text-align:right;"|שוב
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
 
|-
 
|-
| colspan=3 |&nbsp;|| 3
+
|little
 +
|style="text-align:right;"|במעט, המעט ה, מעט, במיעוט
 
|-
 
|-
| colspan=3 |&nbsp;|| 6
+
|there
 +
|style="text-align:right;"|שם (ה)
 
|-
 
|-
| 7 || 5 || 9 || 5
+
|here
 +
|style="text-align:right;"|כאן, בכאן
 
|-
 
|-
| 3 || &nbsp;|| 8
+
|now
|}
+
|style="text-align:right;"|עתה (ש)
 
|-
 
|-
|
+
|so far, until now
::<math>\scriptstyle{\color{blue}{\left[\frac{3}{4}+\left(\frac{2}{5}\sdot\frac{1}{4}\right)\right]\sdot\frac{2}{9}=\frac{34}{5}\sdot\frac{1}{4}\sdot\frac{1}{9}}}</math>
+
|style="text-align:right;"|עד הנה
|style="text-align:right;"|והנה המעט, אחרי אשר הוכה ונפרט, יעלה 34 חמישיות רביעית תשיעית כזה&#x202B;:
 
 
|-
 
|-
|
+
|at the beginning
|
+
|style="text-align:right;"|מתחלה
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
 
|-
 
|-
| 5 || 4 || 9
+
|in the middle
 +
|style="text-align:right;"|באמצע
 
|-
 
|-
| 34 || &nbsp;|| &nbsp;
+
|at first
|}
+
|style="text-align:right;"|ראשונה
 
|-
 
|-
|
+
|approximately
::<math>\scriptstyle{\color{blue}{\left[\frac{8}{9}+\left(\frac{3}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\right)\right]\sdot\left(\frac{5}{6}\sdot3\right)=\frac{4245}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{6}}}</math>
+
|style="text-align:right;"|בקרוב
|style="text-align:right;"|והרב יעלה, אחרי שנפרט והוכה שביעיות, 4245 שביעיות חמישית תשיעית ששית
 
 
|-
 
|-
|Equalizing the subtrahend and the subtracted after multiplying and fractionalizing each of them<br>
+
|already
:<math>\scriptstyle\frac{a}{b}=\frac{a\sdot d}{b}\sdot\frac{1}{d}\quad\frac{c}{d}=\frac{c\sdot b}{d}\sdot\frac{1}{b}</math>
+
|style="text-align:right;"|כבר
|style="text-align:right;"|ואחרי שהוכו ונפרטו, יש לנו להשוותם וזה בכפול מספר שברי כל אחת במורי חברתה ואז היו כל אחת מהם שברים
 
 
|-
 
|-
|
+
|also
|style="text-align:right;"|אכן להקל עלינו המעשה, אחרי היות בש[בריהם] הט' והה' פעמים שוות והוא פעם אחת, לא נכפול בהם שום אחת מהם, כמו שנתבאר בסוף השער הג' וגם לא נסדרם שום אחת מהם, כי אם פעם אחת
+
|style="text-align:right;"|גם
 
|-
 
|-
|
+
|downward
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left[\frac{3}{4}+\left(\frac{2}{5}\sdot\frac{1}{4}\right)\right]\sdot\frac{2}{9}&\scriptstyle=\frac{34}{5}\sdot\frac{1}{4}\sdot\frac{1}{9}\\&\scriptstyle=\frac{34\sdot6\sdot7}{7}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{9}\\&\scriptstyle=\frac{1428}{7}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{9}\\\end{align}}}</math>
+
|style="text-align:right;"|ולמטה
|style="text-align:right;"|והנה המעט, אחרי הכפלו בו' ובז' זה אחר זה, שהם מורי חברתה מזולת הט' והה', שלא נכפול בהם כנזכר, יעלה 1828 ואחר שהוכה בו' ובז', נתוספו לו מורים אלו על מוריו, לכן יהיו אלו ה1428 שביעיות שישית חמישית רביעית תשיעית
 
 
|-
 
|-
|
+
|upwards
|style="text-align:right;"|ובכאן נתבאר הטעם למה אנו מסדרים כל המורים ולמה אין אנו מסדרי' הט' והח' פעם אחרת ואם הם בחברתה והוא לפי שלא נכפלו בהם וזה ברור
+
|style="text-align:right;"|ולמעלה, למעלה ממנו
 
|-
 
|-
|
+
|et cetera
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left[\frac{8}{9}+\left(\frac{3}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\right)\right]\sdot\left(\frac{5}{6}\sdot3\right)&\scriptstyle=\frac{4245}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{6}\\&\scriptstyle=\frac{4245\sdot4}{4}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{6}\\&\scriptstyle=\frac{16980}{4}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{6}\\\end{align}}}</math>
+
|style="text-align:right;"|וכיוצא בזה
|style="text-align:right;"|והרב אחרי הכפלו בד', שהוא המורה הנשאר בחברתה שאינו בה, יעלה 16980 ואחר שהוכה על הד' ונוסף גם הוא על מוריו, יהיו רביעיות שביעית חמישית תשיעית ששית
 
 
|-
 
|-
|
+
|successively
|style="text-align:right;"|והנה שניהן שוות, כי הסדר לא יזיק
+
|style="text-align:right;"|זה אחר זה
 
|-
 
|-
|
+
|precisely
:<math>\scriptstyle{\color{blue}{\begin{align}&\scriptstyle\left[\left[\frac{8}{9}+\left(\frac{3}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\right)\right]\sdot\left(\frac{5}{6}\sdot3\right)\right]-\left[\left[\frac{3}{4}+\left(\frac{2}{5}\sdot\frac{1}{4}\right)\right]\sdot\frac{2}{9}\right]\\&\scriptstyle=\left(\frac{16980}{4}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{6}\right)\left(\frac{1428}{7}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{9}\right)\\&\scriptstyle=\frac{15552}{4}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{6}\\&\scriptstyle=2+\left(\frac{2}{7}\sdot\frac{1}{5}\right)\\\end{align}}}</math>
+
|style="text-align:right;"|עין בעין
|style="text-align:right;"|ונשים המספרים זה על זה ונחסרנו כמעשינו בשלמים ונשארו 15552 רביעיות שביעית חמשית תשיעית שישית<br>
 
ואם תרצה, תעשה להם כלילת יופי ויעלה זה השארית ב' שלמים וב' שביעיות חמישית והקש על זה
 
 
|-
 
|-
|'''The procedure''': fractionalizing and multiplying each of the subtracted and the subtrahend, if needed, equalizing them, then subtracting [the numerator of] one from the other as integers and arranging all the denominators that are included originally in each of them
+
|perfectly
|style="text-align:right;"|זה הכלל שנעשה לכל אחד מהמספרים, הרב והמעט, פריטה והכאה, או אשר יצטרך מהם ואחר כך נעשה להם השוואה ואחר כך נחסרם זה מזה כדרכנו בשלמים והנשאר נעשה לו כלילת יופי והוא כל השברים, ר"ל היו לאחת מהם עם אשר הוכתה בהם מאשר בחברתה
+
|style="text-align:right;"|על השלימות
 
|-
 
|-
|}
+
|properly
{|
+
|style="text-align:right;"|יפה יפה
 
|-
 
|-
|
+
|vaguely
 
+
|style="text-align:right;"|בסתם
== Chapter Three: Multiplication ==
 
!style="text-align:right;"|<big>הפרק השלישי בכפל</big>
 
 
|-
 
|-
|This operation is the same operation described above as the second principle of compound fractions
+
|truly, really
|style="text-align:right;"|הנה מעשה זה הפרק הוא מעש' השער השני הנקרא שער ההכאה
+
|style="text-align:right;"|באמת
 
|-
 
|-
|
+
|truly, really
*<math>\scriptstyle\frac{3}{4}\times\frac{4}{5}</math>
+
|style="text-align:right;"|ממש
|style="text-align:right;"|כי אמרנו כפול ג' רביעיות על ד' חמישיות ע'ד'מ&#x202B;'
 
 
|-
 
|-
|
+
|clearly
:<math>\scriptstyle{\color{blue}{\frac{3}{4}\times\frac{4}{5}=\frac{3}{4}\, of\, \frac{4}{5}}}</math>
+
|style="text-align:right;"|ברור, בברור
|style="text-align:right;"|הוא כאומרנו ג' רביעיות מד' חמישיות
 
 
|-
 
|-
|<math>\scriptstyle\frac{a}{b}\times\frac{c}{d}=\frac{a\sdot c}{d}\sdot\frac{1}{b}</math>
+
|closely, carefully
|style="text-align:right;"|ונכפול מספר השברים במספר השברים, לא במורים
+
|style="text-align:right;"|הטב
 
|-
 
|-
|
+
|inversely
:<math>\scriptstyle{\color{blue}{\frac{3}{4}\times\frac{4}{5}=\frac{3\sdot4}{5}\sdot\frac{1}{4}=\frac{12}{5}\sdot\frac{1}{4}}}</math>
+
|style="text-align:right;"|יהיה להפך
|style="text-align:right;"|&#x202B;[ר"ל הג' על הד', יעלו י"ב והם שברים ממורי שני המספרים, ר"ל]&#x202B; ר"ל שהן חמישיות רביעית
 
 
|-
 
|-
|No need for equalizing as the fractions are related to each other [i.e. fractions of each other]
+
|immediately
|style="text-align:right;"|ולזה אין מבוא בזה השער להשואה כלל, כי אינם שני מינים שברים, אבל הם שברים נקשרים זו בזו כמו שביארנו
+
|style="text-align:right;"|מיד
 
|-
 
|-
|
+
|correctly
|style="text-align:right;"|וכדי להרגילך במעשה אביא משל אחד&#x202B;:
+
|style="text-align:right;"|כתקנה, כתקנם, על היושר
 
|-
 
|-
|
+
|equally
*<math>\scriptstyle\left[\left[\frac{4}{7}\sdot\left(\frac{5}{9}\sdot\frac{1}{8}\right)\right]\right]\times\left[\left(\frac{3}{5}\sdot\frac{1}{9}\right)\sdot\left(\frac{2}{3}\sdot5\right)\right]</math>
+
|style="text-align:right;"|בשוה, שוה בשוה
|style="text-align:right;"|המשל רצינו לכפול ד' שביעיות מה' תשיעיות שמינית על ג' חמשיות תשיעית מב' שלישיות מה' שלמים
 
 
|-
 
|-
|
+
|briefly
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left[\left[\frac{4}{7}\sdot\left(\frac{5}{9}\sdot\frac{1}{8}\right)\right]\right]\times\left[\left(\frac{3}{5}\sdot\frac{1}{9}\right)\sdot\left(\frac{2}{3}\sdot5\right)\right]&\scriptstyle=\frac{4}{7}\sdot\left(\frac{5}{9}\sdot\frac{1}{8}\right)\sdot\left(\frac{3}{5}\sdot\frac{1}{9}\right)\sdot\left(\frac{2}{3}\sdot5\right)\\&\scriptstyle=\frac{600}{7}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{3}\\\end{align}}}</math>
+
|style="text-align:right;"|בקוצר
|style="text-align:right;"|אין לך לעשות דבר כי אם לקשרם יחד ולשים במקום על מ', ר"ל שתאמר הם ד' שביעיות מה' תשיעיות שמינית [מג'] חמישיות תשיעית מב' שלישיות מה' שלמים והרי לנו חזרו לשער ההכאה<br>
 
ואם תרצה לידע מה המה אלה, עשה להם הכאה, כי בזה המשל אין מבוא לפריטה והעולה נעשה לו כלילת יופי על כל המורים, כי כלם נקשרים זה בזה ויעלה אחר ההכאה 600 שביעיות תשיעית שמינית חמישית תשיעית שלישית
 
 
|-
 
|-
|
+
|surely
*The denominators are always written on top
+
|style="text-align:right;"|הלא, הלא הם, הן
|style="text-align:right;"|ודע שלעולם המורים עליונים ולא תמצא עליהם דבר ובזה תבחין בין המורים למספר השברים
 
 
|-
 
|-
|
+
|so on endlessly
:Metaphor - the denominators are on top and the numerators are beneath, as the student and his teacher
+
|style="text-align:right;"|כן לעולם, וכן לעולם, וכן יהיה לעולם
|style="text-align:right;"|ואם ''א[י]ן ראיה לדבר זכר לדבר''<ref>תוספתא, מועד, פסחים א, א</ref> את ''לרבות תלמידי'' ''חכמים''<ref>בבלי, קודשים, בכורות, דף ו, ב</ref> שהמורים ראויין להיות גבוהים על הכל והשברים למטה מהם, כתלמיד לפני רבו, או בית פתוח לרוחה תחת המורה ויבא מי שירצה
 
 
|-
 
|-
|
+
|only
*There is nothing above or beneath integers
+
|style="text-align:right;"|רק
|style="text-align:right;"|אבל השלמים, לעולם אין עליהם ולא תחתיהם דבר ולא בית פתוח, כי אינם מורי הוראה
 
 
|-
 
|-
|
+
|only
:<math>\scriptstyle{\color{blue}{\left[\left[\frac{4}{7}\sdot\left(\frac{5}{9}\sdot\frac{1}{8}\right)\right]\right]\times\left[\left(\frac{3}{5}\sdot\frac{1}{9}\right)\sdot\left(\frac{2}{3}\sdot5\right)\right]=\frac{600}{7}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{3}=\frac{5}{9}\sdot\frac{1}{7}\sdot\frac{1}{9}}}</math>
+
|style="text-align:right;"|לבד
|style="text-align:right;"|ואחרי עשותנו להם כלילת יופי, שהן חמש תשיעיות שביעית תשיעית
 
 
|-
 
|-
|'''The procedure''': no need for equalization, all that needs to be done is to relate the fractions to each other: multiplying, then fractionalizing if necessary, and dividing by the denominators
+
|only
|style="text-align:right;"|זה הכלל שאין לנו לעשות בזה ההשואה כלל, כי אין לנו לעשות כי אם לקשרם יחד והוא לשים מ' במקום על כמו שבארנו ואחר כן נעשה לה הכאה, גם פריטה, אם הוצרך אליה ואחר כל זה לעשות לה כלילת יופי והוא לחלקם על המורים, שהרי העליונים לעולם כמו שביארנו והיוצא הוא המבוקש
+
|style="text-align:right;"|כי אם
 
|-
 
|-
|
+
|alone
===Notes===
+
|style="text-align:right;"|לבד, לבדה, לבדם
|
 
 
|-
 
|-
|
+
|together
|style="text-align:right;"|<references />
+
|style="text-align:right;"|יחד, ביחד, כלם ביחד, כל ה... יחד
 
|-
 
|-
|
+
|very
|}
+
|style="text-align:right;"|מאד
{|
 
 
|-
 
|-
|
+
|even
 
+
|style="text-align:right;"|אפי'
== Chapter Four: Division ==
 
!style="text-align:right;"|<big>הפרק הרביעי בחלוק</big>
 
 
|-
 
|-
|
+
|even if
*<math>\scriptstyle\left[\frac{3}{4}+\left(\frac{2}{3}\sdot\frac{1}{4}\right)\right]\div\left[\left[\frac{4}{9}+\left(\frac{5}{6}\sdot\frac{1}{9}\right)\right]\sdot\frac{2}{3}\right]</math>
+
|style="text-align:right;"|ואם, אף אם
|style="text-align:right;"|רצינו לחלק שלש רביעיות וב' שלשיות רביעית על ד' תשיעיות וה' ששיות תשיעית מב' שלישיות
 
 
|-
 
|-
|
+
|instead
:The written dividend - the larger number
+
|style="text-align:right;"|תחת, תחתיו
|style="text-align:right;"|הנה צורת הרב היא כזה&#x202B;:
 
 
|-
 
|-
|
+
|instead
|
+
|style="text-align:right;"|במקום (ה), במקומה, במקומו, במקומם
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
 
|-
 
|-
| 3 || 4
+
|such as
 +
|style="text-align:right;"|כגון ש
 
|-
 
|-
| 2 || 3
+
|as
|}
+
|style="text-align:right;"|כמו (ה / ש / שה / שהוא ה / שהן); כמוה, כמוהו, כמוהם, כמונו, כמותם
 
|-
 
|-
 
|
 
|
:The written divisor - the smaller number
+
|style="text-align:right;"|כמות (שהם / שהן); כמותה, כמותו
|style="text-align:right;"|וצורת המעט כזה&#x202B;:
 
 
|-
 
|-
 
|
 
|
|
+
|style="text-align:right;"|אשר כמותו, שכמותו
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
 
|-
 
|-
| colspan=2 |&nbsp;|| 3
+
|as
 +
|style="text-align:right;"|כפי (ה / ש / שהם)
 
|-
 
|-
| 6 || 9 || 2
+
|as
 +
|style="text-align:right;"|כאשר
 
|-
 
|-
| 5 || 4
+
|as much as
|}
+
|style="text-align:right;"|כל מה ש (... יותר)
 
|-
 
|-
|
+
|so
:The dividend, the large number - requires fractionalization alone<br>
+
|style="text-align:right;"|כן, וכן
::<math>\scriptstyle{\color{blue}{\frac{3}{4}+\left(\frac{2}{3}\sdot\frac{1}{4}\right)=\frac{11}{3}\sdot\frac{1}{4}}}</math>
 
|style="text-align:right;"|והרב אינו צריך כי אם פריטה ויעלה אחר הפריטה י"א שלישיות רביעיות
 
 
|-
 
|-
|
+
|so
:The divisor, the small number - requires fractionalization and multiplication<br>
+
|style="text-align:right;"|כך הוא (ה)
::<math>\scriptstyle{\color{blue}{\left[\frac{4}{9}+\left(\frac{5}{6}\sdot\frac{1}{9}\right)\right]\sdot\frac{2}{3}=\frac{58}{6}\sdot\frac{1}{9}\sdot\frac{1}{3}}}</math>
 
|style="text-align:right;"|אכן המעט צריך פריטה והכאה ויעלה אחר הפריטה וההכאה נ"ח ששיות תשיעית שלישית
 
 
|-
 
|-
|After fractionalizing and multiplying the dividend and the divisor if needed, they should be equalized
+
|always
|style="text-align:right;"|ואחר שעשינו לכל אחד מהם אשר הוצרך מפריטה והכאה, נשוום יחד
+
|style="text-align:right;"|לעולם
 
|-
 
|-
|
+
|ever
::<math>\scriptstyle{\color{blue}{\frac{3}{4}+\left(\frac{2}{3}\sdot\frac{1}{4}\right)=\frac{11}{3}\sdot\frac{1}{4}=\frac{594}{6}\sdot\frac{1}{9}\sdot\frac{1}{3}\sdot\frac{1}{4}}}</math><br>
+
|style="text-align:right;"|בעולם, לעולם
::<math>\scriptstyle{\color{blue}{\left[\frac{4}{9}+\left(\frac{5}{6}\sdot\frac{1}{9}\right)\right]\sdot\frac{2}{3}=\frac{58}{6}\sdot\frac{1}{9}\sdot\frac{1}{3}=\frac{232}{6}\sdot\frac{1}{9}\sdot\frac{1}{3}\sdot\frac{1}{4}}}</math>
 
|style="text-align:right;"|ואחרי היות הג' בשתיהן פעם אחת לא נכפלם בו<br>
 
ויעלה הרב אחר ההשואה 594<br>
 
והמעט יעלה 232<br>
 
והם, ר"ל שני המספרים האלו, שברים מהד' מורים, שהם שישיות תשיעית שלישית רביעית
 
 
|-
 
|-
|
+
|henceforth
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left[\frac{3}{4}+\left(\frac{2}{3}\sdot\frac{1}{4}\right)\right]\div\left[\left[\frac{4}{9}+\left(\frac{5}{6}\sdot\frac{1}{9}\right)\right]\sdot\frac{2}{3}\right]&\scriptstyle=\left(\frac{594}{6}\sdot\frac{1}{9}\sdot\frac{1}{3}\sdot\frac{1}{4}\right)\div\left(\frac{232}{6}\sdot\frac{1}{9}\sdot\frac{1}{3}\sdot\frac{1}{4}\right)\\&\scriptstyle=\frac{594}{232}\\\end{align}}}</math>
+
|style="text-align:right;"|מכאן ואילך
|style="text-align:right;"|ואחרי היותם שוות, הרי הוא כאלו שאלו לנו שנחלק 594 שישיות תשיעיות שלישית רביעית<br>
 
והרי הוא כאלו אמרו לנו נחלק 594 שלמים על 232
 
 
|-
 
|-
|After converting them to fractions of the same type, their numerators can be divided as integers
+
|then
|style="text-align:right;"|כי אחר שהם ממין אחד מה לי אם הם שלמים, או שברים, או זוזים, או פרחים והרי מעשהו שוה לחלוקת השלמים שוה בשוה
+
|style="text-align:right;"|ואז, אז
 
|-
 
|-
|The denominators of the result are extracted from the numerator of the divisor, not from its denominator
+
|then, afterwards
|style="text-align:right;"|וכדי שיצאו לנו שברים ושלמים יחד, לא נביאנו על דרך האחדות, כי אם ע"ד הוצאת המורים והוא שנוציא מורי המספר אשר רצינו לחלק עליו והוא המספר המעט אשר במשלינו
+
|style="text-align:right;"|ואחר כך, וא'ח'כ', אח"כ
 
|-
 
|-
|
+
|afterwards
|style="text-align:right;"|ואל תטעה לחשוב כי מוריו אשר עליו הם המורים לחלקי הפריטה אחר ההשואה ושאלו הם המורים אשר לך לבקש ולחלק עליהם, כי זה אינו כלל ואין לך לחלק עליהם, כי אם בעשותך כלילת יופי
+
|style="text-align:right;"|אחר כן, אחרי כן, ואחר
 
|-
 
|-
|
+
|further
|style="text-align:right;"|אבל המורים אשר לך לבקש הוא לדעת ה232, שהוא מספר השברים אשר רצינו לחלק עליהם מספר השברים האחרים, אם הוא פשוט, או מורכב, או מאי זה מספרים הוא מורכב
+
|style="text-align:right;"|עוד
 
|-
 
|-
|
+
|furthermore
:Example: if the numerator of the divisor is multiplied by 4 [in the equalization procedure] - then 4 will be one of the denominators of the result
+
|style="text-align:right;"|ועוד (ש)
|style="text-align:right;"|ודע לך שאחר שכפלת והעולה בפריטתה בד' בעת ההשואה, בידוע שיש לה רביעית וכן כל המורים אשר היו בחברתה ולא בה
 
|-
 
|The denominators of the result are the divisors of the numerator of the divisor and all the numbers by which the numerator of the divisor should be multiplied in the equalization procedure
 
|style="text-align:right;"|לכן אם תרצה להקל מעליך המעשה, לא תכפלנו בהם ולא תצטרך לחלקה עתה להם, בעת הוצאת המורים, אבל תקחם למורים שתחלק עליהם ועל היוצא מפריטתה ותבקש מורי המספר היוצא מפריטתה ותבקש ותשימם עמהם
 
|-
 
|
 
|style="text-align:right;"|וכל זה אמרנו במספר אשר תרצה לחלק עליו אבל המספר אשר תרצה לחלק עליו, אבל המספר אשר תרצה לחלק צריך אתה לעולם לכפלו במורים אשר בחברתה ולא בה
 
 
|-
 
|-
|
+
|therefore
::<math>\scriptstyle{\color{blue}{232=4\sdot58=4\sdot2\sdot29}}</math>
+
|style="text-align:right;"|ולכך, לכן, על כן
|style="text-align:right;"|המשל לזה במשלינו כי אם רצינו לבקש מורים ל232<br>
 
ואחר שבעת ההשואה הוכפל היוצא מהפריטה וההכאה בד', שהיא מורה חברתה, ידענו שלזה העולה יש לו רביעית ונחלקנו על ד' ויצא בחילוק נ"ח<br>
 
ונבקש עוד מורים לנ"ח ונמצא לו חצי ונחלקנו עליו, ר"ל על ב' ויצא בחילוק כ"ט והוא מספר פשוט<br>
 
הנה מורי מספר השברים אשר רצינו לחלק עליהם הם הב' והד' והכ"ט
 
 
|-
 
|-
|
+
|therefore
|style="text-align:right;"|ובזה תראה ברור מה שאמרתי, שאם הינו רוצים להקל המעשה מעלינו, היינו לוקחים מתחלה מתחלה הד' למורה ראשון
+
|style="text-align:right;"|לזה, על זה
 
|-
 
|-
|No need to multiply the numerator of the divisor in the equalization procedure - the numbers by which it should have been multiplied should be considered as denominators of the result
+
|provided that, so long as
|style="text-align:right;"|וכן אם היה שם הרבה ולא היינו צריכים לכפול בהם המספר אשר רצינו לחלק עליו
+
|style="text-align:right;"|ובלבד ש
 
|-
 
|-
|
+
|until the end
|style="text-align:right;"|ר"ל הנ"ח, אבל נבקש מורים לנ"ח, או לשים אותה עצמה למורה ולשים עמהם הד' והכל אחד
+
|style="text-align:right;"|עד תומם
 
|-
 
|-
|The reason for this: multiplication and division are inverse operations
+
|once
|style="text-align:right;"|והטעם ברור כי הכפל והחלוקה הפכים הם
+
|style="text-align:right;"|פעם אחת
 
|-
 
|-
|
+
|twice
:Multiplying a given number by another number then dividing the product by the same number will produce the original given number <math>\scriptstyle\frac{a\sdot b}{b}=a</math><br>
+
|style="text-align:right;"|פעמי', פעמים, ב' פעמים
:<math>\scriptstyle{\color{blue}{\frac{58\sdot4}{4}=58}}</math>
 
|style="text-align:right;"|ואם נכפול מספר, ר"ל הנ"ח, על מספר מה, ר"ל הד' ונחלק העולה לזה המספר בעצמו, ר"ל לד', יצא לנו אשר היה לנו בתחלה, ר"ל הנ"ח והמעשה עולה אחד והמלאכת יותר קלה
 
 
|-
 
|-
|
+
|outside
|style="text-align:right;"|ובלבד שלא תטעה מלכפול המספר אשר רצית לחלק, ר"ל הי"א, במורי חברתה, כי זה מחוייב לעולם
+
|style="text-align:right;"|מחוץ ל
 
|-
 
|-
|<span style=color:red>[it is not clear why the divisors 4, 2, 29 were replaced here by 3, 2, 29]</span>
+
|altogether
:<math>\scriptstyle{\color{blue}{\frac{594}{3\sdot2\sdot29}=3+\left(\frac{24}{29}\sdot\frac{1}{2}\right)}}</math>
+
|style="text-align:right;"|מכל וכל
|style="text-align:right;"|ונשלים המשל ונחלק ה594 על הג' מורים שיצאו לנו זה אחר זה ונחלקם תחלה לג' ויצא בחילוק ג' והם שלמי' ולא ישאר דבר ונשימם מחוץ<br>
 
הנה היוצא הוא כי בחלקנו המספר הרב למעט הנזכרים במשל, שיצא בחילוק ג' שלמים וכ"ד חלקים מכ"ט חלקים מחצי שלם
 
 
|-
 
|-
|
+
|lastly
|style="text-align:right;"|ור"ל שהמספר המעט הוא ברב ג' פעמי&#x202B;'
+
|style="text-align:right;"|באחרונה
 
|-
 
|-
|
+
|first, at first, firstly
|style="text-align:right;"|וזה, ר"ל השלשה שלמים ואם יהיו שנים שלמים, ירצה לומר שהוא בו שתי פעמים ואם יותר יותר
+
|style="text-align:right;"|ראשונה ב, תחלה, בתחלה
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|והשברים, ר"ל שהם עוד בו חלקי פעם כנזכר ולא היה פעם שלמה כלל
+
|style="text-align:right;"|כבראשונה, כבתחלה
|-
 
|Dividing small fractions by greater fractions - using unification after fractionalization, multiplication, and equalization
 
|style="text-align:right;"|וכאשר השאלה כן ר"ל שהם עוד בו חלקי פעם כנזכר ולא היה פעם שלמה כלל וכאשר השאלה כן, ר"ל שנחלק שברים קטנים לשברים רבים וגדולים מהם, נוכל לעשות בדרך האחדות, אחרי עשותנו הפריטה וההכאה וההשוואה
 
|-
 
|'''The procedure''': fractionalization and multiplication of dividend and the divisor if needed, then equalizing them and dividing the numerator of the dividend by the numerator of the divisor, as integers. The integer in the result of division indicates the number of times the divisor appears in the dividend; the fraction in the result indicates the additional parts of one time the divisor appears in the dividend.
 
|style="text-align:right;"|זה הכלל שאחר עשותנו הפריטה וההכאה וההשואה לכל אחד מהם, או אשר תצטרך ואחר כך ההשוואה כנזכר, נחלק היוצא בזו ליוצא באחרת, ככל דרכם השלמים מכל וכל והשלמים היוצאים יהיו מספר הפעמים והשברים חלקי פעם והכל ברור
 
|-
 
|Note: '''the checks in the chapters dealing with fractions''' are the same as in the chapters dealing with integers – the inverse operations: addition ↔ subtraction; division ↔ multiplication, and so on
 
|style="text-align:right;"|'''ומופתי כל פרקי השברים העוברים והבאים''' הם כמופתי השלמים, ר"ל כל דבר להפכו: החבור והחסרון זה לזה והחלוק והכפל זה לזה, גם בערכים ובשרשים מופתיהם  כמופתי השלמים
 
|-
 
|}
 
{|
 
 
|-
 
|-
|
+
|how
 
+
|style="text-align:right;"|איך
== Chapter Five: Proportions ==
 
!style="text-align:right;"|<big>הפרק הה' בערכים</big>
 
 
|-
 
|-
|Finding the number whose ratio to some given fractions is the same ratio of these given fractions to other known fractions
+
|how many, how much
|style="text-align:right;"|הערכים הוא כאומרנו הערך שיש לשברים אלו אצל שברים ידועים, אצל מי יש לשברים אלו האחרים זה הערך, או למי יש זה הערך אצל אלו השברים האחרים
+
|style="text-align:right;"|כמה (הם / ... הם / ... הן)
 
|-
 
|-
|
+
|where
:If a given number of portions of gold are equal to a certain number of portions of silver, how many portions of silver worth another number of portions of gold
+
|style="text-align:right;"|מאיזה מקום, מהיכן
|style="text-align:right;"|או אם אלו השברים מזהב ע'ד'מ' שוים אלו של כסף אחרות, אלו של זהב כמה שוים [אלו] של כסף
 
 
|-
 
|-
|
+
|when
:If a given number of portions of gold are equal to a certain number of portions of silver, how many portions of gold worth another number of portions of silver
+
|style="text-align:right;"|בעת (ה)
|style="text-align:right;"|או אלו של כסף כמה שוים של זהב
 
 
|-
 
|-
|The same way as with integers
+
|when
|style="text-align:right;"|כל זהו כמו בשלימים
+
|style="text-align:right;"|כאשר, כש
 
|-
 
|-
|'''The procedure''': fractionalizing and multiplying each of the three given numbers separately; multiplying the first number of the first [pair] by the second number of the second [pair] without equalizing; then equalizing the product with the third given number; finally dividing the numerator of the product after equalization by the numerator of the third number after the equalization<br>
+
|why
<math>\scriptstyle\frac{a_1}{b_1}:\frac{a_2}{b_2}=X:\frac{a_3}{b_3}\longrightarrow X=\frac{\frac{a_1}{b_1}\sdot\frac{a_3}{b_3}}{\frac{a_2}{b_2}}=\frac{\left(a_1\sdot a_3\right)\sdot b_2}{a_2\sdot\left(b_1\sdot b_3\right)}</math>
+
|style="text-align:right;"|למה
|style="text-align:right;"|'''ומעשהו''' היה הדין נותן שנעשה פריטה והכאה לכל אחד מהג' מספרים לעצמו<br>
 
ולכפול, ר"ל להכות הראשון מאלו [בב' מאלו], מבלי השואה כלל ויהיה היוצא חלקים ממורי שני מספרים אלו<br>
 
ולהשוות זה העולה עתה, שאין חלקים ממוריו גם ממורה חברתה אשר הוכפלה בה, עם הנשאר, ר"ל לכפול זה העולה מהכפל הנזכר במוריה הנשאר, שהוא ראשון, או שני וכן כלם, זה פירושם גם לכפול השלישית במורי השנים, שהם מורי זה העולה מהכפל כנזכר<br>
 
ואחר שכל זה, לחלק זה העולה, אחר שהושווה, לשלישי, אחר שהושווה והיו השלמים היוצאים בחילוק שלמים ממש מהנעלם והשברים שבר שלם
 
 
|-
 
|-
|
+
|which
*<math>\scriptstyle\left[\frac{3}{4}\sdot\left(3-\frac{1}{4}\right)\right]:\left[\frac{4}{5}\sdot\left(5-\frac{1}{5}\right)\right]=\left[\frac{5}{6}\sdot\left(6-\frac{1}{6}\right)\right]:X</math>
+
|style="text-align:right;"|מאי זה, מאי זו, מאיזו
|style="text-align:right;"|המשל אם ג' רביעיות מג' שלמים פחות רביע שלם שוים ד' חמישיות מה' שלימים פחות חומש שלם, חמש שישיות מו' שלימים פחות שישית שלם כמה שוים
 
 
|-
 
|-
 +
!conjunction
 
|
 
|
|style="text-align:right;"|נעשה לכל אחד צורה בפנים עצמה כזה&#x202B;:
 
 
|-
 
|-
|
+
|in order to
|
+
|style="text-align:right;"|כדי ש, כדי ל
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
 
|-
 
|-
| &nbsp;|| 4
+
|but
 +
|style="text-align:right;"|אבל, אין זה... אבל
 
|-
 
|-
| 4 || 3 || 2
+
|but
 +
|style="text-align:right;"|אך
 
|-
 
|-
| 3
+
|but
|}
+
|style="text-align:right;"|ואולם
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
 
|-
 
|-
| &nbsp;|| 5
+
|since
 +
|style="text-align:right;"|וכיון ש
 
|-
 
|-
| 5 || 4 || 4
+
|since
 +
|style="text-align:right;"|אכן ש
 
|-
 
|-
| 4
+
|since
|}
+
|style="text-align:right;"|אחר היות (ב / ה / ... ב / שם), אחרי היות, אחרי היותם
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
 
|-
 
|-
| &nbsp;|| 6
+
|since
 +
|style="text-align:right;"|להיות (ה)
 
|-
 
|-
| 6 || 5 || 5
+
|since, because
 +
|style="text-align:right;"|אחרי, אחר ש, ואחרי ש, אחר אשר, מאחר ש, ומאחר שכן, כי אחר ש
 
|-
 
|-
| 5
+
|because
|}
+
|style="text-align:right;"|זה היה ל
 
|-
 
|-
|
+
|because
::<math>\scriptstyle{\color{blue}{\frac{3}{4}\sdot\left(3-\frac{1}{4}\right)=\frac{3}{4}\sdot\left(2+\frac{3}{4}\right)}}</math>
+
|style="text-align:right;"|יען
|style="text-align:right;"|וזה כי אומרו ג' רביעיות מג' שלימים פחות רביע שלם הוא כאומרו משני שלימי' וג' רביעיות שלם
 
 
|-
 
|-
|
+
|because
::<math>\scriptstyle{\color{blue}{\frac{4}{5}\sdot\left(5-\frac{1}{5}\right)=\frac{4}{5}\sdot\left(4+\frac{4}{5}\right)}}</math>
+
|style="text-align:right;"|כי, זה כי, וזה ש, והוא כי
|style="text-align:right;"|וכן מהה' פחות חומש הוא כמו מד' שלמים וד' חמישיות משלם
 
 
|-
 
|-
|
+
|since
::<math>\scriptstyle{\color{blue}{\frac{5}{6}\sdot\left(6-\frac{1}{6}\right)=\frac{5}{6}\sdot\left(5+\frac{5}{6}\right)}}</math>
+
|style="text-align:right;"|עם היות ש
|style="text-align:right;"|וכן מששה שלמים פחות שישית כאומרו מה' שלימים וה' שישיות שלם
 
 
|-
 
|-
|
+
|since
|style="text-align:right;"|ואחרי ששם הצורות כתקנם, נעשה לכל אחד פריטה והכאה&#x202B;:
+
|style="text-align:right;"|לפי ש
 
|-
 
|-
|
+
|since
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\frac{3}{4}\sdot\left(3-\frac{1}{4}\right)&\scriptstyle=\frac{3}{4}\sdot\left(2+\frac{3}{4}\right)\\&\scriptstyle=\frac{3}{4}\sdot\frac{\left(2\sdot4\right)+3}{4}\\&\scriptstyle=\frac{3}{4}\sdot\frac{8+3}{4}\\&\scriptstyle=\frac{3}{4}\sdot\frac{11}{4}\\&\scriptstyle=\frac{3\sdot11}{4}\sdot\frac{1}{4}\\&\scriptstyle=\frac{33}{4}\sdot\frac{1}{4}\\\end{align}}}</math>
+
|style="text-align:right;"|אחרי, אחר ש
|style="text-align:right;"|ובצורה הראשונה נפרוט הב' שלימים ונכפלם במורה הרביעיות והוא ד' ויהיו ח' רביעיות ונחבר להם הג' אשר תחתיו, שהם ג' רביעיות שלם, יעלו י"א רביעיות שלם והרי הוא כאלו אמרו ג' רביעיות מי"א רביעיות, לכן נכה הי"א בג', יעלו ל"ג, הלא הם ל"ג רביעיות רביעית
 
 
|-
 
|-
|
+
|as if
::<math>\scriptstyle{\color{blue}{\frac{4}{5}\sdot\left(5-\frac{1}{5}\right)=\frac{4}{5}\sdot\left(4+\frac{4}{5}\right)=\frac{96}{5}\sdot\frac{1}{5}}}</math>
+
|style="text-align:right;"|כאלו, הוא כאלו
|style="text-align:right;"|וכן נעש' לשנית ויעלו 96 חמישיות חמישית
 
 
|-
 
|-
|
+
|if
::<math>\scriptstyle{\color{blue}{\frac{5}{6}\sdot\left(6-\frac{1}{6}\right)=\frac{5}{6}\sdot\left(5+\frac{5}{6}\right)=\frac{175}{6}\sdot\frac{1}{6}}}</math>
+
|style="text-align:right;"|אם, ואם, שאם
|style="text-align:right;"|וכן לראשונה מהאחרות ויעלו 175 שישיות שישית
 
 
|-
 
|-
|
+
|whether… or
:<math>\scriptstyle{\color{blue}{\left[\frac{3}{4}\sdot\left(3-\frac{1}{4}\right)\right]:\left[\frac{4}{5}\sdot\left(5-\frac{1}{5}\right)\right]=\left[\frac{5}{6}\sdot\left(6-\frac{1}{6}\right)\right]:X\longleftrightarrow\left(\frac{33}{4}\sdot\frac{1}{4}\right):\left(\frac{96}{5}\sdot\frac{1}{5}\right)=\left(\frac{175}{6}\sdot\frac{1}{6}\right):X}}</math>
+
|style="text-align:right;"|בין אם... בין אם, בין אם... או
|style="text-align:right;"|והנה שבא הכל כאלו שאלו לנו אם 33 רביעיות רביעית שוות 96 חמישיות, 175 שישיות שישית כמה שוות<br>
 
או הערך אשר ל33 רביעיות רביעיות אצל 96 חמישיות חמישית, ל175 שישיות שישית אצל מי יש לו זה הערך
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|והרי לנו כל השברים נפרטים ומורים כל אחד לבדו
+
|style="text-align:right;"|אם... אז
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle X&\scriptstyle=\frac{\left(\frac{96}{5}\sdot\frac{1}{5}\right)\sdot\left(\frac{175}{6}\sdot\frac{1}{6}\right)}{\frac{33}{4}\sdot\frac{1}{4}}\\&\scriptstyle=\frac{\frac{16800}{5}\sdot\frac{1}{5}\sdot\frac{1}{6}\sdot\frac{1}{6}}{\frac{33}{4}\sdot\frac{1}{4}}\\&\scriptstyle=\frac{16800\sdot4\sdot4}{33\sdot5\sdot5\sdot6\sdot6}\\&\scriptstyle=\frac{67200\sdot4}{33\sdot5\sdot5\sdot6\sdot6}\\&\scriptstyle=\frac{268800}{33\sdot5\sdot5\sdot6\sdot6}\\\end{align}}}</math>
+
|style="text-align:right;"|או ... או
|style="text-align:right;"|ויש לנו לכפול הב' בראשון, ר"ל הו'ט' חמישיות חמישית 571 שישית שישיות מבלי השואה כלל, לפי שהוא כאומרנו 96 חמישיות חמשית מ175 שישיות שישית ונכם זה בזה, ר"ל מספר השברים בשברים, לא במורים, יעלו 16800 חמישיות חמישית ששית ששית<br>
 
ויש לנו לחלקם לראשון מהאחדים, שהוא ה33 רביעיות רביעית<br>
 
וכבר אמרנו בפ"ד מזה החלק, שאם נרצה, נשוה תחלה המתחלק ואשר נחלק עליו, ר"ל שנכפול ה16800, אשר אנו רוצים לחלק, במורה ה33 רביעיות רביעית, ר"ל בד' ויעלה 67200 ונכפלם בד' המורה האחר ויעלה 268800 '''רביעיות רביעית''' חמישית שישית שישית<br>
 
ונכפול ג"כ ה33 רביעיות רביעית והוא המספר אשר רצינו לחלק עליו, במורי המספר המתחלק והם הו' והה&#x202B;'<br>
 
ואחר שנכפלם בזה זה, אחר זה נבקש מורה כל העולה ונחלק עליהם המספר המתחלק, ר"ל ה268800<br>
 
ואם בקשנו לז' [לו] אלו המורים אשר נכפול בהם, ר"ל הו' והה' ונחלק אליהם אחד אחד
 
|-
 
|No need to multiply the denominators of the product of the two first numbers by the numerator of the third number, but to consider each of them as denominator of the final result [i.e. in the above notation - no need to calculate the product <math>\scriptstyle a_2\sdot b_1\sdot b_3</math>]
 
|style="text-align:right;"|יצא בחילוק האחרון ל"ג, שהוא המספר אשר כפלנו בהם אחד אחד ומאחר שכן, למה ניגע לבהלה לכפול בהם ולחלק העולה עליהם לבטלה
 
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle X&\scriptstyle=\frac{268800}{33\sdot5\sdot5\sdot6\sdot6}\\&\scriptstyle=\frac{268800}{3\sdot11\sdot5\sdot5\sdot6\sdot6}\\&\scriptstyle=\frac{268800}{3}\sdot\frac{1}{5}\sdot\frac{1}{5}\sdot\frac{1}{6}\sdot\frac{1}{6}\sdot\frac{1}{11}\\&\scriptstyle=9+\left(\frac{1}{3}\sdot\frac{1}{11}\right)+\left(\frac{4}{6}\sdot\frac{1}{3}\sdot\frac{1}{11}\right)\\\end{align}}}</math>
+
|style="text-align:right;"|אם... או
|style="text-align:right;"|לכן לא נכפול המספר אשר רצינו לחלק עליו, ר"ל ה33, במורי המספר המתחלק, אבל נקח המורים ההם למורים ראשונים ונשים עמהם ה33 עצמו<br>
 
או נרצה נבקש לו מורים ויהיו י"א ג' ונשימם במקומו עם המורים הנזכרים, ר"ל מורי המספר אשר רצינו לחלק ויהיו כלם 6 6 5 5 11 3<br>
 
ונחלק עליהם המספר המתחלק והוא 268800 וזה לעשות להם כלילת יופי, כי אם רצינו יכולנו לו' שהנעלם מהארבעה הנערכים הוא 268800 שלישיות חמישית ששית מאחד עשר בשלם<br>
 
אכן לדעת מה המה אלה, נעשה להם כלילת יופי והוא שנחלקם למורים אלו ויעלה ט' שלימים ושלשית חלק אחד מי"א בשלם וד' שישיות שלישית חלק אחד מי"א בשלם
 
 
|-
 
|-
 
|
 
|
|
+
|style="text-align:right;"|אם ... אם, אם... ואם
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
|-
 
| 6 || 5 || 5 || 6 || 3 || 11 || rowspan=2 |9
 
 
|-
 
|-
| &nbsp;|| &nbsp;|| &nbsp;|| 4 || 1 || &nbsp;
+
|even though
|}
+
|style="text-align:right;"|ואם
 
|-
 
|-
|'''Check''': multiplying the result, which is the second [of the second pair], by the first of the first [pair], then dividing the product by one of the two remaining numbers - the result should be the last remaining number<br>
+
|lest
<math>\scriptstyle a_1:a_2=a_3:X\longrightarrow\begin{cases}\scriptstyle a_2=\frac{X\sdot a_1}{a_3}\\\scriptstyle a_3=\frac{X\sdot a_1}{a_2}\end{cases}</math>
+
|style="text-align:right;"|פן
|style="text-align:right;"|'''ואם תרצה לבחון מעשיך''', כפול זה השני, שהיה נעלם, בל"ג רביעיות רביעית, שהוא הראשון מהאחדים וחלק העולה על אחד מהנשארים ויצא האחר בעינו ואם לא, דע שטעית
 
 
|-
 
|-
 +
!Scripture and Other Sources
 
|
 
|
:<math>\scriptstyle{\color{blue}{\left[9+\left(\frac{1}{3}\sdot\frac{1}{11}\right)+\left(\frac{4}{6}\sdot\frac{1}{3}\sdot\frac{1}{11}\right)\right]\sdot\left(\frac{33}{4}\sdot\frac{1}{4}\right)}}</math>
 
|style="text-align:right;"|והנה כאשר נכפול זה בל"ג רביעיות רביעית, הוא כאומרנו ל"ג רביעיות רביעית מט' שלמים ושלישית חלק מי"א בשלם כזה&#x202B;:
 
 
|-
 
|-
|
+
|living soul [Genesis 2, 7]
|
+
|style="text-align:right;"|נפש חיה
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
 
|-
 
|-
| colspan=2 |&nbsp;|| 6 || 3 || 11
+
|going up and down [Genesis 28, 12]
 +
|style="text-align:right;"|זה עולה וזה יוריד
 
|-
 
|-
| 4 || 4 || 4 || 1 || &nbsp;
+
|soul has longed for [Genesis 34, 8]
 +
|style="text-align:right;"|נפשך חשקה ב, חשקה נפשם
 
|-
 
|-
| 33 || 1
+
|of beautiful form, and fair to look upon [Genesis 39, 6]
|}
+
|style="text-align:right;"|יפה תאר ונחמד מראה
 
|-
 
|-
|
+
|when angry [Genesis 49, 6]
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left[9+\left(\frac{1}{3}\sdot\frac{1}{11}\right)+\left(\frac{4}{6}\sdot\frac{1}{3}\sdot\frac{1}{11}\right)\right]\sdot\left(\frac{33}{4}\sdot\frac{1}{4}\right)&\scriptstyle=\left(\frac{1792}{6}\sdot\frac{1}{3}\sdot\frac{1}{11}\right)\sdot\left(\frac{33}{4}\sdot\frac{1}{4}\right)\\&\scriptstyle=\frac{59136}{4}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{11}\\\end{align}}}</math>
+
|style="text-align:right;"|באפם
|style="text-align:right;"|ונפרוט הט' שלמים והשברים אשר עמו ויעלו '''7921''' ושישיות שלישית מי"א בשלם כזה&#x202B;:
 
 
|-
 
|-
|
+
|with their will they hamstrung a bull [Genesis 49, 6]
|
+
|style="text-align:right;"|וברצונם יעקרו שור
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
 
|-
 
|-
| 4 || 4 || 6 || 3 || 11
+
|gave them a rule [Exodus 15, 25]
 +
|style="text-align:right;"|ישימו חוק
 
|-
 
|-
| 59136
+
|his hands were in faith [Exodus 17, 12]
|}
+
|style="text-align:right;"|והיו ידיו אמונה
 
|-
 
|-
|
+
|he has sinned and is guilty [Leviticus 5, 23]
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\frac{\left[9+\left(\frac{1}{3}\sdot\frac{1}{11}\right)+\left(\frac{4}{6}\sdot\frac{1}{3}\sdot\frac{1}{11}\right)\right]\sdot\left(\frac{33}{4}\sdot\frac{1}{4}\right)}{\frac{96}{5}\sdot\frac{1}{5}}&\scriptstyle=\frac{\frac{59136}{4}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{11}}{\frac{96}{5}\sdot\frac{1}{5}}\\&\scriptstyle=\frac{59136\sdot5\sdot5}{4\sdot4\sdot6\sdot3\sdot11\sdot96}\\&\scriptstyle=\frac{1478400}{4\sdot4\sdot6\sdot3\sdot11\sdot2\sdot8\sdot6}\\&\scriptstyle=\frac{1478400}{11\sdot3\sdot4\sdot8\sdot4\sdot2\sdot6\sdot6}\\&\scriptstyle=\frac{1478400}{8448\sdot6\sdot6}\\&\scriptstyle=\frac{1478400}{8448}\sdot\frac{1}{6}\sdot\frac{1}{6}\\&\scriptstyle=\frac{175\sdot8448}{8448}\sdot\frac{1}{6}\sdot\frac{1}{6}\\&\scriptstyle=\frac{175}{6}\sdot\frac{1}{6}\\\end{align}}}</math>
+
|style="text-align:right;"|יחטא ואשם
|style="text-align:right;"|ונחלק לשני מהאחרות והיא 96 חמישיות חמישית ותצא הנשארת, שהיא ה175 שישיות שישית<br>
 
ונכפול המספר המתחלק, ר"ל ה59136, במורי ה96, שהם 5 5, ויעלה 1478400<br>
 
וכדי שלא להכפל הענין כמו שביארנו, לא נכפול ה96 במורי האחרת, אבל נקחם למורים שנחלק עליה ועל ה96<br>
 
ואם נרצה נקח מוריהם והם 6 8 2 ונשימם עם הראשונים<br>
 
ולפי שאנו מבקשים לידע אם רצה בחילוק 175 שישיות שישית, הרי הוא כאלו שאלו לנו כמה שישיות שישית יצא מהחלוקה<br>
 
ואם לא היו במורינו, היינו צריכים לכפול כל המספר המתחלק בהם ולהוסיפם על האחרים ולשומם ראשונה, כמו שנתבאר למעלה<br>
 
אם אכן אחרי היותם במורינו, לא נצטרך לכפול בהם, אבל כי נשימם ראשונה במל[..]ת כזה 6 6 2 4 8 4 3 11 ונחלק על כל האחרונים זולתם<br>
 
ונראה כאשר יגיע אליהם יצא בו בחלוק, ר"ל בחלוקנו לב' שהו' המורה הסמוך להם בצורה זו, אם יצא בחלוק 175, אז נדע שלא טעינו, כי הם שישיות שישית ובלבד שלא ישאר בלרשום חלוק מהעוברים<br>
 
וכדי להקל מעלינו, כבר ידעת כי כך הוא החלק על המורים כעל אמם ונוציא אם כל המורים זולתי ה6 6 הנזכרים וזה בכפול אותם זה בזה והעולה באחר וכן כלם ותהיה האם 8448<br>
 
ואם כאשר נחלק מספרינו על ה8448, שהיא אם המורים כלם זולתי ה66, יצא בחילוק 175 ולא ישאר דבר, נדע שלא טעינו<br>
 
נמצא שאם היה עולה מספרינו בכפול זאת האם בה'17, נדע שלא טעינו<br>
 
וכדי להקל מעלינו הכפל במעשה החילוק, נכפול הה'17 באם, ר"ל ב8448 ונדע אם יצא מספרינו<br>
 
והאמת כן הוא שכפל הה'17 ב8448 יעלה 1478400 והוא מספרינו ובחנהו והנה כל מעשינו אמת והקש על זה
 
 
|-
 
|-
|'''Summary of the procedure''': fractionalizing and multiplying each of the two numbers separately if needed, then multiplying them one by the other and dividing the product by the third number
+
|lie down, and none shall make you afraid [Leviticus 26, 6]
|style="text-align:right;"|'''זה הכלל''' שערכי השברים הוא לעשות לכל א' מהג' מספרים לבדו פריטה והכאה, או אשר מהן יצטרך, לכפול הראשון בשני ולחלקו בשלישי
+
|style="text-align:right;"|זה ישכיב וזה יחריד
 
|-
 
|-
|'''The check''': if the unknown was second [in one of the two pairs] - multiplying it by the first of the other [pair]; if the unknown was first [in one of the two pairs] - multiplying it by the second of the other [pair]; then dividing the product by one of the two remaining numbers and the result should be the other remaining number<br>
+
|He shall not alter it, nor change it [Leviticus 27, 10]
<math>\scriptstyle a_1:a_2=a_3:a_4\longrightarrow\begin{cases}\scriptstyle a_1=\frac{a_2\sdot a_3}{a_4}\\\scriptstyle a_2=\frac{a_1\sdot a_4}{a_3}\\\scriptstyle a_3=\frac{a_1\sdot a_4}{a_2}\\\scriptstyle a_4=\frac{a_2\sdot a_3}{a_1}\end{cases}</math>
+
|style="text-align:right;"|לבל יחליף וימיר
|style="text-align:right;"|'''והמופת''' לכפול היוצא לנו במקום הנעלם, אם הוא שני, נכפלנו בראשון שאינו ראשון ואם היה הנעלם אם הוא שני, נכפלנו בראשון שאינו ראשון לו ואם היה הנעלם אשר חדשנו ראשון, נכפלנו בשני שאינו שני לו ונחלקנו לאחד מהנשארים ויצא האחר
 
 
|-
 
|-
|'''The reason''': the same as for integers - since the operation is the same
+
|Are there few or many [Numbers 13, 18]
|style="text-align:right;"|'''וטעם''' כל זה כטעמו בשלמים, כי אם אחר שהמעשה אחד בעצמו גם הטעם אחד בעצמו
+
|style="text-align:right;"|אם מעטים ואם רבים
 
|-
 
|-
|}
+
|remained alive of those men [Numbers 14, 38]
{|
+
|style="text-align:right;"|מן האנשים חיו
 
|-
 
|-
|
+
|not of my own devising [Numbers 16, 28]
 
+
|style="text-align:right;"|כי לא מלבי
== Chapter Six: Roots ==
 
!style="text-align:right;"|<big>הפרק הששי בשרשים</big>
 
 
|-
 
|-
|'''The procedure''': fractionalization and multiplication if needed, multiplication by the denominators, extracting the root as in the case of the integers, then reducing and arranging the denominators<br>
+
|our soul loathe [Numbers 21 5]
:<math>\scriptstyle\sqrt{\frac{a}{b}}=\sqrt{\frac{a\sdot b}{b}\sdot\frac{1}{b}}</math>
+
|style="text-align:right;"|קצה נפשם ב
|style="text-align:right;"|גם בזה תצטרך לעשות לשבריך פריטה, גם הכאה, או מה שיצטרכו מהם והיוצא תשוב תכפול אותו בכל המורים אחד אחד זה אחר זה, או באמם
 
 
|-
 
|-
|
+
|no way to turn either to the right or to the left [Numbers 22, 26]
|style="text-align:right;"|ושמור נפשך מאד שמר, שלא תחבר לו הנמצא תחת המורי', כי זה לא יעשה כי אם בפריטה
+
|style="text-align:right;"|ימין ושמאל אין לנטות
 
|-
 
|-
|
+
|between your eyes [Deuteronomy 6, 8]
|style="text-align:right;"|ומכל העולה הוצא השרש ככל כמעשיך בשלימים והשלימים היוצאים בשרש הם חלקים משלם מאלו המורים
+
|style="text-align:right;"|בין עיניך
 
|-
 
|-
|
+
|sufficient for his needs, which he is lacking [Deuteronomy 15, 8]
|style="text-align:right;"|ואם תרצה, [עשה להם] כלילת יופי והשברים היוצאים בשרש הם שברים מחלק אחד מכל אלו המורים בשלם
+
|style="text-align:right;"|מחסורך אשר יחסר לך
 
|-
 
|-
|
+
|sufficient for his need [Deuteronomy 15, 8]
*<math>\scriptstyle\sqrt{\frac{4}{6}\sdot\left(4+\frac{5}{9}\right)}</math>
+
|style="text-align:right;"|די מחסורו, די מחסורנו, די מחסורינו
|style="text-align:right;"|המשל רצינו לדעת שרש ד' שישיות מד' שלמים וה' תשיעיות כזה&#x202B;:
 
 
|-
 
|-
|
+
|birthright entitlement [Deuteronomy 21, 17]
|
+
|style="text-align:right;"|כמשפט הבכורה
{|border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
 
|-
 
|-
| &nbsp; || 9 || 4
+
|shall be helpless [Deuteronomy 28, 32]
 +
|style="text-align:right;"|אין לאל ידו
 
|-
 
|-
| 6 || 5
+
|whose heart turns away [Deuteronomy 29, 17]
 +
|style="text-align:right;"|אשר לבו פונה
 
|-
 
|-
|4
+
|to keep His commandments and His statutes and His ordinances [Deuteronomy 30, 16]
|}
+
|style="text-align:right;"|מחזיק במצותיו ואל משפטיו וחקותיו
 
|-
 
|-
|
+
|crooked and twisted [Deuteronomy 32, 5]
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\sqrt{\frac{4}{6}\sdot\left(4+\frac{5}{9}\right)}&\scriptstyle=\sqrt{\frac{4}{6}\sdot\frac{36+5}{9}}=\sqrt{\frac{4}{6}\sdot\frac{41}{9}}=\sqrt{\frac{164}{6}\sdot\frac{1}{9}}\\&\scriptstyle\approx\left(\frac{94}{6}\sdot\frac{1}{9}\right)+\left(\frac{20}{94\sdot2}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)\\\end{align}}}</math>
+
|style="text-align:right;"|עקש ופתלתול
|style="text-align:right;"|ויצאו 94 שלימים שהם 94 שישיות תשיעיות נפרוט הד' שלימים ונכפול אותם בט', יעלו 36 ועם ה5, יהיו 41, נכם בד', יעלו 164 שישיות תשיעית כזה<br>
 
ויצאו 94 שלימים, שהם 94 שישיות תשיעיות ונשארו 20
 
 
|-
 
|-
|
+
|controlled or strengthened [Deuteronomy 32, 36]
:::<math>\scriptstyle{\color{blue}{\frac{94\sdot2}{20}=\frac{188}{20}=9+\frac{8}{20}}}</math>
+
|style="text-align:right;"|עצורה ועזובה
|style="text-align:right;"|ואם רצית להתקרב אל האמת, כפול השרש שהוא 94 וחלקם עליהם<br>
 
ויעלה בדרך האחדות והוא שנחלק כפל ה94, שהוא 188, ל20 ועלו ט' ונשארו ח&#x202B;'
 
 
|-
 
|-
|
+
|the rock in which they trusted [Deuteronomy 32, 37]
:::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\frac{20}{94\sdot2}&\scriptstyle=\frac{20}{188}\\&\scriptstyle=\frac{1}{9+1}+\frac{20-8}{\left(9+1\right)\sdot188}\\&\scriptstyle=\frac{1}{10}+\frac{12}{10\sdot188}\\&\scriptstyle=\frac{1}{10}+\left(\frac{12}{188}\sdot\frac{1}{10}\right)\\&\scriptstyle=\frac{1}{10}+\left(\frac{12}{4\sdot47}\sdot\frac{1}{10}\right)\\&\scriptstyle=\frac{1}{10}+\left(\frac{12}{4}\sdot\frac{1}{47}\sdot\frac{1}{10}\right)\\&\scriptstyle=\frac{1}{10}+\left(\frac{3}{47}\sdot\frac{1}{10}\right)\\\end{align}}}</math>
+
|style="text-align:right;"|צור בו חסיו
|style="text-align:right;"|הוספנו א' מעל הט', היה 10, שהוא מורה עשירית אחת ונחסר הח' הנותרים מן ה20, נשארו י"ב, שהם חלקים מ188 ומעשירית<br>
 
ומורה ה188 והם 47 [874] והנה הי"ב הם י"ב רביעיות חלק ממ"ז בעשירית כזה<br>
 
נעשה להם כלילת יופי והוא שנחלקם לד', יצאו ג' ולא ישאר דבר ואחר שהם פחות מהמ"ז, נשימם תחתיו כזה&#x202B;:
 
 
|-
 
|-
|
+
|The dwelling-place of God [Deuteronomy 33, 27]
|
+
|style="text-align:right;"|לאלוהי מעונה
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
 
|-
 
|-
| 4 || 47 || 10
+
|there stood not a man against them [Joshua 21, 42]
 +
|style="text-align:right;"|ולא יעמוד איש בפניהן
 
|-
 
|-
| &nbsp;|| 3 || 1
+
|The wisest of her princesses answer her [Judges 5, 29]
|}
+
|style="text-align:right;"|חוכמות שרותיה תענינה
 
|-
 
|-
|
+
|whosoever is fearful and trembling [Judges 7, 3]
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\sqrt{\frac{4}{6}\sdot\left(4+\frac{5}{9}\right)}&\scriptstyle\approx\left(\frac{94}{6}\sdot\frac{1}{9}\right)+\left(\frac{20}{94\sdot2}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)\\&\scriptstyle=\left(\frac{94}{6}\sdot\frac{1}{9}\right)+\left[\left[\frac{1}{10}+\left(\frac{3}{47}\sdot\frac{1}{10}\right)\right]\sdot\frac{1}{6}\sdot\frac{1}{9}\right]\\&\scriptstyle=\left(\frac{94}{6}\sdot\frac{1}{9}\right)+\left(\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{3}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)\\&\scriptstyle=1+\frac{6}{9}+\left(\frac{4}{6}\sdot\frac{1}{9}\right)+\left(\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{3}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)\\&\scriptstyle=1+\frac{2}{3}+\left(\frac{4}{6}\sdot\frac{1}{9}\right)+\left(\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{3}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)\\\end{align}}}</math>
+
|style="text-align:right;"|ירא וחרד
|style="text-align:right;"|הנה עלה לנו כל השרש 94 ועשירית וג' חלקים מ47 מעשירית וכל אלו הם חלקים משישית תשיעית כנזכר<br>
 
א"כ השרש היוצא הוא 94 שישיות תשיעית ועשירית שישית תשיעית וג' חלקים ממ"ז מעשירית שישית תשיעית כזה&#x202B;:<br>
 
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
 
|-
 
|-
| 47 || 10 || 6 || 9
+
|the love of his soul [Samuel I 20, 17]
 +
|style="text-align:right;"|אהבת נפש
 
|-
 
|-
| 3 || 1 || 94 || &nbsp;
+
|they quench my coal [Samuel II 14, 7]
|}<br>
+
|style="text-align:right;"|ומכבים אש גחלתי
ונעשה כלילת יופי ל94 ויעלה א' לשלם וזהו שלם באמת ועוד ו' תשיעיות, שהם שני שלישיות ועוד ד' תשיעיות שישיות ויש לנו עוד עמהם עשירית שישית תשיעית וג' חלקים ממ"ז מעשירית ששית תשיעית כזה&#x202B;:
 
 
|-
 
|-
|
+
|beans and lentils [Samuel II 17, 28]
|
+
|style="text-align:right;"|פולי' ועדשים
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
 
|-
 
|-
| 47 || 10 || 6 || 9
+
|I have kept the ways of the Lord [Samuel II 22, 22]
 +
|style="text-align:right;"|שומר דרכי אל
 
|-
 
|-
| 3 || 1 || 4 || 6
+
|go here or there [Kings I, 2, 42]
|}
+
|style="text-align:right;"|אנה ואנה
 
|-
 
|-
|
+
|as a reed is shaken in the water [Kings I 14, 15]
|style="text-align:right;"|וזהו השרש הקרוב
+
|style="text-align:right;"|כאשר בתוך המים ינוד הקנה
 
|-
 
|-
|Check:<br>
+
|hopping between two ideas [Kings I 18, 21]
::<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left[\left(\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{3}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)\right]^2&\scriptstyle=\frac{2500}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\sdot\frac{1}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\\&\scriptstyle\left(\frac{4}{9}\sdot\frac{1}{47}\frac{1}{47}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{1}{6}\sdot\frac{1}{9}\sdot\frac{1}{47}\sdot\frac{1}{47}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)\\\end{align}}}</math>
+
|style="text-align:right;"|על שתי הסעיפים פוצח [פוסח]
|style="text-align:right;"|ואם תרצה לבחון אותו, כפול אותו על עצמו וראה אם יתקרב לנשאל, שהוא 146 שישיות תשיעית בתוספת אחד, בכמו מרובע השברים אשר הוספנו על שרש השברים הראשון אשר הוצאנו והעשירית שישית תשיעית וג' חלקי' ממ"ז מעשירית שישית תשיעית, שמרובעם, ר"ל כפלם בעצמם אחר הפריטה, יעלה 2500 חלקים ממ"ז מעשירית שישית תשיעיות ממ"ז מעשירית תשיעית<br>
 
וכאשר תעשה להם כלילת יופי, יעלה ד' תשיעיות ממ"ז ממ"ז משישית תשיעית ושישית מתשיעית ממ"ז ממ"ז מששית תשיעית
 
 
|-
 
|-
|
+
|as a lodge in a garden of cucumbers [Isaiah 1, 8]
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\sqrt{\frac{4}{6}\sdot\left(4+\frac{5}{9}\right)}&\scriptstyle\approx1+\frac{2}{3}+\left(\frac{4}{6}\sdot\frac{1}{9}\right)+\left(\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{3}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)\\&\scriptstyle=\frac{44230}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\\\end{align}}}</math>
+
|style="text-align:right;"|וכמקשה המלונה
|style="text-align:right;"|והנה פריטת זה השרש יעלה 44230 חלקים מחלק ממ"ז מעשירית משישית תשיעית
 
 
|-
 
|-
|
+
|to increase to government [Isaiah 9, 6]
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left[1+\frac{2}{3}+\left(\frac{4}{6}\sdot\frac{1}{9}\right)+\left(\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{3}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)\right]^2&\scriptstyle=\left(\frac{44230}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)^2\\&\scriptstyle=\frac{44230}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\sdot\frac{44230}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\\&\scriptstyle=\frac{1956292900}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\sdot\frac{1}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\\\end{align}}}</math>
+
|style="text-align:right;"|ארבה המשרה
|style="text-align:right;"|וכאשר נכפול זה על עצמו הוא כאומרנו 44230 חלקים מחלק מ"ז מעשירית שישית תשיעית [מ442300 חלקים מחלק מ"ז מעשירית ששית תשיעית כזה]&#x202B; כזה&#x202B;:<br>
 
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
 
|-
 
|-
| colspan=4 |&nbsp;|| 47 || 10 || 6 || 9
+
|as one who gathers ears of grain [Isaiah 17,5]
 +
|style="text-align:right;"|כמקלט שבלים
 
|-
 
|-
| 47 || 10 || 6 || 9 || 44230
+
|berries at the top of the uppermost bough [Isaiah 17, 6]
 +
|style="text-align:right;"|גרגרים מראש אמיר
 
|-
 
|-
| 44230
+
|two or three berries [Isaiah 17, 6]
|}<br>
+
|style="text-align:right;"|ב' ג' גרגרים
ונכה ה44230 ויעלה 1956292900 חלקים מחלק מ"ז מעשירית שישית תשיעית מחלק מ"ז מעשירית תשיעית בשלם כזה
 
 
|-
 
|-
|
+
|thrust in a sure place [Isaiah 22, 25]
|
+
|style="text-align:right;"|תקוע במקום נאמן
{| border="1" style="margin-left: auto; margin-right: 0px; text-align:center;"
 
 
|-
 
|-
| 47 || 10 || 6 || 9 || 47 || 10 || 6 || 9
+
|as with the buyer, so with the seller [Isaiah 24, 2]
 +
|style="text-align:right;"|כמוכרים כקונים
 
|-
 
|-
| 1956292900
+
|fierce people [Isaiah 33, 19]
|}
+
|style="text-align:right;"|עם נועז
 
|-
 
|-
|
+
|tent that shall not fall, whose pegs shall never be moved [Isaiah 33, 20]
:<math>\scriptstyle{\color{blue}{\begin{align}&\scriptstyle\left[1+\frac{2}{3}+\left(\frac{4}{6}\sdot\frac{1}{9}\right)+\left(\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{3}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)\right]^2\\&\scriptstyle=\frac{1956292900}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\sdot\frac{1}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\\&\scriptstyle=\left(\frac{164}{6}\sdot\frac{1}{9}\right)+\left[\left(\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{3}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)\right]^2\\&\scriptstyle\left(\frac{164}{6}\sdot\frac{1}{9}\right)+\left(\frac{4}{9}\sdot\frac{1}{47}\frac{1}{47}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{1}{6}\sdot\frac{1}{9}\sdot\frac{1}{47}\sdot\frac{1}{47}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)\\\end{align}}}</math>
+
|style="text-align:right;"|אהל בל יצען בל יסע יתדותיו
|style="text-align:right;"|ונעשה להם כלילת יופי, ר"ל שנחלקנו לכל המורים האלו, עד הגיענו אל הט' והו', המורים הראשונים ובהיגיענו שם נדע כמה שישית תשיעיות יעלה, אם יגיע למספר הנשאל שהוא 164 שישיות תשיעית ועוד מרובע השברים הנוספים הנזכרים כנזכר ואשר עלינו זה עלה 164 שישיות תשיעית ועוד ד' תשיעיות ממ"ז ממ"ז [נ' ד'] משישית תשיעית וזה התוספת שוה ממש למרובע השברים הנוספים בשרש על שרש השברים אשר יצא ראשונה והיה כל מלאכתך אמת
 
 
|-
 
|-
|<math>\scriptstyle\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)=\left(\frac{b}{2a}\right)^2</math>
+
|by them, they shall live, and altogether therein is the life of my spirit [Isaiah 38, 16]
|style="text-align:right;"|ויצא לנו עוד מזה, שנתאמת מה שאמרנו בפ"ז מהחלק הא', שכאשר נחלק הנשאר על כפל השרש מבלי תוספת אחר, שיעדף המרובע האחרון על החשבון הנשאל כמרובע השברי' הנוספים וכן יהיה בכל פעם ופעם דוק ותשכח
+
|style="text-align:right;"|עליהם יחיו ולכל בהם חיי רוח
 
|-
 
|-
|'''The reason for multiplying the numerator by the denominators''': so that the denominator will be a square - the product of the denominators by themselves<br>
+
|Since thou art precious in My eyes and honorable and I loved thee [Isaiah 43, 4]
:<math>\scriptstyle\sqrt{\frac{a}{b}}=\sqrt{\frac{a\sdot b}{b^2}}</math>
+
|style="text-align:right;"|מאשר יקרת בעיני נכבדת ואני אהבתיך
|style="text-align:right;"|וטעם אמרנו שאחר הפריטה נכה המספר הפריטה בכל המורים הוא כדי שיהיה זה המרובע חלקים מאלו המורים פעמים, ר"ל נשנים
 
 
|-
 
|-
|
+
|Let them present their witnesses, and they shall be deemed just [Isaiah 43, 9]
:*<math>\scriptstyle{\color{blue}{\left(\frac{1}{4}\right)^2=\frac{1}{4}\sdot\frac{1}{4}}}</math>
+
|style="text-align:right;"|יתנו עידיהם ואותי יצדיקו
|style="text-align:right;"|שאם היו רביעיות, יהיו עתה רביעיות רביעית
 
 
|-
 
|-
|
+
|let them hear, and say "it is true" [Isaiah 43, 9]
:*<math>\scriptstyle{\color{blue}{\left(\frac{1}{5}\sdot\frac{1}{4}\right)^2=\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{4}}}</math>
+
|style="text-align:right;"|ישמיעו ויאמרו אמת
|style="text-align:right;"|ואם היו חמישיות רביעית, יהיו עתה חמישיות רביעית חמישית רביעית וכן לעולם
 
 
|-
 
|-
|
+
|I am bereaved and solitary, exiled and rejected [Isaiah 49, 21]
|style="text-align:right;"|והוצרכנו לזה לפי שמורי השרש לעולם הם נשנים במורי המרובע
+
|style="text-align:right;"|סורה וגזלה גלמודה ושכולה
 
|-
 
|-
|
+
|ear to hear according to the teachings [Isaiah 50, 4]
:*<math>\scriptstyle{\color{blue}{\left(\frac{2}{4}\right)^2=\frac{4}{4}\sdot\frac{1}{4}}}</math>
+
|style="text-align:right;"|אזן לשמוע כלימודים
|style="text-align:right;"|וזה שאם השרש ע'ד'מ' ב' רביעיות, יהיה המרובע ד' רביעיות [רביעית]
 
 
|-
 
|-
|
+
|justify the righteous [Isaiah 53, 11]
:*<math>\scriptstyle{\color{blue}{\left(\frac{2}{5}\sdot\frac{1}{4}\right)^2=\frac{4}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{4}}}</math>
+
|style="text-align:right;"|צדק תצדיק
|style="text-align:right;"|ואם יהיה השרש ב' חמישיות רביעית, יהיה המרובע ד' חמישיות רביעית חמישית רביעית
 
 
|-
 
|-
|Multiplication of fractions by fractions means fractions of fractions: 2 quarters by 2 quarters is 2 quarters of 2 quarters
+
|with transgressors he was counted [Isaiah 53, 12]
|style="text-align:right;"|והטעם בזה לפי שהכפל בשברים שהוא אומרנו ע'ד'מ' כפל ב' רביעיות בב' רביעיות, הוא כאומרנו ב' רביעיות מב' רביעיות, כמו שביארנו למעלה
+
|style="text-align:right;"|ואת פושעים לא מנה
 
|-
 
|-
|
+
|choose what I desire [Isaiah 56, 4]
:How much quarters of quarters there are in 2 quarters of 2 quarters? - 2×2<br>
+
|style="text-align:right;"|בחרו באשר חפצו
:*<math>\scriptstyle{\color{blue}{\frac{2}{4}\times\frac{2}{4}=\frac{2\sdot2}{4}\sdot\frac{1}{4}}}</math>
 
|style="text-align:right;"|ולדעת כמה רביעיות רביעית הם, יש לנו להכות הב' בב&#x202B;'
 
 
|-
 
|-
|When calculating the square of a given fraction, the numerator is multiplied by itself, as in the calculation of the square of an integer the integer is multiplied by itself<br>
+
|remove the obstacles [Isaiah 57, 14]
:<math>\scriptstyle\left(\frac{a}{b}\right)^2=\frac{a\sdot a}{b^2}</math><br>
+
|style="text-align:right;"|להרים מכשול
:<math>\scriptstyle n^2=\frac{n\sdot n}{1}</math>
 
|style="text-align:right;"|ר"ל המספר שברי השרש בעצמם, כדרכנו במרובע השלמים, [כי מרובע השלמים במרובע השלמים] כמספר החלקים והשינוי בהם
 
 
|-
 
|-
|<math>\scriptstyle n\, is\, integer\longrightarrow n^2\, is\, integer</math>
+
|foolish, they know Me not [Jeremiah 4, 22]
|style="text-align:right;"|כי בשלמים מספר השרש ומספר המרובע הם ממין אחד, ר"ל שהם שלימים
+
|style="text-align:right;"|הסכלים אשר לא ידעו
 
|-
 
|-
|
+
|How do you say, "We are wise" [Jeremiah 8, 8]
*<math>\scriptstyle n>1\longrightarrow n^2>n</math>
+
|style="text-align:right;"|ואם כה יאמרו חכמים
|style="text-align:right;"|ולזה יהיה לעולם גדול המרובע מהשרש
 
 
|-
 
|-
|
+
|with a pen of iron, and with the point of a diamond [Jeremiah 17, 1]
*<math>\scriptstyle n,m>1\longrightarrow n\times m>n</math>
+
|style="text-align:right;"|בלוח ברזל בצפורן שמיר
|style="text-align:right;"|וכן כל כפל מספר שלם במספר
 
 
|-
 
|-
|
+
|the near and the far [Jeremiah 25, 26]
*<math>\scriptstyle n>1\longrightarrow n\times\frac{a}{b}>\frac{a}{b}</math>
+
|style="text-align:right;"|אם קרוב ואם רחוק
|style="text-align:right;"|ואף אם יהיה כפל שלימים בשברים
 
 
|-
 
|-
|The numerator is growing by multiplication, but the type of number does not change<br>
+
|there is none that care for her [Jeremiah 30, 17]
:<math>\scriptstyle n\times m=\frac{n\sdot m}{1}</math><br>
+
|style="text-align:right;"|דורש אין לה
:<math>\scriptstyle n\times\frac{a}{b}=\frac{n\sdot a}{b}</math>
 
|style="text-align:right;"|וזה לפי שהמספר מתרבה בכפל והמין אינו משתנה
 
 
|-
 
|-
|
+
|the right of redemption [Jeremiah 32, 7]
::<math>\scriptstyle{\color{blue}{3\times4=3\, times\, 4}}</math><br>
+
|style="text-align:right;"|משפט הגאולה
::<math>\scriptstyle{\color{blue}{3\times\frac{4}{5}=3\, times\, \frac{4}{5}}}</math>
 
|style="text-align:right;"|כי כאשר תאמר ע'ד'מ' כפול ג' שלמים בד' שלימים, או בד' חמישיות, הוא כאומרך כפול ג' פעמים ד' שלימים, או ד' חמישיות, הנה שהמספר מתרבה והדין לא ישתנה
 
 
|-
 
|-
|
+
|become a derision [Jeremiah 48, 39]
::<math>\scriptstyle{\color{blue}{\frac{2}{4}\times\frac{3}{5}=\frac{2}{4}\, times\, \frac{3}{5}}}</math>
+
|style="text-align:right;"|יהיה להם לשחוק
|style="text-align:right;"|אבל בשברים אומרנו כפול ב' רביעיות בג' חמישיות הוא כאומרנו שני רביעיות פעם
 
 
|-
 
|-
|
+
|each one would go [Ezekiel 1, 9/12]
::<math>\scriptstyle{\color{blue}{\frac{1}{4}\times\frac{3}{5}=\frac{1}{4}\, times\, \frac{3}{5}=\frac{3}{5}\sdot\frac{1}{4}}}</math>
+
|style="text-align:right;"|ילכו איש אל
|style="text-align:right;"|ואם אומרנו כפול רביעית אחת בג' חמישיות הוא כאומרנו ג' חמישיות רביעית פעם והוא ג' חמישיות רביעית
 
 
|-
 
|-
|
+
|and shall be as though they had not been [Obadiah 1, 16]
::<math>\scriptstyle{\color{blue}{\frac{2}{4}\times\frac{3}{5}=2\, times\, \frac{1}{4}\, times\, \frac{3}{5}=2\, times\, \left(\frac{3}{5}\sdot\frac{1}{4}\right)=\frac{6}{5}\sdot\frac{1}{4}}}</math>
+
|style="text-align:right;"|והיו כלא היו
|style="text-align:right;"|ואולם אומרנו שני רביעיות, יהיה בב' פעמים רביעית פעם וכל פעם הוא ג' חמישיות רביעית, הנה הב' רביעיות יהיו ו' חמישיות רביעית
 
 
|-
 
|-
|The number is increasing through the multiplication of the numerator by the numerator
+
|his soul is not upright [Habakkuk 2, 4]
|style="text-align:right;"|וכן לעולם יתרבה המספר בכפל [מספר השברים במספר] משבר השברים
+
|style="text-align:right;"|לא ישרה נפשך
 
|-
 
|-
|The product of the numerators is a fraction whose denominator is a product of the denominator of one of the numbers by the denominator of the other number<br>
+
|as the apple of the eye [Psalms 17, 8]
:<math>\scriptstyle\frac{a}{b}\times\frac{c}{d}=\frac{a\sdot b}{b\sdot d}</math>
+
|style="text-align:right;"|בבבת עין ואישון
|style="text-align:right;"|ויהיה העולה מכל שני מורי שני המספרים הנכפלים יחד, כבמשלנו זה שהם חמישיות רביעיות
 
 
|-
 
|-
|Hence the numerator of the square is a square of the numerator of the root<br>
+
|they open their lips, they shake their head [Psalms 22, 8]
:<math>\scriptstyle\left(\frac{a}{b}\right)^2=\frac{a^2}{b^2}</math>
+
|style="text-align:right;"|יניע בראש ובשפה יפטיר
|style="text-align:right;"|ולזה יהיה מספר שברי המרובע כמרובע מספר שברי השרש כדרכו בשלם שוה בשוה
 
 
|-
 
|-
|The denominator of the square is a square of the denominators of the root
+
|despised by the people [Psalms 22, 7]
|style="text-align:right;"|אבל כי המורים נשנים, לפי שאנו כופלים השרש בכמותו ומורי שניהם יהיה כפל מורי האחר, כי שוים הם במורים וכל זה ברור בטעם
+
|style="text-align:right;"|בזוי עם
 
|-
 
|-
|This is illustrated in the calculation of area
+
|The Lord helped them [Psalms 37, 40]
|style="text-align:right;"|גם זה יתבאר בשאנו כופלים בשטח&#x202B;:
+
|style="text-align:right;"|יעזרם אלהים
 
|-
 
|-
|The area of 4 length and 3 width = 4×3
+
|their health is sound [Psalms 73, 4]
|style="text-align:right;"|כי כאשר אנו או[מרי]ם בשטח ג' פעמים ד', הוא כאומרנו שיש בארך ד&#x202B;'
+
|style="text-align:right;"|ובריא אולם
 
|-
 
|-
|The area of 4 length and 1 width = 4×1=4
+
|He humbles this one and elevates that one [Psalms 75, 8]
|style="text-align:right;"|ואלו לא היה ברחבו כי אם א', לא היו כי אם ד&#x202B;'
+
|style="text-align:right;"|זה ישפיל וזה ירים
 
|-
 
|-
|Area consists of one [dimension] of length and one [dimension] of breadth
+
|after the stubbornness of their heart, they might walk in their own counsels [Psalms 81, 13]
|style="text-align:right;"|לפי שכל אחד שאנו אומרים בשטח, הוא שיהיה לו א' באורך וא' ברוחב
+
|style="text-align:right;"|ועריהן יגזור לבם בשרירות
 
|-
 
|-
|Body consists of one [dimension] of length, one [dimension] of breadth, and one [dimension] of height
+
|the work of our hands establish it [Psalms 90, 17]
|style="text-align:right;"|וכן בגשם: א' באורך וא' ברוחב ואחד בגובה
+
|style="text-align:right;"|ומעשה ידיהו כוננה
 
|-
 
|-
|<math>\scriptstyle1=1^2=1^3</math>
+
|their help and their shield [Psalms 115, 9]
|style="text-align:right;"|לזה לא יתרבה מרובע האחד ולא גם המעוקב, כי אומרנו אחד בשטח הוא כאומרנו אחד מרובע וכן בגשם מעוקב
+
|style="text-align:right;"|עזרם ומגינם
 
|-
 
|-
|4 length and 3 width = 3 stripes of 4 length = 3×4
+
|laud Him, all peoples [Psalms 117, 1]
|style="text-align:right;"|וכאשר היו ד' באורך וג' ברוחב, הרי הם ג' רצועות של ד' ד' והוא כאומרנו ג' פעמים ד' ול וכן לעולם
+
|style="text-align:right;"|ישבחוהו לאומים
 
|-
 
|-
|The meaning of multiplying fraction by fraction
+
|thousands and ten thousands [Psalms 144, 13]
|style="text-align:right;"|אבל כשא[א]נו כופלים שבר בשבר&#x202B;:
+
|style="text-align:right;"|מאליפות מרובבות
 
|-
 
|-
|
+
|his hope is in the Lord [Psalms 146 5]
::<math>\scriptstyle{\color{blue}{\frac{3}{4}\times\frac{4}{5}=\frac{4}{5}\, length\, of\, the\, whole\, by\, \frac{3}{4}\, width\, of\, the\, whole}}</math>
+
|style="text-align:right;"|ואשר על יי שברו
|style="text-align:right;"|המשל ג' רביעיות בד' חמישיות, הוא כאומרנו שארכו ד' חמישיות השלם ורחבו ג' רביעיות השלם
 
 
|-
 
|-
|
+
|His wisdom is beyond reckoning [Psalms 147, 5]
::<math>\scriptstyle{\color{blue}{\frac{3}{4}\times1=1\, length\, by\, \frac{3}{4}\, width=whole\, minus\, \frac{1}{4}=\frac{3}{4}}}</math>
+
|style="text-align:right;"|ובתבונתם אין מספר
|style="text-align:right;"|ואם ארכו אחד שלם, היה ג' רביעיות שלם, כי מן השלם המרובע חסר הרביע שנפצל מרחבו וזה מובן במעט עיון
 
 
|-
 
|-
|
+
|When it is still in its greenness, it will not be plucked [Job 8, 12]
::<math>\scriptstyle{\color{blue}{\frac{3}{4}\times\frac{4}{5}=\frac{3}{4}-\left(\frac{1}{5}\sdot\frac{3}{4}\right)=\left(\frac{1}{5}\sdot\frac{3}{4}\right)\sdot4=4\sdot\left(\frac{3}{4}\sdot\frac{1}{5}\right)=\frac{12}{4}\sdot\frac{1}{5}}}</math>
+
|style="text-align:right;"|לא נקטף עודנו באבו
|style="text-align:right;"|אבל לפי שמארכו נפצל ג"כ חמישיתו, הנה הוא כמי שהסיר מהג' רביעיות חמישיתם ונשארו ד' חמישיותיהם, הנה השטח הוא ד' חמישיות מג' רביעיות [וכל חמישית מהם היא חמישית ג' רביעיות, שהוא כשלש רביעיות חמישית, כי כך הוא חמישית רביעית כרביעית חמישית, א"כ הד' החמישיות מג' רביעיות הם ד' פעמים] הם ד' פעמים ג' רביעיות רביעיות חמישית, שהם י"ב
 
 
|-
 
|-
|
+
|the tents prosper [Job 12, 6]
*If the denominator is a square, there is no need to multiply the numerator by the denominator, when extracting the root of the fraction<br>
+
|style="text-align:right;"|אהלים ישליו
:<math>\scriptstyle\left(\frac{a}{b}\right)^2\longrightarrow\sqrt{\frac{a}{b}\sdot\frac{1}{b}}=\frac{\sqrt{a}}{b}</math>
 
|style="text-align:right;"|ולזה אנו כופלים בהכאה מספר השברים במספר השברים וכן בשרש והכל עולה לענין אחד
 
 
|-
 
|-
|
+
|hint [Job 15, 12]
|style="text-align:right;"|ואחר שביארנו שמורי המרובע הם נשנים ממורי השרש ומספר שברי המרובע הוא כמרובע מספר שברי השרש, נתבא' שאם היו לזה המרובע מורים נכפלים, ר"ל ד'ד', או ה'ה' וכדומה לזה, שלא היינו צריכים לכפול במוריום, כי אם להוציא השרש לבד מהמספר שב[..]ו כ[ער]ך בשלמים ומורי השרש היוצא היו חצי מוריו המרובע ונחלקנו אליהם, ר"ל לחצי מוריו
+
|style="text-align:right;"|רזום ירמזון
 
|-
 
|-
|
+
|breach upon breach [Job 16, 14]
:*<math>\scriptstyle\sqrt{\frac{a}{b^2}}=\frac{\sqrt{a}}{b}</math><br>
+
|style="text-align:right;"|פרץ על פני פרץ
::*<math>\scriptstyle{\color{blue}{\sqrt{\frac{a}{9}}=\frac{\sqrt{a}}{3}}}</math><br>
 
::*<math>\scriptstyle{\color{blue}{\sqrt{\frac{a}{4}}=\frac{\sqrt{a}}{2}}}</math>
 
|style="text-align:right;"|וכן אפי' אם לא היו כלם כפולים, אבל שכל אחד מאשר אינם בו פעמים הוא כפול, ר"ל כי אם הם כפולים בעצמם, ר"ל שהם מרובעים, כד', או כט', תקח שרש המורה ההוא אשר למרובע במקומו למורה השרש, ר"ל הב' במקום ד' והג' במקו' הט'. וזה שהרי בידיך לשום כמורי המרובע במקום הד' השנים, או במקום הט' ג'ג' ותקח אחד מהם בשרש וכל זה ברור
 
 
|-
 
|-
|This issue is explained in a special chapter on factorization at the end of the book
+
|For the years that are few will come [Job 16, 22]
|style="text-align:right;"|ויתבאר עוד במאמ' ההתכה, אשר בכלל אשר ייעדתי לשום בסוף הספר
+
|style="text-align:right;"|שנות מספר יאתיו
 
|-
 
|-
|
+
|When his desire has been filled sufficiently [Job 20, 22]
*If some of the denominators are squares and some are not squares, those that are not squares should be multiplied by the numerator<br>
+
|style="text-align:right;"|למלאת ספקו
:<math>\scriptstyle\sqrt{\frac{a}{b^2\sdot c}}=\sqrt{\frac{a\sdot c}{b^2\sdot c^2}}=\frac{\sqrt{a\sdot c}}{b\sdot c}</math>
 
|style="text-align:right;"|ואם יהיו שם מאלו ומאלו, תכפול מספר שברי המרובע באשר אינם נכפלים ולא מרובעים ותוסיפם על חצי הנכפלים ושרשי המורים המרובעים אשר לקחת במקומם ועליהם תחלק השלימים היוצאים בשרש והשברים היוצאים בשרש הם חלקים מחלק אחד מאלו המורים, אשר להם תחלק שלימי השרש והכל נתבאר במעשה ובטעם
 
 
|-
 
|-
|In order to avoid confusion, the author instructs to multiply the numerators by the denominators in any case, even if the denominators are squares<br>
+
|is hidden from the eyes of all living [Job 28, 21]
:<math>\scriptstyle\sqrt{\frac{a}{b^2}}=\sqrt{\frac{a\sdot b^2}{b^2\sdot b^2}}=\frac{\sqrt{a\sdot b^2}}{b\sdot b}</math>
+
|style="text-align:right;"|נעלמה מעיני כל חי
|style="text-align:right;"|אכן כדי שלא לבלבלך בזה לראות אם הם נכפלים ולקחת חציים, או לקחת מהמרובעים שתים במקומם, ציויתיך צויתיך לכפלו בכלם ויהיו לו, ר"ל למרובע הנשאל, כפל המורים אשר לו עתה ונחלק מספר שברי השרש לאשר לו בתחלה, שהם חצי מאשר לו עתה
 
 
|-
 
|-
|If one is not well versed in the procedure, it is better for him to make an effort, even if it is needlessly, in order to avoid confusion
+
|who is a teacher like Him [Job, 36, 22]
|style="text-align:right;"|וטוב שתטרח ואם לו לצורך, כדי שלא תתבלבל, אם אינך בקי במלאכה
+
|style="text-align:right;"|ומי כמוהו מונה
 
|-
 
|-
|
+
|bars and doors [Job 38, 10]
But, if one is skilled, he can skip this, in order to make the procedure easier for himself
+
|style="text-align:right;"|בריח ודלתים
|style="text-align:right;"|ואם ראית בעצמך, שאתה ראוי להיות שצו ש'צ' כהן הנושא כפיו, תוכל להקל מעליך העבודה ואתה רשאי ולא אני
 
 
|-
 
|-
|}
+
|He imparted to her understanding [Job 39, 17]
{|
+
|style="text-align:right;"|וחלק לו בבינה
 
|-
 
|-
|
+
|Its ways are ways of pleasantness [Proverbs 3, 17]
 
+
|style="text-align:right;"|דרכיה דרכי נועם
== General Rules for Operations with Fractions ==
 
|
 
 
|-
 
|-
|
+
|those who hold it fast are happy [Proverbs 3, 18]
|style="text-align:right;"|ואחר אש' השלמנו הו' פרקים אשר בשערים, נתחיל בכל אשר ייעדנו שהוא מועיל לכלם&#x202B;:
+
|style="text-align:right;"|ותומכם מאושר
 
|-
 
|-
|
+
|He winks with his eyes, scraps with his feet and points with his fingers [Proverbs 6, 13]
=== Finding the Common Denominator ===
+
|style="text-align:right;"|קורץ בעיניו מולל ברגליו מורה באצבעותיו
|
 
 
|-
 
|-
|All the issues of the chapters on fractions should be solved using a common denominator which will include all the denominators in question
+
|of great understanding, but he who is quick-tempered [Proverbs 14, 29]
|style="text-align:right;"|הכלל המועיל לכל השברים: אם תרצה להוציא כל ענייני פרקי השברים על השלימות, תבקש לכל המספרים מורה א' גדול כולל אותם, ר"ל אם כל מוריהם ושם תמצא כל מבוקשך בברור, ר"ל שתוכל למצוא במורה ההוא כמה הוא הרביעית והחמישית, או כל מה שתצטרך בכל השברים ההם
+
|style="text-align:right;"|מקוצר רוח ותבונה
 
|-
 
|-
|
+
|a high wall [Proverbs 18, 11]
*<math>\scriptstyle\left(\frac{3}{4}\sdot\frac{1}{9}\right)+\left(\frac{4}{5}\sdot\frac{1}{7}\right)</math>
+
|style="text-align:right;"|חומה נשגבה
|style="text-align:right;"|כי המשל אם אמרנו חבר ג' רביעיות תשיעית עם ד' חמישיות תשיעית עם 7 חמישיות שביעית
 
 
|-
 
|-
|
+
|trustworthy man [Proverbs 28, 20]
|style="text-align:right;"|הנה מורה החשבונים הגדול אשר אמרתי הוא אם ד' מורים אלו והוא בהכפל זה בזה והעולה באחר, עד תומם ויהיה 1260
+
|style="text-align:right;"|איש אמונה
 
|-
 
|-
|
+
|removes falsehood and the lying word [Proverbs 30, 8]
:<math>\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left(\frac{3}{4}\sdot\frac{1}{9}\right)+\left(\frac{4}{5}\sdot\frac{1}{7}\right)&\scriptstyle=\frac{\left[\frac{3}{4}\sdot\left(\frac{1}{9}\sdot1260\right)\right]+\left[\frac{4}{5}\sdot\left(\frac{1}{7}\sdot1260\right)\right]}{5}\sdot\frac{1}{7}\sdot\frac{1}{4}\sdot\frac{1}{9}\\&\scriptstyle=\frac{\left(\frac{3}{4}\sdot140\right)+\left(\frac{4}{5}\sdot180\right)}{5}\sdot\frac{1}{7}\sdot\frac{1}{4}\sdot\frac{1}{9}\\&\scriptstyle=\frac{\left(3\sdot35\right)+\left(4\sdot36\right)}{5}\sdot\frac{1}{7}\sdot\frac{1}{4}\sdot\frac{1}{9}\\&\scriptstyle=\frac{105+144}{5}\sdot\frac{1}{7}\sdot\frac{1}{4}\sdot\frac{1}{9}\\&\scriptstyle=\frac{249}{5}\sdot\frac{1}{7}\sdot\frac{1}{4}\sdot\frac{1}{9}\\\end{align}}}</math>
+
|style="text-align:right;"|מרחקת שוא ודבר כזב
|style="text-align:right;"|והוא שעשינו האחד השלם 1260 חלקים והנה תשיעית הוא ק"מ והוא ככפל הג' מורים הנזכרים, ר"ל באמם<br>
 
ורביעית התשיעית יהיה ברביעית זה והוא ל"ה והוא אם המורים הנזכרים, ר"ל ככפל ה' בז&#x202B;'<br>
 
והג' רביעיות התשיעית יהיו שלשה פעמים ל"ה, שהם 105<br>
 
ושביעית המורה הוא אם השלשה הנשארים והם 180<br>
 
וחמישית שביעית הוא חמישית זה והוא ל"ו והוא אם הנשארים<br>
 
והד' חמישיות שביעית הם ד' פעמים ל"ו, או אם תרצה לומר ד' פעמים כפל הב' מורים זה בזה, ר"ל ט' בד', שהוא ל"ו והעולה יהיה 144<br>
 
ותחברם עם הה'10, שעלו הג' רביעיות תשיעית, יעלו 249 ב0ובא חלקים בשלם, כי זה מורה הוא מספר המורה הגדול אשר לקחת וכל חלק מאלו הוא חלק מכל אלו המורים
 
 
|-
 
|-
|
+
|Many women have done valiantly [Proverbs 31, 29]
|style="text-align:right;"|וזה כי 140 הם תשיעיות אחד<br>
+
|style="text-align:right;"|רבות בנות עשו חיל
ול"ה, שהם רביעיתם, הם רביעית תשיעית<br>
 
והה', שהם שביעית הל"ה, הם שביעית רביעית תשיעית<br>
 
והא', שהוא חמישית הה', הוא חמישית תשיעית רביעית שביעית<br>
 
א"כ אלו ה249 הם חמישיות תשיעית רביעית שביעית
 
 
|-
 
|-
|
+
|built as a model [Song of Songs 4, 4]
|style="text-align:right;"|ואם תרצה לידע מה המה אלה, הנה אחר שכל ה' מהם הם תשיעיות רביעית תשיעית, תחלקם לה' והיוצא יהיו שביעיות רביעית תשיעית
+
|style="text-align:right;"|בנוי לתלפיות
 
|-
 
|-
|
+
|honey and milk are under thy tongue [Song of Songs 4, 11]
|style="text-align:right;"|ואם נשאר דבר, הוא כבתחלה חמישיות תשיעית רביעית שביעית
+
|style="text-align:right;"|תחת לשונה דבש וחלב
 
|-
 
|-
|
+
|That which is crooked cannot be straightened and that which is missing [Ecclesiastes 1, 15]
|style="text-align:right;"|ומהשביעית רביעיות תשיעית, וכאשר תחלק לז', יהיה היוצא רביעיות תשיעיות
+
|style="text-align:right;"|מעוות לא תוכל לתקן וחסרון
 
|-
 
|-
|
+
|increase vanity [Ecclesiastes 6, 11]
|style="text-align:right;"|וכשתחלק זה היוצא לד', יהיה היוצא תשיעית
+
|style="text-align:right;"|הבל מרבים
 
|-
 
|-
|
+
|For it is not out of wisdom that you have asked concerning this [Ecclesiastes 7, 10]
|style="text-align:right;"|וכשתחלקנו לט', ה יהיה היוצא שלימים
+
|style="text-align:right;"|כי לא מחכמה שאל על זאת
 
|-
 
|-
|The order of the denominators is unimportant
+
|for God made man straight, but they sought many intrigues [Ecclesiastes 7, 29]
|style="text-align:right;"|וכל זה אי המעשה הנזכר למעלה עין בעין, כמו שנרמז בצורות הרמוזות מחוץ לספר, כי הסדר לא יזיק, דוק ותשכח
+
|style="text-align:right;"|והאלהים עשה אותם ישר והמה בקשו חשבונות רבים
 
|-
 
|-
|
+
|advantage to one who has a tongue [Ecclesiastes 10, 11]
|style="text-align:right;"|והנה העולה מחבור השברים הנשאלות, על כל א' מהדרכים כי הכל אחד, הוא שביעית אחת ורביעית שביעית וד' תשיעיות רביעית שביעית וד' חמישיות תשיעית רביעית שביעית והקש על זה בכל שאר הפרקים
+
|style="text-align:right;"|יתרון לבעל הלשון
 
|-
 
|-
|
+
|which will succeed [Ecclesiastes 11, 6]
 
+
|style="text-align:right;"|אי זה יכשר
=== Completion of Fractions ===
 
!style="text-align:right;"|<big>מאמר ההשלמה</big>
 
 
|-
 
|-
|Completion is used when subtracting fractions or fractions of fractions from fractions or fractions of fractions, in the procedure of extraction of roots for instance
+
|childhood and youth [Ecclesiastes 11, 10]
|style="text-align:right;"|ההשלמה הוא כאשר יש בידינו שבורים ידועים, או שברי שברים ואנו צריכים לגרעם משברים, או שברי שברים אחרים, שיש בידינו ממיניהם וזה יקרה בהוצאת השרשים, כמו כפי שנכתב בפ' ו' מזה החלק
+
|style="text-align:right;"|ילדות ושחרות
 
|-
 
|-
|The need to find the completion of fractions from integer or from a larger fraction - adding the completion to the subtracted in the subtraction procedure, relying on the following principle:<br>
+
|listened and sought out [Ecclesiastes 12, 9]
:<math>\scriptstyle a-b=\left(a-c\right)+\left(c-b\right)</math>
+
|style="text-align:right;"|אזון וחקור
|style="text-align:right;"|ולפעמים השברי שברים הנגרעי' הם רבים מאשר יגרע מהם, אכן יש שם שברי רבים, או שלימים, למלאת די מחסורנו, לכן אנו צריכים לידע, כאשר נקח השלם, או השבר הגדול, להוציא ממנו שברי שברים אלו, שנדע בקלות הנשאר מהשלם, או מהשבר הגדול [ההוא, אחר שהוצאנו ממנו, שזה הוא מה שחסרים אלו השברי שברים מאחד שלם או שבר גדול] להוציא ממנו שברי שברים אלו שנדע בקלות הנשאר מהשלם או מהשבר הגדול להוציא ממנו שברי שברים אלו שנדע בקלות הנשאר מהשלם או מהשבר הגדול ההוא אחר שהוצאנו ממנו שזה הוא מה שחסרים אלו השברי ה' שברים מאחד שלם או שבר גדול וזוהי השלמתן לאחד
 
 
|-
 
|-
|
+
|knowledge and understanding [Daniel 1, 17]
|style="text-align:right;"|ואחר שנדע השלמתן לאחד, אם היו לנו שברי שברים ממינם, כאשר נגרע מהם, אלא שהיו מעט אשר בידינו, נחבר זאת ההשלמה עמהן והמחובר יהיה הנשאר
+
|style="text-align:right;"|במדע ובהשכל
 
|-
 
|-
|
+
|when the transgressors have been destroyed [Daniel 8, 23]
*<math>\scriptstyle\left[3+\frac{5}{9}+\left(\frac{3}{7}\sdot\frac{1}{9}\right)+\left(\frac{2}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]-\left[\frac{7}{9}+\left(\frac{5}{7}\sdot\frac{1}{9}\right)+\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]</math>
+
|style="text-align:right;"|להיתם פשע
|style="text-align:right;"|המשל רצינו לגרוע ז' תשיעיות וה' שביעיות תשיעית וג' רביעיות שביעית תשיעית מג' שלמים וה' תשיעיות ושלש שביעיות תשיעית
 
 
|-
 
|-
|
+
|to purify, and whiten [Daniel 11, 35]
|style="text-align:right;"|הנה להיות הג' רביעיות רב מהב', גם הה' שביעיות מהג', גם הז' תשיעיות מהה', נצטרך לקחת אחד שלם למלאת די מחסורינו וישארו ב' שלמים
+
|style="text-align:right;"|יתברר ויתלבן, מבררים ומלבנים
 
|-
 
|-
|The completion is the remainder from subtracting the given number from the whole
+
|weakened the hands [Ezra 4, 4]
|style="text-align:right;"|ולדעת כמה ישאר ממנו אחר קחתנו ממנו די ספקנו, נצטרך להשלימם לאחד שלם וההשלמה הוא השארית וזה ברור בטעם
+
|style="text-align:right;"|מרפים ידי
 
|-
 
|-
|
+
|Kohen who raises his hands [Mishnah, Berakhot 5:4]
|style="text-align:right;"|וזאת ההשלמה נחברנה עם השברים, אשר היו לנו ולא היה בהם די ספקנו, כי להם משפט הגאולה והמחובר הוא הנשאר
+
|style="text-align:right;"|כהן הנושא כפיו
 
|-
 
|-
|
+
|regard himself [Mishnah, Pesachim 10]
:<math>\scriptstyle{\color{blue}{\begin{align}&\scriptstyle
+
|style="text-align:right;"|ובראות עצמו
\left[3+\frac{5}{9}+\left(\frac{3}{7}\sdot\frac{1}{9}\right)+\left(\frac{2}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]-\left[\frac{7}{9}+\left(\frac{5}{7}\sdot\frac{1}{9}\right)+\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]\\&\scriptstyle=\left[\left(3-1\right)+\frac{5}{9}+\left(\frac{3}{7}\sdot\frac{1}{9}\right)+\left(\frac{2}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]+\left[1-\left[\frac{7}{9}+\left(\frac{5}{7}\sdot\frac{1}{9}\right)+\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]\right]\\&\scriptstyle=\left[2+\frac{5}{9}+\left(\frac{3}{7}\sdot\frac{1}{9}\right)+\left(\frac{2}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]+\left[\frac{1}{9}+\left(\frac{1}{7}\sdot\frac{1}{9}\right)+\left(\frac{1}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]\\&\scriptstyle=2+\frac{6}{9}+\left(\frac{4}{7}\sdot\frac{1}{9}\right)+\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\\\end{align}}}</math>
 
|style="text-align:right;"|ונאמר ג' רביעיות שביעית תשיעית בכמה יהיו שביעית תשיעית, ברביע אחד, נשים א' תחתיהם<br>
 
עוד נאמר הרי השלמנו [לשביעית תשיעית אחד וחמש שביעיות תשיעית שהיו לנו, הרי ו' ובכמה ישלומו לתשיעית אחד] לתשיעית אחד שלמה, באחד נשימנו תחתיו<br>
 
ונאמר הרי השלמנו לתשיעית שלמה וז' שיש בידינו, הרי כאן ח', בכמה ישלמו לשלם, באחד, נשים תחתיהם א&#x202B;'<br>
 
הרי לנו שנשאר מהאחד השלם תשיעית אחת ושביעית תשיעית ורביעית שביעית תשיעית ונחברם עם אשר בעליונה ויעלה שנשאר בידינו ב' שלימים וו' תשיעיות וד' רביעיות שביעית תשיעית [וג' רביעיות שביעית תשיעית] וכל זה ברור בטעם
 
 
|-
 
|-
|The written procedure of completion: writing the numerator of the complement under the fraction to be complete; e.g. 1 under ¾ to indicate that ¼ is its complement<br>
+
|understand foreign languages, in that foreign language [Mishnah, Megillah 2]
:<math>\scriptstyle{\color{blue}{1-\frac{3}{4}=\frac{4-3}{4}=\frac{1}{4}}}</math>
+
|style="text-align:right;"|ללעוזות בלעז
|style="text-align:right;"|וכדי להקל מעליך המעשה, אתן לך כלל כי לאחרון אשר לצד שמאל, אשר שם יתחיל הצורך, נשים תחתיו כדי השלמת מספר שבריו למורה אשר עליו שוה בשוה
 
 
|-
 
|-
|
+
|has not seen the luminaries in his life [Mishnah, Megillah 4]
|style="text-align:right;"|ר"ל הג' רביעיות בכמה ישלימו הג' לד', שהוא המורה אשר עליו, בא', נשימנו תחתיו ובכל האחרים, עד אשר נמצא מקום רב, אשר משם נקח האחד אשר הוצרכנו
+
|style="text-align:right;"|ומימיו לא ראה מאורות
 
|-
 
|-
|
+
|build him a house [Mishnah, Bava Metzia 8:9]
|style="text-align:right;"|לעולם נשים תחת מספר השברים כדי השלמתן למורה אשר עליהם חסר אחד והוא האחד אשר הושלם כבר באשר אחריו לצד שמאל
+
|style="text-align:right;"|להעמיד הבית
 
|-
 
|-
|Another solving method - similar to the subtraction of integers - borrowing one unit from a fraction of a higher type, and marking the loan with a dot as a reminder
+
|the time has come [Mishnah, Tamid 1]
|style="text-align:right;"|ואם היינו רוצים, היינו עושים כדרך שאנו עושי' בשלימי' ולא נצטרך להשלמה כלל
+
|style="text-align:right;"|הגיע עת
 
|-
 
|-
|
+
|a single handful does not satisfy a lion [Talmud Bavli, Berakhot, 3, 2]
:<math>\scriptstyle{\color{blue}{\begin{align}&\scriptstyle
+
|style="text-align:right;"|אין הקומץ משביע את הארי
\left[3+\frac{5}{9}+\left(\frac{3}{7}\sdot\frac{1}{9}\right)+\left(\frac{2}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]-\left[\frac{7}{9}+\left(\frac{5}{7}\sdot\frac{1}{9}\right)+\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]\\&\scriptstyle=\left[3+\frac{5}{9}+\left(\frac{3}{7}\sdot\frac{1}{9}\right)+\left[\left(\frac{4}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)+\left(\frac{2}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]\right]-\left[\frac{7}{9}+\left(\frac{6}{7}\sdot\frac{1}{9}\right)+\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]\\&\scriptstyle=\left[3+\frac{5}{9}+\left[\left(\frac{7}{7}\sdot\frac{1}{9}\right)+\left(\frac{3}{7}\sdot\frac{1}{9}\right)\right]+\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]-\left[\frac{8}{9}+\left(\frac{6}{7}\sdot\frac{1}{9}\right)\right]\\&\scriptstyle=\left[3+\left(\frac{9}{9}+\frac{5}{9}\right)+\left(\frac{4}{7}\sdot\frac{1}{9}\right)+\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]-\left(1+\frac{8}{9}\right)\\&\scriptstyle=3+\frac{6}{9}+\left(\frac{4}{7}\sdot\frac{1}{9}\right)+\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)-1\\&\scriptstyle=2+\frac{6}{9}+\left(\frac{4}{7}\sdot\frac{1}{9}\right)+\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\\\end{align}}}</math>
 
|style="text-align:right;"|והוא שנאמ' ברביעיות, שהוא אחרון, ג' מב' לא יוכלו לצאת כלו, הא' ממקום השביעיות אשר לפניו ונשים נקודה על מספר השביעיות אשר לנו לגרוע, כדי שנזכור להסירו עמהם בהגיענו שם, כדרך שאנו עושים בשלימים להוסיף על הנגרעים א' בשביל הנקודה ונסירה כלו ממינו<br>
 
ואחר שלוינו האחד ושמנו זה הנקודה, נקח בעד זה האחד כמורה שהוא ד' ונאמ' ד' וב' הם ו', נסיר מהם הג', ישארו ג&#x202B;'<br>
 
ונאמר ה' שביעיות ונקודה הם ו', לא נוכל להסירם מהג', נשים נקודה על הז' תשיעיות אשר לנו לגרוע ונאמר זה האחד הוא ז' כמורה וג', הרי י', נסיר מהם ו', ישארו ד&#x202B;'<br>
 
עוד נאמר ז' ונקודה הם שמונה, לא יצאו מה', נשים נקודה מחוץ במקום הראוי לשלימים, אם היו לנו שלימים ונאמר זה האחד הוא ט' כמורה וה', הרי י"ד, נסיר מהם ח', ישארו [ו&#x202B;',<br>
 
עוד נסיר הנקודה, שהוא א' שלם, מהג' שלימים, ישארו ב'] ב' שלימים והנה כל המעשה אחד והכל ברור בטעם ודי למבין
 
 
|-
 
|-
|
+
|True and Trustworthy [Talmud, Berakhot 12a, 23]
 
+
|style="text-align:right;"|אמת ואמונה
=== Factorization of Fractions ===
 
!style="text-align:right;"|<big>מאמר התכת השברים והרכבתן, או שתיהן יחד</big>
 
 
|-
 
|-
|Factorizing a composite denominator into two denominators
+
|these and those agree [Talmud, Berakhot 36a]
|style="text-align:right;"|לפי שלפעמים יצטרך להשיב מורים למורים אחרים בהשואה ובכלילת יופי להוציאם מן הכלל, ראיתי לבאר איך יותך מורה אחד לשני מורים
+
|style="text-align:right;"|אלו ואלו מודים
 
|-
 
|-
|
+
|do not accept authority [Talmud, Berakhot 48a]
*<math>\scriptstyle{\color{blue}{\frac{1}{6}=\frac{1}{2}\sdot\frac{1}{3}}}</math>
+
|style="text-align:right;"|בלתי מקבלים מרות
|style="text-align:right;"|וזהו כאשר המורה מורכב, כו', שהוא מורכב מב' וג', שנסירהו ונשים תחתיו ב'ג&#x202B;'
 
 
|-
 
|-
|
+
|that which is earlier is earlier, and that which is later is later [Talmud, Pesachim 6b]
*<math>\scriptstyle{\color{blue}{\frac{1}{9}=\frac{1}{3}\sdot\frac{1}{3}}}</math>
+
|style="text-align:right;"|להקדים את המוקדם ולאחר את המאוחר
|style="text-align:right;"|וכן בעד ט' ג' ג&#x202B;'
 
 
|-
 
|-
|
+
|the work of Heaven [Talmud, taanit 23a:3]
*<math>\scriptstyle{\color{blue}{\frac{1}{8}=\frac{1}{2}\sdot\frac{1}{4}}}</math>
+
|style="text-align:right;"|למלאכת השמים
|style="text-align:right;"|ובעד ח' ב' ד&#x202B;'
 
 
|-
 
|-
|The rule: the product of the denominators should be the original denominator<br>
+
|for the sake of Heaven [Talmud, Taanit 24a]
:<math>\scriptstyle\frac{1}{a\sdot b}=\frac{1}{a}\sdot\frac{1}{b}</math>
+
|style="text-align:right;"|לשום שמים
|style="text-align:right;"|זה הכלל שכפל המורים המושמים תחתיו יהיה כמו המוסר
 
 
|-
 
|-
|Sometimes the opposite operation is needed - a defactorization of the denominators - replacing them by their common denominator<br>
+
|chops down the saplings [Talmud, Chagigah 15a]
*<math>\scriptstyle{\color{blue}{\frac{1}{2}\sdot\frac{1}{4}=\frac{1}{8}}}</math>
+
|style="text-align:right;"|מקצץ בנטיעות
|style="text-align:right;"|ולפעמים נעשה להפך, שנשים הב' אחד, ר"ל שנשים הב' והד' ונשים תחתיו הח' וכן בכללן
 
 
|-
 
|-
|
+
|standing that includes no reverence [Talmud, Kiddushin 32b]
|style="text-align:right;"|וזהו כמו לשים האם תחת המורים, או המורים תחת האם
+
|style="text-align:right;"|קימה שאין בה הדור
 
|-
 
|-
|Other times all denominators are replaced by other divisors of their common denominator<br>
+
|to include Torah scholars [Talmud, Kiddushin 57a]
*<math>\scriptstyle{\color{blue}{\frac{1}{6}\sdot\frac{1}{4}=\frac{1}{3}\sdot\frac{1}{8}}}</math>
+
|style="text-align:right;"|את לרבות תלמידי חכמים
|style="text-align:right;"|ולפעמים נצטרך הכל, כגון שיש בידינו ו' ד' ואנו צריכים ג' ח&#x202B;'
 
 
|-
 
|-
|
+
|imparted flavor derived from imparted flavor [Talmud, Chulin 111b]
*<math>\scriptstyle{\color{blue}{\frac{1}{3}\sdot\frac{1}{4}=\frac{1}{6}\sdot\frac{1}{2}}}</math>
+
|style="text-align:right;"|בר נותן טעם
|style="text-align:right;"|או שיש בידינו ג' ד' ואנו צריכים ו' ב&#x202B;'
 
 
|-
 
|-
|The rule:<br>
+
|thanking and praising [Talmud, Niddah 31a]
*<math>\scriptstyle\frac{1}{a}\sdot\frac{1}{b}=\frac{1}{a\sdot b}</math>
+
|style="text-align:right;"|מודה ומשבח
|style="text-align:right;"|זה הכלל: אם אשר שמנו הוא א' במקום רבים, צריך שיהיה מספרו ככפל המורים זה בזה
 
 
|-
 
|-
|
+
|to prohibit or to permit [Jerusalem Talmud, Ketubot 11a]
*<math>\scriptstyle\frac{1}{a\sdot b}=\frac{1}{a}\sdot\frac{1}{b}</math>
+
|style="text-align:right;"|פעם לאסור ופעם להתיר
|style="text-align:right;"|ואם רבים תחת אחד, שיהיה כפלם זה בזה כמספר המוסר
 
 
|-
 
|-
|
+
|even though there is no explicit proof for this matter [Tosefta, Berakhot 1]
*<math>\scriptstyle a\sdot b=c\sdot d\longrightarrow \frac{1}{a}\sdot\frac{1}{b}=\frac{1}{c}\sdot\frac{1}{d}</math>
+
|style="text-align:right;"|ואם אין ראיה לדבר זכר לדבר
|style="text-align:right;"|ואם רבים במקום רבים, שיעלה כפל אלו זה בזה ודי למבין
 
 
|-
 
|-
|}
+
|her daughter and her sister [Tosefta, Yevamot 4, 5]
{|
+
|style="text-align:right;"|בתה ואחותה
 
|-
 
|-
|
+
|house be wide open [Pirkei Avot 1]
 
+
|style="text-align:right;"|בית פתוח לרוחה
== Additional Rules for Operations with Fractions ==
 
!style="text-align:right;"|<big>כלל קצר לכל פרקי השברים</big>
 
 
|-
 
|-
|
+
|Some ascended and some descended [Pirke de Rabbi Eliezer 35]
=== Addition ===
+
|style="text-align:right;"|אלו יורדים ואלו עולים
!style="text-align:right;"|<big>החבור</big>
 
 
|-
 
|-
|<math>\scriptstyle b>d\longrightarrow\frac{a}{b}+\frac{c}{d}=\frac{a+c+\frac{c\sdot\left(b-d\right)}{d}}{b}</math>
+
|Love upsets the natural order [Bereishit Rabbah 55]
|style="text-align:right;"|תכפול אשר מורהו, או מוריו, קטנים בתוספת מורי האחרת על מוריו ותחלקנו למורים הקטנים והיוצא בחילוק תחברנו לשברי שניהם חלקי המורה, או המורים הגדולים
+
|style="text-align:right;"|אהבה מקלקלת את השורה
 
|-
 
|-
|
+
|finger joints [Bamidbar Rabbah 11]
*If there is a remainder from the division of c·(b-d) by d: the denominators of this remainder are both b and d
+
|style="text-align:right;"|וקשרי אצבעות
|style="text-align:right;"|ואם בחלוקה הראשונה ישאר דבר, הוא חלק מכל המורים גדולים וקטנים
 
 
|-
 
|-
|
+
|as a pupil before his master [Bamidbar Rabbah 20]
*<math>\scriptstyle\frac{3}{7}+\frac{2}{3}</math>
+
|style="text-align:right;"|כתלמיד לפני רבו
|style="text-align:right;"|המשל אם אמרו חבר ג' שביעיות עם ב' שלישיות
 
 
|-
 
|-
|
+
|vessels of belief [Devarim Rabbah 8]
:<math>\scriptstyle{\color{blue}{\frac{3}{7}+\frac{2}{3}=\frac{3+2+\frac{2\sdot\left(7-3\right)}{3}}{7}=\frac{3+2+\frac{2\sdot4}{3}}{7}=\frac{3+2+\frac{8}{3}}{7}=\frac{3+2+2+\frac{2}{3}}{7}=\frac{7+\frac{2}{3}}{7}=1+\left(\frac{2}{3}\sdot\frac{1}{7}\right)}}</math>
+
|style="text-align:right;"|כלי אומנותה
|style="text-align:right;"|כפול הב' בד' יהיו ח', חלקם לג' ויצא בחלוק ב' וישארו ב' וב' אלו, שיצאו בחלוק, חברם עם הג' והב', שהם שברי שני המספרי' ויעלה הכל ז', חלקם לז', יעלה א' ולא נשאר דבר וזה האחד היוצא בחלוק הוא א' שלם ואם היה נשאר דבר, היה שביעיות והב' שנשארו בחלוקה ראשון הם שלישיות שביעית נמצא שעלה מחבורם אחד שלם ושתי שלשיות שביעית
 
 
|-
 
|-
|<math>\scriptstyle\frac{a}{b}+\frac{c}{d}=\frac{a+\frac{c\sdot b}{d}}{b}</math>
+
|tithing by guesswork [Pirkei Avot 1:16]
|style="text-align:right;"|[ו]אם תרצה, כפול שברי האחד במורי האחרת וחלקנו למורי עצמה והיוצא ב בחלוק חברם לשברי האחרת ויהיו חלקים ממורי האחרת
+
|style="text-align:right;"|לעשר אומדות
 
|-
 
|-
|
+
|to clarify the uncertain [Sefer ha-Mitzvot l'Rasag, Positive Commandments 97, 15]
*If there is a remainder from the division of c·b by d: the denominators of this remainder are both b and d
+
|style="text-align:right;"|לברר את המסופק
|style="text-align:right;"|ואם נשאר שום דבר בחלוקה הם חלקים ממורי שתיהן
 
 
|-
 
|-
|
+
|Whosoever wants it may come [Mishneh Torah, Torah Study 3]
:<math>\scriptstyle{\color{blue}{\frac{3}{7}+\frac{2}{3}=\frac{3+\frac{2\sdot7}{3}}{7}=\frac{3+\frac{14}{3}}{7}=\frac{3+4+\frac{2}{3}}{7}=\frac{7+\frac{2}{3}}{7}=1+\left(\frac{2}{3}\sdot\frac{1}{7}\right)}}</math>
+
|style="text-align:right;"|ויבא מי שירצה
|style="text-align:right;"|המשל כפול ב' בז', יעלו י"ד, חלקם לג', יצאו ד' וישארו ב', חבר הד' לג', שהם שברי האחרת, יעלו ז' והם ז' שביעי[ו]ת, שהם א' שלם והב', שנשארו בחלוקה, הם ב' שלשיות שביעית
 
 
|-
 
|-
|
+
|says: no, when it is no, and yea, when it is yea [Mishnah Torah, Human Dispositions 5]
|style="text-align:right;"|והכל עולה לדרך אחד
+
|style="text-align:right;"|אומרת על הן הן ועל לאו לאו
 
|-
 
|-
|
+
|the pillars having been erected [Mishnah Torah, Tefillin Mezuzah and Torah Scroll 6]
 
+
|style="text-align:right;"|ולהעמיד עמודים
=== Subtraction ===
 
!style="text-align:right;"|<big>החסרון</big>
 
 
|-
 
|-
|<math>\scriptstyle\frac{a}{b}-\frac{c}{d}=\frac{\frac{a\sdot d}{b}-c}{d}</math>
+
|change their appointed charge [Mishneh Torah, Blessing 10]
|style="text-align:right;"|כפול שברי הגדולה במורי הקטנה והעולה תחלקנו למורי הגדולה ומהיוצא בחילוק תחסר שברי הקטנה והעולה תחלקנו למורי הגדולה והנשאר הוא חלקים ממורי הקטנה והגדולה
+
|style="text-align:right;"|וישנו את תפקידם
 
|-
 
|-
|
+
|to build foundations [Mishneh Torah, Sabbath 1, 18]
*If there is a remainder from the division of a·d by b: the denominators of this remainder are both b and d
+
|style="text-align:right;"|לבנות יסודות
|style="text-align:right;"|[ואם נשאר דבר בחלוקה ראשונה, הם חלקים ממורי הקטנה והגדולה]
 
 
|-
 
|-
|
+
|the law requires that [Mishneh Torah, Divorce 2]
*<math>\scriptstyle\frac{3}{4}-\frac{2}{8}</math>
+
|style="text-align:right;"|היה הדין נותן ש
|style="text-align:right;"|המשל רצינו לחסר ב' שמיניות מג' רביעיות
 
 
|-
 
|-
|
+
|all kinds of seeds [Mishneh Torah, Diverse Species 1, 8]
:<math>\scriptstyle{\color{blue}{\frac{3}{4}-\frac{2}{8}=\frac{\frac{3\sdot8}{4}-2}{8}=\frac{\frac{24}{4}-2}{8}=\frac{6-2}{8}=\frac{4}{8}}}</math>
+
|style="text-align:right;"|וכל מיני זרעונים
|style="text-align:right;"|נכפול הג' בח' ויעלו כ"ד, נחלקם לד', יצא בחילוק ו', נסיר מהם הב', ישארו ד' והם ד' שמיניות והוא הנשאר
 
 
|-
 
|-
|
+
|known and heralded [Mishneh Torah, Repentance 4]
|style="text-align:right;"|ואם בחלוקה הראשונה היה נשאר שום דבר, היה רביעיות שמיניות
+
|style="text-align:right;"|ידועים ומפורסמים
 
|-
 
|-
|
+
|drachmas or zuzim [Maimonides on Mishnah Peah 8:5]
 
+
|style="text-align:right;"|זוזים ודרכמונים
=== Multiplication ===
 
!style="text-align:right;"|<big>ההכאה</big>
 
 
|-
 
|-
|<math>\scriptstyle\frac{a}{b}\times\frac{c}{d}=\frac{a\sdot c}{b}\sdot\frac{1}{d}</math>
+
|defective comprehension [Maimonides, Guide for the Perplexed, 1, 36, 5]
|style="text-align:right;"|כבר נרמז שאין צריך כי אם לכפול השברים בשברים והעולה הוא חלקים מכל המורים
+
|style="text-align:right;"|קוצר השגתי
 
|-
 
|-
|
+
|necessary or impossible [Maimonides, Guide for the Perplexed, 2, 14, 5]
*<math>\scriptstyle\frac{4}{7}\times\frac{5}{6}</math>
+
|style="text-align:right;"|ולמחוייב ולנמנע
|style="text-align:right;"|המשל רצינו לכפול ד' שביעיות בה' שישיות
 
 
|-
 
|-
|
+
|pin upon which everything hangs [Maimonides, Guide for the Perplexed, 3, intro. 4]
:<math>\scriptstyle{\color{blue}{\frac{4}{7}\times\frac{5}{6}=\frac{4\sdot5}{6}\sdot\frac{1}{7}=\frac{20}{6}\sdot\frac{1}{7}=\frac{3}{7}+\left(\frac{2}{6}\sdot\frac{1}{7}\right)}}</math>
+
|style="text-align:right;"|יתד שהכל תלוי בו
|style="text-align:right;"|הכה ד' בה' ויעלה כ' והם כ' שישיות שביעית וחלקם עליהם ויעלה ג' שביעיות וב' שישיות שביעית
 
 
|-
 
|-
|
+
|that relation between you and Him [Maimonides, Guide for the Perplexed, 3, 51, 6]
=== Division ===
+
|style="text-align:right;"|היחס אשר בינו לבינה
!style="text-align:right;"|<big>החלוק</big>
 
 
|-
 
|-
|<math>\scriptstyle\frac{a}{b}\div\frac{c}{d}=\frac{a\sdot d}{b}\sdot\frac{1}{c}</math>
+
|set us apart from those who go astray [Siddur Sefarad, Ashrei]
|style="text-align:right;"|כפול שברי הגדולה במורי הקטנה והעולה חלקנו למורי הגדולה ושברי הקטנה, בקחתך אותם למורים
+
|style="text-align:right;"|הבדילו מן התועים
 
|-
 
|-
|
+
|delightful sapling [Siddur, Purim, Shabbat Zachor 56]
*<math>\scriptstyle\frac{6}{7}\div\frac{2}{5}</math>
+
|style="text-align:right;"|נטע נעמן
|style="text-align:right;"|המשל רצינו לחלק ו' שביעיות על ב' חמישיות
 
 
|-
 
|-
|
+
|How many degrees of good [Pesach Haggadah, Magid, Dayenu]
:<math>\scriptstyle{\color{blue}{\frac{6}{7}\div\frac{2}{5}=\frac{6\sdot5}{2}\sdot\frac{1}{7}=\frac{30}{2}\sdot\frac{1}{7}=2+\frac{1}{7}}}</math>
+
|style="text-align:right;"|כמה מעלות טובות
|style="text-align:right;"|כפול ו' בה' ויעלה ל' והם חצאי שביעיות, חלקם עליהם, יעלה ב' שלימים ושביעית אחת
 
 
|-
 
|-
|
+
|to render halachic decisions [Sefer ha-Midot, Codifiers of the Law]
=== Proportions ===
+
|style="text-align:right;"|ולהורות הוראות
!style="text-align:right;"|<big>הערכים</big>
 
 
|-
 
|-
|<math>\scriptstyle\frac{a_1}{b_2}:\frac{a_2}{b_2}=\frac{a_3}{b_3}:X\longrightarrow X=\frac{a_2\sdot a_3\sdot b_1}{a_1}\sdot\frac{1}{b_2}\sdot\frac{1}{b_3}</math>
+
|to show strength [Ibn Ezra on Genesis 10:8]
|style="text-align:right;"|כפול שברי השנית בשברי השלישית והעולה כפול אותו במורה הראשונה והעולה הם חלקים משברי הראשונה ומורי השנית והשלישית
+
|style="text-align:right;"|להראות גבורות
 
|-
 
|-
|
+
|lying in an out of the way corner [Rabbeinu Bahya, Devarim 33:4]
*<math>\scriptstyle\frac{3}{7}:\frac{8}{9}=\frac{4}{5}:X</math>
+
|style="text-align:right;"|מונח בקרן זוית
|style="text-align:right;"|המשל רצינו לידע אם ג' שביעיות שוים ח' תשיעיות, ד' חמישיות כמה הם שוות
 
 
|-
 
|-
|
+
|ruling, self-glorification [Duties of the Heart, Sixth Treatise on Submission 10]
:<math>\scriptstyle{\color{blue}{X=\frac{8\sdot4\sdot7}{3}\sdot\frac{1}{9}\sdot\frac{1}{5}=\frac{32\sdot7}{3}\sdot\frac{1}{9}\sdot\frac{1}{5}=\frac{224}{3}\sdot\frac{1}{9}\sdot\frac{1}{5}=1+\frac{3}{5}+\left(\frac{2}{9}\sdot\frac{1}{5}\right)+\left(\frac{2}{3}\sdot\frac{1}{9}\sdot\frac{1}{5}\right)}}</math>
+
|style="text-align:right;"|השררה והגדולה
|style="text-align:right;"|נכפול הח' בד' ויעלה ל"ב, נכפול בז' יעלו 224 והם שלישיות תשיעית חמישית ונחלקם עליהם ויצא א' שלם וג' חמישיות וב' תשיעיות חמישית וב' שלישיות תשיעית חמישית
 
 
|-
 
|-
|
+
|left no manner of doubt [Sefer Kuzari 2]
 
+
|style="text-align:right;"|והניח את הספק
=== Roots ===
 
!style="text-align:right;"|<big>השרשים</big>
 
 
|-
 
|-
|<math>\scriptstyle\sqrt{\frac{a}{b}}=\frac{\sqrt{a\sdot b}}{b}</math>
+
|with the help of the One who dwells in the [heavenly] abodes [Ralbag on Chronicles II 36:22]
|style="text-align:right;"|כפול שברי המספר במוריו ומהעולה נוציא שרשו, כמו שכתו' למעלה ויהיה חלקים ממוריו
+
|style="text-align:right;"|בעזרת שוכן מעונים
 
|-
 
|-
|
+
|It is whole and complete
*<math>\scriptstyle\sqrt{\frac{2}{8}}</math>
+
|style="text-align:right;"|תם ונשלם
|style="text-align:right;"|המשל רצינו לדעת שרש ב' שמיניות
 
 
|-
 
|-
|
+
|Glory to God, the Creator of the world
:<math>\scriptstyle{\color{blue}{\sqrt{\frac{2}{8}}=\frac{\sqrt{2\sdot8}}{8}=\frac{\sqrt{16}}{8}=\frac{4}{8}}}</math>
+
|style="text-align:right;"|ת"ל בורא עולם
|style="text-align:right;"|נכפול ב' בח', יעלו י"ו, נקח שרשו והוא ד' והם ד' שמיניות והוא השרש
 
 
|-
 
|-
|
+
|Knower of the truth
=== Additional rule for division of fractions ===
+
|style="text-align:right;"|יודע האמת
 
 
|style="text-align:right;"|ולקצר עוד מעשה החלוק ולהשיב מיד תשובה נכונה לכל שואל נאיתרו לתחבל ולהחזירו להכאה, בהפוך הקטנה השברים למורים והמורים לשברים
 
 
|-
 
|-
|
+
|Knower of the hidden
*<math>\scriptstyle\frac{6}{7}\div\frac{2}{5}</math>
+
|style="text-align:right;"|יודע הנסתרות
|style="text-align:right;"|המשל אם אמרו לך במשלינו הראשון רצינו לחלק ב' [ו'] שביעיות על ב' חמישיות
 
 
|-
 
|-
|
+
|prayer leader
:<math>\scriptstyle{\color{blue}{\frac{6}{7}\div\frac{2}{5}=\frac{6}{7}\sdot\frac{5}{2}}}</math>
+
|style="text-align:right;"|ש'צ'
|style="text-align:right;"|תשיב מיד שהם ו' שביעיות מה' חצאין והכה אותן והרי הוא כמעשה הראשון בעינו
 
 
|-
 
|-
 
|
 
|
=== Additional rule for proportions of fractions ===
+
|style="text-align:right;"|ב"ה י"ת
 
 
|style="text-align:right;"|וכן בערכים: הפוך הראשונה ותחזור להכאה
 
 
|-
 
|-
 
|
 
|
*<math>\scriptstyle\frac{3}{7}:\frac{8}{9}=\frac{4}{5}:X</math>
+
|style="text-align:right;"|יעקב בן החכם ר' יצחק קנפנטון, ר' יעקב קפנתון ז"ל
|style="text-align:right;"|פי' במשלנו כאשר אמרנו אם ג' ת שביעיות שוים ח' תשיעיות, ד' חמישיות כמה הם שוים
 
 
|-
 
|-
 
|
 
|
:<math>\scriptstyle{\color{blue}{X=\frac{3}{7}\sdot\frac{8}{9}\sdot\frac{4}{5}}}</math>
+
|style="text-align:right;"|ר' יואל ן' דאוד
|style="text-align:right;"|תשיב מיד שהם ז' שלישיות מח' תשיעיות מד' חמישיות והכה אותן והרי הוא כמעשה הראשון
 
 
|-
 
|-
 
|
 
|
|style="text-align:right;"|תם ונשלם ת"ל בורא עולם
+
|style="text-align:right;"|אוקלידס
|-
 
 
|}
 
|}
 +
</div></div>
  
= Appendix: Bibliography =
+
== Appendix II: Bibliography ==
 
'''Jacob Canpanṭon'''<br>
 
'''Jacob Canpanṭon'''<br>
 
Castile, Spain, ca. 1430<br>
 
Castile, Spain, ca. 1430<br>

Latest revision as of 05:00, 23 August 2022


ספר הנקרא בר נותן טעם
לחכם ר' יעקב קפנתון ז"ל


Contents

Prologue

בעיני נכבדת מאשר יקרת
אהבת נפש חשקתיך ואני אהבתיך‫[note 1]
יפה פה תאר [ונחמד] מראה החבר הנאה
ר' יואל ן' דאוד
כל בניינה בנוי לתלפיות[note 2] אשר נפשך חשקה בחכמת הלימודיות
מרחקת שוא ודבר כזב[note 3] תפל והתול אין בה עקש ופתלתול[note 4]
מעוות לא תוכל לתקן וחסרון[note 5] לא תמלא צדק תצדיק ויושר תעלה
אומרת על הן הן ועל לאו לאו תחת לשונה דבש וחלב ‫[note 6]
חכמת המספר בתה ואחותה ולהיות יסודה וכלי אומנותה
קצור קצר לגלות מצפוניה וזה כמה כתבתי עליה
ולהטעים דרכיה דרכי נועם ‫[note 7]
בלשון עם נועז‫[note 8]
ללעוזות בלעז‫[note 9]
בלי דופי ולעז
החזיקתני ותאצילני להשיבו בלשון עברי ויען לא ישרה נפשך ללמוד בלשון נכרי
ומשלים מבוארים בהרחבת דברים
ולתת את שאלתך ראיתי למלאת את תאותך
להתעסק בידיעות וחוכמות ואם טרדות הזמן בלתי מסכימות
ולכל בהם חיי רוח נפש חיה יחיו כי באשר עליהם יחיו
והיו כלא היו ולכל שאר ידיעות המושכלות יהיו
ונפשם משכלת יחיו אמרתי אשר מן האנשים חיו
יעזרם אלהים צור בו חציו חסיו‫[note 10]
ואליהם אהלים ישליו‫[note 11]
ושנות מספר יאתיו‫[note 12]
רזה ודלה ואם ידעתי חכמת המספר בזויה ונקלה
מיודעים ואלופים בעיני קצת מתפלספים
בחכמות הבנויות על האיפשר
חשקה נפשם ועמהם לבם נקשר
[1]וכל לומדם בעיניהם יכשר
ישבחוהו לאומים ותומכם מאושר
ולהיות על שתי הסעיפים פוצח [פוסח]‫[2][note 13] בהם יוכל להשתרר ולנצח
ללכת כרצונו אנה ואנה‫[note 14]
וכמקשה המלונה כאשר בתוך המים ינוד הקנה‫[note 15]
פעם לאסור ופעם להתיר יניע בראש ובשפה יפטיר
ולא יעמוד איש בפניהן בחכמת הטבע ודומיהן
ובלומדי אזן [לא יפתחו]‫[3] לשמוע כלימודים לכן קצה נפשם בכל חכמת הלימודיות
להן יקראו זמן הנערות
ולהם יתנו זמן הבחרות
ילדות ושחרות
אשר הם בלתי מקבלים מרות ועריהן יגזור לבם בשרירות
שוים בכל נושאיהם להיותם בעיניהם
כאלו דומים לעצמים
שוים בכל ומפורסמים
לא במקרים בפחות וביתר ובלתי מסכימים
ועל זולתו לועגו ויתלוצצו לכן בחרו באשר חפצו
לאיפשר החזיקו יד אם קרוב ואם רחוק כי יהיה להם לשחוק
‫[כי יהיה להם לשחוק]‫[4] ולמחוייב ולנמנע לא ישימו חוק
ובתבונתם אין מספר בכל חכמתם לא יסופר
אשר ימין ושמאל אין לנטות כי אין עסקם בפשוטות
ומה יתרון לבעל הלשון[note 16] מושגות בבבת עין ואישון
במדע ובהשכל מסויימים ואם כה יאמרו חכמים
והאלהים עשה אותם ישר‫[note 17] מה יעשו הסכלים אשר לא ידעו אי זה יכשר
והמה בקשו חשבונות רבים
הבל מרבים מחסרים ומחברים
אם מעטים ואם רבים
כמה מעלות טובות אחדים ועשרות
למאות לאלפים ולרבבות מאליפות מרובבות[note 18]
מדרגה תחת מדרגה חונים מי[נים] ממינים שונים
אלו יורדים ואלו עולים דגלים דגלים שבילים שבילים
[5]אשר בחפצם מתנודדים ואליהם רזום ירמזון על ידי דברים נעים ונדים
וברצונם יעקרו שוד וישנו את תפקידם יען באפם יגזלו מאנשי ה‫[ה]‫[6]ודם ומאודם
ומהם בפולי ועדשים וכל מיני זרעונים מהם עושים בזוזים ודרכמונים
ולעשוק מסחרים להונות חברים
אלו ואלו מונים כמוכרים כקונים
זה עולה וזה יוריד זה ישכיב וזה יחריד
זה ישפיל וזה ירים‫[note 19]
זה יגנוב הדינרים
וזה יאכל ב' ג' גרגרים[note 20]
ירא וחרד על דברו ואשר על יי שברו
‫[מהדק]‫[7] מהמדקדקים להחזיק ולהקים
להיתם פשע ולכלות אשם להרים מכשול לכל יחטא ואשם
מונה ביתדות וקשרי אצבעות נזהר מהיות מקצץ בנטיעות
ובראות עצמו איש אמונה
ואת פושעים לא מנה
מודה ומשבח לאלוהי מעונה
אשר לו אצל תבונה
וחלק לו בבינה
הבדילו מן התועים ומעשה ידיהו כוננה‫[note 21]
והיו ידיו אמונה
 
הם ילכו איש אל אשר לבו פונה
וכל אחד את רעהו יונה
והוא שומר דרכי אל ומי כמוהו מונה‫[note 22]
 
מחזיק במצותיו
ואל משפטיו וחקותיו
קורץ בעיניו
מולל ברגליו
מורה באצבעותיו[note 23]
ורוע מזלו על זה בחר מעוני שכלו
ולהתמיד צדקו הלא טוב לו למלאת ספקו
לבל יחליף וימיר
ולא יאכל גרגרים מראש אמיר[note 24]
לחלוק לחקוק אותו בלוח ברזל בצפורן שמיר
לנצח יוכל להבחן במופתיו אהל בל יצען בל יסע יתדותיו‫[note 25]
בכל מיני אזון וחקור יתברר ויתלבן בבחינה [ובכור]‫[8] ובקור
הן כל אלה הדברי' מחלישים דעתי
ומכבים אש גחלתי
מרפים ידי לשמור משמרתי
אהבה מקלקלת את השורה וחבתן על כולם גברה
[9]לכן אני הקטן יעקב בן החכם ר' יצחק קנפנטון
הלא היא גדר הענוה ז"ל פרצתי חומה נשגבה
עד שקמתי בפניהם קימה שאין בה הדור פרץ על פני פרץ בלי סדור
כי לאמת לבדה אחלוק הכבוד ארבה המשרה
להעשר סידורה
כמשפט הבכורה‫[note 26]
 
וחברתי קיצור זה בדרכי המספר וטעמיהם
 
ובר נותן טעם קראתיו
כי מספר החכמים הברותיו
וטוב טעמיהם מלאתיו
כי לא באתי להראות גבורות ואם ידע יודע הנסתרות
כי לא מלבי אראה נפלאות ונוראות ולהורות הוראות
כאיש אשר לא שומע ‫[יודע]‫[10] ומימיו לא ראה מאורות אבל כמקטלט שבלים‫[note 27] ואורות
ואם מדעתי אמציא המצאות
אפי' תיבה או אות
הלא הנה טעיות
ידועים ומפורסמים הלא גם הם חכמים הרשומים
‫[...]קו יענו כי יתנו עידיהם ואותי יצדיקו
וטענות התנצלותי ישמיעו לרבים אותם יודיעו
וגם חוכמות שרותיה תענינה ויאמרו אמת ואמונה
כי לא מחכמה שאל על זאת הקלה
ולא בכוונה ממכוונה לבקשת מעלה
עזב את הגבירות מרבות השררה והגדולה
ורבות בנות עשו חיל[note 28] ופירות אשר להם סנסנים ופארות
ופשט ידו במלאכה כמבזה סורה וגזלה
גלמודה ושכולה
מונח בקרן זוית עצורה ועזובה דורש אין לה
ומתוך היחס אשר בינו לבינה כי מקוצר רוח דעת ותבונה
והניח את הספק צפון ונעלם אחז את [...] המפורסם ובריא אולם‫[note 29]
כי אין לאל ידו לברר את המסופק ולעשר אומדות והוא גם הוא יעיד על עצמו ולא ראה להודות
מבררים ומלבנים ב[.]ת שכלנו כמונו היום אומדים ‫[11]מדעתנו
וטענות התנצלותי זה חזקות ומוחזקות בידיהם אחשוב זאת היתה כוונתי בעיניהם
עזרם ומגינם ואת יסוד בע בניינם
ומעט הבנתי אשר הוא קוצר השגתי
לא נקטף עודנו באבו‫[note 30] יתד שהכל תלוי בו
תקוע במקום נאמן חזק ומוחזק נטע נעמן
אכן יודע האמת ידע כי כוונתי לשום שמים
לפתוח פתח בריח ודלתים[note 31]
ולהציע הצעות ולהבין הבנות למלאכת השמים
כי להקדים את המוקדם ולאחר את המאוחר ולא ביניהם בין קל וחומר אבחן ואבאר
לבנות יסודות ולהעמיד עמודים חזקים ונכונים
במיעוט שכלי המפורסם להעמיד הבית והחדרים אשר עליהם נשענים
וזה אחל לעשות בעזרת שוכן מרומים מעונים

Introduction: The Positional Decimal System

The numerals [...] in the books of the Gentile sages are these [corresponding to Hebrew letters]: הרשמים ה[...] במספר בספרי חכמי הגוים הם אלו
א 1
ב 2
ג 3
ד 4
ה 5
ו 6
ז 7
ח 8
ט 9
סיפרא 0
The last numeral is called Sifra [= zero], which is not a number. וזה הרושם האחרון הנקרא סיפרא אינננו מספר
The meaning of the decimal places: Each rank is given in this science its numerical role, as will be explained, to indicate the numerical ranks that follow it. אכן הונח בזאת החכמה בכל מעלה ומעלה חלקה ממספר כמו שיתבאר כדי להראות מעלות המספרים הבאים אחריה
These ranks start from the right. ואלו המעלות מתחילות מהימין
Each rank to the left is ten times the preceding [rank]. וכל מעלה העולה היא לצד שמאל עולה עשר ידות מאשר לפניה
The written ranks [= decimal places]
  • I.e. the numeral that is in the first rank are the units.
ר"ל שרושם המספר אשר במעלה הא' יהיו אחדים
  • In the second - the tens.
ובשנית עשרות
  • In the third - the hundreds.
ובג' מאות
  • In the fourth - the thousands
ובד' אלפים
And so on, so that these numerals: 30678002 are thirty thousands of thousands that are called millions, six hundred and seventy-eight thousand, and two. וכן לעולם בענין שרשמים אלו 30678002 עולים שלשים אלפי אלפים הנקראים חשבונות[12]ושש מאות ושבעים ושמונת אלפים ושנים
The significance of the zeros as a place holders: Since there are no tens and hundreds, here, as well as units of millions, the zeros are written instead of them, to indicate the rest of the numerals, because without them these numerals would indicat thirty-six thousand, seven hundred, and eighty-two [36782]. Deduce from this. ולפי שאין בכאן עשרות ומאות גם אחדי חשבונות הושמו הספרות במקומם להורות מעלות שאר המספרים כי זולתם לא היו עולים רשמים אלו כי אם שלשים ושש אלף ושבע מאות ושמונים ושנים והקש על זה

Table of Contents

I have divided this book into two sections: וחלקתי הספר לב' חלקים
The first section of integers החלק הא' בשלמים
The second section on fractions and in it six chapters, including an introduction, in which there are three parts. החלק הב' [בשברים]‫[13] בשברים ובו ששה פרקים ובו הקדמה ובה ג' שערי‫'
The first part on decomposing to a fraction The first chapter on addition
The second part on multiplication [= fractions of fractions] The first chapter on subtraction
The third part on expansion to a common denominator The third chapter on multiplication
In it also are six chapters on fractions The fourth chapter on division
The first chapter on addition The fifth chapter on proportions
The five remaining chapters are as stated on integers The sixth chapter on roots
השער הראשון בפריטה הפרק הא' בחבור
השער הב' בהכאה הפרק הב' בחסרון
השער הג' בהשואה הפרק הג' בכפל
ועוד בו ששה פרקים בשברי‫' הפרק הד' בחילוק
הפרק הראשון בחבור וכן הפרק הה' בערכים
הפרקים הה' הנשארים הם כנזכרים [בשלמים‫] הפרק הו' בשרשים
Discussion on conversion and summing. ‫[מאמ' ההמרה גם מאמר האחדות‫]‫[14]
There is in it also a rule that includes matters that are useful for all chapters of the fractions. ועוד בו כלל אחד כולל עניינים מועילים לכל פרקי השברים

Section One: Integers

החלק הראשון בשלמים

Chapter One: Addition

הפרק הא' בחיבור

Written Addition

Description of the Procedure

When you wish to sum two or three numbers or more, set the rows of the digits one beneath the other, each rank beneath its corresponding, i.e. the units under the units, the tens under the tens, the hundreds under the hundreds, and so on. כאשר תרצה לחבר ב' או ג' מספרים או יותר תשים שורות רשמי המספרים זו תחת זו כל מעלה תחת בת גילה ר"ל האחדים תחת האחדים העשרות תחת [15]העשרות והמאות תחת המאות וכן כולם
Draw a line [beneath] all the rows. ותשרט קו דיו על כל השורות
Then, sum all the numbers that are in the first ranks in all the rows. ותחבר כל המספרים הנמצאים בכל השורות במעלה ראשונה
  • If you do not find there any number, but zeros, put a zero in the rank of the units.
ואם לא תמצא שם מספר כי אם סיפרות תשים אתחת הקו במקום מעלת האחדים סיפרא
  • If you find a number or numbers with zeros, do not [pay attention to] the zeros and sum the numbers that are in that rank.
ואם תמצא מספר או מספרים עם סיפרות לא תחוש לסיפרותאות ותחבר [המספרים] הנמצאים במעלה ההיא
  • If the [interim] result is ten or tens, without units, put a zero beneath the line, in the place of that rank, and keep the ten, or tens, as units to sum them with what you find in the succeeding rank.
ואם יעלה לעשר או עשרות מצומצמות בלא אחדים שים סיפרא תחת הקו במקום אותה המעלה ושמור העשר או העשרות והיו לאחדים בידך לחברם עם אשר תמצא במעלה הבאה אחריה
In order that you will not forget them, put a dot or dots on top of the number in the succeeding rank, as the number of the reserved tens that are kept as units.
וכדי שלא תשכחם שים על ראש מספר המעלה הבאה אחריה נקודה או נקודות כמספר העשרות השמורים אשר הם לאחדים בידך
  • If the [interim] result is ten or tens and units, put the number of the units beneath the line, in the place of that rank, and keep the ten, or tens, as units to sum them with what you find in the succeeding rank.
ואם יעלה לעשר או עשרות ואחדים שים מספר האחדים ההם תחת הקו במקום אותה המעלה ושמור העשר או העשרות לאחדים לחברם עד אשר תמצא במעלה הבאה אחריה
If you do not find in the succeeding rank but zeros, do not pay attention to them, since you have a [reserved] ten, or tens, to put as units in that rank. Put these tens as units beneath the line corresponding to that rank.
ואם למעלה הבאה אחריה לא תמצא כי אם סיפרות לא תחוש להם אחרי היות בידך עשר או עשרות לשום במעלה ההיא לאחדים ותשים העשרות ההם לאחדים תחת הקו כנגד המעלה ההיא
  • If you do not have a ten, or tens, and you find in that rank only zeros, put beneath the line a zero corresponding to that rank, as mentioned for the first rank, when there is no number there but zeros, for there is one rule to this.
אכן אם לא היו בידך עשר או עשרות ומצאת במעלה ההיא כולה סיפרות תשים תחת הקו כנגד אותה המעלה סיפרא אחת כאשר הזכרתי במעלה הראשונה כשאין שם מספר כי אם סיפרות כי משפט אחד להנה
Always proceed so that the tens that are resulted in a certain rank are units to be summed in the succeeding rank, or to be placed in [that rank] if you do not find there any number, whether all are zeros, or it is the end of the number. Do so always until [the digits] are complete. וכן תעשה לעולם שהעשרות [16]שעלו בידך משום מעלה יהיו לאחדים בידך לחברם עם אשר תמצא במעלה שאחריה או לשומם במקומה אם לא מצאת שם מספר בין שהיה כלה סיפרות או שכלה כבר המספר ועשה כן לעולם עד כלותם
What is obtained under the line is the result of the addition. והיוצא תחת הקו הוא העולה מהחיבור ההוא

Example

המשל
  • You wish to sum up two hundred and five thousand and five with three hundred ninety thousand and five and with six hundred twenty five thousand and two.
\scriptstyle205003+390005+625002
רצית לחבר מאתים וחמשת אלפים ושלשה עם שלש מאות ותשעים אלף וחמשה ועם שש מאות ועשרים וחמשת אלפים ושנים
Set the digits as follows:
שים הצורות ככה
 205003
 390005
 625002
1220010
[Illustration of the procedure:]
205003 \scriptstyle\xrightarrow{{\color{red}{3+5+2=8+2}}={\color{blue}{10}}} 205003 \scriptstyle\xrightarrow{{\color{red}{0+0+1}}={\color{blue}{1}}} 205003 \scriptstyle\xrightarrow{{\color{red}{0+0+0}}={\color{blue}{0}}} 205003
390005 390005 390005 390005
625002 625002 625002 625002
     0     10    010
\scriptstyle\xrightarrow{{\color{red}{5+0+5}}={\color{blue}{10}}} 205003 \scriptstyle\xrightarrow{{\color{red}{1+9+2}}={\color{blue}{12}}} ֹ205003 \scriptstyle\xrightarrow{{\color{red}{1+2+3+6}}={\color{blue}{12}}}  205003
390005 390005  390005
625002 625002  625002
  0010 20010 1220010
  • First rank: Say: 3 and 5 are 8, plus 2 they are 10.
\scriptstyle{\color{blue}{3+5+2=8+2=10}}
ותאמ' 3 ו 5 הם 8 ו 2 הם 10
Since you do not have units, but a whole ten, put 0 beneath the line corresponding to the first rank.
ואחר שאין לך אחדי' כי עם עשר שלם תשיבם 0 תחת הקו כנגד המעלה הראשונה
Keep the ten, as one, for the succeeding rank, and put one dot above it so it will not be forgotten.
ותשמר העשר לאחד למעלה הבאה אחריה ותשים נקדה אחת עליה שלא ישכח
  • Second rank: Since you do not find there any number, and you have that ten, do not pay attention to these zeros, put one under the line corresponding to the second rank, for the ten that you reserved as one.
ואחר שלא מצאת שם מספר כי אם סיפרות ויש בידך עשר זה לא תחוש לסיפרות ההן ותשים [כנגד המעלה ההיא השנית][17] נקודה אחת תחת הקו בעד העשר אשר היה בידך לאחד
  • Third rank: Go to the third rank and since all of it are zeros and you do not have any reserved number, put one zero beneath the line corresponding to the third rank.
ולך אל המעלה השלישית ואחרי היות כלה סיפרות ויש בידך בלי מספר ואין בידך מאומה שים סיפרא אחת תחת הקו כנגד אותה המעלה השלישית
  • Fourth rank: Go to the fourth rank and you will find there numbers and a zero. Since there is a number or numbers there, do not pay attention to the zero or the zeros that are there.
ולך אל הרביעית ותמצא שם מספרים וסיפרא ואחר היות שם מספר או מספרים אל תחוש לסיפרא או סיפרות שיהיו שם
Say: 5 and 5 are 10.
\scriptstyle{\color{blue}{5+5=10}}
ותאמר 5 ו5 הם 10
Put 0 beneath the line, corresponding to that rank, as you did in the first rank.
ותשים 0 תחת הקו כנגד אותה המעלה כאשר עשית במעלה הראשונה
Keep the 10 as one to sum it with what you find in the fifth succeeding rank and put one dot above it so it will not be forgotten.
ותשמור ה ה10 לאחד לחבירו עם אשר תמצא במעלה הה' הבאה אחריה ותשים עליה נקודה אחת בעדו שלא ישרך ישכח
  • Fifth rank: Say: one for the reserved and 9 are 10, plus 2 are 12.
\scriptstyle{\color{blue}{1+9+2=10+2=12}}
ותאמ' אחד על השמור [18]ו9 הם 10 ו2 הם 12
Put the two units beneath the line, keep one for the ten, and put one dot above the following rank.
שים השנים האחדים תחת הקו ושמור אחד על העשר ושים נקדה אחת על המעלה הבאה אחריה
  • Sixth rank: Say: one for the reserved and 2 are 3, plus 3 are 6, plus 6 are 12.
\scriptstyle{\color{blue}{1+2+3+6=3+3+6=6+6=12}}
ותאמר אחד בעבור השמור ו2 הם 3 ו3 הם 6 ו6 הם 12
Put the two units beneath the line, corresponding to that rank, and keep the ten as one in the succeeding rank.
שים השנים האחדים תחת הקו כנגד המדרגה ההיא והעשר יהיו בידך לאחד למדרגה הבאה אחריה
Since the numbers are complete [and there is no more rank there] put that ten as 1 in the seventh rank, which is the succeeding rank.
ואחר שכבר כלה המספר ואין ש[.....] מעלה שים העשר ההוא לא' במעלה הז' שהיא המעלה הבאה אחריה
Hence, you have already summed them and their sum is [1220010]. וכבר חברת אותם ועלה חיבורם

Check

If you wish to examine whether you did it rightly and correctly with no error ואם תרצה להבחין אם עשית כדין וכשורה בלי טעות
  • Subtraction: subtract the first row from the result, subtract the second [row] from the remainder and so on, until only one [row] is left to subtract and the remainder then is equal to [the row] that you did not subtract.
חסר מזה העולה השורה האחת ומהנשאר תחסר השנית וכן כולם עד אשר לא תשאר מלחסר כי אם אחת והנשאר בעת ההיא יהיה שוה לאשר לא חסרת
As appears in the following diagram:
כאשר בא בזאת הצורה
  • Example: \scriptstyle{\color{OliveGreen}{1220010-625002-390005=205003}}
1220010
 595008
 205003
For, when we subtract the row 625002 from their sum beneath the line, which is 1220010, 595008 remains, we subtract from this the other row, which is 390005, and 205003 remains, which is equal to the remaining row that was not subtracted yet.
\scriptstyle{\color{blue}{1220010-625002-390005=595008-390005=205003}}
כי כאשר חסרנו מאשר עולה חיבורם תחת הקו שהוא 1220010 וחסרנו ממנו שורת 625002 ונשאר 595008 ומזה הנשאר חסרנו השורה האחרת והוא שורת 390005 ונשאר 205003 השוה לצורה הנשארת אשר לא נחסרה עד הנה
Q.E.D.
וזה מה שרצינו לבאר

Reason: Procedure

The reason of the procedure is clear. הטעם במעשה ברור
For, every rank is ten times of the preceding rank. כי כל מעלה עולה לעשר מאשר לפניה
Therefore, the ten of the preceding rank is one in the succeeding rank. א"כ העשר מהקודמת אינו כי אם אחד מהבאה אחריה

Reason: Check

The reason of the examination is also clear. גם טעם הבחינה מבואר
For, since the number that is under the line is generated from the sum of all the rows together, when we subtract them one by one it will be gone. כי אחר שהמספר אשר תחת הקו נתחדש [19]מקיבוץ כל השורות יחד כאשר נסירם ממנה אחת יצא כלו בהם בשוה
Hence, when only one is left to subtract, the remainder is the same as it, so when we subtract it from [the remainder] nothing is left. ולזה כאשר [לא][20] נשאר מלחסר כי אם אחד יהיה הנשאר כמוה בענין שכאשר נסירה ממנו לא יחס' ולא ישאר

Chapter Two: Subtraction

הפרק השני בחסרון

Written Subtraction

Description of the Procedure

When you wish to subtract a small number from a greater number, set the smaller beneath the greater, each rank beneath its corresponding. כאשר תרצה לחסו' מספר קטן ממספר גדול ממנו תשים הקטן תחת הגדול כל מעלה תחת מינה
Draw a line beneath them. ורשום קו דיו תחתיהן
Then, subtract each bottom digit from the corresponding upper [digit] above it and put the remainder under the line in the corresponding rank. וחסר כל מספ' תחתון מהעליון אשר על ראשו שהוא ממינו והנשאר שים אותו תחת הקו כנגד זאת המעלה
  • If you cannot subtract it from what is above it, as it is smaller than it or 0, take one from the upper digit that is in the succeeding rank, so it is ten in the [present] rank, and put one dot beneath the upper digit, from which you have borrowed the one.
ואם לא תוכל לחסרו מאשר על ראשו שהוא קטן ממנו או 0 קח אחד מהמספר העליון אשר במעלה הבאה אחריה ויהיה לעשר במעלה ותשים נקדה אחת תחת הרושם העליון אשר ממנו לוית האחד
  • Even if there is 0 [in the succeeding upper rank], borrow from it and put a dot under it, so the one that you have borrowed is 10 in the [present] rank.
ואף אם היה שם 0 לא תחדל מהיות לווה ממנה ותשים תחתיה נקדה וזה האחד אשר לוית אשר הוא ל10 במעלה זו
  • Even if there is only 0 in this rank, subtract the bottom [digit] from it and put the remainder from these 10 under the line.
ו[ואם][21]אין במעלה זו מספר כי אם 0 גרע ממנו התחתון אשר מ ממינו והנשאר מאלו ה10 תשים תחת הקו
  • If there is a number in the [present] rank, add the 10 to what you find there and subtract the corresponding bottom digit from the total sum, then put the remainder under the line, corresponding to the [present] rank.
ואם היה שם מספר במעלה הזאת יחבר ה10 עם אשר מצאת שם ומהכל תסיר המספר התחתון אשר ממינו והנשאר תשים תחת הקו כנגד המעלה ההיא
  • When you go to the rank, from which you have borrowed the one, where you have put the dot, add one for it to what you find in that rank in the bottom row, if there is a number there, and subtract the total from this rank in the upper row.
‫[ובלכתך למעלה אשר ממנה לוית האחד ושמת שם נקודה תוסיף אחד בעדו על אשר תמצא במעלה ההיא][22] בשורה התחתונה אם היה שם מספר ותחסר הכל מהמעלה ההיא מהשורה העליונה
  • If you do not find there enough to subtract, borrow one from the succeeding rank and put a dot under it, so it is ten in the [present] rank, as explained and so on.
ואם לא תמצא שם מחסורך אשר יחסר לך תלוה אחד מהמעלה הבאה אחריה ותשים תחתיה נקודה ויהיה לעש' במעלה זו כאשר ביארנו וכן לעולם
  • If there is no number on the bottom row in the place of the dot, for instance when there is a zero there, or nothing, as the bottom row is already complete, subtract the one from the rank, under which the dot is, if there is a number there, and put the remainder under the line, corresponding to the [present] rank.
ואם במקום הנקודה [23]אין בשורה התחתונה מספר כגון שיש שם סיפרא או לא דבר שכלתה כבר השורה התחתונה תחסר אותו האחד מהמעלה אשר הנקדה תחתיה אם יש שם מספר והנשאר תשים תחת הקו כנגד המעלה ההיא
  • If there is no number but 0 in the [upper] row corresponding to the dot, borrow one from the succeeding rank and put under it a dot, so that this one is ten [in the present rank]. Subtract from it the one and put the remainder under the line, corresponding to the [present] rank.
ואם אין בשורה ההיא כנגד הנקדה ההיא מספר כי אם 0 תלוה אחד מהמעלה הבאה אחריה ותשים תחתיה נקודה והאחד ההוא יהיה לעשר בידך ותחסר מהם האחד והנשארים תשימם תחת הקו כנגד המעלה ההיא
  • When the whole procedure is complete, if there are still digits on the upper row, under which there is no number, nor 0, or a dot, since all is complete, put them as a remainder under the line, as they are.
וכאשר כלית כל מלאכתך אם נשארו עוד רשמים בשורה העליונה אשר אין תחתיהן לא מספר ולא 0 ולא נקודה שכבר נשלם הכל תשימם לשארית תחת הקו כמות שהן

Example

המשל
  • We wish to subtract 40438 the smaller from the greater number that is 76540304.
\scriptstyle76540304-40438
רצינו לחסר 40438 הקטן ממספר הגדול והוא 76540304
We put the smaller under the greater, like this:
נשימם הקטן תחת הגדול כזה
This second diagram is as follows:
‫[זאת הצורה הב' היא ככה][24]
76540304
   40438
76499866
76540304
[Illustration of the procedure:]
76540304 \scriptstyle\xrightarrow{{\color{red}{14-8}}={\color{blue}{6}}} 76540304 \scriptstyle\xrightarrow{{\color{red}{10-\left(3+1\right)}}={\color{blue}{6}}} 76540304 \scriptstyle\xrightarrow{{\color{red}{13-\left(4+1\right)}}={\color{blue}{8}}} 76540304
   40438    40438    40438    40438
       6       66      866
\scriptstyle\xrightarrow{{\color{red}{14-\left(4+1\right)}}={\color{blue}{9}}} 76540304 \scriptstyle\xrightarrow{{\color{red}{10-1}}={\color{blue}{9}}} 76540304 \scriptstyle\xrightarrow{{\color{red}{5-1}}={\color{blue}{4}}} 76540304
  .40438    40438    40438
   99866     9866   499866
  • First rank: We start to subtract from the first rank and say: 8 cannot be subtracted from 4. We borrow one from the succeeding upper rank, where there is 0. Put a dot beneath it. The one becomes a ten in the first rank and with the 4 that are in it they are 14. We subtract 8 from them. 6 remain. We put them under the line corresponding to the first rank.
\scriptstyle{\color{blue}{\left(10+4\right)-8=14-8=6}}
ונתחיל לחסר מהמעלה הראשונה ונאמ' 8 מ 4 לא יוכלו לצאת ונלוה אחד מהמעלה העליונה הבאה אחריה אשר שם ה0 תשים תחתיה נקדה וזה האחד יהיה במעלה הראשונה לעשר ועם ה 4 אשר בה יהיו 14 לא נוכל לחסרם וזה אשר בשורה העליונה במעלה נסיר מהם 8 ישארו 6 נשימם תחת הקו כנגד המעלה הראשונה ההיא
  • Second rank: We go to the second rank and we find there a dot. We add it to 3 that is found in this rank on the bottom row, they are 4. We cannot subtract them from 0 that is on the upper row in this rank, so we borrow one from the third rank and put a dot beneath it. So we have a ten, we subtract from them 4, 6 remain. We put them under the line, corresponding to the second rank.
\scriptstyle{\color{blue}{10-\left(1+3\right)=10-4=6}}
נלך למעלה השנית נמצאנו שם נקדה הוספנוהו על ה 3 הנמצאים במעלה ההיא בשורה התחתונה יהיו 4 לא נוכל [25]לחסרם מה0 אשר בשורה העליונה במעלה ההיא לכן נלוה אחד מהמעלה הג' ונשים נקדה תחתיה ויהיה לנו לעשר נסיר מהם ה 4 ישארו 6 נשימם תחת הקו כנגד המעלה השנית ההיא
  • Third rank: We go to the third rank and add the dot to 4 that is on the bottom row, they are 5. We cannot subtract them from 3 that are above them, so we borrow one from the fourth rank, where there is 0, and we put a dot beneath it. This one becomes a ten, we add to it 3 that is on the upper row in the third rank and the total is 13. We subtract from them 5, 8 remain. We put them under the line, corresponding to the [third] rank.
\scriptstyle{\color{blue}{\left(10+3\right)-\left(1+4\right)=13-5=8}}
נלך למעלה השלישית ונוסיף הנקדה על ה 4 אשר בשורה התחתונה יהיו 5 ולא נוכל להוציאם מהג' אשר על ראשם לכן נוליד נלוה אחד מהמעלה הרביעית אשר שם ה0 ונשים תחתיה נקדה וזה הראשון האחד יהיה לנו ל10 ונחבר אליהם הג' אשר בשורה התחתונה יהיו 5 ולא נוכל להוציאם מהג' אשר על ראשם לכן נלוה אחד מהמעלה העליונה במעלה השלישית ההיא יהיו כלם 13 ונסיר מהם ה 5 ישארו 8 נשימם תחת הקו כנגד המעלה
  • Fourth rank: We go to the fourth rank and we find there a dot, but there is no number in the fourth rank on the bottom row to add to it, only 0, so we subtract this one alone from what is found in the fourth rank on the upper row. Yet, we cannot since there is no number there but 0, so we borrow one from the fifth rank and put a dot beneath it. The 1 becomes a ten, we subtract from it 1, 9 remain. We put them under the line, corresponding to the [fourth] rank.
\scriptstyle{\color{blue}{10-\left(1+0\right)=10-1=9}}
ונלך למעלה הרביעית ונמצא שם נקדה ואין מספר במעלה הרביעית ההיא בשורה התחתונה ההיא לחברו עמו כי אם 0 לכן נחסר זה האחד לבדו מהנמצא במעלה הרביעית ההיא בשורה העליונה ולא נוכל כי אין שם מספר כי אם 0 לכן נקרא ראשון אחד מהמעלה החמישית ונשים תחתיה נקדה וזה הא' יהיה לנו לעשר נסירם ממנו ה 1 ישארו 9 נשימם תחת הקו כנגד המעלה ההיא
  • Fifth rank: We go to the fifth rank and add the dot that is found there to 4 that is found in the fifth rank on the bottom row, they are 5. We cannot subtract them from 4 that above them, so we borrow 1 from the succeeding sixth rank and we put a dot beneath it. Thus, we have 10 and with 4 they are 14. We subtract from them 5, 9 remain. We put them under the line.
\scriptstyle{\color{blue}{\left(10+4\right)-\left(1+4\right)=14-5=9}}
ונלך למעלה החמישית ונוסיף הנקדה הנמצאת שם עם ה 4 הנמצא במעלה הה' ההיא בשורה התחתונה ויהיו 5 ולא נוכל לחסרם מה 4 אשר על ראשם לכן [נלוה][26] א' מהמעלה השישית הבאה אחריה ונשים תחתיה נקדה ויהיו לנו ל 10 ועם ה 4 יהיו 14 נסיר מהם ה 5 ישארו 9[27] ונשימם תחת הקו
  • Sixth rank: We go to the sixth rank and we find there a dot, but there is no number corresponding to it on the bottom row, since it is already complete, so we subtract the one alone from 5 that is in the sixth rank on the upper row and 4 remain. We put them under the line.
\scriptstyle{\color{blue}{5-1=4}}
ונלך למעלה השישית ומצאנו שם נקדה ואין כנגדה מספר בשורה התחתונה כי כבר נשלם לכן נסיר זה האחד לבדו מהה' אשר במעלה הו' ההיא בשורה העליונה וישארו 4 נשימם תחת הקו
  • The digits that are on the bottom row are already complete, as well as the dots, and there are two digits left on the upper row. We put them under the line as they are successively, as a remainder.
וכבר כלו אלו הרשמים אשר בשורה התחתונה גם הנקדות ונשארו שני רשמים בשורה העליונה נשימם תחת הקו לשארית כמו שהן על הסדר זה אחר זה
Thus, what resulted under the line is what remains from the greater number after we subtract the smaller from it.
וזה אשר יצא תחת הקו הוא אשר נשאר מהמספר הגדול אחר אשר חסרנו ממנו הקטן

Reason: Check

We find that the greater number [= the subtracted] is as [the sum of] the smaller number [= the subtrahend] that we subtracted from it and the remainder together, no more and no less. נמצא שמספר הגדול הוא כמו המספר הקטן אשר חסרנו ממנו וכמו זה הנשאר יחד בלי תוספת ומגרעת

Check

Addition
Therefore, when you wish to examine your procedure, add these two numbers that are beneath the upper [number], i.e. the smaller number that you subtracted and the remainder that is under the line, and if the sum is as the greater number, from which you have subtracted, no more and no less, then it is true and correct, and if not, know that you were wrong. לכן כאשר תרצה להבחין מעשיך חבר אלו שני המספרים אשר תחת העליון ר"ל המספר הקטן אשר חסרת והנשאר אשר תחת הקו ואם יעלה כמספר הגדול אשר חסרת ממנו בלי תוספת ומגרעת הנה אמת הנה נכון ואם לאו דע שטעית
Apply this. והקש על זה

Chapter Three: Multiplication

הפרק השלישי בכפל

Written Multiplication

Description of the Procedure

When you want to multiply a number by a number, i.e. to see how much are the multiples of one number when multiplied by the multiples of the other number, write the two forms of these numbers one above the other by the order and draw an ink line beneath them. כאשר תרצה לכפול מספר במספר ר"ל לראות כמה יעלו כפלי המספר האחד כשיוכפל כפלים בחשבון המספר האחר שיש [שים]‫[28] שתי צורות מספרים אלו זו על זו על הסדר ותרשום קו דיו תחתיהן
  • Multiply the first upper digit by each of the bottom digits and always write the units of the result of its product by each of the bottom digit beneath the line, under that bottom digit and keep the tens to add them as units to its product by the following digit to the left.
וכפול המספר הראשון העליון בכל אחד מהמספרים התחתונים [וכאשר תעלה מכפלו עם כל אחד מהמספרים התחתונים תשים לעולם]‫[29] תשים לעולם האחדים תחת הקו כנגד המספר התחתון ההוא והעשרות תשמור והיו לאחדים בידך לחברם עם העולה מכפלו עם המספר הנמשך אליו לצד שמאלי
  • If there is no number in the following rank of the bottom line since it is already completed or since there is a zero there, write the [reserved] number that you have in the following rank under the line.
ואם לא ‫[30]יהיה במעלה שאחר או זו שום מספר בשורה התחתונה שנשלמה כבר או שיש שם [סיפרא]‫[31] תשים במעלה שאחר זו תחת הקו מספר האחדים אשר בידך
  • If when you multiply the upper digit by zero, you do not have [reserved] units, write a zero corresponding to that rank.
אכן אם כשתכפול המספ' העליון עם הסיפרא [...] לא יהיו בידך אחדים תשים סיפרא כנגד המעלה ההיא
  • If you have tens [reserved] as units, write them in that rank, under the line, as said, and do not write a zero at all.
אבל אם יהיו בידך עשרות לאחדים שת[שימם] במעלה ההיא תחת הקו כנזכר ולא תשים סיפרא כלל
  • Once you complete multiplying the first top digit by each of the bottom digits, you start multiplying again the second top digit by each of the bottom digits and produce a second row from it.
ואחר שתשלים לכפול המספר הראשון העליון עם כל אחד מהמספרים התחתוני' תשוב כבתחלה ותכפול המספר השני העליון עם כל אחד מהמספרים התחתונים ותעשה ממנו שורה שנית
Always write down the units and keep the tens as units to add them to the the next [product] as said.
ותשי' לעולם האחדים ותשמור העשרות לאחדים לחברם עם הבא אחריו כנזכר
You should know that the row of the product of each of the upper digits starts from the corresponding rank i.e. that when you start multiplying the second upper digit with the first bottom [digit], write the units resulting from that multiplication in the second rank that corresponds to that upper digit. The [row of the products] of the third upper digit starts from the third rank and so on. אכן יש לך לדעת ששורת כפל כל אחד מהמספרים העליונים תתחיל מהמעלה הדומה לה ר"ל שכשתתחיל לכפול המספר השני העליון עם הראשון התחתון האחדים העולים מהכפל ההוא תשימם במעלה השנית הדומה למספר העליון ההוא וצורת המספר הג' העליון תתחיל מהמעלה הג' וכן כלם
Accordingly, the decimal place of the units of the product of any upper digit by any bottom digit is always as the sum of the decimal places of both digits minus one. עד שיצא לנו מזה שלעולם מספר מעלות מקום אחדי כפל שום מספר עליון עם שום מספר תחתון יהיה כמנין מעלות שני המספרים מחוברות יחד חסר אחת
  • After you complete multiplying all the upper digits by the bottom [digits], draw an ink line beneath all these rows and sum them up, each with all its corresponding [digits], as we explained in the chapter on addition, and the result is the sought, which is the product of the two numbers one by the other.
ואחר שתשלים לכפול כל המספרי' העליונים עם התחתונים תרשום קו דיו תחת כל שורות אלו ותחברם יחד כל מעלה עם כל בת גילה כמו שביארנו בפרק החיבור והעולה הוא המבוקש והוא כפל שני המספרי' זה בזה
  • If there is a zero in the top row of the multiplicands, it would be expected to produce a row of zeros from it, but there is no need for that, since when you keep that every row starts from the rank that corresponds the rank of the upper digit by which you multiply all the bottom [digits] in that row and as you proceed, you always move one rank to the left - when you keep all that, you do not need to take care of the zeros [or to produce] rows of zeros from at all.
ואם היה סיפרא בשורה העליונה מהנכפלים ‫[32]היה נראה שיעשה ממנה שורה אחת כל הסיפרות ואין צורך כי בהיותך שומער שכל התחלת שורה תתחיל מהמעלה הדומה למעלת המספר העליון ההוא אשר אתה כופל בכל התחתונים בשורה ההיא [וכל מה] שתתרחק תלך לצד שמאל מעלה אחת לעולם בהיותך נזהר מכל זה אינך צריך לחוש מהסיפרות ה[...]ת כלל ל[...]ת מהם שורות סיפרות כלל
  • If at the beginning of the top line you find zero or zeros before any digit, you have to write one zero for each zero of them below the line and complete [this row] by multiplying the next digit that follows them in the top line by all the bottom digits.
אכן אם בתחלת השורה העליונה תמצא סיפרא או סיפרו' קודם שום מספר תצטרך לעשות בעד כל סיפרא מהן סיפרא אחת תחת הקו ותשלים [השורה] ההיא בכפל המספר הבא אחריהם בשורה העליונה על כל המספרים התחתונים
  • If you want also, in order that you would not be mistaken [...] always this procedure itself, i.e. that you put one zero for every zero in the top row, even if they are in the middle, in the rank that corresponds to that zero and complete this row by multiplying [the upper next digit that follows them] by all the bottom digits.
ואם תרצה ג"כ כדי שלא תטעה [...] זה המעשה בעצמו לעולם ר"ל שתשים בעד כל סיפרא שבשורה העליונה אף אם הם באמצע סיפרא אחת במעלה הדומה למעלתה בשורה הראויה לסיפרא ההיא אם היה מספר ותשלים לשורה ההיא בכפל [המספר העליון הבא אחריהם] עם כל המספרי' התחתונים

Example

  • Example: we wish to multiply the number 9007500 by another number 5400920.
\scriptstyle9007500\times5400920
המשל רצינו לכפול מספר 9007500 במספר אחר שהוא 5400920
Set the numbers one above the other successively, like this:
ותשים המספרים זה על זה על הסדר כזה
       90070500
        5400920
     2700460000
   378064400
4860828000     
486463564860000
[Illustration of the procedure:]
90070500 \scriptstyle\xrightarrow{{\color{blue}{00}}} 90070500 \scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{5\times0}}={\color{blue}{0}}\\&\scriptstyle{\color{red}{5\times2}}=1{\color{blue}{0}}\\&\scriptstyle\left({\color{red}{5\times9}}\right)+1=4{\color{blue}{6}}\\&\scriptstyle\left({\color{red}{5\times0}}\right)+4={\color{blue}{4}}\\&\scriptstyle{\color{red}{5\times0}}={\color{blue}{0}}\\&\scriptstyle{\color{red}{5\times4}}=2{\color{blue}{0}}\\&\scriptstyle\left({\color{red}{5\times5}}\right)+2={\color{blue}{27}}\\\end{align}}   90070500 \scriptstyle\xrightarrow{{\color{blue}{0}}}   90070500
 5400920 5400920    5400920    5400920
      00 2700460000 2700460000
          0   
\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{7\times0}}={\color{blue}{0}}\\&\scriptstyle{\color{red}{7\times2}}=1{\color{blue}{4}}\\&\scriptstyle\left({\color{red}{7\times9}}\right)+1=6{\color{blue}{4}}\\&\scriptstyle\left({\color{red}{7\times0}}\right)+6={\color{blue}{6}}\\&\scriptstyle{\color{red}{7\times0}}={\color{blue}{0}}\\&\scriptstyle{\color{red}{7\times4}}=2{\color{blue}{8}}\\&\scriptstyle\left({\color{red}{7\times5}}\right)+2={\color{blue}{37}}\\\end{align}}     90070500 \scriptstyle\xrightarrow{{\color{blue}{00}}}     90070500 \scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{9\times0}}={\color{blue}{0}}\\&\scriptstyle{\color{red}{9\times2}}=1{\color{blue}{8}}\\&\scriptstyle\left({\color{red}{9\times9}}\right)+1=8{\color{blue}{2}}\\&\scriptstyle\left({\color{red}{9\times0}}\right)+8={\color{blue}{8}}\\&\scriptstyle{\color{red}{9\times0}}={\color{blue}{0}}\\&\scriptstyle{\color{red}{9\times4}}=3{\color{blue}{6}}\\&\scriptstyle\left({\color{red}{9\times5}}\right)+3={\color{blue}{48}}\\\end{align}}        90070500
     5400920      5400920         5400920
  2700460000   2700460000      2700460000
378064400    378064400       378064400   
     00      4860828000     
  • Since there are two zeros at the beginning of the top row, write under the line two zeros corresponding to them as their number.
ולפי שבתחלת השורה העליונה שתי סיפרות תשים בתחלת השורה העליונ' בעדן תחת הקו שתי סיפרו' כמספרן
  • Complete this row by multiplying the next upper digit that follows them, which is 5:
ותשלים השורה ההיא מכפל המספר העליון הבא אחריהן והוא ה5
  • Multiply the 5 by the zero that is in the first rank of the bottom number; it is zero. Place it after the two mentioned zeros, which is the third rank that [precedes] the fourth rank. It follows that its row starts from the third rank.
\scriptstyle{\color{blue}{5\times0=0}}
ותכפול ה5 בסיפרא שהיא אשר במעלה הראשונה מהמספר התחתון ויהיה סיפרא ותשימנה ‫[33]אחר השתי סיפרות הנזכרות שהיא המעלה השלישית הדומה למעלה הרביעית והנה בא על מתכונתו ששורתו מתחלת במעלה הג' שהיא מעלתו
  • Then say: multiply 5 by 2; it is 10. Place the zero after the mentioned zeros.
\scriptstyle{\color{blue}{5\times2=10}}
ותאמ' אח"כ כפול 5 ב-2 הוא 10 תשים סיפרא אחר הסיפרות הנזכרות
  • Keep the 10 as one, to add it to the product of 5 by 9, which is 45; the total sum is 46. Place the 6 after all the zeros and keep the 4.
\scriptstyle{\color{blue}{1+\left(5\times9\right)=1+45=46}}
ותשמור ה-10 לאחד לחברו עם כפל 5 ב-9 שהוא 45 ויהיה הכל 46 ותשים ה6 אחר כל הסיפרות ותשמור ה-4
  • When you multiply the 5 by the zero that follows the 9, do not put zero, since you have 4 in your hand, so place it instead after the 6.
\scriptstyle{\color{blue}{4+\left(5\times0\right)=4+0=4}}
וכאש' תכפול ה5 בסיפרא הבאה אחר ה9 לא תשים סיפרא אחר היות בידך 4 ותשימם במקומה אחר ה6
  • When you multiply the 5 by the following zero, [place] a zero after the 4, since you have nothing in your hand.
\scriptstyle{\color{blue}{5\times0=0}}
אכן כאש' תכפול ה5 בסיפרא הנמשכת לא תשים סיפרא אחר ה4 אחר שאין בידך מאומה
  • Multiply 5 by 4; the result is 20. Put a zero and keep the 2.
\scriptstyle{\color{blue}{5\times4=20}}
ותכפול 5 ב-4 ויעלו 20 תשים סיפרא ותשמר 2
  • Multiply 5 by 5; they are 25 and with the 2 that you have the total sum is 27. Put 7 and after it put 2, because the multiplication of the upper digit by all the bottom digits is complete.
\scriptstyle{\color{blue}{2+\left(5\times5\right)=2+25=27}}
ותכפול 5 ב5 ויהיו 25 ועם ה2 אשר בידך יהיה עם הכל 27 שים 7 ותשים אחריהם 2 כי כבר נשלם כפל המספר העליון בכל המספרים התחתונים
  • Since you find [a zero] after the upper 5 that was multiplied, the rule requires to multiply it by all the bottom digits and make of it one line.
ואחרי היותך מוצא אחר ה5 העליון הנכפל כבר היה הדין נותן לכפלה עם כל המספרים התחתונים ולעשות ממנו שורה אחת
But, there is no need for this, only that you start with the 7 that is after it and make its line provided that the line of the 7 starts from the fifth rank, which is its rank as mentioned.
ואין צורך אלא שתתחיל מה7 אשר אחריה ותעשה שורתו בלבד שתתחיל שורת ה7 מהמעלה הה' אשר היא מעלתו כנזכר
In order not to be mistaken, place a zero at the beginning of the line of the 7, for the upper zero that is between the 5 and 7, whose rank is the fifth rank.
אכן כדי שלא תטעה תשים בראש שורת ה7 במעלה סיפרא בעד הסיפרא העליונה אשר בין הה' וה7 אשר מעלתה המעלה ה5
Complete the line by multiplying the 7 that follows it by all the bottom digits:
ותשלים השורה בכפל ה7 הבאה אחריה בכל הרשמים התחתונים
  • Say: the product of 7 by zero is zero. Put another zero.
\scriptstyle{\color{blue}{7\times0=0}}
ותאמ' כפל 7 בסיפרא הוא סיפרא ותשים סיפרא אחרת
  • Say also: the product of 7 by 2 is 14. Place 4, which are the units, after the mentioned zeros and keep the 1.
\scriptstyle{\color{blue}{7\times2=14}}
ותאמר עוד כפל 7 ‫[ב2 ויעלו 14 תשים 4 שהם האחדים אחר הסיפרות הנזכרות ותשמור הא‫'
  • Say also: the product of 7 by 9 is 63; plus the one that we have the result is 64. We put the 4 and keep the 6 as units.
\scriptstyle{\color{blue}{1+\left(7\times9\right)=1+63=64}}
ותאמר עוד כפל 7 ב9]‫[34] ב9 ויעלה 63 ועוד האחד אשר בידינו יעלה 64 נשים ה4 ונשמר ה6 לאחדים בידינו
  • We say also: the product of 7 by zero is zero. Since we have a 6, we do not put a zero, but we put the 6 that we have in its place.
\scriptstyle{\color{blue}{6+\left(7\times0\right)=6+0=6}}
[35]ונאמר עוד כפל 7 בסיפרא היה עולה סיפרא אכן להיות בידינו ה6 לא נשים סיפרא אבל נשים ה6 אשר בידינו למקומה
  • We say: the product of 7 by zero is zero. We put a zero, as we do not have units at all.
\scriptstyle{\color{blue}{7\times0=0}}
ונאמר כפל 7 בסיפרא עולה סיפרא ונשים סיפרא אחר שאין בידינו אחדים כלל
  • We say: the product of 7 by 4 is 28. We put 8 and keep the 2.
\scriptstyle{\color{blue}{7\times4=28}}
ונאמר כפל 7 ב4 עולה 28 נשים 8 ותשמור 2
  • We say: the product of 7 by 5 is 35; plus the two that we have the result is 37. We put the 7 and after it the 3, because the multiplication of the 7 by all the bottom digits is complete.
\scriptstyle{\color{blue}{2+\left(7\times5\right)=2+35=37}}
ונאמר כפל 7 ב5 עולה 35 ועם השנים אשר בידינו יעלו 37 נשים 7 ואחריהם 3 כי כבר נשלם כפל זה ה7 על כל הרשמי' התחתונים
  • Since there are two zeros after the 7 in the upper line, in order not to be mistaken, we put two zeros corresponding their rank at the beginning of the line of the 9 that follows them.
ואחר היות שתי סיפרות בשורה העליונה אחר ה7 כדי שלא נטעה נשים שתי סיפרות כנגד מעלתן בהתחלת שורת ה9 הבא אחריהן
  • Again we say: the product of 9 by zero is zero. Put a zero after the two zeros that we placed at the beginning of this line.
\scriptstyle{\color{blue}{9\times0=0}}
ושוב נאמ' כפל 9 בסיפרא הוא סיפרא ותשים סיפרא אחר השתי סיפרות כאשר שמנו בג[ת]‫[36]חלת שורה זו
  • We say: the product of 9 by 2 is 18. We put 8 after the three mentioned zeros and keep the one.
\scriptstyle{\color{blue}{9\times2=18}}
ונאמר כפל 9 ב2 עולה 18 נשים 8 אחר השלשה סיפרות הנזכרות ונשמור אחד
  • We say: the product of 9 by 9 is 81 and since we have 1, the result is 82. We put the 2 and keep the 8.
\scriptstyle{\color{blue}{1+\left(9\times9\right)=1+81=82}}
ונאמר כפל 9 ב7 ב9 עולה 18 81 ואחר שהיה בידינו 1 יעלו 82 נשים 2 ונשמור 8
  • We say: the product of 9 by zero is zero. We put the 8 that we have in its place.
\scriptstyle{\color{blue}{8+\left(9\times0\right)=8+0=8}}
ונאמר כפל 9 בסיפרא הוא סיפרא ונשים ה8 אשר בידינו במקומה
  • We say: the product of 9 by zero is zero. We put it, as we have nothing in our hands.
\scriptstyle{\color{blue}{9\times0=0}}
ונאמר כפל 9 בסיפרא הוא סיפרא ונשימה אחר שאין בידינו דבר שוב
  • We say: the product of 9 by 4 is 36. We put 6 and keep the 3.
\scriptstyle{\color{blue}{9\times4=36}}
ונאמר כפל 9 ב4 עולה 36 נשים 6 ונשמור 3
  • We say: the product of 9 by 5 is 45; plus the 3 that we have the result is 48. We put the 8 and after it the 4, because the multiplication of the 9 by all the bottom digits is complete.
\scriptstyle{\color{blue}{3+\left(9\times5\right)=3+45=48}}
ונאמר כפל 9 ב5 עולה 45 ו3 אשר בידינו יעלו 48 ונשים 8 ואחריהן 7 [4]‫[37] כי כבר נשלם כפל 9 זה בכל הרשמים התחתונים
  • Since the upper digits were already multiplied by all the bottom [digits], we draw a line beneath all the lines and sum all the lines that were generated from their products, i.e. the three lines between the lines.
ואחרי אשר כבר נכפלו ר"ל הרשמים העליונים עם כל התחתונים נרשום תחת כל השורות קו דיו ונחבר כל השורות שנתחדשו מכפליהן ר"ל ה3 שורות אשר ‫[38]בין הקוים והנה
We receive that the result of the multiplication of the two questioned numbers one by the other is 486463564860000.
יעלה בידינו שכפל הב' מספרים הנשאלים זה בזה עלה 486463564860000

Check

  • Division: If you want to check if you did it right or not, divide the great number resulting from the multiplication by one of the two multiplied numbers, so the result of division is the other [multiplied number]. But if it is lacking or exceeding, know that you have erred in one of the operations of multiplication or division.
ואם תרצה לבחון אם עשית כדין אם לאו יתחלק זה המספר הגדול העולה מהכפל לאחד מהב' מספרים הנכפלים ויצא בחילוק האחר ולא ישאר דבר ואם יחסר או יעדיף דע לך שטעית באחד המעשים בכפל או בחילוק

Reason: Procedure

The reason for starting the line of multiplication of each upper digit by the bottom [digits] from its corresponding rank: הטעם בהתחלת שורת כפל כל מספר עליון בתחתונים מהמעלה הדומה לו
  • Because, e.g. if the upper number is of the hundreds, which is the third rank, when we multiply it by the units of the bottom number, the result is of the hundreds.
כי על ד"מ אם המספר העליון הוא מאות שהוא במעלה הג' כשנכפלם באחדי המספר התחתון יהיה העולה מאות
  • If it is of the thousands, which is the fourth [rank], the result is of the thousands.
ואם יהיה אלפים שהוא בד' יהיה העולה אלפים
Therefore, the units resulting from the first multiplication are in the third rank, which corresponds to the rank [of the upper number], and the tens resulting from this multiplication are units of the subsequent rank, as explained in the beginning of the book, in the explanation of the ranks. So, you keep them as units to add them to the next [product].
לכן כאשר יהיו [...] אחדים העולי' מהכפל הראשון ההוא במעלה הג' שהיא המעלה הדומה למעלתו והעשרות העולות מזה הכפל הם אחדים במעלה הבאה אחריהן כמו שנתבאר בתחלת הספר בפי' המעלות לכן תשמרם לאחדים לחברם עם הבא אחריהן
  • When we multiply the upper number by the second of the bottom [digits], the result are tens of hundreds, which are thousands, if the upper [number] is of the hundreds.
וכשנכפול מספר עליון זה באשר במעלה השנית מהתחתונים יהיו העולה עשירי מאות שהם אלפים אם העליון הוא מאות
  • If it is of the thousands, these tens are tens of thousands, so we place them in the rank that follows the one that we place at the beginning of this line and we add to them the reserved from the previous multiplication.
ואם הוא אלפים יהיו העשרות האלה עשרות אלפים לכן נשימהו במעלה הנמשכת לאשר שמנו בתחלת שורה זו ונחבר להם השמור בידינו מהכפל הקודם
And so on, forever it rises rank by rank, until it is clear from what is said that the place of the units resulting from the multiplication of each upper digit by a bottom [digit] is the rank whose decimal position is as the [sum] of the ranks of both upper and bottom digits that are multiplied by each other minus one.
וכן לעולם כאשר יתרחק יעלה מעלה אחר מעלה עד שיצא לנו מזה ברור מה שאמרנו כי אחדי כפל כל מספר עליון בתחתון יהיה מקום האחדים העולים מהכפל ההוא במעלה אשר מנין מדרגותיה כמנין מעלות שני רשמים ‫[39]האלו הנכפלים זה בזה העליון והתחתון יחד חסר אחת
  • If one of them is in the first rank, we have explained that the place [of the product] is in the rank that corresponds the rank [of the other multiplied digit]
וזה שאם האחד מהם במעלה הראשונה הרי ביארנו שמקומו הוא במעלה הדומה למעלתו
  • If it is in the second rank, [the product] rises one rank above the rank of the other [multiplied] digit as explained.
ואם יהיה בשנית יעלה מעלה אחת על מעלות המספר האחר כמנין מעלותיו כמו שביארנו
  • If it is in the third [rank], [the product] rises by two.
ואם הוא בג' יעלה שתים
And so on it exceeds over the ranks of the second [multiplied] digit by the number of the ranks [of the first multiplied digit] minus one.
וכן יוסיף לעולם על מעלות המספר האחר כמנין מעלותיו כמו שביארנו ואם הוא בג' יעלה שתים וכן יוסיף לעולם על מעלות המספר האחר כמנין מעלותיו חסר אחת
Hence, the rank of the units resulting from the multiplication is as [the sum of] the ranks of both digits that are multiplied one by the other minus 1 and all this is clear by reason.
והנה יהיה מעלות אחדי העולים מהכפל כמעלות שני הרשמים הנכפלים זה בזה חסר אחת וכל זה ברור בטעם

Reason: Check

וטעם הבחינה
Multiplication is the inverse operation of division. הוא כי הכפל הוא הפך החילוק
Practical illustration: dividing a given amount of money between a certain number of people equally
When a certain known number of people receive a known amount of money each כי כאשר למין מה ממספר אנשים ידועים ועלה לכל אחד מהם מנין ממון ידוע
  • The total [amount of] money is the product of the number of people multiplied by the amount of money that each of them receives.
הרי יש בכל הממון כפלי ממספר האנשים כמספר הממון העולה לכל אחד מהן
  • Or, if you want to say: the product of the money that each of them gets multiplied by the number of people. All is the same.
או אם תרצה לומר כפלי הממון שיצא לכל אחד מהם כמספר האנשים ההם והכל אחד
For example: if we divide 12 golden coins between 3 people [equally], each of them receives 4.
\scriptstyle{\color{blue}{\frac{12}{3}=4}}
כי המשל אם חלקנו 12 זהובים ל3 אנשים עלה לכל אחד מהם 2 4
For, twelve is a product of 3 by 4, or 4 by 3.
\scriptstyle{\color{blue}{12=3\times4=4\times3}}
הרי השנים עשר הם כפל 3 ב4 או ה4 ב3
  • Thus, if we divide these 12 between 4 people, each receives 3
\scriptstyle{\color{blue}{\frac{12}{4}=3}}
ואם נחלק 2 12 אלו ל3 ל4 אנשים יעלה לכל אחד מהם ג'
  • and if between 3 [people], each receives 4
\scriptstyle{\color{blue}{\frac{12}{3}=4}}
ואם לג' יעלה לכל אחד מהם 4
Hence, when we divide the result of multiplication by one of the multiplied numbers, the result of division is the second [multiplicand] no more and no less. הרי שכאשר נחלק העולה מהכפל לאחד מהמספרים הנכפלים יצא השני בחילוק בלי תוספת ומגרעת
So, the check of the multiplication operation is by division, and the check of the division operation is by multiplication and this is an obvious thing. הרי שבחינת הכפל בחילוק וכן בחינת החילוק בכפל וזה דבר ברור

Chapter Four: Division

[40]הפרק הרביעי בחילוק

written division

When you wish to divide a large number by a smaller number כאשר תרצה לחלק מספר גדול למספר קטן

description of the procedure

We place them one above the other orderly: the greater above, we call it the dividend; the smaller beneath, we call it the divisor [lit. by which it is divided]. ונשימם זה על זה על הסדר הגדול למעלה נקראנוהו המתחלק והקטן למטה וקראנוהו אשר נחלק עליו
Put every rank beneath its corresponding and ותשים כל מעלה תחת בת גילה
These two lines should be spaced, i.e. leave a space between them, in order to put the result of division between them, as will be explained in the [description of the] division [procedure]. ויהיו שתי שורות אלו מרווחות [..] ר"ל שתשים ריוח בין זו לזו לשים ביניהם היוצא בחילוק כאשר יתבאר בחילוק
  • See how many times the last bottom digit to the left can be extracted from the last digit of the upper [number].
וראה המספר האחרון התחתון אשר לצד שמאל כמה פעמים יצא מהמספר האחרון אשר בעליון
  • If it is not even once in it, as it is smaller than it, see how many times it can be extracted from the last [digit] and the one that precedes it, considering the last [digit] as tens and the one that precedes it as units. The number of these times is called the result of division.
ואם איננו בו אפי' פעם אחת שהוא קטן ממנו ראה כמה פעמים יצא מזה האחרון ומאשר לפניו בקחתך האחרון לעשרות ואשר לפניו לאחדים ומנין פעמים אלו הוא הנקרא היוצא בחילוק
Know that you have to extract the digits that precede the last bottom digit as many times from the upper one that precedes the last digit or digits, from which you extract the multiples of the last bottom digit, as the number of times that you extract the last bottom digit from the last upper digit or digits.
ודע שיש לך להוציא כ"כ פעמים המספרים אשר לפני האחרון התחתון מאשר לפני האחרון או האחרונים העליונים אשר הוצאת מהם כפלי האחרון התחתון כפעמים אשר הוצאת האחרון התחתון מהאחרון העליו' או האחרונים
  • When there is a remainder from the last digit or digits, consider them as tens or hundreds, according to their relation to the present rank, [subtract from them] as the multiples that you subtract the last bottom digit from the last upper digit or digits.
‫[וכאשר נשאר מהאחרון או מהאחרונים בקחתך אותם לעשרות ולמאות כפי ערכם אל המעלה הזאת ככפלים אשר הוצאת האחרון התחתון מן האחרון העליון או האחרונים‫]‫[41]
  • If there is not enough, do not subtract from the last digit as much as these multiples, for you always have to subtract each [bottom digit] from its corresponding upper digit as many times as you subtract the last [bottom digit] from the last [upper] digit or digits.
‫[ואם אין בו‫]‫[42] לא תוציא לאחרון ככל הכפלים ההם כי לעולם יש לך להוציא כל אחד כל פעמים מהעליון הראוי לו כפעמים אשר תוציא האחרון מן האחרון או מן האחרונים
  • You should know that whenever you wish to subtract the bottom digit from the upper digit and you do not find in its corresponding rank enough [to subtract] its multiples, if there is in the one that follows the consecutive [rank], you can subtract from it, provided that you keep the positional value of the ranks, so that every digit is tens to its preceding and hundreds to the one that precedes its preceding and so on according to this relation.
א[כן] יש לך לדעת כי בכל עת שתרצה להוציא התחתון מהעליון ואין דיו לכופליו כאשר תמצא במעלה הראויה לו שאם יש בנמשך אחר הנמשך תוכל להוציא ממנו ובלבד שתשמור לעולם ערך המעלות שכל מספר הוא במעלה שלפניו לעשרות ואשר לפני פניו למאות וכן לעולם ‫[43]על הערך הזה
  • Interim result: After you know the multiples of which you can subtract each of the bottom digits from the corresponding upper rank or ranks,
ואחר שתדע הכפלים אשר תוכל להוציא כל אחד מהמספרים התחתונים מהמעלה או מעלות הראויות להם מהעליונים
i.e. for example, if the last bottom [digit] is subtracted from the [seventh] [upper] rank and the one that precedes the last is subtracted from the sixth [rank] and the one that precedes the preceding is subtracted from the fifth, until they are complete.
ר"ל כי עד"מ אם האחרון התחתון לקח מהמעלה הו' התחתון ואשר לפני האחרון יקח מו' ואשר לפני פניו מהה' עד כלותם
in the rank that they end, i.e. where the first bottom digit is to be subtracted as many times from that rank according to the order explained - place the number of the multiples that are subtracted corresponding to that rank, beneath the upper digit.
ובמעלה אשר יכלו ר"ל שהראשון התחתון יש לו לקחת בפעם ההיא מהמעלה ההיא על סדר שביארנו כנגד המעלה ההיא תשים מנין הכפלים אשר לקחו ותשימם תחת המספר העליון
  • Interim remainder: When there is a remainder from the upper digit, place the remainder above it, so that this remainder will be in front of your eyes to be used as tens or hundreds for the preceding [digit] and the one that precedes the preceding, as explained.
וכאשר ישאר שום דבר משום מספר עליון תשים עליו השארית ושארית זה יהיה לעולם בין עיניך להועיל ממנו לעשרות או למאות לאשר לפניו ולפני פניו כמו שביארנו
  • Repeated division: When all the bottom [digits] to be subtracted from their corresponding [upper digits] are complete, if there is a remainder in the upper number that is as the bottom number or more, we divide it again as in the beginning: We see how many times the last bottom digit can be subtracted from the last digit or digits of this remainder, as we have done in the beginning with the whole number, and the preceding and the one that precedes the preceding, all by the same multiples, each from its corresponding [upper digit].
וכאשר תמו כל התחתונות לקחת מן הראויות להם אם נשאר עוד במספר העליון כמספר התחתון או יותר ממנו נשוב לחלקו עליו כבתחלה ונראה כמה פעמים יצא האחרון התחתון מהאחרון או אחרוני שארית זו כמו שעשינו בתחלה בכל המספר ואשר לפניו מאשר לפניו לכולם כפלים שווים כל אחד מהראוי לו
  • Last interim division: We always repeate [the division] time and time again, until the time comes when each of the bottom [digits] are subtracted from its very rank, i.e. the units from the units, the tens from the tens and the number of multiples is placed at that time in the first rank.
וכן נשוב לעולם פעם אחר פעם עד הגיע עת יקח כל אחד מהתחתונים ממעלתו ממש ר"ל האחדי' מהאחדים והעשרות מהעשרות ומספר הכפלים יושם בעת ההיא במעלה הראשונה
We do not divide again, because what remains then is less than the bottom number.
ולא נשוב עוד לחלק כי לא ישאר אז כי אם הפחות מהמספר התחתון
The less cannot be divided by the more into integers but only into fractions.
והפחות על הרב לא יוכל לחלק לשלמים כי אם לשברים
We will mention further in this chapter how it will be divided into fractions.
ועוד נזכיר בפרק זה איך יתחלק לשברים
  • The decimal place of the interim result: Always remember to place each time the result of division of that time, i.e. the multiples that you subtract at that time, corresponding to the rank from which the first bottom digit is subtracted, i.e. the [digit] that is in the first rank, if there is a number there, or if there is only a zero there - see from where it should be subtracted, if there is a number there, and place there the result of division of that time.
וזכור ‫[44]לעולם שתשים בכל פעם היוצא בחילוק בפעם ההיא ר"ל לפעמים הכפלים אשר תוציא בפעם ההיא כנגד המעלה אשר משם [יקח]‫[45] המספר הראשון התחתון ר"ל אשר יהיה במעלה הראשונה אם יהיה שם מספר [ואף אם לא יהיה שם מספר]‫[46] כי אם סיפרא תראה מהיכן היה לו ראוי ליקח אם היה שם מספר כי אם סיפרא ושם תשים היוצא בחילוק בפעם ההיא
It turns out that when we want to know from which rank a certain bottom digit should be subtracted, we should see from which rank the last bottom digit should be subtracted at that time, then count the number of the ranks from there to the right, as the number of the ranks that this bottom digit is far to the right from the last bottom digit - where they end it should be subtracted from the upper digit.
ויצא לנו מכך כי כאשר נרצה לידע אי זה מקום ראוי לקחת ממנו שום מספר מהתחתונים בשום פנים שנראה מאי זו מעלה לקחת לאחרון שבתחתונים בפעם ההיא ותמנה משם לצד ימין מנין מעלות כמספר מעלות מרחק המספר ההוא התחתון [לצד ימין מהמספר האחרון התחתון]‫[47] ובמקום שיכלו מהעליונות משם יקח
Likewise, when you wish to know in which rank to place the result of division each time, see from which rank the last bottom digit was subtracted at that time, count from there to the right, as the number of the bottom digits, and where this counting ends, place the result of division at that time. From that very rank the digit that is in the first rank of the bottom number is subtracted at that time.
גם כאשר תרצה לידע באיזה מקום תשים היוצא בחילוק בכל פעם ראה מאיזה מקום לקח האחרון התחתון בפעם ההיא ומנה משם לצד ימין כמנין רשמי התחתון וכאשר תכלה המנין ההוא שם תשים היוצא בחלוק בפעם ההיא ומהמעלה ההיא בעצמה יקח המספר אשר במעלה הראשונה בטור התחתון בעת ההיא

example

המשל
We wish to divide 4380408998 by a smaller number, which is 46079.
\scriptstyle4380408998\div46079
רצינו לחלק 4380408998 על מספר קטן ממנו והוא 46079
We put them in two spaced lines orderly one on top of the other like this:
נשימם בשני טורים מרווחים זה על זה על הסדר כזה
     0    
    01    
    13    
   054     
 00290102
 23324924
0744193751
4380408998
     95063
     46079
‫[אמ' משה זה טעות אבל האמת הוא כי היוצא בחלוק לכל א' [...] הוא זה 95000 שלמים נוסף על השברים‫]‫[48]
  • We say: 4, which is the last bottom digit, can be subtracted once from the last upper digit.
ונאמ' מה שהוא המספר האחרון העליון יוכל לצאת 4 שהוא המספר האחרון התחתון פעם אחת
But, we cannot subtract 6 that precedes the last bottom digit from 4 that precedes the last upper digit
אכן מד' אשר לפני האחרון העליון שהוא אשר לפני האחרון התחתון ‫[49]לא נוכל לצאת 6 שהוא אשר לפני האחרון התחתון
Therefore, we do not subtract from there [= the last upper digit], but we subtract from the last two [upper] digits, which are 43.
לכן לא נוציא משום [משם]‫[50] דבר אבל נוציא מהשנים האחרונים שהם 43
We say: how many times 4 is in 43?
ונאמר 43 כמה פעמים יש 4
We do not say ten, since if the 3 that in this rank could have taken 10, it would have taken it from the last digit, which is ten in relation to this rank.
ולא נאמר עשרה שהג' שמהמעלה הזאת היה יכול לקחת 10 היה לוקח מהאחרון אחרון שהוא 10 בערך המעלה הזאת
Therefore, we say: only 9.
לכן לא נאמ' כי אם 9
The bottom line has 5 digits, hence we count 5 ranks to the right from the upper 3, from which we subtract. They end in the zero and we place beneath it the 9 resulting from the division, which is the number of times that we have to subtract the bottom digits from the upper digits at this time, each from its corresponding rank, as mentioned.
והנה השורה התחתונה היא 5 רשמים לכן לא נמנה מהג [3]‫[51] העליון אשר לוקח משם 5 מעלות לצד ימין ויכלו בסיפרא ונשים תחתיה אלו ה9 היוצאים בחילוק שהוא מספר הכפלים אשר לנו להוציא התחתונים מהעליונים בפעם הזאת כל אחד מהמעלה הראויה לו כנזכר
[Illustration of the procedure:]
  \scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{9\times4}}=36\\&\scriptstyle{\color{red}{4}}-1=3\\&\scriptstyle1{\color{red}{3}}-6={\color{green}{7}}\\&\scriptstyle3-3={\color{green}{0}}\\\end{align}}   \scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{9\times6}}=54\\&\scriptstyle{\color{red}{8}}-4={\color{green}{4}}\\&\scriptstyle{\color{red}{7}}-5={\color{green}{2}}\\\end{align}} 2         \scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{9\times7}}=63\\&\scriptstyle{\color{red}{4}}-3={\color{green}{1}}\\&\scriptstyle{\color{red}{4}}-1={\color{green}{3}}\\&\scriptstyle1{\color{red}{0}}-6={\color{green}{4}}\\\end{align}}  23       
  07         074        07441     
4380408998 4380408998 4380408998 4380408998
       9          9          9    
     46079      46079      46079      46079
\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{9\times9}}=81\\&\scriptstyle{1\color{red}{0}}-1={\color{green}{9}}\\&\scriptstyle{\color{red}{4}}-1={\color{green}{3}}\\&\scriptstyle{\color{red}{1}}0-8={\color{green}{2}}\\\end{align}} 2332     
074419    
4380408998
     9    
     46079
  • We say: 9 times 4 are 36.
\scriptstyle{\color{blue}{9\times4=36}}
ונאמר 9 פעמים 4 הם 36
We have to subtract the 6 units from the 3 and the 3 tens from the 4.
ואלו 6 האחדים היה לנו להוציאם מה3 וה3 עשרות מה4
There is not enough in 3 to subtract the 6 units from it, so we take a ten from the 4 and add it to the 3 tens, from which we should subtract.
ואין ב3 כדאי להוציאם מהם ה6 האחדים לכן נקח עשר אחד מה4 מוסיף על ה3 עשרות אשר יש לנו לקחת משם
We take the whole 4 and place above it a zero, or cross it out by a pen.
לכן נקח כל ה4 ונשים עליו סיפרא או נעביר עליו הקולמו‫'
We add the additional ten that we took to the upper 3; they are 13. We subtract from them the 6 units that we have to take from there; 7 remain. We place them above the 3.
\scriptstyle{\color{blue}{13-6=7}}
וזה העשר הנוסף אשר לקחנו נחברהו אל ה3 העליון ויהיו 13 נקח משם ה6 אחדים אשר לנו לקחת משם ישארו 7 ונשימם על ה3
Thus, we already took the units and the tens, each from its corresponding rank.
והנה כבר לקחנו האחדים גם העשרות כל אחד מהמעלה הראויה לו
  • We say also: 9 times 6 are 54.
\scriptstyle{\color{blue}{9\times6=54}}
ועוד נאמר 9 [פעמים]‫[52] 6 הם 54
We subtract the 4 units from the rank that precedes the last mentioned upper [digits], which is the 8; 4 remain. We place them above it.
\scriptstyle{\color{blue}{8-4=4}}
ונקח ה4 אחדים מהמעלה אשר לפני האחרונים העליונים הנזכרים שהוא ה8 וישארו 4 נשימם עליהם
We subtract also the 5 tens from the rank that follows it on the left, which are tens in relation to it; you find there 7. Subtract 5 from it; 2 remain. We place them above it.
\scriptstyle{\color{blue}{7-5=2}}
עוד נקח ה5 עשרות מהמעלה שאחריו לצד שמאל שהם עשרות בעדה ותשים ותמצא שם 7 תסיר מהם 5 ישארו ב' ונשימם עליהם
  • Also 9 times 7, because we do not pay attention to the bottom zero, except for keeping the ranks, i.e. it indicates for us that the multiple of 7 that precedes it should not be subtracted from the rank of the upper zero that precedes the 8, from which we subtract the 6, but from the rank of the 4 that precedes the 8 by 2 ranks, as the 7 precedes the 6 by 2 ranks.
עוד 9 פעמים 7 כי לא נחוש ‫[53]לסיפרא התחתונה כי אם לשמירת המדרגות ר"ל שהיא מורה לנו שאין להוציא כפל 7 זה אשר לפניה ממקום הסיפרא העליונה אשר לפני ה8 אשר לקחנו משם ל6 אבל ממקום ה4 שהוא לפני ה8 2 מעלות כדרך שה7 לפני ה6 2 מעלות
We say: 9 times 7 are 63.
\scriptstyle{\color{blue}{9\times7=63}}
ונאמר 9 פעמים 7 הם 63
We subtract the 3 units from the upper 4 mentioned; 1 remains. We place it above it.
\scriptstyle{\color{blue}{4-3=1}}
נסיר ה3 אחדים מה4 העליון הנזכר וישאר 1 ונשימנו עליו
We should have taken the 6 tens from the rank of the zero, but as there is not enough there to subtract them, we take one from the following rank. You find there 4. We take one; 3 remain. We place them above it.
\scriptstyle{\color{blue}{4-1=3}}
והיה ראוי לנו לקחת ה6 עשרות ממקום הסיפרא ואחר שאין שם כדאי להוציאם נקח אחד מהמעלה הבאה האחריה תמצא שם 4 נקח אחד ישארו 3 נשימם עליו
This one is ten in relation to the rank of the upper zero, from which we take the tens.
וזה האחד הוא עשר בערך מעלת הסיפרא העליונה אשר משם נקח העשרות
Since each of these ten is ten in relation to the 4, from which the 7 is taken.
כי כל אחד מאלו העשרה הוא עשר בערך ה4 אשר משם לקח ה7
We subtract the 6 tens from these 10; 4 remain. We place them above the zero.
\scriptstyle{\color{blue}{10-6=4}}
ונסור ה6 עשרות אשר עליו להוציא מאלו ה10 וישארו 4 ונשימם על הסיפרא
  • We say also: 9 times 9 are 81.
\scriptstyle{\color{blue}{9\times9=81}}
עוד נאמ' 9 פעמים 9 והיו 81
We should have taken the the one from the rank of the upper zero that precedes the 4, from which we took for the 7, but since there is not enough there, we take the one that is above the 4, so it is ten here. We subtract the one; 9 remain. We place them above it.
\scriptstyle{\color{blue}{10-1=9}}
וזה האחד היה לנו לקחתו ממקום הסיפרא העליונה אשר לפני 4 אשר לקחנו משם ל7 ואין שם דבר לכן נקח האחד אשר על ה4 ויהיה כאן עשרה נקח האחד ישארו 9 ונשימם עליה
We should subtract the 8 tens from the rank of the 4, but there is nothing there, since even the one that was there is already taken. Therefore, we take one from the 4 that above the zero that follows; 3 remain. We place them above it.
\scriptstyle{\color{blue}{4-1=3}}
וה8 עשרות היה לנו לקחת אותם ממעלת ה4 ואין שם דבר כי אפי' האחד שיהיה שם כבר לקחנוהו ל[...] האחד לכן נקח אחד מהד' אשר על הסיפרא הבאה אחריה וישארו 3 ונשימם עליו
The one becomes a ten above the 4, from which we subtract the 8 tens and each unit of these tens is ten in relation to the rank of the zero, from which the [1] is subtracted. We subtract the 8 tens from these ten tens; 2 remain. We place them above the 4, i.e. above the one that is above the 4.
\scriptstyle{\color{blue}{\left(10\sdot10\right)-80=2\sdot10}}
וזה האחד יהיה לעשר על ה4 אשר משם נקח ה8 עשרות וכל אחד מאלו העשרה הוא עשר כערך מקום הסיפרא אשר משם לקח ה9 ונסיר ה8 [עשרות מעשר]‫[54] עשרות אלו ישארו 2 ונשימם על ה4 ר"ל על האחד ‫[55]שהיה על ה4
The same multiples of all the bottom digits were subtracted, each from its corresponding [rank], as the last bottom digit was subtracted from the last [upper] digits.
וכבר לקחו כל התחתונים כ"כ כפלים כל אחד מהראוי לו כאשר לקח האחרון התחתון מהאחרוני' התחתונים
We are left with 233298998 in the upper number, which is greater than the bottom number by some multiples.
ונשאר לנו 233298998 במספר העליון שהוא יותר מהתחתון כמה כפלי כפלים
Therefore we continue to divide this remainder by it as in the beginning and write a line above the remainder, so we will not be confused.
לכן נשוב לחלק להם זאת השארית כאשר בתחלה ונרשום קו על כל הנשאר כדי שלא נתבלבל
[Illustration of the procedure:]
\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{5\times4}}=20\\&\scriptstyle{\color{red}{2}}-2={\color{green}{0}}\\\end{align}} 0         \scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{5\times6}}=30\\&\scriptstyle{\color{red}{3}}-3={\color{green}{0}}\\\end{align}}  00        \scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{5\times7}}=35\\&\scriptstyle{\color{red}{9}}-5={\color{green}{4}}\\&\scriptstyle{\color{red}{3}}-1={\color{green}{2}}\\&\scriptstyle1{\color{red}{2}}-3={\color{green}{9}}\\\end{align}}  0029      \scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{5\times9}}=45\\&\scriptstyle{\color{red}{8}}-5={\color{green}{3}}\\&\scriptstyle{\color{red}{4}}-4={\color{green}{0}}\\\end{align}}  00290    
 2332       2332       23324      23324    
074419     074419     074419     0744193   
4380408998 4380408998 4380408998 4380408998
     95         95         95         95   
     46079      46079      46079      46079
  • We say: the last bottom 4 cannot be subtracted even once from the last remaining two, therefore, we subtract it from the last 23. It is there five times.
ונאמ' מהשנים השארית האחרון לא יוכל לצאת הד' האחרון התחתון אפי' פעם א' פעמים לכן נחלק ונקח לו מהכ"ג האחרוני' ויהיה שם חמשה פעמים
We place this 5 beneath the first that is 5 ranks to the right from the 3, from which we subtract, which is as the number of the ranks of the bottom line.
ונשים זה הה' תחת הראשון שהוא לה' מעלות מזה הג' אשר אנו לוקחים משם לצד ימין שהם כמספר מעלות השורה התחתונה
  • We say: 5 times 4 are 20.
\scriptstyle{\color{blue}{5\times4=20}}
ונאמ' ה' פעמי' 4 הם כ‫'
Since there are no units there, we do not subtract a thing from the 3, but we subtract these 2 tens from the 2 that follows. Nothing remains.
\scriptstyle{\color{blue}{2-2=0}}
ואחר שאין שם אחדים לא נקח מהג' דבר אבל הב' עשרות אלו נקח מהב' הבא אחריו ולא ישאר דבר ונעביר עליו ב‫'
[missing]
  • We say also: 5 times 7 are 35.
\scriptstyle{\color{blue}{5\times7=35}}
ועוד נאמ' ה' פעמים ז' הם 35
We subtract the 5 units from the 9 that is above the 0, since this is the place from where they are subtracted, in the rank of 4, to the right of the 3 that is above the upper 8, from which the last bottom digit was subtracted, as the distance of the 7 to the right from the last bottom 4. After we subtract the 5 units from the 9 mentioned, 4 remain. We place them above it.
\scriptstyle{\color{blue}{9-5=4}}
ואלו ה5 אחדים נקחם מה9 אשר על ה0 כי שם מקום לקיחתם במעלת 4 לצד ימין מה3 אשר על ה8 העליון אש' לקח רושם האחרון התחתון כמרחק זה הז' לצד ימין מה4 האחרון התחתון כמרחק ואחר קחתנו אלו ה5 אחדים מה9 הנזכרים ישארו 4 ונשימם עליהם
We cannot subtract the 3 tens from the following rank, therefore we take one from the 3 that follows; 2 remain. We place them above it.
\scriptstyle{\color{blue}{3-1=2}}
והג' עשרות נקחם מהב' אשר עליהם כי שם מקום לקיחתם הבא אחריו ולא נוכל לכן נקח אחד מהג' הבא ‫[56]אחריו וישארו 2 נשימם עליו
This 1 is ten with relation to the two. We add them to is; they are 12. We subtract 3 tens from them; 9 remain. We place them above it.
\scriptstyle{\color{blue}{12-3=9}}
וזה הא' הוא עשרה בערך השנים ונחברם אליהם יהיה 12 נקח מהם ה3 עשרות ישארו 9 ונשימם עליהם
  • We say also: 5 times 9 are 45.
\scriptstyle{\color{blue}{5\times9=45}}
עוד נאמר 5 פעמים 9 הם 45
We subtract the 5 from the 8; 3 remains.
\scriptstyle{\color{blue}{8-5=3}}
נסיר ה5 מה8 ישארו 3
We subtract the 4 tens from the 4; nothing remains. We place 0 above it.
\scriptstyle{\color{blue}{4-4=0}}
נסיר ה4 עשרות מה4 ולא ישאר דבר ונשים עליו 0
All the bottom digits were subtracted and we are left with 2943998 in the upper number, which is much greater than the bottom number.
והנה לקחו כל התחתונות ונשאר לנו במספר העליון 2943998 והוא הרבה מאד יותר מהתחתון
Therefore we continue to divide them and draw a line above the remainder, so we will not be confused.
ונשוב לחלקם להם ונרשום על זאת השארית קו דיו כדי שלא נתבלבל
[Illustration of the procedure:]
\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{6\times4}}=24\\&\scriptstyle{\color{red}{9}}-4={\color{green}{5}}\\&\scriptstyle{\color{red}{2}}-2={\color{green}{0}}\\\end{align}}   \scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{6\times6}}=36\\&\scriptstyle{\color{red}{5}}-1=4\\&\scriptstyle1{\color{red}{0}}-6={\color{green}{4}}\\&\scriptstyle4-3={\color{green}{1}}\\\end{align}}     1      \scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{6\times7}}=42\\&\scriptstyle{\color{red}{9}}-2={\color{green}{7}}\\&\scriptstyle{\color{red}{4}}-1={\color{green}{3}}\\&\scriptstyle1{\color{red}{3}}-4={\color{green}{9}}\\\end{align}}     13     \scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{6\times9}}=54\\&\scriptstyle{\color{red}{9}}-4={\color{green}{5}}\\&\scriptstyle{\color{red}{7}}-5={\color{green}{2}}\\\end{align}}     13    
   05         054         054         054     
 00290      00290      00290      00290    
 23324      23324      233249     2332492  
0744193    0744193    07441937   074419375
4380408998 4380408998 4380408998 4380408998
     9506      9506      9506      9506 
     46079      46079      46079      46079
  • We say: 4 cannot be subtracted from 2, yet they can be subtracted from 29. They are subtracted from it 7 times and only 1 remains, but it is not enough for the tens of the product of 7 by 6 that precedes the 4, which are 4 tens.
ונאמר מ2 לא יצאו 4 אבל יצאו 4 מ29 ויצאו משם ז' פעמים ולא ישאר כי אם 1 1 ולא יהיה בו די לעשרות כפל הז' ב6 אשר לפני ה4 שהם 4 עשרות
Therefore, we take only 6 and place it beneath the 9, which is 5 [ranks] to the right of the 9, corresponding to the upper [digit], from which we subtract the last bottom digit, i.e. as the number of the ranks of the bottom line.
לכן לא נקח כי אם 6 ונשימם תחת ה9 שהוא ה5 לצד ימין מה9 כנגד [...] העליון אשר משם נקח לאחרון התחתון ר"ל שהוא כמנין מעלות השורה התחתונה
Since there is a rank that is empty from a number between the 5 that resulted from the division and the current result, we place 0 in the empty rank, for this is the role of the 0, as we explained at the beginning of the book.
ואחר שיש מעלה חלקה ממספר בין ה5 אשר יצא לנו בחילוק מתחלה וזהו אשר יצא לנו עתה נשים 0 במעלה החלקה ממספר כי זה מעשה ה0 כאשר ביארנו בתחלת הספר
  • We say: 6 times 4 are 24.
\scriptstyle{\color{blue}{6\times4=24}}
ונאמר 6 פעמים 4 הם 24
We subtract 4 units from the 9; 5 remain. We place them above them.
\scriptstyle{\color{blue}{9-4=5}}
נקח 4 אחדים מה9 ישארו 5 ונשימם עליהם
We subtract 2 tens from the 2 that follows; nothing remains. We cross it out with a pen.
\scriptstyle{\color{blue}{2-2=0}}
ונקח ה2 עשרות מה2 הבא אחריו ולא ישאר דבר ונעביר עליו הקולמוס
  • We say: 6 times 6 are 36.
\scriptstyle{\color{blue}{6\times6=36}}
ונאמ' 6 פעמים 6 הם 36
We should have taken the 6 units from the 0 that is in the remainder, but we cannot, therefore we take one from the 5, from which we subtract the 3 tens.
היה לנו לקחת ה6 אחדים מה0 אשר בזו השארית ולא נוכל לכן נקח אחד מה5 אשר משם נקח הג' עשרות
It is ten [in the present rank]. We subtract 6 units; 4 remain. We place them above it.
\scriptstyle{\color{blue}{10-6=4}}
ויהיה כאן עשרה נקח 6 אחדים ישארו 4 ונשימם עליהם
We subtract also the 3 tens from the 5, but we already took 1, so only 1 remains there. We place it above it.
\scriptstyle{\color{blue}{5-1-3=1}}
עוד נקח ה3 עשרות מה5 וכבר לקחנו 1 הנה לא ישאר שם כי אם 1 ונשימהו עליו
  • We say also: 6 times 7 are 42.
\scriptstyle{\color{blue}{6\times7=42}}
עוד נאמר ‫[57]6 פעמים 7 הם 42
We subtract the two units from the 9, i.e. in the rank of hundreds, which is 4 ranks to the right of the rank from where the last bottom digit was subtracted; 7 remain. We place them above it.
\scriptstyle{\color{blue}{9-2=7}}
נקח השנים אחדים מה9 ר"ל אשר במעלת המאות שהוא ל4 מעלות לצד ימין מהמקום שלקח האחרון התחתון ישארו 7 ונשימם עליהם
We should have taken the 4 tens from the 3, but is not enough, therefore we take one from the 4 that follows; 3 remain. We place them above it.
\scriptstyle{\color{blue}{4-1=3}}
והיה לנו לקחת ה4 עשרות מה3 ואין בו די נקח אחד מה4 הבא אחריו וישארו 3 ונשימם עליו
This 1 in 10 in the rank of the 3. We sum them; they are 13. We subtract the 4 tens from them; 9 remain. We place them above them.
\scriptstyle{\color{blue}{13-4=9}}
וזה ה1 הוא 10 במדרגת ה3 ונחברם ויהיו 13 נקח מהם ה4 עשרות ישארו 9 ונשימם עליהם
  • We say: 6 times 9 are 54.
\scriptstyle{\color{blue}{6\times9=54}}
ונאמר 6 פעמים 9 הם 54
We subtract the 4 from the 9; 5 remain. We place them above them.
\scriptstyle{\color{blue}{9-4=5}}
ונקח ה4 מה9 ישארו 5 ונשימם עליהם
[missing]
All were subtracted and 139258 still remains in the upper [number], which is more than the bottom [number].
והנה לקחו כולם ונשאר עוד בעליון 139258 והוא יותר מהתחתון
Therefore we continue to divide them and draw a line above the mentioned remainder.
לכן נשוב לחלקם עליהם נרשום קו דיו עליהם על השארית הנזכר
[Illustration of the procedure:]
\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{3\times4}}=12\\&\scriptstyle{\color{red}{3}}-2={\color{green}{1}}\\&\scriptstyle{\color{red}{1}}-1={\color{green}{0}}\\\end{align}}   \scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{3\times6}}=18\\&\scriptstyle{\color{red}{9}}-8={\color{green}{1}}\\&\scriptstyle{\color{red}{1}}-1={\color{green}{0}}\\\end{align}}      0     \scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{3\times7}}=21\\&\scriptstyle{\color{red}{5}}-1={\color{green}{4}}\\&\scriptstyle{\color{red}{2}}-2={\color{green}{0}}\\\end{align}}      0     \scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{blue}{3\times9}}=27\\&\scriptstyle{\color{red}{8}}-7={\color{green}{1}}\\&\scriptstyle{\color{red}{4}}-2={\color{green}{2}}\\\end{align}}      0    
    01         01         01         01    
    13         13         13         13    
   054         054         054         054     
 00290      002901     0029010    00290102
 2332492    2332492    23324924  23324924 
074419375  074419375 074419375  0744193751
4380408998 4380408998 4380408998 4380408998
     95063      95063      95063      95063
     46079      46079      46079      46079
  • We say: in 1 there is not enough for 4, but we subtract from the last 13 of the remainder. It is subtracted 3 times. We place the 3 that is found in division beneath the upper 8, which is in the first rank, 5 [ranks] to the right of this 3 from which we subtract, as the number of the ranks of the bottom line.
ונאמ' מא' אין די ל4 אבל נקח מי"ג האחרונים בשארית ויקח 3 פעמים ונשים ה3 הנמצא בחלוק תחת ה8 העליון שהוא במעלה הראשונה שהיא 5 ל3 זה אשר משם נקח לצד ימין שהוא כמנין מעלות השורה התחתונה
  • We say: 3 times 4 are 12.
\scriptstyle{\color{blue}{3\times4=12}}
ונאמ' ג' פעמים 4 הם 12
We subtract the 2 from the 3; 1 remains. We place it above them.
\scriptstyle{\color{blue}{3-2=1}}
ונקח ה2 מה3 וישאר 1 ונשימהו עליו
We subtract 1 from the 1; nothing remains. We cross it out with a pen.
\scriptstyle{\color{blue}{1-1=0}}
ונקח ה1 מה1 ולא ישאר דבר ונעביר עליו הקולמוס
  • We say: 3 times 6 are 18.
\scriptstyle{\color{blue}{3\times6=18}}
ונאמ' 3 פעמים 6 הם 18
We subtract the 8 from the 9; 1 remains. We place it above them.
\scriptstyle{\color{blue}{9-8=1}}
ונקח ה8 מה9 וישאר 1 ונשימהו עליו
We subtract 1 from the 1; nothing remains. We cross it out with a pen.
\scriptstyle{\color{blue}{1-1=0}}
ונקח ה1 מה1 ולא ישאר דבר ונעביר עליו הקולמוס
  • We say: [3] times [7] are [21].
\scriptstyle{\color{red}{3\times7=21}}
ונאמ' 6 פעמים 6 2 הם 12 21
We subtract the 1 from the 5; 4 remain. We place them above them.
\scriptstyle{\color{blue}{5-1=4}}
ונקח ה1 מה5 וישארו 4 ונשימם עליו
We subtract 2 from the 2; nothing remains. We cross it out with a pen.
\scriptstyle{\color{blue}{2-2=0}}
ונקח ה2 מה2 ולא ישאר דבר ונעביר עליו הקולמוס
  • We say: 3 times 9 are 27.
\scriptstyle{\color{blue}{3\times9=27}}
ונאמ' 3 פעמים 9 הם 28 27
We subtract the 7 from the 8; 1 remains. We place it above them.
\scriptstyle{\color{blue}{8-7=1}}
ונקח ה7 מה8 ישאר 1 ונשימהו עליו
We subtract the 2 tens from the 4; 2 remain. We place them above them.
\scriptstyle{\color{blue}{4-2=2}}
ונקח ה2 עשרות מה4 ישארו 2 ונשימם עליו
All were subtracted and 1021 remain, which is less than the bottom [number], therefore cannot be divided by it into integers.
\scriptstyle{\color{blue}{1021<46079}}
הנה כבר לקחו כלם ונשארו 1021 והוא פחות מהתחתון ולא יוכל להתחלק ‫[58]עליו לשלמים
So you may say that you have finished the procedure completely.
לכן תאמר שכלית כל מלאכתך על השלמות
  • The result of division is 95063 for each.
ושיצא בחילוק לכל אחד 95063
  • The remainder in the upper number that cannot be divided into integers is 1021.
ונשאר במספר העליון שלא יוכל להתחלק לשלמים 1021
We will discuss it further in this chapter. ועוד נדבר בזה הפרק בעצמו

check

Multiplication: If you wish to check your procedure, to know if you if you were not mistaken. ואם תרצה לבחון מעשיך לדעת אם לא טעית
Multiply the result of division, i.e. 95063, by the divisor, i.e. 46079, add the remainder, i.e. 1021, to the product and you will receive the dividend, i.e. 4380408998, which is the number that you divided.
\scriptstyle{\color{blue}{\left(95063\times46079\right)+1021=4380408998}}
כפול היוצא בחילוק ר"ל 950963 במספר אשר חלקנו עליו ר"ל 46079 ותוסיף השארית ר"ל ה1021 על העולה מכפל[ם] ויצא לך החשבון המתחלק ר"ל 4380408998 שזה המספר אשר חלקת עליהם
If the result is not as the [dividend], know that you made a mistake in one of the operation, i.e. the division or the multiplication.
ואם לא יצא ראשון כמותו דע לך שטעית באחד המעשים ר"ל בחילוק או בכפל
You will find it alluded in the noted diagram.
כל זה תמצא רמוז בצורה הנזכרת
  • In order that you will learn it, I write here the check of the example that I have brought in the third chapter of multiplication, that is we divide the result of that multiplication, which is 486463564860000 by one of the two multiplied numbers, first it will be by 5400920.
\scriptstyle486463564860000\div5400920
וכדי שתתלמד ארשום כאן בחינת המשל אשר הבאתי בפרק הג' בכפל והוא שנחלק העולה מהכפל ההוא והוא 486463564860000 [על אחד מהב' מספרים הנכפלים ויהיה תחלה ל‫5400920]‫[59]
We arrange them one on top of the other, the greater above, like this:
ונשימם זו על זו הגדולה למעלה כזה
     0
    020
 0 0302 000
03038270141
486463564860000
       90070500
        5400920
[Illustration of the procedure:]
  \scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{5\times{\color{blue}{9}}=}}{\color{YellowOrange}{45}}\\&\scriptstyle{\color{red}{8-}}{\color{YellowOrange}{5}}={\color{green}{3}}\\&\scriptstyle{\color{red}{4-}}{\color{YellowOrange}{4}}={\color{green}{0}}\\\end{align}}   \scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{4\times{\color{blue}{9}}=}}{\color{YellowOrange}{36}}\\&\scriptstyle{\color{red}{6-}}{\color{YellowOrange}{6}}={\color{green}{0}}\\&\scriptstyle{\color{red}{3-}}{\color{YellowOrange}{3}}={\color{green}{0}}\\\end{align}} 0             
  03              030            
486463564860000 486463564860000 486463564860000
         9               9       
        5400920         5400920         5400920
  • We say: 5 cannot be subtracted from 4, but it can be subtracted from 48. It is found there 9 times. We place the 9 beneath the 6, which is seven ranks to the right of the 8, as the number of the ranks of the bottom line.
ונאמר מ4 לא יצאו 5 ויקחו מ48 ויהיו שם 9 פעמים ונעשים זה ה9 תחת ה6 שהוא לשבע מעלות לצד ימין מה8 כמספר מעלות השורה התחתונה
  • We say: 9 by 5 are 45.
\scriptstyle{\color{blue}{9\times5=45}}
ונאמר 9 ב5 הם 45
We subtract the 5 from the 8; 3 remains.
\scriptstyle{\color{blue}{8-5=3}}
נסיר ה5 מה8 ישאר 3
We subtract the 4 from the 4; nothing remains.
\scriptstyle{\color{blue}{4-4=0}}
נסיר ה4 מה4 לא ישאר דבר
  • We say also: 9 by 4 are 36.
\scriptstyle{\color{blue}{9\times4=36}}
‫[עוד נאמר 9 ב4 הם 36
We subtract the 6 from the 6; nothing remains.
\scriptstyle{\color{blue}{6-6=0}}
נסיר ה6 מה6 לא ישאר דבר
We subtract the 3 from the 3; nothing remains also.
\scriptstyle{\color{blue}{3-3=0}}
ונסיר]‫[60] ונסיר ה3 מה3 לא ישאר ג"כ דבר
[Illustration of the procedure:]
\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{9\times{\color{blue}{9}}=}}{\color{YellowOrange}{81}}\\&\scriptstyle{\color{red}{3-}}{\color{YellowOrange}{1}}={\color{green}{2}}\\&\scriptstyle{\color{red}{4-}}{\color{YellowOrange}{1}}={\color{green}{3}}\\&\scriptstyle{\color{red}{16-}}{\color{YellowOrange}{8}}={\color{green}{8}}\\\end{align}}  0              \scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{2\times{\color{blue}{9}}=}}{\color{YellowOrange}{18}}\\&\scriptstyle{\color{red}{2-}}{\color{YellowOrange}{1=1}}\\&\scriptstyle{\color{YellowOrange}{1}}{\color{red}{5-}}{\color{YellowOrange}{8}}={\color{green}{7}}\\&\scriptstyle{\color{red}{1-}}{\color{YellowOrange}{1}}={\color{green}{0}}\\\end{align}}  0   0         
030382          0303827        
486463564860000 486463564860000
       9               9       
        5400920         5400920
  • We say also: 9 by 9 are 81.
\scriptstyle{\color{blue}{9\times9=81}}
עוד נאמר 9 ב9 הם 81
To know from which rank we subtract, do one of the two things:
ולדעת מאיזו מדרגה וקח [נקח]‫[61] תעשה אחד מ2 דברים
  • Count from the rank where you put the result of division, which is the 6, three ranks to the left, as the distance of the 9 from the first rank. They end in the upper 3 and from it we subtract the one resulted in the multiplication.
או תמנה מהמעלה [אשר שמת שם היוצא בחלוק שהוא ה6 לצד שמאל 3 מעלות כמרחק זה ה9 מהמעלה הא']‫[62] הא' ויכלו ב[3] העליון ומשם נקח זה האחד שעלה בכפל
  • If you want, count from the rank from which the last bottom digit was subtracted, which is the upper 8, five ranks to the right, as the distance of the 9 from the last digit 5. They end also in 3.
ואם תרצה תמנה מהמקום אשר משם לקח המספר האחרון התחתון ‫[63]והוא ה8 [העליון 5]‫[64] מעלות לצד ימין כמרחק זה ה9 מה5 המספר האחרון לצד ימין ויכלו ג"כ ג‫'
We subtract the 1 from there; 2 remains.
\scriptstyle{\color{blue}{3-1=2}}
ומשם נקח ה1 וישארו 2
We subtract the 8 tens from the 6; there is not enough. [We] take [1] from the 4; 3 remains. The 1 is as ten and with the 6 they are 16. We subtract the 8 from it; 8 remains.
\scriptstyle{\color{blue}{16-8=8}}
ונקח ה8 עשרות מה6 ואין די ויקחו מה4 וישארו 3 וזה הראשון הוא לעשרה ועם ה6 יהיו 16 נסיר מהם ה8 ישארו 8
  • We say also: 9 by 2 are 18.
\scriptstyle{\color{blue}{9\times2=18}}
ונאמר עוד 9 ב2 הם 18
8 cannot be subtracted from 5, so we take 1 from the 2. We subtract another 1 for the ten and nothing remains.
\scriptstyle{\color{blue}{1-1=0}}
ומה5 לא יוכל לצאת ה8 לכן נקח 1 מה2 ועוד נקח משם 1 לעשר ולא ישאר דבר
The first 1 that we took becomes ten and with the 5 they are [15]. We subtract 8 from it; 7 remains.
\scriptstyle{\color{blue}{{\color{red}{15}}-8=27}}
וזה ה1 הראשון אשר לקחנו יהיה עשרה ועם ה5 יהיו 9 נסיר מהם 8 ישארו 7 [ישאר 7‫]‫[65]
All the digits were subtracted, because you do not take anything for the 0.
וכבר לקחו כל המספרים כי ה0 ולא תקח דבר
[Illustration of the procedure:]
\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{5\times{\color{blue}{7}}=}}{\color{YellowOrange}{35}}\\&\scriptstyle{\color{red}{8-}}{\color{YellowOrange}{5}}={\color{green}{3}}\\&\scriptstyle{\color{red}{3-}}{\color{YellowOrange}{3}}={\color{green}{0}}\\\end{align}}   \scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{4\times{\color{blue}{7}}=}}{\color{YellowOrange}{28}}\\&\scriptstyle{\color{red}{3-}}{\color{YellowOrange}{1=2}}\\&\scriptstyle{\color{YellowOrange}{10-8}}={\color{green}{2}}\\&\scriptstyle{\color{YellowOrange}{2-2}}={\color{green}{0}}\\\end{align}}     02         
 0 030           0 030         
0303827         0303827        
486463564860000 486463564860000
       9007            9007    
        5400920         5400920
3807648606000 remains in the upper line and it is much greater than the bottom number, so we divide it by it again and draw a line above them.
והנה נשאר בעליון 3807648606000 והוא רב מאד מהמספר התחתון לכן נשוב נחלקנו עליו ונרשום קו דיו עליהם
  • We say: in 3 there is not enough for 5, so we take from 38. There is 7 times 5 in it. Place the 7 resulting in the division beneath the 6, for the four ranks to the right of the 8 end there, which is as the number of the ranks of the bottom line.
ונאמ' מ3 אין די ל5 ונקח מ38 ויהיה בהם 7 פעמים 5 תשים זה ה7 היוצא בחילוק תחת ה6 כי שם יכלו הד' מעלות מזה ה8 לצד ימין אשר הם כמנין מעלות השורה התחתונה
  • We say: 7 by 5 are 35.
\scriptstyle{\color{blue}{7\times5=35}}
ונאמ' 7 ב5 הם 35
We subtract the 5 from the 8; 3 remains.
\scriptstyle{\color{blue}{8-5=3}}
ונקח ה5 מה8 ישארו 3
The 3 from the 3; nothing remains.
\scriptstyle{\color{blue}{3-3=0}}
וה3 מה3 לא ישאר דבר
  • We say: 7 by 4 are 28.
\scriptstyle{\color{blue}{7\times4=28}}
ונאמר 7 ב4 הם 28
8 cannot be subtracted from 0, so we take 1 from the 3; it becomes [ten]. We subtract the 8 and 2 remains. We write it there
\scriptstyle{\color{blue}{10-8=2}}
וה8 לא יוכלו לצאת מה0 ונקח 1 מה3 ויהיה 34 נקח ה8 וישארו ב' ונשימם עליו
We subtract the 2 tens from the 3 also; nothing remains.
\scriptstyle{\color{blue}{3-1-2=0}}
ונקח עוד מה3 ויהיה 4 הב' עשרות ולא ישאר דבר
[Illustration of the procedure:]
\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{9\times{\color{blue}{7}}=}}{\color{YellowOrange}{63}}\\&\scriptstyle{\color{red}{4-}}{\color{YellowOrange}{3}}={\color{green}{1}}\\&\scriptstyle{\color{red}{6-}}{\color{YellowOrange}{6}}={\color{green}{0}}\\\end{align}}     02          \scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{2\times{\color{blue}{7}}=}}{\color{YellowOrange}{14}}\\&\scriptstyle{\color{red}{8-}}{\color{YellowOrange}{4}}={\color{green}{4}}\\&\scriptstyle{\color{red}{1-}}{\color{YellowOrange}{1}}={\color{green}{0}}\\\end{align}}     02         
 0 030           0 030  0      
030382701       0303827014     
486463564860000 486463564860000
       9007            9007    
        5400920         5400920
  • We say also: 7 by 9 are 63.
\scriptstyle{\color{blue}{7\times9=63}}
עוד נאמר ז' בט' הם 63
We subtract the 3 from the 4, which is [in] the corresponding rank, as we mentioned in one of the two methods, whether as third to the left, or as fifth to the right like the 9; 1 remains from the 4. We write it above it.
\scriptstyle{\color{blue}{4-3=1}}
ונקח ה3 מה4 שהיא מדרגה הראויה לו כמו שהזכרנו באחד מהב' דרכים אם להיותה שלישית לשמאל ואם להיותה חמישית לימין כמו שהוא ה9 וישאר א' מה4 ונשימהו עליו
We subtract the 6 tens from the 6; nothing remains.
\scriptstyle{\color{blue}{6-6=0}}
והו' עשרות נסירם מה6 ולא ישאר דבר והנה לקחו כלם
  • We say also: 7 by 2 are 14.
\scriptstyle{\color{blue}{7\times2=14}}
עוד נאמר 7 ב2 הם 14
We subtract the 4 from the 8; 4 remains.
\scriptstyle{\color{blue}{8-4=4}}
נסיר ה4 מה8 ישארו 4
We subtract the 1 from the 1; nothing remains.
\scriptstyle{\color{blue}{1-1=0}}
ונסיר ה1 מ1 ולא ‫[66]ישאר דבר
All are subtracted and 2700460000 remains in the upper line.
והנה לקחו כלם ונשאר בעליון 2700460000
Since the 7 is first beneath the drawn line and you might forget it, write it above the drawn line. Draw also a line above all and divide them again, as they are much more than the bottom number.
וה7 לפי שהוא תחת הקו הרשום תחלה ואולי תשכחהו שימהו על הקו הרשום ועוד תרשום קו על הכל ותשוב לחלקים אחרי היותם יותר מהתחתון
[Illustration of the procedure:]
\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{5\times{\color{blue}{5}}=}}{\color{YellowOrange}{25}}\\&\scriptstyle{\color{red}{7-}}{\color{YellowOrange}{5}}={\color{green}{2}}\\&\scriptstyle{\color{red}{2-}}{\color{YellowOrange}{2}}={\color{green}{0}}\\\end{align}}      0          \scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{4\times{\color{blue}{5}}=}}{\color{YellowOrange}{20}}\\&\scriptstyle{\color{red}{2-}}{\color{YellowOrange}{2}}={\color{green}{0}}\\\end{align}}      0          \scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{9\times{\color{blue}{5}}=}}{\color{YellowOrange}{45}}\\&\scriptstyle{\color{red}{6-}}{\color{YellowOrange}{5}}={\color{green}{1}}\\&\scriptstyle{\color{red}{4-}}{\color{YellowOrange}{4}}={\color{green}{0}}\\\end{align}}      0         
    02              020             020        
 0 0302 0        0 0302 0        0 0302 00     
0303827014      0303827014      03038270141    
486463564860000 486463564860000 486463564860000
       900705          900705          900705  
        5400920         5400920         5400920
  • We say: in 2 there is not enough for 5, so we take from 27. There is 5 times in it. We place it beneath the third [rank], for the seven ranks end there.
ונאמר ב2 אין די ל5 ניקח מ27 ויהיו בו ה' פעמים ונשימהו תחת השלישית כי שם יכלו ה7 מעלות לצד ימין שהם כמנין מעלות השורה התחתונה
  • We say: 5 by 5 are 25.
\scriptstyle{\color{blue}{5\times5=25}}
ונאמר 5 ב5 הם 25
We subtract the 5 from the 7; 2 remains.
\scriptstyle{\color{blue}{7-5=2}}
נסיר הה' מהז' ישארו שנים
We subtract the 2 from the 2; nothing remains.
\scriptstyle{\color{blue}{2-2=0}}
ונסיר הב' מהב' ולא ישאר דבר
  • We say: 5 by 4 are 20.
\scriptstyle{\color{blue}{5\times4=20}}
ונאמ' ה' בד' הם כ‫'
We do not subtract units.
ולא נקח אחדים
The 2 are tens, so we subtract them from the 2 that we wrote now above the 7; nothing remains.
\scriptstyle{\color{blue}{2-2=0}}
אכן הב' עשרות נקחם מהב' אשר שמנו עתה על הז' ולא ישאר דבר
  • We say also: 5 by 9 are 45.
\scriptstyle{\color{blue}{5\times9=45}}
עוד נאמר ה' בט' הם מ"ה
We subtract the 5 from the 6, as it is the corresponding rank as stated; 1 remains.
\scriptstyle{\color{blue}{6-5=1}}
נסיר הה' מהו' כי היא מעלה הראויה לו כנזכר וישאר א‫'
We subtract the 4 from the 4; nothing remains.
\scriptstyle{\color{blue}{4-4=0}}
ונסיר הד' מהד' ולא ישאר דבר
[the last step is missing \scriptstyle{\color{red}{2\times5=10\longrightarrow1-1=0}}]
The whole number is gone.
הנה לנו שכלה כל החשבון
Since we have empty ranks in the result of division, both at the beginning and in the middle, we write zeros in these places, because this is the role and the value of the zeros, as we have mentioned.
ולהיות לנו בזה היוצא בחלוק מעלות חלקות מהמספר הן בתחלה הן באמצע נשים ספרות במקומם כי זה מעשה הסיפרות ותועלתם כאשר הזכרנו
We receive that when we divide the product by one of the multiplicands, the second results no more and no less, with no remainder at all. והנה יצא לנו שכאשר חלקנו העולה מהכפל באחת הנכפלים יצא השני בלי תוספת ומגרעת ובלי שארית כלל
Likewise, if you divide by the other, the one results in the division, as appears in the following diagram: וכן אם תחלקנה לחבירתה תצא חבירתה בחילוק כאשר בא בזאת הצורה
  • \scriptstyle486463564860000\div90070500
     0
     1
    020
   0838 000
03011100141
486463564860000
        5400920
       90070500
I do not want to elaborate it any further and all is clear to the one who understands. ולא ראיתי להאריך בזה עוד והכל מבואר למבין

reason: procedure

The reason for the decimal place of the interim result of division:
The reason for the writing place of the result of division is that according to the rank [of the dividend] from which the first digit [of the divisor] is subtracted, so is the [rank of the number of] times that it is subtracted from it. [67]וטעם מקום הנחת היוצא בחילוק הוא כי כפי המדרגה אשר ממנה לקח המספר הראשון הם הפעמים אשר לקחו
  • I.e. if we divide six hundred by 3 units:
\scriptstyle600\div3
ר"ל שאם חלקנו שש מאות לג' אחדים
Each unit receives 2 and the rank from which it is subtracted is the rank of hundreds, so the two resulting from the division are of the same rank and they are two hundred.
\scriptstyle{\color{blue}{600\div3=200}}
הנה יגיע לכל אחד ב' והמדרגה אשר ממנה לקח היא מדרגת המאות הנה השנים אשר יצאו בחלוק היא הם מאותה המדרגה והם מאתים
If there were thousands in the upper [line] and tens in the bottom [line], then as the units receive from the hundreds, so the tens would receive from the thousands.
\scriptstyle{\color{OliveGreen}{a00\div b=c00\longrightarrow a000\div b0=c00}}
ואם היו שם עוד אלפים בעליון ועשרות בתחתון הנה הפעמים אשר יגיעו לאחדים מהמאות יגיעו לעשרות מהאלפים
Because, as the tens are tens in relation to the units, so the thousands are tens in relation to the hundreds; and as the hundreds are in relation to the units, so the thousands are in relation to the tens, and the tens of thousands are in relation to the hundreds; and so on, as those are in relation to those, so are these in relation to these.
כי כמו שהעשרות הם עשרות לאחדים [ככה האלפים הם עשרות למאות הנה כאשר הגיע לאחדים מהמאות]‫[68] מהמאות יגיעו לעשרות מהאלפים וכן למאות מהעשרות אלפים וכן לעולם כי כמו שזה עולה לאשר כמותו כן עולה זה
We have already explained that the rank of the [number of] times that the units [are subtracted] is the rank from which they are subtracted
כבר ביארנו כי מדרגת הפעמים אשר הגיעו לאחדים היא מרוחק המדרגה אשר ממנו לקח
[Thus, since the units are subtracted from the hundreds], the tens are subtracted from the thousands, and the hundreds from the tens of thousands and so on.
והיא בעצמה המדרגה אשר לקחו העשרות מהאלפים והמאות מהעשרות אלפים וכן כולם
I.e. each of the bottom [digits] should be extracted from the rank [of the dividend] that is as far to the left of the rank, from which the [divisor's] units was extracted, as the number of ranks that it is far from the [rank of] units, i.e. as the number [of ranks] that the bottom [digit] is far to the left from the units [of the divisor]. ר"ל שכל אחד מהתחתונות מדרגתה הראויה לקחת ממנה היא מרוחקת לצד שמאל [מהמדרגה אשר לקחו ממנה האחדים כמספר המדרגות אשר היא מהאחדים]‫[69] מהאחדים ר"ל כמספר אשר זה התחתון לצד שמאל מהאחדים ר"ל כמספר אשר זה התחתון לצד שמאל מהאחדים
The rank of the hundreds is third to the left of the units, so when the units are taken from the hundreds, as we mentioned, the tens should be taken from the thousands that are third [in relation to the tens] to the left of the rank of hundreds, from which the units are taken.
שהרי המאות מדרגתם היא שלישית לצד שמאל מהאחדים וכן העשרות אלפים אשר ראוי לו לקחת מהם בקחת האחדים מהמאות כאשר זכרנו גם הם שלישיים לצד שמאל מהמאות אשר היא המדרגה אשר ממנה לקחו האחדים
Apply this. והקש על זה
This includes the reason of the whole procedure. ובזה נכלל טעם כל המעשה

reason: check

[70]וטעם הבחינה
For the multiplication is the inverse operation of division. כי הכפל הוא הפך החילוק
I.e. [the meaning of] division is to know how many times the small number is in the larger number. ר"ל שהחילוק הוא לידע כמה פעמים המספר הקטון במספר הגדול
Whereas [the meaning of] multiplication is [to know] how much is the sum of the multiples of a given number for a given number of times. והכפל הוא כמה סך כפלי מספר ידוע פעמים ידועים
  • If we divide 20 by 5, each one receives 4; if by 4, each one [receives] 5.
וכן אם בחלקנו כ' לה' יעלה לכל אחד ד' או לד' לכל אחד ה‫'
So, 20 is a product of 4 by 5, which are the number by which we divide and the result of division.
הנה כ' הוא כפל ד' בה' שהם המספר אשר חלקנו עליו והיוצא בחילוק
\scriptstyle{\color{blue}{\begin{cases}\scriptstyle20\div5=4\\\scriptstyle20\div4=5\end{cases}\longrightarrow20=4\times5}}
  • If we divide 21 by 4, each one receives 5 and 1 remains.
ואם חלקנו כ"א לד' [..] יעלה לכל אחד ה' וישאר א‫'
Therefore, when we multiply 4 by 5, the result is 20. We add to it the remaining 1; the total result is 21, which is the same as the dividend.
\scriptstyle{\color{blue}{21\div4=5+\frac{1}{4}\longrightarrow21=\left(4\times5\right)+1}}
ולזה כאשר כפלנו ד' בה' ויעלה כ' הוספנו עליהם הא' הנשאר יעלה הכל כ"א שהוא כמספר המתחלק
All this is clear. וכל זה ברור
Finding the proper fraction of the remainder from division: When you wish to add the smaller [number] that remains above the bottom number that is greater than it, or any small number that is above a greater number, you will find in the discussion on summing fractions chapter 1, section 2, a general method for all the numbers, whether they have divisors, or they are prime. וכאשר תרצה לחבר המעט הנשאר על המספר התחתון שהוא גדול ממנו או שום אחד מספר קטן על מספר אחד גדול ממנו תמצא בחלק הב' בפרק הא' במאמ' האחדות אשר בו דרך כולל לכל המספרים בין יהיו להם מורים בין אם יהיו פשוטים

divisibility of a number

To give you an inclusive method for dividing a large number by a smaller number and vice versa, I use the technique of the ancients: to extract the denominators of the number by which you want to divide, whether it is the smaller number or the greater number; that is to consider the numbers of which it is composed, if it is not a prime number. אכן לתת לך דרך כולל בין לחלק רב למעט או בהפך דרכתי דרך הראשונים והוא שתוציא המורים מהחשבון אשר תרצה לחלק עליו אם מועט אם הרבה והוא ל[ראו'] המספרים אשר הוא מורכב מהם אם איננו פשוט

3; 6; 9

First, if you want to know if it has a third, a sixth, or a ninth [= if 3, 6, or 9 are divisors of the number]: ראשונה אם תרצה לדעת אם יש לו שלישית או שישית או תשיעית מבלי שברים
  • six: See, if the first digit that is in the first rank is an odd number, then you know that the number does not have a sixth [= not divisible by 6].
עיין אם האות הראשונה אשר במעלה הא' מהחשבון הוא נפרד תדע שאין לו שישית
If it is an even number, know that if it has a third [= divisible by 3], it has also a sixth [= divisible by 6], otherwise it has not.
ואם הוא סזוג [אז] דע שאם יהיה לו שלישית יהיה לו ג"כ שישית ואם לאו לאו
  • nine and three: Every [number] that it has a ninth [= divisible by 9], has also a third [= divisible by 3], but not vice versa.
[71]וכל שיש לו תשיעית יש לו ג"כ שלישית ולא יתהפך
To know if a number has a ninth or a third, consider all the digits of the number as if they are of the first rank, i.e. sum them as units and cast out the nines from this sum
ולדעת אם יש למספר תשיעית או שלישית הבט כל רשמי מספרי החשבון כאלו היו כולם מהמעלה הראשונה ר"ל שתחברם כלם כאלו היו אחדים וחסר כל ט' ט' שבחבור ההוא
  • No remainder - If it is consumed by the nines, know that it has a ninth [= divisible by 9] and it certainly has a third [= divisible by 3].
ואם יצא כולו תשיעיות תדע שיש לו תשיעית וכ"ש שלישית
  • The reminder is 6 or 3 - if 6 or 3 remains, it has a third [= divisible by 3], but it does not have a ninth [not divisible by 9].
ואם ישארו ו' או ג' יהיה לו שלישית לא תשיעית
  • The reminder is a number other than 3 - if another number remains, such as 4 or 5 and the like, it does not even have third [= not divisible by 3].
ואם ישאר מספר אחר כמו ד' או ה' או הדומה להם אין לו אפי' שלישי‫'
Reasons
  • The reason that we consider all the digits of the number as units, without considering their ranks, is that every [unit of] a certain rank is ten [units of] the preceding rank, therefore when subtracting nine from the ten [of a certain rank] the remainder belongs to the preceding rank, and so on repeatedly. We find that after casting out the nines [their ranks] are the same.
הטעם מה שא[נו] לוקחים כל רשמי המספרים לאחדים בלי עיון אל מעלותיהן הוא לפי שכל מעלה היא עשר בערך אל אשר לפניה בהסר מהעשרה תשע ישאר כמותה וכן כולם

נמצא שלאחר הסרת התשיעיות כלם שוים

  • We say that if the first digit is an odd number, it does not have a sixth [= 6 is not a divisor of the number], since the whole number is odd, and an odd number is indivisible by an even number, i.e. it is not a product of an even number multiplied by an odd number and all the more so by an even number.
ואמרנו שאם הרושם הראשון הוא מספר נפרד שאין לו שישית הוא לפי שכל החשבון בכללו הוא נפרד שאין לו שישית הוא לפי שכל החשבון בכללו הוא נפרד והחשבון הנפרד לא נחלק לשלמים אל חשבון זוג ר"ל שאינו מורכב מחשבון זוג אפי' עם הנפרד כ"ש עם הזוג
  • We say that if it is an even number that has a third [= divisible by three], it has also a sixth [= divisible by six], since the whole number that consists of an even number multiplied by 3 is an even number. For if it were an odd number, it were a product of an odd number by an odd number, but as the number that consists of the 3 is even, it is divisible by double the 3, i.e. by six, so it has a sixth.
ואמרנו שאם הוא זוג שאם יש לו שלישית יש לו ג"כ שישית הוא לפי שמאחר שהחשבון בכללו זוג מספר כפלי הג' ג' אשר בו הוא זוג שאם היה נפרד הנה היה מורכב מנפרד בנפרד והיה כולו בנפרד ואחר שהחשבון אשר בו הג' ג' הוא זוג א"כ הוא נחלק לזוגי ג' ר"ל לששה ששה והנה יש לו שישית על השלימות וזה מבואר

2; 4; 8

If you want to find out if it has a half, a quarter, or an eighth [= if 2, 4, or 8 are divisors of a the number] ואם תרצה לדעת אם יש לו מחצית או רביעית או שמינית
Consider its first numeral [its units]: [72]ראה הרושם הראשון
If it is an odd number, it does not have any of them [not divisible by 2, 4, or 8] - from the reason we have mentioned concerning the sixth [= 6 as a divisor]. אם הוא חשבון נפרד הנה אין לו אח' מהם מהטעם שאמרנו בשישית
  • two: if it is an even number or 0 - then the whole number is even, for the tens and up are even - therefore it is known that it has a half [= divisible by 2].
ואם הוא זוג או 0' הרי כל החשבון בכללו זוג כי העשרות ומהם ולמ[ע]‫[73]לה כלם זוג אחדים וא"כ בידוע שיש לו מחצית
  • four and eight: to know if it has also a quarter and an eighth:
ולדעת אם יש לו ג"כ רביעית ושמינית
The digits of the whole number are summed according to the following procedure:
  • Take the numeral that is in the first rank as it is.
קח המספר אשר במעלה הראשונה כמו שהוא
  • Double what is in the second [rank], if there is a number there.
ואשר בשנייה כפול אם יש שם מספר
  • If what is in the third [rank] is an odd number, take 4 units for it; if it is an even number or 0, do not take any thing for it.
ואשר בשלישי' אם הוא נפרד קח בעבורו ד' אחדים ואם הוא זוג או 0 לא תקח בעבורו מאומה
  • Likewise from the third rank up, do not take any thing.
וכן מהמעלה השלישית ולמעלה לא תקח דבר
Sum up all that you took and cast out the eights.
וחבר כל אשר לקחת והשלך אותו ח' ח‫'
\scriptstyle{\color{OliveGreen}{2a+10b+\left[100\sdot\left(2c-1\right)\right]\longrightarrow2a+2b+4}}
\scriptstyle{\color{OliveGreen}{2a+10b+\left(100\sdot2c\right)\longrightarrow2a+2b}}
  • If all is gone [= no remainder], it has an eighth and a quarter [= divisible by 8 and 4].
ואם יצא הכל הנה יש לו שמינית ורביעית
  • If four remains, it has a quarter [= divisible by 4].
ואם ישאר [ארבעה]‫[74] יש לו רביעית לבד
  • If another number remains, it does not have an eighth nor a quarter [=not divisible by 4 or 8]
ואם ישאר חשבון אחר אין לו לא שמינית ולא רביעית
The reason for doubling the digit of the tens in the sum:
The reason we say that we take what is in the second rank as doubled is that they are tens and when you subtract 8 from each ten, 2 remains. So, we are left with two from each ten, therefore we double all the tens and take them doubled.
\scriptstyle{\color{blue}{10-8=2}}
וטעם אומרנו שנקח אשר במעלה השנית כפול הוא לפי שהם עשרות ומכל עשר כאשר תסיר ח' ישארו ב' הרי שישאר לנו מכל עשר שנים לכן אנו כופלים כל העשרות ולכך אנו לוקחים אותם כפולות
The reason for not taking any digit for an even number of hundreds in the sum:
What is in the third rank are hundreds and every even number of hundreds has an eighth [= is divisible by 8]. For the eighth of two hundred is 25. So, we do not take any thing for an even number of hundreds.
\scriptstyle{\color{blue}{\frac{1}{8}\sdot200=25}}
ואשר במעלה השלישית הם מאות וכל זוגי מאות יש להם שמינית כי שמינית מאתים הוא כ"ה לכן לא נקח בעבור זוגי המאות דבר
The reason for taking 4 for an odd number of hundreds in the sum:
But, if there is an odd number of hundreds, after subtracting the even number of hundreds, we take 4 for it. Because, when subtracting the eights from one hundred, which are 12 eights that are 96, 4 remains.
\scriptstyle{\color{blue}{100-\left(12\sdot8\right)=100-96=4}}
אך אם יש שם מאה נפרד אחר הסרת זוגי המאות נקח בעבורו ד' כי בהסיר שמיניות המאה שהם י"ב שמיניות שהם עולים לצ"ו ישארו ד‫'
No need to take any thing for the ranks that are higher than the hundreds
You do not take any thing for the third rank up, because all of them are an even number of hundreds, so they have an eighth [= are divisible by 8], as we have explained. ומהמעלה השלישית ולמעלה לא תקח דבר כי כלם הם זוגי מאות ויש להם שמינית כמו שביארנו

7

If you want to find out if it has a seventh [= if 7 is a divisor of a given number] ואם תרצה לדעת אם יש לו שביעית
See the final digit to the right and multiply it by 3, add [the product] to what you find in the preceding [rank], and cast out the sevens [from the sum]. Multiply the remainder by 3 and add [the product] to what you find in the preceding [rank]. If you do not find there any number, but 0, multiply [the product] again by 3, likewise for every 0, and add [the product] to what you find in the preceding [rank]. Then, cast out the sevens [from the sum, and so on repeatedly]. ראה הרושם האחרון אשר לצד שמאל וכפלהו בג' וחברהו לאשר תמצא במעלה לאשר לפניה והסר לעולם ‫[75]השביעיות והנשאר כפלהו בג' וחברהו עם אשר תמצא אשר לפניה ואם לא תמצא שם מספר כי אם 0' כפלהו פעם שנית בג' וכן על כל 0' וחברהו עם אשר תמצא לפניו והשלך לעולם הז' ז‫'
  • If all is cast out by the sevens, we know that it has a seventh [= divisible by 7].
ואם יצא הכל לשביעיות הרי ידענו שיש לו שביעית
  • Otherwise - it does not.
ואם לאו לאו
The reason for multiplying each rank by 3 and adding the product to the preceding rank:
The reason that we multiply every rank by 3 [and add the product] to the preceding rank is that every rank is ten with regard to the preceding [rank] and when subtracting 7 from [10], 3 remains. Therefore, each unit is valued three with regard to the preceding [rank], after subtracting the 7 [from it]. הטעם מה שאנו כופלים כל מעלה בג' לחברו לאש' לפניה הוא לפי שכל מעלה היא עשר בערך אשר לפניה ובהסר מהם הז' [ישארו ג' הנה כל אחד הוא כשלש בערך אשר לפניו אחרי הסרת הז‫']‫[76]

5; 10

If you want to find out if it has a tenth, or a fifth [= if 10, or 5 are divisors of a given number] ואם תרצה לדעת אם יש לו עשירית או חמישית
  • If the first digit is 0, the whole [number] is tens, because the hundreds and up are all tens also, therefore it has a tenth and a fifth [= divisible by 10 and 5].
אם הרושם הראשון הוא 0 הנה הכל עשרות [כי אם המאות ומשם ולמעלה הכל הוא עשרות]‫[77] והנה יש לו עשירית גם חמישית
  • If it is 5, it has only a fifth [= divisible by 5].
ואם הוא ה' הנה יש לו חמישית לבד
  • If it is another number, it does not have even a fifth [= not divisible by 5].
ואם הוא מספר אחר גם חמישית אין לו

11

If you want to find out if it has 11th [= if 11 is a divisor of a given number] ואם תרצה לדעת אם יש לו י"א
I.e. if it is completely divisible by 11, meaning that it is all cast out by elevens and nothing is left, the same as what we have said in all the preceding divisors. פי' אם יתחלק לי"א על השלימות והוא שיושלך כלו י"א י"א ולא ישאר דבר וכיוצא בזה הוא מה שאמרנו בכל המורים העוברים
See the last digit and subtract 1 from what you find in the preceding rank. Subtract the remainder from what you find in the further preceding rank and so on repeatedly, until reaching to the beginning. ראה הרושם האחרון והוצא ה1 מאשר תמצא במעלה אשר לפניו והנשאר הוציאנו מה שתמצא מאשר לפני פניו וכן עד הגיעו לראש
  • If all is cast out, it has an 11th [= divisible by 11].
ואם יצא הכל יש לו י"א י"א
  • Otherwise - it does not
ואם לאו לאו
If you find a zero anywhere or any small number, from which you cannot subtract what I have instructed you, add 11 to what is found there, whether [it is] a zero or a small number, and subtract from the sum as I have instructed you, then [subtract] the remainder from what precedes and so on. ואם בשום מקום תמצא סיפרא או שום מספר קטן במנין שלא תוכל להוציא ממנו אשר צוויתיך הוסיף י"א על הנמצא שם סיפרא 0 וכן או שמונה חשבון קטן ומהכל תוציא אשר ציויתיך והנשאר מאשר לפניו כן לעולם
The reason for the procedure: For every number is ten times with regard to the preceding rank, therefore when you take it as tens and what precedes it as units, it is as if all that you take are tens and units. הטעם כי כל מספר הוא עשרה בערך במעלה אשר לפניו לכן כאשר תקחנו לעשרות ואשר לפניו לאחדים זה בזה הרי כל מה שלקחת הם י"א י"א
The reason for adding 11 to a small number: Our saying to add 11 to what precedes, when you do not find there enough to subtract, is that if we add some 11s to our number it neither raises nor decreases, for it is cast out by elevens anyway, either with the addition or without, and this is clear. ואשר הוא לפי אמרנו ולהוסיף ‫[78]אות י"א באשר לפניו כאשר לא תמצא שם די מחסורו הוא לפי שאם נוסיף כמה י"א י"א בחשבוננו לא יעלה ולא יוריד כי הוא בעצמו יושלך לי"א י"א ר ג"כ יצא אחר התוספת ואם לאו לאו וזה מבואר

13

If you want to find out if it has 13th [= if 13 is a divisor of a given number] ואם תרצה לדעת אם יש לו י"ג
See the last digit and multiply it by 3, then cast out the thirteens that are in [the product] and subtract the remainder from what you find in the preceding rank. Multiply the remainder again by 3, then cast out the thirteens that are in [the product] and subtract the remainder from the preceding [rank] and so on until the [digits] end. ראה הרושם האחרון וכפלהו בג' והוצא הי"ג י"ג אשר בו והנשאר הוציאהו מאשר תמצא במעלה אשר לפניו והנשאר כפלהו שנית בג' והוצא הי"ג אשר בו והנשאר כפלהו שנית בג' והוצא הג' אשר בו והנשאר הוציאהו מאשר לפניו וכן לעולם עד תכליתם
  • If all is cast out, it has a 13th [= divisible by 13].
ואם יצא הכל יש לו י"ג
  • Otherwise - it does not.
ואם לאו לאו
If you do not find not enough in a certain rank to subtract as I have instructed you, add 13 and subtract from the sum what you need to subtract. Then multiply the remainder by 3 and cast out the thirteens. Subtract the remainder from the preceding [rank] and so on. וכאשר יחסר בשום פנים מעלה שלא תמצא די להוציא אשר ציויתיך הוסף י"ג והוצא [מהמתחבר אשר עליך להוציא והנשאר כפלהו בג' והוצא]‫[79] הי"ג י"ג והנ' הוציאהו מאשר לפניו וכן לעולם
The reason for the procedure: Because every number is ten times its value with regard to the preceding rank. Hence, when you subtract it and you subtract 3 times as much as it in the preceding rank, which is as units with regard to it, all that you subtract is as tens and 3 units for each ten. So each number are 13s. הטעם כי כל מספ' הוא עשרה כערך אשר במעלה הקודמת וכאשר תסירנו ותסיר ג' שכמותו מהמעלה הקודמת שהי' לה לאחדים הרי כל אשר הוצאת הוא עשרות וג' ואחדים על כל עשר מספר הנה כל מספר הוא י"ג י"ג
Furthermore, the addition of the 13 that I have instructed you to add does not harm the extraction procedure of 13, as we have noted concerning the addition of 11 in the extraction procedure of 11 as a divisor. This is clear. גם התוספת אש' ציויתיך להוסיף מהי"ג לא יזיק בהוצאת הי"ג כאשר הזכרנו בהוספת הי"א בהמצאת מורה הי"א וזה מבואר

general rules

  • For a number that you do not find any of the aforesaid divisors [2-11, 13] and you want to know if it has any other divisor, the divisor that you look for cannot have any of these divisors [= cannot be divisible by any of the numbers 2-11, 13].
והמספר אשר לא תמצא לו אחד מהמורים הנזכרים ותרצה לידע אם יש לו מורה אחר המורה הזה אשר תבקש הוא שלא יהיה לו שום מורה מהמורים
The reason is that if it has any divisor of them, then it is known that it cannot be a divisor of the [given] number. For if it were a divisor of the [given] number, then the [given] number also would have had the same divisor that this divisor had, but you have not found it.
הטעם שאם היה לו שום מורה מהם בידוע שאינו מורה לזה החשבון שאם הוא מורה לזה החשבון הנה לחשבון ג"כ יש לו המורה אשר לזה המורה ואתה לא מצאתו
  • Example: when one takes 21, if 21 is a divisor of a number, then this number also has the divisors of this divisors, i.e. [it has] a seventh and a third, but you already know that your number does not have any of them, so it does not have 21 either.
המשל אם יקח כ"א הנה אם ‫[80]כ"א הוא מורה לחשבון הנה יש לחשבון מורי זה המורה ר"ל שביעית ושלישית וכבר ידעת שאין לחשבונך אחד מהם לכן לא יהיה לו כ"א
  • In addition, when you examine if a number has all the previous divisors one after the other and you do not find, if it is less than the square of the next divisor that you want to examine, you do not need to examine it, because it is not its divisor, neither does any other number, for it is known that it is a prime number.
גם אם מספר אשר בקשת לו כל המורים העוברים זה אחר זה ולא מצאתם אם הוא פחות ממרובע המורה הסמוך אשר תרצה לבקש אינך צריך לבקשו כי איננו לו מורה אם לא מורה אחר בעולם כי בידוע שהוא מספר פשוט
The reason is that if it had this next divisor that you seek for, needless to say another greater than it, then since your number is less than its square, the number of times that this divisor can be in it should be less than the divisor itself, and this number of times itself should be its divisor.
הטעם שאם היה לו זה המורה הפשוט הסמוך אשר אתה מבקש ואין צריך לומר אחר גדול ממנו הנה להיות חשבונך פחות ממרובעו הנה הפעמים אשר יהיה בו המורה ההוא יהיה מספרם פחות ממספר המורה בעצמו וגם מספר הפעמים יהיה לו למורה
Since, for any [number] that is divided by any number, so that the result of division is a certain number and nothing remains, both are its divisors. Because, when it is divided by the current result of the division, the result of this division is the former divisor and nothing remains.
כי כל דבר הנחלק למספר מה ויצא בחילוק מספר מה ולא נשאר דבר הנה שניהם לו מורים כי כאשר יתחלק לאשר יוצא עתה בחילוק יצא בחלוק אשר נחלקו עליו עתה ולא ישאר דבר
Yet, since this number of times is less than the required divisor, it is among one of the preceding divisors, therefore it has one of the preceding divisors, but you did not find them as such, so this is a contradiction.
ואולם להיות מספר פעמים אלו פחות ממספר מורה המבוקש הלא הם כאחד המורים הקודמים וא"כ היה לו אחד מהמורים הקודמים ואתה לא מצאתם הרי זה שקר
  • Example: if you seek until 17, but you do not find and you want to see if it has a 17th. If your number is less than 289, which is the square of 17, it is known that if it is cast out by 17s, then the number of times that 17 is in it is less than 17. For if it were 17 or more then your number were as the square of 17 or more, but it is smaller. However, if this number of times that 17 is in it is less than 17, for instance 16 and down, then it has a quarter or any of the preceding divisors, for it is divisible also by this number of times, but this is a contradiction, because you did not find any of the preceding [divisors].
המשל אם בקשת עד י"ז ולא מצאת ותרצה לבקש אם יש לו י"ז ומספרך שהוא פחות מרפ"ט שהוא ממרובע י"ז הנה בידוע שאם היה יוצא לי"ז י"ז שהפעמים אשר בו י"ז י"ז הם פחות מי"ז שאם היו י"ז לא או יותר הרי חשבונך היה כמרובע י"ז או גדול ממנו והוא קטן

ואם הפעמים האלה אשר י"ז בו הם פחות מי"ז המשל י"ו ומשם ולמטה הנה היה לו רביעית או אחד מהמורים הקודמים שהרי יתחלק למספר פעמים אלו ג"כ ויצא בחילוף הי"ז וזה שקר ‫[81]שהרי לא מצאת לו אחד מהעוברים

  • When your number is as the square of the next divisor that you want to examine, or greater than it and you wish to know if this [potential] next divisor is indeed its divisor:
ואולם כאשר יהיה חשבונך כמרובע המורה הנמשך אשר תבקש או גדול ממנו ותרצה לדעת אם תמצא לו זה המורה הסמוך
  • If it is divisible by it to integers without a remainder, then it is its true divisor and so is the result of division.
ואם יתחלק אליו לשלימים מבלי שארית הוא לו למורה צדק גם היוצא בחילוק
  • Otherwise - it is not.
ואם לאו לאו

Repetitive division of a number by its [divisors]

When you know that it has a divisor, divide the whole number by this divisor, and the result of division will be an integer. וכאשר ידעת שיש לו שום מורה חלק המספר כולו לזה המורה יתחלק אליו לשלימים והיוצא בחילוק
If you do not want to seek for more, then these two numbers, i.e. the divisor, by which you divide, and the result of the division are both its divisors. ואם לא תרצה לבקש יותר הנה אלו השני מספרים ר"ל המורה אשר חלקת עליו והיוצא בחילוק הם הם מוריו
If the result of division is a large number and you want to seek its divisor, proceed according to the mentioned methods. אכן אם היוצא בחילוק הוא חשבון גדול ותרצה לבקש לו מורה ג"כ עשה כדרכים הנזכרים
But, know that [the numbers] you find that are not divisors of the large number, you will find that they are not divisors of the result of division and this is clear. You should not seek for one of [these numbers], only for those that are similar to the one that you have found or greater than it. ואולם דע שהמורים אשר לא מצאת לחשבון הגדול לא תמצאם ג"כ לזה היוצא בחילוק וזה ברור ואין לך לבקש אחד מהם כי אם הדומה לאשר מצאת או למעלה ממנו
If you find its divisor, divide it by it and the result of division is a third divisor. אם מצאת לו מורה חלקנו עליו והיוצא בחילוק יהיה מורה שלישי
If this [result] is also a large [number] and you want to seek its divisor also, proceed as mentioned, divide it by the divisor that you have found to be its divisor and the result of division is its fourth divisor. ואם זה ג"כ גדול ותרצה לבקש לו ג"כ מורה אחר עשה כנזכר וחלקנו על המורה אשר ידעת אשר הוא למורה לו והיוצא בחילוק יהיה לו למורה רביעי
If you want, you can seek also for its fifth, or sixth, or other [divisors]. ואם תרצה תוכל ל[...] לבקש עוד חמישי או שישי או זולתם
  • Example: we wish to divide 2447235 by 50335084800.
\scriptstyle2447235\div50335084800
המשל רצינו לחלק 2447235 על 50335084800
We extract the divisors of this large number, by which we want to divide.
נוציא [....] המורים לזה החשבון הגדול אשר רצינו לחלק עליו
  • First, we see if 3, or 6, or 9 are [its divisors]:
ונראה ראשונה אם יש לו ג' או ששה או ט‫'
Since the first digit is 0, we know that if 3 or 9 [are its divisors], then 6 is also its [divisor].
ואחר שהרושם הראשון הוא 0 ידענו שאם יש לו ג' או ט' יש לו ג"כ ששה
To know if 3 or 9 [are its divisors], we sum up all [the digits] as if they were units.
ולדעת אם יש לו ג' או ט' נחברם כלם כאלו הם אחדים
We say: 8 with 4 is 12. We subtract from it 9; 3 remains.
\scriptstyle{\color{blue}{4+8=12\equiv_93}}
ונאמ' ח' עם ד' הם י"ב נוציא מהם הט' ישארו [.] ג‫'
With 8 it is 11. We subtract the 9; 2 remains.
\scriptstyle{\color{blue}{3+8=11\equiv_92}}
ועם 8 הם י"א נסיר הט' ישארו ב‫'
With 5 it is 7 and with 3 it is ten. We subtract 9; 1 remains.
\scriptstyle{\color{blue}{\left(5+2\right)+3=7+3=10\equiv_91}}
ועם ה' יהיו ז' ‫[82]ועם הג' יהיו עשרה נסיר ט' ישארו ב' א‫'
With 3 it is 4 and with 5 it is 9. So, the number is cast out by nines.
\scriptstyle{\color{blue}{\left(1+3\right)+5=4+5=9\equiv_90}}
ועם הג' יהיו ד' ועם הה' יהיו כולם ט' ט' הרי יצא החשבון לט' ט‫'
\scriptstyle{\color{blue}{5+0+3+3+5+0+8+4+8+0+0\equiv_90}}
Hence, we know that 9, 3 and 6 are its [divisors] for the reason we have mentioned.
וידענו שיש לו ט' וג' גם ו' לסבה שזכרנו
We take whichever of them we want.
ונקח מהם אשר תרצה
  • For instance, we take 6 as its divisor. We divide it by 6; the result of division is 8389180800.
\scriptstyle{\color{blue}{\frac{50335084800}{6}=8389180800}}
ועל דרך משל נקח למורה ו' ונחלקנו על ו' ויצא בחלוקם 8389180800
Since the result of division is a large number, we seek its divisor. We do as we did with the original number; it is all cast out by nines.
\scriptstyle{\color{blue}{8+3+8+9+1+8+0+8+0+0\equiv_90}}
ואחר שהיוצא בחילוק הוא חשבון גדול נבקש לו מורה ונעשה לזה כאשר לחשבון הראשון ויצא הכל לט' ט‫'
Since the first digit is a zero and 9 is its divisor, 6 is also its divisor and all the more so is 3.
ואחר שהרושם הראשון סיפראויש לו ט' יש לו ג"כ ו' וכ"ש ג‫'
  • We take 9 as its divisor and divide this number by 9; the result of divison is 932131200.
\scriptstyle{\color{blue}{\frac{8389180800}{9}=932131200}}
ונקח ט' למורה ונחלק זה החשבון לט' ויצא בחילו' 932131200
We do with it as we have done with the formers; 3 remains.
\scriptstyle{\color{blue}{9+3+2+1+3+1+2+0+0\equiv_93}}
ונעשה לזה כאשר עשינו לקודמים וישארו ג‫'
So, 3 is its [divisor] and 6 also, since the first [digit] is a zero.
הנה יש לו ג' ג"כ ו' להיות הראשונה סיפרא
  • We take 3 as its divisor and divide it by it; the result of divison is 310710400.
\scriptstyle{\color{blue}{\frac{932131200}{3}=310710400}}
ונקח למורה ג' ונחלקנו עליו ויצא בחילוקם 310710400
Since 9 is not a [divisor] of the former, it is known that even 3 is not [divisor] of this [number].
ואחר שהקודם לא היה לו ט' בידוע שלזה אין לו אפי' ג‫'
The reason is that this [number] is a third of the former [number], so if this [number] had a third, its third, i.e. the third of the [number] that is a third of the former [number], is a third of a third of the former [number], which is a ninth, but we have found that it does not [have a ninth].
הטעם לפי שזה שלישית הקודם ואם לזה היה לו שלישית הקודם ואם לזה היה לו שלישית הנה שלישיתו ר"ל שלישית זה שהיה שלישית הראשון הוא לראשון שלישית שלישית שהוא תשיעית ולא מצאנוהו
So it is truly, when you sum up [the digits], then cast out the nines, 7 remains.
\scriptstyle{\color{blue}{3+1+0+7+1+0+4+0+0\equiv_97}}
וכן הוא האמת כאשר תחברם ותוציא הט' ט' ישארו ז‫'
We see if 2, 4, or 8 are its [divisors].
ונעיין אם יש לו ב' וד' או ח‫'
Since the first [digit] is a zero, it is known that 2 is its [divisor].
ואחר שהראשון סיפרא בידוע שיש [...] לו ב‫'
To know if 4, or 8 are its [divisors], we should take what is in the first rank. We find there only 0, so we take nothing. We take what is in the second [rank]. We find there only 0, so we take nothing. Since the third [rank] is an even [number], we do not have to take anything for it or for the higher [ranks]. So, 8, 4, and 2 are its [divisors].
\scriptstyle{\color{blue}{0+0+0\equiv_80}}
ולדעת אם יש לו ד' או ח' היה לנו לקחת אשר [במעלה] הראשונה ולא מצאנו שם כי אם 0 ולא נקח דבר כי אם בשנית היה לנו לכופלו ולא מצאנו שם כי אם 0 לא נקח דבר והשלישית אחר שהוא זוג אין לנו לקחת בעבורה דבר ולא ממנה ולמעלה

הנה יש לו ח' וד' וב‫'

We take whichever of them we want as a divisor.
ונקח למורה אשר נחפוץ מהם
  • For instance, 8. We divide it by 8; the result of division is 38838800.
\scriptstyle{\color{blue}{\frac{310710400}{8}=38838800}}
המשל ח' ונחלקנו לח' ויצא בח בחילוק 38838800
It also has an eighth, a quarter and a half, for the reason mentioned.
\scriptstyle{\color{blue}{0+0+0\equiv_80}}
ולזאת ג"כ יש לה שמינית ורביעית וחצי לסבה הנזכרת
We take one of them.
ונקח א' מהם
  • For instance, 4. We divide by it; the result of division is 9709700.
\scriptstyle{\color{blue}{\frac{38838800}{4}=9709700}}
המשל ד' וחלקנו עליו ויצא בחילוק 9709700
It does not have an eighth, because the first [rank] and the second [rank] are 0, so we take nothing for them; but the third [rank] is 7, which is an odd number, so we take 4 for it. Hence, only 4 and 2 are its [divisors].
\scriptstyle{\color{blue}{0+0+4\equiv_84}}
[83]ולזאת אין לה שמינית כי הראשונה והשנית הם 0 ולא נקח בעבורם דבר והשלישית היא ז' שהוא נפרד ונקח בעבורו ד‫'

הנה שאין לו כי אם ד' וב‫'

We take one of them.
ונקח אחד מהם
  • For instance, 2. We divide it by it; the result of division is 4854850.
\scriptstyle{\color{blue}{\frac{9709700}{2}=4854850}}
המשל ב' ונחלקנו עליו ויצא בחילוק 4854850
Since this [number] is half the former [number], it does not have a quarter, because the former [number] does not have an eighth, as a quarter of this [number] is a quarter of half the former, which is an eighth.
מאחר שזו היא מחצית הראשונה אין לנו רביעית לפי שלא היה לראשונה שמינית כי רביעית זו היא רביעית חצי הראשונה שהוא שמינית
You will also find by examination that it does not have a quarter: since there is no number in the first [rank], the second is ten, and the third is an even number, so we take nothing for it. Therefore, we have only ten. We subtract 8; 2 remains. Hence, it has only a half.
\scriptstyle{\color{blue}{0+\left(2\sdot5\right)+0=10\equiv_82}}
וכן תמצאנו בבחינה שאין לו רביעית כי בראשונה אין מספר וכל השניה היא עשרה והשלישית היא זוג ולא נקח דבר בעבורה הרי שאין בידינו כי אם עשר נסיר ח' ישארו ב' הרי שאין לו כי אם חצי
If you do not want to take it again as a divisor, see if 5 or 10 are its [divisors].
ואם לא תרצה לקחתו שנית למורה [עיין] אם יש לו עשר או ה‫'
Since the first [digit] is 0, it is known that 10 as well as 5 are its [divisors].
ואחר שהראשונה 0 בידוע שיש לו [עשר וגם]‫[84] ה‫'
We take one of them.
ונקח אחד מהם
  • For instance, 5. We divide it by it; the result of division is 970970.
\scriptstyle{\color{blue}{\frac{4854850}{5}=970970}}
המשל ה' ונחלקנו עליו ויצא בחילוק 970970
Since the first [digit] is 0, 10 and 5 are its [divisors] also.
וגם זה אחר שהראשונה 0 יש לה י' גם ה‫'
We take the ten, for instance, and divide it by 10; the result of division is 97097.
\scriptstyle{\color{blue}{\frac{970970}{10}=97097}}
ונקח עד"מ העשרה ונחלקנו לי' ויצא בחילוק 97097
Since the first [digit] is not 5 nor 0, neither 5, nor 10 are its [divisors].
ואחר שהראשונה אינה לא ה' ולא 0 אין לו לא ה' ולא עשרה
We see if it has a seventh.
ונראה אם יש לו שביעית
We subtract seven from the last 9; two remains.
\scriptstyle{\color{blue}{9\equiv_72}}
ומהט' האחרון נסיר שבעה ישארו שנים
We multiply it by 3; it is 6. We add it to the 7 that precedes it; it is 13. We subtract 7; 6 remains.
\scriptstyle{\color{blue}{\left(2\sdot3\right)+7=6+7=13\equiv_76}}
ונכפלהו בג' יהיו ו' ונחברם לז' אשר לפניו יהיו י"ג נסיר הז' ישארו ו‫'
We multiply it by 3; it is 18. We subtract 14, which are two sevens, from it; 4 remains.
\scriptstyle{\color{blue}{6\sdot3=18\equiv_74}}
נכפלהו בג' יהיו י"ח נסיר מהם י"ד שני שביעיות ישארו ד‫'
Since there is no number in the preceding rank, only 0, we multiply the 4 by 3; it is 12. We subtract 7; five remains.
\scriptstyle{\color{blue}{4\sdot3=12\equiv_75}}
ואחר שבמעלה שלפני זאת אין שם חשבון כי אם 0 נכפול אלו הד' בג' יהיו י"ב נסיר ז' ישארו חמשה
We add it to the preceding [digit]; it is 14, which are sevens. The first [digit] is also 7; so all is cast out by sevens.
\scriptstyle{\color{blue}{5+9=14\equiv_70}}
\scriptstyle{\color{blue}{0+7=7\equiv_70}}
נחברם לט' שלפני זאת יהיו י"ד והם שביעיות גם הראשונה ז' הנה יצא הכל ז' ז‫'
It has a seventh.
הנה יש לו שביעית
  • We take it as a divisor and divide it by it; the result of divison is 13871.
\scriptstyle{\color{blue}{\frac{97097}{7}=13871}}
ונקחנו למורה ונחלקנו עליו ויצא בחילוק 1261 13871
We see if 7 is its [divisor] also.
ונשוב לראות ונעיין אם יש לזה ‫[85]ג"כ ז‫'
We find that 4 remains, so 7 is not its [divisor].
ונמצא שישארו ד' הנה אין לו ז‫'
We see if 11 is its [divisor].
ונראה אם יש לו י"א
We subtract the last 1 from the 3 that precedes it; 2 remains.
\scriptstyle{\color{blue}{3-1=2}}
ונחסר הא' האחרון מהג' שלפניו וישארו ב‫'
We subtract it from the 8 that precedes it; 6 remains.
\scriptstyle{\color{blue}{8-2=6}}
נסירם מהח' שלפניהם ישארו ו‫'
We subtract it from the 7 that precedes it; 1 remains.
\scriptstyle{\color{blue}{7-6=1}}
נסירם מהז' שלפניהם ישאר א‫'
We subtract it from the 1 that precedes it; nothing remains.
\scriptstyle{\color{blue}{1-1=0}}
נסירם מהא' שלפניו ולא ישאר דבר
11 is its [divisor].
הרי יש לו י"א
  • We take it as a divisor and divide it by it; the result of divison is 1261.
\scriptstyle{\color{blue}{\frac{13871}{11}=1261}}
ונקחנו למורה ונחלקנו עליו ויצא בחילוק 1261
We see if 11 is its [divisor].
ונשוב לראות אם יש לו הי"א
We find that 7 remains, so 11 is not its [divisor].
ונמצא שישארו ז' הנה אין לו י"א
We see if 13 is its [divisor].
ונעיין אם יש לו י"ג
We multiply the last 1 by 3, but we cannot subtract it from the 2 that precedes it, so we add 13 to it; it is 15. We subtract the 3; 12 remains.
\scriptstyle{\color{blue}{\left(2+13\right)-\left(3\sdot1\right)=15-3=12}}
ונכפול הא' אחרון בג' ולא נוכל להסירם מהב' שלפניהם לכן נוסיף עליהם י"ג ויהיו ט"ו נסיר הג' ישארו י"ב
We multiply it by 3; it is 36. We subtract 26, which are 13 and 13; 10 remains.
\scriptstyle{\color{blue}{12\sdot3=36\equiv_{13}10}}
ונכפלם בג' ויהיו ל"ו נסיר כ"ו שהם י"ג י"ג ישארו י‫'
We cannot subtract it from the 6 that precedes it, so we add 13 to it; it is 19. We subtract the 10 from it; 9 remains.
\scriptstyle{\color{blue}{\left(6+13\right)-10=19-10=9}}
‫[ולא נוכל להסירם מהו' שלפניהם ונוסיף עליהם י"ג ויהיה י"ט נסיר מהם י' ישארו‫]‫[86] ישארו ט‫'
We multiply it by 3; it is 27. We subtract 26; 1 remains.
\scriptstyle{\color{blue}{9\sdot3=27\equiv_{13}1}}
נכפלם בג' יהיו כ"ז נסיר כ"ו ישאר א‫'
We subtract it from the first 1; nothing remains.
\scriptstyle{\color{blue}{1-1=0}}
נסירנו מהא' הראשון ולא ישאר דבר
Hence, 13 is its [divisor].
הרי יש לו י"ג
  • We take it as a divisor and divide it by it; the result of divison is 97.
\scriptstyle{\color{blue}{\frac{1261}{13}=97}}
נקחנו למורה ונחלקנו עליו ויצא בחילוק 97
Since this number is smaller that the square of 13, you do not need to see if 13 is its [divisor], all the more so a greater divisor, or one of the preceding [divisors], as they are not [divisors] of the former [number], so we take it as a divisor itself.
\scriptstyle{\color{blue}{97<13^2}}
ואחר שזה החשבון הוא פחות ממרובע י"ג אינך צריך לעיין עוד אם יש לו [הי"ג] י"ג וכ"ש מורה גדול ממנו ולא אחד מהקודמים אשחר שלא נמצא לראשונים לכן נקחנו בעצמו למורה
We have received the divisors of this number.
הנה יצאו לנו מורים לזה החשבון
The smaller number that we want to divide by this greater number is 2447235.
והחשבון הקטן אשר רצינו לחלק לזה החשבון הגדול היה 2447235
We divide it by these divisors and write them one after another as we wish, for it does not matter, because there is no former and last in the divisors. ונחלקנו לאלו המורים ונשימם זה אחר זה כרצוננו כי זה לא יזיק כי אין מוקדם ומאוחר במורים
Divide the whole number by the last divisor to the left and write the remainder beneath it, then divide the result of divison by the one that precedes it; and so on, until the number is gone, [or] it reaches a phase in which the result of division is smaller than the divisor that precedes it. Then, you write the result beneath this preceding divisor and your procedure is complete. ותחלק כל החשבון למורה האחרון אשר לצד שמאל והנשאר שים תחתיו והיוצא בחילוק חלק לאשר לפניו וכן לעולם עד אשר יכלה המספר ויגיע למקום שהיוצא בחילוק יהיה פחות מהמורה אשר לפניו כי אז תשים זה היוצא תחת המורה הזה אשר לפניו וכבר כלית כל מלאכתך
If the divisors are all gone, but the number is not gone, and this happens when the dividend is greater than the number by which we wnat to divide that consists of these divisors, meaning that the divisors are derived from it, then write aside the result of division by the first divisor; these are integers; and as we did in this procedure, i.e. when we divided our number by these divisors, since the dividend is smaller than the number by which we want to divide that is above the divisors, the number is gone, but they are not gone. ואם יכלו המורים והמספר לא יכלה וזה יקרה כאשר היה המספר המתחלק גדול ‫[87]מהמספר אשר רצינו לחלק עליו אשר הורכב מהמורים ההם פי' שיצאו ממנו המורים ההם אז היוצא בחילוק בחלקך למורה הראשון תשימנו מבחוץ והם שלמים וכאשר עשינו זה המעש' ר"ל כשחלקנו מספרינו למורים אלו להיות המתחלק קטן מהמספר אשר רצינו לחלק עליו אשר הוא [מע]ל המורים יכלה המספר והמה לא יכלו
We receive that when we divide 2447235 by [50335084800], the result of division is two-fifths of a half of a quarter of an eighth of a third of a ninth of a sixth, i.e. when we decompose one unit to 6 parts, then 1 of these 6 [parts] to 9, then 1 of these 9 [parts] to 3, then 1 of these 3 [parts] to 8, then 1 of these 8 [parts] to 4, then 1 of these 4 [parts] to 2, then 1 of these 2 [parts] to five, each of the units of the large number, by which we divide, receives two parts of the former parts.
ויצא לנו כי כאשר נחלק 2447235 על 50350800 שהיוצא בחילוק הוא שני חמישיות חצי רביעית שמינית שלישית תשיעית שישית פי' כי כאשר עשינו האח' השלם ו' חלקים וא' מאלו הו' ט' וא' מאלו ה[.] הט' ג' וא' מאלו הג' ח' וא' מהח' א' ד' וא מהד' ב' וא' מב' אלו חמשה שיוצא לכל אחד מאחדי המספר הגדול אשר חלקנו עליו שתי חלקים חלק זה מהחלקים האחרונים האלו ה[.....]
We also get from the division 5-tenths of these parts, i.e. of a fifth of a half of a quarter of an eighth of a third of a ninth of a sixth.
ועוד יצא בחלוקנו זה ה' עשיריות חלק זה פי' [ה'][עשיריות]‫[88] ה[חמיש]ית חצי רביעית שמינית שלישית תשיעית שישית
Also one-seventh of a tenth of a fifth of a half of a quarter etc.
ועוד שביעית עשירית חמישית חצי רביעית וכו‫'
Also 4 parts of 11 of a seventh of a tenth of a fifth etc.
ועוד ד' חלקים מי"א מז' מי' מה' וכו‫'
Also 9 parts of 13 of 11 [parts] of a seventh of a tenth of a fifth etc.
ועוד ‫[ט' חלקים מי"ג מי"א מז' מי' מה' וכו‫'
Also 22 parts of 97 of 13 [parts] of 11 [parts] of a seventh of a tenth of a fifth etc.
ועוד כ"ב‫]‫[89] כ"ב חלקים מצ"ז מי"ג מי"א מז' מי' מה' וכו‫'
97 13 11 7 10 5 2 4 8 3 9 6
22 9 4 1 5 2
\scriptstyle{\color{blue}{\begin{align}\scriptstyle2447235\div50335084800&\scriptstyle=\left(\frac{2}{5}\sdot\frac{1}{2}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{3}\sdot\frac{1}{9}\sdot\frac{1}{6}\right)+\left(\frac{5}{10}\sdot\frac{1}{5}\sdot\frac{1}{2}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{3}\sdot\frac{1}{9}\sdot\frac{1}{6}\right)+\left(\frac{1}{7}\sdot\frac{1}{10}\sdot\frac{1}{5}\sdot\frac{1}{2}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{3}\sdot\frac{1}{9}\sdot\frac{1}{6}\right)\\&\scriptstyle+\left(\frac{4}{11}\sdot\frac{1}{7}\sdot\frac{1}{10}\sdot\frac{1}{5}\sdot\frac{1}{2}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{3}\sdot\frac{1}{9}\sdot\frac{1}{6}\right)+\left(\frac{9}{13}\sdot\frac{1}{11}\sdot\frac{1}{7}\sdot\frac{1}{10}\sdot\frac{1}{5}\sdot\frac{1}{2}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{3}\sdot\frac{1}{9}\sdot\frac{1}{6}\right)\\&\scriptstyle+\left(\frac{22}{97}\sdot\frac{1}{13}\sdot\frac{1}{11}\sdot\frac{1}{7}\sdot\frac{1}{10}\sdot\frac{1}{5}\sdot\frac{1}{2}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{3}\sdot\frac{1}{9}\sdot\frac{1}{6}\right)\\\end{align}}}
If you wish to receive more proper fractions, always see, when you divide the [divisor] into divisors, if the [dividend] has any of these divisors. ואם תרצה שיצאו לך חלקים נאותים יותר תעיין לעולם כאשר תחלק המספר למורים אם למספר הזה יש שום אחד מהמורים ההם
Example in our number: the dividend has a ninth. Write this divisor last to the left and divide by it first; nothing remains to write beneath it.
המשל כאומרנו במספרינו וזה המתחלק שיש לו תשיעית ותשים המורה ההוא האחרון לצד שמאל ותחלק עליו ראשונה ולא ישאר דבר לשום תחתיו
We see if the result of division has also one of the remaining divisors. Write it before the one by which we have divided and divide by it; nothing remains.
וגם ליוצא בחילוק נעיין אם יש לו א' מהמורים הנותרים ונשימנו לפני זה אשר חלקנו עליו ונחלק ‫[עליו ולא ישאר [.] דבר
Thus we always do in this matter, so that we get, when we divide the mentioned small number by the greater number, the result that each unit receives a half part of 13 of [a part of] 11 of a quarter of a third of a sixth, plus 9 parts of 97 of a tenth of an eighth of a half etc. as it is in this diagram:
וכן נעשה לעולם בענין שיצא לנו בחלקינו זה‫]‫[90] זה המספר הקטן הנזכר לגדול שהיוצא לכל א' הוא חצי חלק מי"ג מי"א מד' מג' מו' ועוד ט' חלקים ‫[91]מצ"ז מי' מח' מחצי וכו' הכל כמו שהוא בצורה הזאת
9 5 7 97 10 8 2 13 11 4 3 6
  9     1
\scriptstyle{\color{blue}{2447235\div50335084800=\left(\frac{1}{2}\sdot\frac{1}{13}\sdot\frac{1}{11}\sdot\frac{1}{4}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)+\left(\frac{9}{97}\sdot\frac{1}{10}\sdot\frac{1}{8}\sdot\frac{1}{2}\sdot\frac{1}{13}\sdot\frac{1}{11}\sdot\frac{1}{4}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)}}
These two [division] procedures are the same, yet the second procedure that is based on division by the divisors [of the given number] involves more proper fractions and this reduction is called perfect beauty, as it means making the units nice and proper general amounts. ואלו שני המעשים הכל אחד אלא שבמעשה השני חלקים יותר נאותים ולחלוקה על המורים עליו השגחה זו נקרא לו כלילת יופי לפי שהוא לעשות מהפרטים כללים יפים ונאותים
In order to elaborate the matter and explain it in detail, I give an example for our division: וכ[די להרחיב הענין ו]לבארו בפי' אמשול משל לחלוקנו זה
The dividend has a ninth, therefore we place the 9 last and divide by it; nothing remains, so we do not write any thing beneath it. The result of division is 271915.
\scriptstyle{\color{blue}{\frac{2447235}{9}=271915}}
והוא כי המספר המתחלק יש לו תשיעית לכן שמנו הט' האחרון וחלקנוהו עליו ולא נשאר דבר על כן לא שמנו תחתיו דבר ויצא לנו בחלוק 271915
This result of division has a fifth, therefore we place the 5 before the 9 and divide by it; nothing remains. The result of division is 54383.
\scriptstyle{\color{blue}{\frac{271915}{5}=54383}}
ויש לזה היוצא בחילוק חמישית לכן שמנו הה' לפני הט' וחלקנו עליו ולא נשאר דבר ויצא [לזה] היוצא בחלוק 54383
It has a seventh, therefore we place the 7 immediately before the mentioned divisors and divide by it; nothing remains. The result of division is 7769.
\scriptstyle{\color{blue}{\frac{54383}{7}=7769}}
ויש לו שביעית לכן שמנו מיד ל[פני] המורים הנזכרים הז' וחלקנוהו עליו ולא נשאר דבר ויצא בחילוק ‫[7769]‫[92]
It has none of the remaining divisors, therefore we place whichever we want. We place the greater, which is 97, and divide by it; 9 remains. We place it beneath and the result of division is 80.
\scriptstyle{\color{blue}{\frac{7769}{97}=80+\frac{9}{97}}}
ואין לו שום אחד מהמורים הנותרים לכן נשים אשר נרצה ושמנו היותר גדול והוא הצ"ז וחלקנו עליו ונשאר ט' ושמנוהו תחתיו ויצא בחילוק 80
It has a tenth, therefore we place the 10 immediately and divide by it; nothing remains. The result of division is 8.
\scriptstyle{\color{blue}{\frac{80+\frac{9}{97}}{10}=8+\left(\frac{9}{97}\sdot\frac{1}{10}\right)}}
ויש לו עשירית לכן שמנו מיד ה10 וחלקנום עליו ולא נשאר דבר ויצא בחלוק ח‫'
It has an eighth, therefore we place the 8 immediately and divide by it; nothing remains.
\scriptstyle{\color{blue}{\frac{8+\left(\frac{9}{97}\sdot\frac{1}{10}\right)}{8}=1+\left(\frac{9}{97}\sdot\frac{1}{10}\sdot\frac{1}{8}\right)}}
ויש לו שמינית לכן שמנו מיד הח' וחלקנום עליו ולא נשאר דבר ויצא בחלוק
Since it is smaller than any of the remaining divisors, we should not divise further, but we write it beneath the divisor that we write immediately after the mentioned written [divisors]: We write 2 and beneath it the 1 that results lastly in the division. Then: we write the remaining divisors randomly.
ואחר שהוא פחות משום אחד מהמורים הנותרים אין לנו עוד לחלק אבל נשימהו תחת המורה אשר נשים מיד לפני המושמים הנזכרים ושמנו הב' ושמנו תחתיו זה הא' אשר יצא באחרונה בחלוק ואחר שמנו המורים הנותרים כאשר הזדמן
\scriptstyle{\color{blue}{\frac{1+\left(\frac{9}{97}\sdot\frac{1}{10}\sdot\frac{1}{8}\right)}{2\sdot13\sdot11\sdot4\sdot3\sdot6}=\left(\frac{1}{2}\sdot\frac{1}{13}\sdot\frac{1}{11}\sdot\frac{1}{4}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)+\left(\frac{9}{97}\sdot\frac{1}{10}\sdot\frac{1}{8}\sdot\frac{1}{2}\sdot\frac{1}{13}\sdot\frac{1}{11}\sdot\frac{1}{4}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)}}
The rule that follows from this discussion: when we wish to divide any great or small number by another number, greater or smaller than it, we extract the divisors of the number by which we want to divide and write them randomly one after the other, or if one wishes, he can write them intentionally, in order to get more proper fractions, as we explained. Then, we divide the dividend by the last divisor to the left and write the remainder beneath it and we divide the result by the one that precedes it and so on. הכלל העולה מהדברים הוא שכאשר נרצה לחלק ‫[93]שום מספר גדול או קטן על מספר אחר גדול ממנו או קטן ממנו שנוציא מורה המספר אשר רצינו לחלק עליו ונשים אותם כפי המזדמן זה אחר זה או אם ירצה ישגיח בהנחתם יען יצאו החלקים יותר נאותים כאשר ביארנו ונחלק המספר המתחלק על המורה האחרון אשר לצד שמאל והנשאר נשים תחתיו והיוצא נחלק לאשר לפניו וכן לעולם
If the dividend is smaller than the one by which we divide it, the number is completely consumed, but [the divisors] are not gone. ואם היה המתחלק קטן מאשר חלקנו עליו יכלה המספר והמה לא יכלו
When it is consumed, the result of division is smaller than the divisor that precedes the divisors by which we have already divided, therefore we should not divide this smaller result by the divisor that is greater than it, but write it beneath it. וכאשר יכלה יהיה היוצא בחילוק פחות מהמורה אשר לפני המורים אשר חלקנו כבר עליהם לכן אין לנו לחלק זה היוצא המעט על זה המורה הרב ממנו אבל שימהו תחתיו
If the dividend is greater than the one by which we want to divide it, the divisors are all gone, but the number is not completely consumed. We write the result of the last divison aside the diagram and they are the integers resulting from the division. What is in the diagram beneath the divisors are the fractions and the fractions of fractions resulting from the division that are added to the mentioned integers. ואם היה המספר המתחלק גדול מאשר רצינו לחלק עליו יכלו המורים והמספר לא יכלה והיוצא מן החלוק האחרון [....] נשימהו חוץ לצורה והם השלמים אשר יצאו בחלוק ואשר בתוך הצורה תחת המורים הם השברים ושברי שברים אשר יצאו בחלוק מוסף על השלימים הנזכרים
In order to elaborate the matter, I present another example: וכדי להרחיב הענין אעשה משל אחר
  • We wish to divide 3123740520 by 216.
\scriptstyle3123740520\div216
המשל רצינו לחלק 3123740520 על 216
The divisors of the smaller number, by which we want to divide, are 9, 8, 3.
\scriptstyle{\color{blue}{216=3\sdot8\sdot9}}
והנה מורה זה המספר הקטן אשר רצינו לחלק עליו הם אלו | 3 | 8 | 9
We divide our greater number by 9; nothing remains and the result of division is 347082280.
\scriptstyle{\color{blue}{\frac{3123740520}{9}=347082280}}
וחלקנו מספרינו זה הגדול על הט' ולא נשאר דבר ויצא בחילוק 347082280
We divide it by 8; nothing remains and the result of division is 43385285.
\scriptstyle{\color{blue}{\frac{347082280}{8}=43385285}}
וחלקנום [על הח']‫[94] ולא נשאר דבר ויצא בחילוק 43385285
We divide it by 3; the result of division of the last [number] is 14461761, which are the integers and 2 remain.
‫[וחלקנום על הג' ויצא לנו בחלוק הזה האחרון 14461761 והם]‫[95] והם השלמים ונשארו ב‫'
We write it beneath the 3 and these are the fractions resulting from the division that are added to the integers.
\scriptstyle{\color{blue}{\frac{43385285}{3}=14461761+\frac{2}{3}}}
ושמנום תחת הג' והם השברים היוצאים בחילוק הנוספים על השלמים
If now in this last division nothing would have remained also, we would not have written anything beneath it, and since nothing would have been found beneath the divisors, no fractions would have been resulted in division at all, only integers.
ואם גם עתה בזה החילוק האחרון ‫[96]לא היה נשאר דבר לא היינו שמים תחתיו דבר וכיון שלא נמצא דבר תחת המורים לא היו יוצאים בחילוק שברים כלל כי אם השלמים לבד
This happen when the number by which we divide is a divisor of the original number.
וזה יקרה כאשר החשבון אשר חלקנו עליו יהיה ראוי להיות מורה לחשבון המתחלה
But, in our example, since 2 remains in the last division, it have also fractions.
\scriptstyle{\color{blue}{3123740520\div216=14461761+\frac{2}{3}}}
ואולם במשלנו זה אח' אשר נשארו בחלוק האחרון ב' יש לו ג"כ שברים
We write it beneath the 3 and we get that when we divide 3123740520 by 216, each unit receives 14461761 integers and 2-thirds, according to the following diagram:
ושמנום תחת הג' ויצא לנו כי כאשר חלקנו 3123740520 על 216 שיות עד שיגיע לכל אחד מהם 14461761 שלמים וב' שלישיות כאשר בא בזאת הצורה
9 8 3  
  2 14461761
Check
When you want to check if the extraction of the divisors was correct: multiply the first by the second, then the product by the third, then by the fourth and so on until they are gone. If you receive the original number no more and no less from this calculation, know that the [divisors] are correct, and if not, they are not. ואם רצית לבחון הוצאת המורים ההיתה כתקנה כפול הראשון בשני והעולה בשלישי והעולה ברביעי וכן לכלם עד כלותם ואם יצא לך מזה החשבון המספר הראשון בלי תוספת ומגרעת תדע שיצאו כתקנם ואם לאו לאו
In the mentioned example, if we want to know if the resulting divisors are correct: we multiply 9 by 8; it is 72. We multiply it by 3; the product is 216. So, the divisors are all gone and the result is the number itself that have these divisors.
\scriptstyle{\color{blue}{9\sdot8\sdot3=72\sdot3=216}}
המשל בצורה הנזכרת אם רצינו לידע אם המורי' יצאו על היושר נכפול ט' בח' יהיו ע"ב נכפלים בג' יעלו 216 והנה כלו המורים ויצא החשבון בעל המורים בעינו
When you want to know if you divide the number by the divisors correctly: ואם תרצה לידע אם חלקת המספר על המורים על היוש‫'
If there are integers [in the final result], multiply the integers by the first divisor, then multiply the whole product by the second divisor and add what you find beneath it to the product, then multiply the sum by the third divisor and add to it what you find beneath it. Continue like this until they are gone. If, when the divisors are gone, we get the dividend, your calculation is correct, and if not, it is not. אם יש שם שלמים כפול השלמים במורה הא' ההוא וכל המקובץ כפלהו במורה השני והוסף על העולה אשר תמצא תחתיו וכפול הכל על המורה [..] השלישי והוסף עליו אשר תמצא תחתיו וכן תעשה לעולם עד כלותם ואם ככלות המורים יצא לנו המספר המתחלק הלא מעשיך אמת ויציב ואם לאו לאו
If there are no integers [in the final result], take what you find first beneath the first divisor that you find something beneath it and multiply it by the divisor that is next to it to the left. Add what is beneath it to the product and multiply the sum by the divisor that follows. Add what is beneath it and so on until they are gone. If the result is the dividend itself [the calculation] is correct, if not, it is not. ואם אין שם שלמים קח אשר תמצא ראשונה תחת המורה הקודם אשר תמצא תחתיו דבר וכפלהו במורה הסמוך לו לצד שמאל ‫[97]וחבר הנמצא תחתיו עם העולה וכפול הכל על המורה הנמשך הנמשך והוסף אשר תחתיו וכן לעולם עד כלותם ואם אז יצא החשבון המתחלק בעינו הנה [נכון] ואם לאו לאו
  • Example in the following diagram:
המשל בתמונה הזו
9 5 7 97 10 8 2 13 11 4 3 6
  9   1
We multiply the integers by 3, which is the first divisor; the result is 43385283.
ונכפול השלמים בג' שהוא המורה הראשון ויעלה 43385283
We add to it the 2 that is beneath this divisor; the total is 43385285.
נחבר לזה הב' אשר תחת המורה הזה ויעלה הכל 43385285
We multiply it by 8, which is the second divisor; the result is 347082280.
נכפלם על הח' שהוא המורה השני ויעלה 347082280
Since we do not find anything beneath this divisor, we do not add anything to it.
ואחר שלא נמצא תחת זה המורה דבר לא נוסיף עליהם דבר
We multiply it again by 9, which is the third divisor; we receive the dividend itself, which is 3123740520.
ונשוב ונכפלם בט' שהוא המורה השלישי ויצא לנו החשבון המתחלק בעינו שהוא 3123740520
\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left(14461761+\frac{2}{3}\right)\sdot3\sdot8\sdot9&\scriptstyle=\left[\left(14461761\sdot3\right)+2\right]\sdot8\sdot9=\left(43385283+2\right)\sdot8\sdot9=43385285\sdot8\sdot9\\&\scriptstyle=347082280\sdot9=3123740520\\\end{align}}}
  • I shall present it briefly in the example that precedes this one, in which there are no integers in the result of division, only fractions:
\scriptstyle2447235\div50335084800
עוד אמשול זה בדרך קצרה בצורה הקודמת לזאת אשר אין שם שלמים ביוצא בחילוק כי אם שברים לבד
We take the one that is beneath the 2, which is the first divisor beneath which there is something, and we multiply it by 8, which is the next divisor; the result is 8.
ונקח הראשון אשר תחת הב' שהוא המורה הראשון אשר נמצא תחתיו דבר ונכפלהו בח' שהוא המורה הסמוך ויעלה ח‫'
Since there is nothing beneath it, we do not add anything to it and multiply it by 10, which is the next divisor; the result is 80.
ואחר שאין תחתיו דבר לא נוסיף עליהם דבר ונכפלם בי' שהוא המורה הסמוך ויעלה פ‫'
Since nothing is found beneath it, we multiply it without adding by 97, which is the next divisor; the result is 7760.
ואחר שלא נמצא תחתיו דבר נשוב ונכפלם בלי תוספת על הצ"ז שהוא המורה הסמוך ויעלה 7760
We add to it the 9 that is beneath it; the result is 77[69].
נחבר אליהם הט' אשר תמצא תחתיו ויעלה 77669
We multiply it by 7; the result is 54383.
ונכפלם בז' ויעלה 54383
We multiply it by 5; the result is 271915.
ונשוב ונכפלם בה' ויעלה 271915
We multiply it by 9, which is the last divisor; we receive the dividend itself, which is 2447235, so it is correct.
ונכפלם בט' שהוא המורה האחרון ויצא לנו החשבון המתחלק בעינו והוא 2447235 והנה ‫[נכון הנה אמת
\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left[\left(1\sdot8\sdot10\sdot97\right)+9\right]\sdot7\sdot5\sdot9&\scriptstyle=\left[\left(8\sdot10\sdot97\right)+9\right]\sdot7\sdot5\sdot9=\left[\left(80\sdot97\right)+9\right]\sdot7\sdot5\sdot9=\left(7760+9\right)\sdot7\sdot5\sdot9\\&\scriptstyle=7769\sdot7\sdot5\sdot9=54383\sdot5\sdot9=271915\sdot9=2447235\\\end{align}}}
\scriptstyle{\color{blue}{\left[\left(\frac{1}{2}\sdot\frac{1}{13}\sdot\frac{1}{11}\sdot\frac{1}{4}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)+\left(\frac{9}{97}\sdot\frac{1}{10}\sdot\frac{1}{8}\sdot\frac{1}{2}\sdot\frac{1}{13}\sdot\frac{1}{11}\sdot\frac{1}{4}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)\right]\sdot50335084800=2447235}}

reason

The reason for extracting the divisors and dividing the [dividend] by them: because the number by which we want to divide consists of these divisors. וטעם הוצאת המורים וחלקנו עליהם המספר כנזכר הוא כי אחר שהמספר‫]‫[98] עליהם המספר כנזכר הוא כי אחר שהמספר אשר רצינו לחלק עליו הוא מורכב מאלו ‫[99]המורים כמוהו כמוהם
  • I.e. if 1 is divided by one hundred, for instance, each 1 receives from the hundred one part of the hundred that is in it.
\scriptstyle1\div100
ר"ל כי מי שיחלק א' על מאה עד"מ הנה יגיע ממנו לכל א' מהמאה חלק עליו ממאה שבו
Meaning, we decompose the one unit that we want to divide to one hundred equal parts and each 1 of the hundred, by which we want to divide the original 1, receives one part of them.
פי' שנעשה הא' השלם אשר רצינו לחלק [מאה חלקים שוים ויגיע לכל א' מהמאה אשר רצינו לחלק עליהם‫]‫[100] עליהם הא' הראשון חלק א' מהם
Since the 100, by which we want to divide, has a fifth and its fifth is 20, we find that each 1 of the hundred is one part of 20 of a fifth of a hundred.
ואחר שחשבון הק' אשר רצינו לחלק [עליהם] הא' חלק א' מהם ואחר שחשבון יש לו חמישית וחמישיתו הוא כ' נמצא שכל א' מהמאה הוא חלק א' מכ' מחמישית שבמאה
When we decompose the whole unit to 100 parts, each one of them is one part of 100 of the whole and it is also one part of twenty of a fifth of the whole. So our saying one part of 100 of the whole is as our saying one part of 20 of a fifth of the whole.
\scriptstyle{\color{blue}{1\div100=\frac{1}{20}\sdot\frac{1}{5}}}
וכאשר נעשה א' שלם ק' אקלימים חלקים הנה כל אחד מהם הוא חלק אחד מק' שבשלם שבשלם וגם הוא חלק א' מעשרים מחמישית השלם הרי שאמרנו חלק א' מק' שבשלם כאומרנו חלק אחד מכ' מחמישית שבשלם
For this reason itself, our saying a quarter of a fifth is as our saying one part of 20. Since the twenty has a fifth and its fifth is 4. We find that twenty consists of 5 and 4 and one [part of twenty] is a fifth of a quarter, or a quarter of a fifth, because it is the same. Hence, our saying a quarter of a fifth is as our saying one part of 20 of the whole.
\scriptstyle{\color{blue}{1\div20=\frac{1}{4}\sdot\frac{1}{5}}}
ולסבה זו בעינה יהיה אומרנו רביעית חמישית כאומרנו חלק א' מכ' לפי שעשרים יש לו חמישית וחמישיתו ד' נמצא שעשרים מורכב מה' וד' ושהאחד הוא חמישית רביעית או רביעית חמישית כי הכל א' הרי לנו ש שאמרנו רביעית חמישית כאומרנו חלק א' מכ' שבשלם
But, our saying one part of 20 of a fifth of the whole is as our saying one part of 100 of the whole, as we have explained. So, we get that our saying a quarter of a fifth of a fifth is as our saying one part of 100 of the whole.
\scriptstyle{\color{blue}{1\div100=\frac{1}{20}\sdot\frac{1}{5}=\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}}}
‫[ואולם אמרנו חלק אחד מכ' מה' שבשלם הוא כאמרנו חלק א' מק' שבשלם כאשר‫]‫[101] כאשר ביארנו הנה יצא לנו שאומרנו רביעית חמישית חמישית הוא כאומרנו חלק א' מק' שבשלם
Likewise for any number consisting of divisors, as many as they may be. ובדמיון זה בכל חשבון מורכב ממורים כמה שיהיו
Thus, if we divide the whole unit by 100, each 1 of them receives one part of 100 of the whole, which is a quarter of a fifth of a fifth.
\scriptstyle{\color{blue}{1\div100=\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}}}
ואם כאשר חלקנו א' שלם לק' הגיע לכל א' מהם חלק אחד מק' שבשלם שהוא רביעית חמישית החמישית
  • If we divide 2 integers by 100.
\scriptstyle2\div100
ואם חלקנו על ק' ב' שלמים
Each one receives 2-quarters of a fifth of a fifth.
\scriptstyle{\color{blue}{2\div100=\frac{2}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}}}
יגיע לכל א' ב' רביעיות חמישיות חמישית
  • If 3, 3.
\scriptstyle3\div100
\scriptstyle{\color{blue}{3\div100=\frac{3}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}}}
ואם ג' ג‫'
  • Thus, as the number of integers divided by 100, so is the number of quarters of a fifth of a fifth that each of them receives, and this is clear.
\scriptstyle n\div100
\scriptstyle{\color{blue}{n\div100=\frac{n}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}}}
הרי [הרי‫]‫[102] כי מספר השלמים אשר נחלק אל ק' מספר הרביעיות חמישיות חמישית שיגיעו לכל אחד מהם וזה ברור
  • If we wish to divide 70 by 100.
\scriptstyle70\div100
ולזה אם רצינו לחלק ע' על ק‫'
We know that each of them receives 70 quarters of a fifth of a fifth. It is as if we write the denominators by this order and place the 70 beneath the last denominator.
\scriptstyle{\color{blue}{70\div100=\frac{70}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}}}
ידענו שיגיע לכל אחד מהם ע' רביעיות חמישיות חמישית והרי הוא כאלו שמנו המורים כזה הסדר ושמנו הע' רביעיות תחת המורה האחרון
4 5 5
70
Since you have 70 quarters of a fifth of a fifth, if we want to know how many fifths of a fifth they are, it is as if we have 70 quarters and we want to know how many integers they are.
ואחר שיש בידיך 70 ‫[103]רביעיות חמשיות חמשית אם בקשנו לדעת כמה חמשיות חמישית הם הרי הוא כאלו היו בידינו ע' רביעיות ורצינו לדעת כמה שלמים הם
This is known by dividing them into 4, because every 4 quarters are one integer and also every 4 quarters of a fifth of a fifth are one-fifth of a fifth. So, we divide these 70 quarters of a fifth of a fifth and the remainder is of the first type, i.e. quarters of a fifth of a fifth.
וזה יודע בחלקנו אותם לד' לפי שכל ד' רביעיות הם א' שלם וכן כל ד' רביעיות חמישית [חמישית חמישית הם חמישית חמישית שלם לכן נחלק אלו הע' רביעיות חמישית‫]‫[104] חמישית והנשאר יהיה מהמין הראשון ר"ל רביעיות חמישיות חמישית
Therefore, we should write the result of division, which is 17, beneath the 5, which is the preceding divisor and the remainder, which is 2, beneath the 4, which is the last divisor by which we divide, like this:
\scriptstyle{\color{blue}{70\div100=\frac{70}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}=\left(\frac{17}{5}\sdot\frac{1}{5}\right)+\left(\frac{2}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}\right)}}
ולזה ראוי לנו לשים היוצא בחלוק שהוא י"ז תחת הה' אשר הוא המורה אשר לפניו והנשאר שהוא תחת הד' שהוא המורה אשר לפניו והנשאר שהוא ב' תחת הד' שהוא המורה האחרון אשר חלקנו עליו כזה
4 5 5
2 17  
We know that when we divide 70 by 100, each one of them receives 17 fifths of a fifth and 2-quarters of a fifth of a fifth.
הנה ידענו כי כאשר חלקנו ע' על ק' שהגיע לכל אחד מהם י"ז חמישיות חמישית וב' רביעיות חמשית חמישית
Since we have 17 fifths of a fifth, we know that they are three-fifths and more, because every five fifths of a fifth are one-fifth, as five-fifths are one integer.
ואחר שיש בידינו י"ז חמישיות חמישית ידענו שהם שלשה חמישיות שלמות ויותר לפי שכל חמש חמשיות חמישית הם חמישית אחד כמו שחמש חמשיות שלם הן שלם
We should know how many fifths they are, so we divide them by 5; the result of division is 3, which is 3-fifths, so we write it beneath the first 5, and the 2, [which is the] remainder is of the same type as the first, i.e. fifths of a fifth, so we write it beneth the second 5; like this:
וראוי לנו לידע כמה חמישיות שלמות הן לכן נחלקם על הה' ויצא לנו בחלוק ג' שהוא ג' חמישיות שלימות לכן נשימם תחת הה' הראשון והב' השני והנשארים הם ממין במינם כבתחלה ר"ל חמישיות חמישית לכן שמנום תחת הה' השני כזה
\scriptstyle{\color{blue}{70\div100=\frac{70}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}=\left(\frac{17}{5}\sdot\frac{1}{5}\right)+\left(\frac{2}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}\right)=\frac{3}{5}+\left(\frac{2}{5}\sdot\frac{1}{5}\right)+\left(\frac{2}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}\right)}}
4 5 5
2 2 3
If this 3 that is beneath the first divisor was the same as it or greater, i.e. if it was 5 or more, the result would have been an integer, for every five fifths are one integer, so we should divide them by 5; the result of division would have been an integer and the remainder would have been fifths as at first.
ואם אלו הג' אשר תחת המורה הראשון היה כמותו או גדול ממנו ר"ל שהיה ה' או יותר היה העולה לשלם או לשלימים כי כל חמש חמשיות הן שלם אחד והיה ראוי לנו לחלק אותן על ה' והיוצא בחילוק היו שלימים והנשאר היה חמישיות כאשר בתחלה
Since it is smaller than the divisor, i.e. it is less than 5, which is the first divisor, there is no integer at all and we should not divide [further], as we already achieved our goal, that is, when we divide 70 by 100, each one of them receives 3-fifths, 2-fifths of a fifth, and 2-quarters of a fifth of a fifth.
אכן אחר שהוא קטן מהמורה ר"ל שהוא פחות מה' שהוא המורה שהוא המורה הראשון אין כאן שלם כלל ואין לנו לעשות שום חלוק אבל כבר השגנו מבוקשנו והוא כי כאשר ‫[105]חלקנו ע' על ק' שהגיע לכל אחד מהם ג' חמישיות וב' חמישיות חמישית וב' רביעיות חמישית חמישית
The rule that follows from this discussion is that if 70 is divided by 100, each one receives 70 parts of 100 parts of the whole.
הכלל העולה מאלו מהדברים שהמחלק ע' על ק' יגיע לכל אחד ע' חלקים מק' חלקים בשלם
Since one hundred consists of these three numbers, i.e. from 5, 5, and 4. This is because when we multiply the one by the other and the product by the remaining, the result is 100, meaning the product of 5 by 5 is 25 and when we multiply it by 4, the result is 100.
\scriptstyle{\color{blue}{5\sdot5\sdot4=25\sdot4=100}}
ואחר שמאה הוא מורכב מאלו השלשה מספרים ר"ל מה' וה' וד' וזה כי כאשר כפלנו הא' בחבירו והעולה בנשאר עולה ק' פי' כי כפל ה' בה' הוא כ"ה וכאשר כפלנום בד' יעלו ק‫'
This is the check of the extraction of the divisors that we mentioned above, for when multiplying one by the other, then the product by another and so on until they end and we get the original number, we know that this number consists of these numbers. וזאת היא בחינת הוצאת המורים אשר הזכרנו למעלה כי בכפול זה בזה והעולה באחר וכן לעולם עד כלותם ויצא לנו החשבון הראשון ידענו שהחשבון ההוא מורכב מאלו ה[ב'‫]‫[106] מספרים
Since 100 consists of 5 and 4, our saying one part of 100 of the whole is as our saying a quarter of a fifth of a fifth, or our saying a fifth of a fifth of a quarter, because all is the same.
\scriptstyle{\color{blue}{\frac{1}{100}=\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}=\frac{1}{5}\sdot\frac{1}{5}\sdot\frac{1}{4}}}
ואחר היות הק' מורכב מה' הד' כך הוא אומרנו חלק מק' שבשלם כאומרנו רביעית חמישית חמישית רביעית חמישית או כאומרנו חמישית חמישית רביעית כי הכל אחד
For another reason we say that we can arrange the divisors randomly one after the other, or intentionally, in order to receive reduced fractions that are as proper as possible. ומטעם אחר על זה אמרנו שבידינו לסדר המורים זה אחר זה כפי המזדמן אם בהשגחה כדי שיצאו השברים היותר שלמים שיוכל והיותר נאותים
Because, when we say that if 70 is divided by one hundred, each one receives 70 quarters of a fifth of a fifth, we could say 70 fifths of a quarter of a fifth, or 70 fifths of a fifth of a quarter.
\scriptstyle{\color{blue}{70\div100=\frac{70}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}=\frac{70}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{70}{5}\sdot\frac{1}{5}\sdot\frac{1}{4}}}
וזה כי כאשר אמרנו שהמחלק ע' על המאה יגיע לכל אחד ע' רביעיות חמישית חמישית היינו יכולים לומר ע' חמשיות רביעית חמישית או ע' חמישיות חמישית רביעית
Since we can arrange them as we wish, it is appropriate to arrange them and keep them in order. ואחר שבידינו לסדרם כחפצנו ראוי לסדרם ולהשגיח בסדורו
This is because when we want to divide the 70 by these divisors, since 70 has a fifth, which is one of these divisors, we should divide it first by 5 and place it last, so that nothing is left to write beneath it. The result of division is 14.
וזה כי כאשר רצינו לחלק אלו הע' לאלו המורים אחר שהעין יש לו חמישית שהוא א' מאלו המורים ראוי לנו לחלקם ראשונה על הה' ונשימנו אחרון כדי שלא ישאר דבר לשים תחתנו ויצא בחילוק י"ד
If it would have had a quartet, it would have been appropriate to divide it by 4 and place it before the last.
ואם היה להם רביעית היה ראוי לחלקם על ד' ולשומו לפני האחרון
If a fifth, by 5.
ואם היה לו ה' לה‫'
Since it does not have one of them, we arrange the remaining divisors randomly.
אכן ‫[107]שאין לו אחד מהם נסדר אלו השני המורים הנשארים כפי המזדמן
For instance, we divide the 14 by 4 and place it before the last; the result of division is 3. Since it is less than the 5, which is the other divisor, we write it beneath it and we write the remaining 2 beneath the 4, which is the second divisor by which we divide. Like this:
\scriptstyle{\color{blue}{70\div100=\frac{70}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{14}{4}\sdot\frac{1}{5}=\frac{3}{5}+\left(\frac{2}{4}\sdot\frac{1}{5}\right)}}
וע'ד'מ' נחלק אלו הי"ד לד' ונשימהו לפני האחרון ויצא בחילוק ג' ואחר שהוא פחות מהה' שהוא המורה האח' נשימהו תחתיו והב' הנשארים נשימם תחת הד' שהוא המורה השני [אשר‫]‫[108] נחלקנו עליו כזה
5 4 5
  2 3
Thus, we get more proper fractions, because it is more appropriate to say 3-fifths and two-quarters of a fifth, which is half a fifth, as appears in this diagram, than saying 3-fifths, two-fifths of a fifth, and 2-quarters of a fifth of a fifth.
\scriptstyle{\color{blue}{70\div100=\frac{3}{5}+\left(\frac{2}{5}\sdot\frac{1}{5}\right)+\left(\frac{2}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}\right)=\frac{3}{5}+\left(\frac{2}{4}\sdot\frac{1}{5}\right)=\frac{3}{5}+\left(\frac{1}{2}\sdot\frac{1}{5}\right)}}
והנה יצאו לנו חלקים יותר נאותים כי יותר נאות הוא לומר ג' חמישיות [ושני רביעיות חמישית‫]‫[109] שהן חצי חמישית כאשר בא בצורה הזאת מאומרנו ג' חמישיות ושני חמישיות חמישית וב' רביעיות חמישית חמישית
It is known that the check of this is to convert all of them to the first type, i.e. fifths of a quarter of a fifth, as the last diagram, or quarters of a fifth of a fifth, as the preceding diagram, and this is called "decomposing to a fraction", as will be explained in the second section.
וידוע הוא כי בחינת זה הוא להשיבם כלם מהמין הראשון ר"ל חמישיות רביעית חמישית כפי צורה זו האחרונה או רביעית חמישית חמישית כפי הצורה הקודמת וזה יקרא פריטה כאשר יתבאר בחלק השני
Since it has whole fifths and also quarters of a fifth, we convert all of them first to quarters of a fifth.
ואחר שיש לו חמישיות שלמות גם רביעיות חמישית נשיבם כלם ראשונה רביעיות חמישית
It is known that every whole fifth is 4-quarters, meaning 4-quarters of a fifth, as every integer is 4-quarters of the whole.
וידוע כי כל חמישית שלמה היא ד' רביעיותיה פי' ד' רביעית חמישית כמו שכל שלם ד' רביעיות שלם
We get that each one of these 3 whole fifths is 4-quarters of a fifth.
הרי לנו כי כל אחד מאלו הג' חמישיות שלימות היא ד' רביעיות חמישית
To know how many are they, we multiply 3, which is the number of the fifths, by 4, which is the next divisor; the result is 12. We get that 3-fifths are 12 quarters of a fifth.
ולדעת כמה הם נכפול ג' שהוא מספר החמישיות בד' שהוא המורה הבא אחריו ויעלה י"ב הרי לנו שהג' חמישיות הם י"ב רביעיות חמישית
We find two beneath it, which is of this type, meaning quarters of fifths. We add it to them; they are 14 quarters of a fifth.
ומצאנו תחתיו שנים שהם מזה המין פי' שהם רביעיות חמישיות נחברם אליהם ויהיו י"ד רביעיות חמישית
When we want to know how many fifths of a quarter of a fifth are they, we multiply them by 5, which is the divisor that follows them; the total result is 70.
וכאש' נרצה לדעת כמה חמישיות רביעית חמישית הם נכפלם בה' שהוא המורה הבא אחריהם ויעלו כלם ע‫'
If there was anything beneath this divisor, it would have been also fifths of a quarter of a fifth and we would have add it to them.
ואם תחת זה המורה היה נמצא דבר זה היה ג"כ חמישיות רביעית חמישית ‫[110]והיינו מחברים אותם אליהם
Since nothing is found beneath it and the divisors are all gone, we have completed our procedure
אכן אחר שלא נמצא תחתיו דבר וכבר כלו המורים כבר כלינו מעשינו
Since the result is our original number, meaning 70, which is the small number that we wanted to divide by 100, which has these divisors no more and no less, we know that our procedure is right.
ואחר שעלה לחשבוננו הראשון פי' לעין [ע']‫[111] שהוא החשבון הקטן אשר רצינו לחלק על הק' שהוא בעל אלו המורים מבלי תוספת ומגרעת ידענו כי כל מעשינו בצדק ובמשפט
\scriptstyle{\color{blue}{\frac{3}{5}+\left(\frac{2}{4}\sdot\frac{1}{5}\right)=\frac{\left(3\sdot4\right)+2}{4}\sdot\frac{1}{5}=\frac{12+2}{4}\sdot\frac{1}{5}=\frac{14}{4}\sdot\frac{1}{5}=\frac{14\sdot5}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{70}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}=70\div100}}
Thus, the reasons of the all that was mentioned - the procedure as well as the examinations - are clear, and all is explained generally and particularly. הרי לנו מבוארים טעמי' כל הנזכר גם המעשה גם הבחינות וביאור הכל בכלל ובפרט
Division of a large number by a smaller number, with a result of integers and fractions
In order to train I bring another example, in which the divided by the 100 is greater than it, so the result are fractions as well as integers. וכדי להתלמד אביא משל אחר שיהיה המתחלק על אלו הק' גדול מהם כדי שיצאו שם שברים גם שלמים
  • We wish to divide 140 by 100.
\scriptstyle140\div100
המשל רצינו לחלק ק"מ על ק‫'
  • Since the 140, which is the number that we want to divide, has all these divisors, we place whichever we want last and divide by it; by 5, for instance. The result of division is 28 and nothing remains.
\scriptstyle{\color{blue}{140\div5=28}}
ואחר שאלו הק"מ שהם החשבון אש' רצינו לחלק יש לה כל אלו המורים נשים אשר נחפוץ אחרון ונחלקנו עליו המשל על הה' ויצא ושבא בחילוק כ"ח ולא נשאר דבר
  • Since it has a quarter, we divide it by 4 and place it before the last. The result of division is 7.
\scriptstyle{\color{blue}{28\div4=7}}
ואחר שיש להם רביעית נחלקם על הד' ונשימנו לפני האחרון ויצא בחילוק ז‫'
  • Since it is greater than the remaining divisor, we divide it by it; the result of division is 1, which is an integer, as the divisors are gone, we write it aside and beneath it we write the remaining 2. Like this:
\scriptstyle{\color{blue}{7\div5=1+\frac{2}{5}}}
ואחר שהם כמורה הנשאר וגדול מומנו נחלקם עליו ויצא בחילוק א' שהוא א' שלם כי כבר שלמו המורים ונשימנו מחוץ והב' הנשארים נשימם תחתיו כזה
5 4 5
    2
Hence, when we divide 140 by 100, each one of the one-hundred is 140 parts of one-hundred, which are 140-fifths of a quarter of a fifth, which are 28-quarters of a fifth, which are 7-fifths, which are 1 integer and 2-fifths.
\scriptstyle{\color{blue}{140\div100=\frac{140}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{28}{4}\sdot\frac{1}{5}=\frac{7}{5}=1+\frac{2}{5}}}
הרי לנו כי כאשר חלקנו ק"מ על ק' שעולה לכל 1 ואחד מהמאה ק"מ חלקים ממאה שבשלם שהם ק"מ חמישיות רביעית חמישית שהם כ"ח רביעיות חמישיות שהם ז' חמישיות שלמות שהם א' שלם וב' חמישיות
As this dividend is double the former dividend, so the result of division, which is 1 integer and 2-fifths, which are 7-fifths, is double the former result of division, which is 3-fifths, 2-quarters of a fifth and half a fifth.
\scriptstyle{\color{blue}{140=2\sdot70}}
\scriptstyle{\color{blue}{1+\frac{2}{5}=\frac{7}{5}=2\sdot\left[\frac{3}{5}+\left(\frac{2}{4}\sdot\frac{1}{5}\right)\right]=2\sdot\left[\frac{3}{5}+\left(\frac{1}{2}\sdot\frac{1}{5}\right)\right]}}
וכמו שזה החשבון המתחלק הזה כפל החשבון המתחלק ראשונה כן היוצא בחילוק שהוא א' שלם וב' חמישיות שהם ז' חמישיות הוא כפל היוצא בחילוק ראשונה שהיה ג' חמישיות וב' רביעיות חמישית פי' ג' ‫[112]חמישיות וב' רביעיות חמישית פי' שלשה חמישיות וחצי חמישית
The whole procedure is clear and explained also by checking, which is to restore everything to its former state. הנה כל המעשה ברור ומבורר גם הבחינה והיא להשיב הכל לקדמותו
Because, we decompose the one to fifths by multiplying it by 5, which is the denominator of the fifths; it is 5.
וזה כי האחד נשיבהו חמשיות שלמות וזה בכופלנו אותו בה' שהוא המורה על החמישיות ויהיו ה‫'
We add to it the 2 that is beneath it, which are also fifths.
ונחבר אליהם הב' הנמצא תחתיו שהם ג"כ חמישיות שלימות וזה בכפלנו אותו בה' שהוא המורה על החמישיות ויהיו ה' ונחבר אליהם הב' הנמצא תחתיו שהם ג"כ חמשיות שלמות [יהיו כלם ז' חמישיות שלמות‫]‫[113]
When we want to decompose them to quarters of a fifth, we multiply them by 4; they are 28 quarters of a fifth, and since there is nothing beneath them, we do not add to them anything.
וכאשר נרצה להשיבם רביעיות חמישית נכפלם בד' ויהיו כ"ח רביעיות חמישית ואחר שלא נמצא תחתיו דבר לא נחבר אליהם דבר
We decompose them to fifths of a quarter of a fifth by multiplying them by 5; the result is 140 fifths of a quarter of a fifth. The divisors are all gone and there is nothing beneath them to add to the result.
עוד נשיבם חמישיות רביעית חמישית וזה בכפלנו אותו בה' ויעלה ק"מ חמישיות רביעית חמישית והנה כלו המורים ואין תחתיו דבר לחבר על העולה
\scriptstyle{\color{blue}{1+\frac{2}{5}=\frac{\left(1\sdot5\right)+2}{5}=\frac{7}{5}=\frac{7\sdot4}{4}\sdot\frac{1}{5}=\frac{28}{4}\sdot\frac{1}{5}=\frac{28\sdot5}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{140}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}=140\div100}}
We get the same result as our original number.
ויצא לנו כחשבוננו הראשון שוה בשוה
Multiply the rest of the numbers by this method in the procedure or in the check. וב[דרך זה] תעשה כפל המספרי' הנשארים הן למעשה הן לבחינה

Chapter Five: Proportions

הפרק הה‫'

Rule of Three

For the ratio that a known number is to [a known number], if you want to know for another known number, to which number it has this same ratio:
\scriptstyle{\color{OliveGreen}{a_1:a_2=a_3:a_4}}
אם תרצה לדעת הערך שיש למספר ידוע למספר ידוע אחר אצל איזה מספר יש לו אותו הערך בעצמו
המשל הערך לה' אצל איזה מספר יש לו אותו הערך בעצמו
  • Example: For the ratio that 5 is to 7, 10 has the same ratio to which number?
\scriptstyle{\color{blue}{5:7=10:x}}
המשל הערך שיש לה' אצל ז' אצל מי יש לי' זה הערך
  • Or, which number has the same ratio to 14?
\scriptstyle{\color{blue}{5:7=x:14}}
או אצל י"ד למי שיש לו זה הערך
To understand it briefly I will give them an order: וכדי להבינו בקוצר אשים להם סדר
When we say: the ratio that 5 is to 7 - the 5 is called "first" [\scriptstyle{\color{OliveGreen}{a_1}}] and the 7 [is called] "second" [\scriptstyle{\color{OliveGreen}{a_2}}], since the 5 is related to 7. והוא כי כאשר נאמ' הערך שיש לה' אצל ז' נקרא הה' ראשון והז' שני לפי שהה' הוא הנערך אצל ז‫'
  • If you say: to which number does 10 has this ratio? What we relate to it is missing, which is the second of the others.
\scriptstyle{\color{blue}{5:7=10:x}}
והנה אם תאמר אצל מי יש ערך זה לי' יחסר אשר אליו אנו מעריכים שהוא השני מהאחרים
  • If we say: which number has this ratio to 14? the related is missing, which is the first of the others.
\scriptstyle{\color{blue}{5:7=x:14}}
ואם נאמר למי יש זה הערך אצל י"ד יחסר הנערך שהוא הראשון מהאחרים
This is the rule: the related of those that are first and of those that are last is called first, and that to which it is related, is called second. זה הכלל כי לנערך ‫[114]הן מן הראשונים הן מן האחרונים נקרא ראשון ולאשר מעריך אצלו נקרא שני
  • When you wish to know the unknown:
וכאשר תרצה לדעת הנעלם
  • If you have the first of the two that are last, but the second of those that are last is unknown: we multiply the first [of those that are last] by the second of the first two that are known, then divide by that which remains of the three that are known, i.e. by the first of those that are first; the result of division is the unknown.
\scriptstyle{\color{OliveGreen}{a_4=\frac{a_2\sdot a_3}{a_1}}}
אם יש בידך הראשון מן השנים האחרונים ונעלם השני שבאחרונים נכפול אותו הראשון [בשני]‫[115] מן השנים הראשונים הידועים וחלקנו לנשאר מהג' הידועים ר"ל לראשון שבראשונים והיוצא בחילוק הוא הנעלם
  • If you have the second of those that are last, but the first is unknown: multiply the second [of those that are last], which is known, by the first of those that are first, then divide the product by the second of those that are first; and the result of division is the required unknown.
\scriptstyle{\color{OliveGreen}{a_3=\frac{a_4\sdot a_1}{a_2}}}
ואם היה בידך השני שבאחרונים ונעלם הראשון כפול אותו השני הידוע בראשון שבראשונים והעולה חלקהו לשני שבראשונים והיוצא בחילוק הוא הנעלם המבוקש
When you divide the product by the second of those that are first, or by the first [of those that are second], if you want, extract the divisors, if this first or second, by which you divide, is a large number. The result, whether integers or fractions, is the required unknown.
וכאשר תחלק העולה על השני שבראשונים או על הראשון אם תרצה תוציא המורים אם זה הראשון או השני אשר תחלק עליו הוא חשבון גדול והיוצא בין שלמים ושברים הוא המבוקש הנעלם
This is the rule: always multiply the first of these by the second of the others and divide the product by what remains of those that are known; the result of division is the unknown. זה הכלל לעולם תכפול הראשון מאלו בשני מאלו והעולה תחלק על [הנשאר] מהידועים והיוצא בחילוק הוא הנעלם
  • Example: if we say: the ratio that 3 is to 7 - to whom does 5 have this ratio?
\scriptstyle{\color{blue}{3:7=5:x}}
המשל אם אמרנו הערך שיש לג' אצל הז' לה' אצל מי יש לו זה הערך בעצמו
We write them as follows:
ונשימם לו על זה כזה
7 3
  5
We know the related of those that are last, which is called first, it is 5. We multiply it by the second of those that are first, which is 7; the result is 35. We divide it by what remains of those that are known, which is 3; the result of division is 11 integers and 2-thirds and this is the required unknown.
\scriptstyle{\color{blue}{x=\frac{5\sdot7}{3}=\frac{35}{3}=11+\frac{2}{3}}}
הנה ידענו הנערך שבאחרונים והוא הנקרא ראשון והוא הה' ונכפלנו בשני שבראשונים והוא הז' ויעלו ל"ה ונחלקנו לנשאר מהידועים והוא הג' ויצא בחילוק י"א שלמים ‫[וב' שלישיות וזהו הנעלם המבוקש
Meaning: the ratio that 3 is to 7 is this same ratio that 5 is to 11 and 2-thirds.
\scriptstyle{\color{blue}{3:7=5:\left(11+\frac{2}{3}\right)}}
פי' כי הערך אשר לג' אצל הז' הוא הערך בעצמו אשר לה' אצל י"א וב' שלישיות‫]‫[116] וב' שלישיות
It is clear that as 7 is twice 3 plus its third, which is 1, so is 11 and 2-thirds twice 5 plus its third, which is 1 and 2-thirds.
\scriptstyle{\color{blue}{7=3\sdot\left(2+\frac{1}{3}\right)=\left(2\sdot3\right)+\left(\frac{1}{3}\sdot3\right)=\left(2\sdot3\right)+1}}
\scriptstyle{\color{blue}{11+\frac{2}{3}=5\sdot\left(2+\frac{1}{3}\right)=\left(2\sdot5\right)+\left(\frac{1}{3}\sdot5\right)=\left(2\sdot5\right)+\left(1+\frac{2}{3}\right)}}
וזה ברור שכמו שז' הוא כפל ג' ועוד שלישיתם שהוא א‫'

כן י"א וב' שלישיות הוא כפל ה' ועוד שלישיתו שהוא א' וב' שלישיות

  • If it is said: the ratio that 3 is to 7 - to 11 and 2-thirds who has this ratio?
\scriptstyle3:7=x:\left(11+\frac{2}{3}\right)
ואם אמרו הערך אשר לג' אצל ז' אצל י"א וב' שלישיות למי יש לו זה הערך
We write them in this diagram:
נשימם בצורה הזאת
  7 3
3    
2 11  
The unknown is the related term that is first of the latter and the known of them is 11 and 2-thirds, which is the second of them. So we multiply it by the first of the formers, which is 3; the result is 35. We divide it by the remaining of the knowns, which is 7; the result of division [is 5].
\scriptstyle{\color{blue}{x=\frac{\left(11+\frac{2}{3}\right)\sdot3}{7}=\frac{35}{7}=5}}
[117]הנה הנעלם הוא הנערך שהוא הראשון שבאחרונים והידוע שבהם הי"א וב' שלישיות והוא השני שבהם לכן נכפלנו בראשון שבראשונים שהוא הג' ויעלה ל"ה ונחלקם לנשאר מהידועי' והוא הז' ויצא בחלוקה
Written calculation
This is the rule: we call them by their names and arrange each type beneath its own type, then we multiply each type by the one that is not of its type, which are the diagonals, and divide by its type. The result of division is the required unknown. זה הכלל נקרא להם שם ונסדרם מין תחת מינו ונכפלם מין בשאינו מינו שהם האלכסונים ונחלקנו למינו היוצא בחילוק הוא הנעלם המבוקש
? ואם הם בעצמם היה להם שינוי בשמות אשר בהם נודע איזה מינו או שאינו מינו לא נצטרך לקרוא להם שם חדש
Exchange Problem - Currencies
  • Example: If 3 gold dinar are worth 50 silver dinar, how many silver dinar will 11 gold dinar be worth?
\scriptstyle3:50=11:x
המשל אם ג' דינרי זהב שוים נ' דינרי כסף י"א דינרי זהב כמה דינרי כסף שוים
We arrange them, each type beneath its own type, the gold beneath the gold, as follows:
נסדרם מין תחת מינו הזהב תחת הזהב כזה
50 3
  11
We multiply each type by the one that is not of its type, which are the gold and the silver, i.e. the diagonals, 11 by 50; the product is 550. We divide it by 3 that is of the gold type; the result of division is 183 and one-third that are the unknown silver dinar.
\scriptstyle{\color{blue}{x=\frac{11\sdot50}{3}=\frac{550}{3}=183+\frac{1}{3}}}
ונכפול למין בשאינו מינו שהם הזהב והכסף והם הי"א בנ' שהם האלכסונים ויעלה 550 ונחלקם על מינו פי' על ג' של זהב ויצא בחילוק 183 ושליש שהם הדינרי כסף הנעלמים
We receive that if 3 gold dinar are worth 50 silver [dinar], then 11 gold dinar are worth 183 silver dinar and one-third of a dinar, like this:
\scriptstyle{\color{blue}{3:50=11:\left(183+\frac{1}{3}\right)}}
הרי לנו שאם שלשה דינרי זהב שוים נ' של כסף י"א דינרי זהב שוים 183 דינרי כסף ועוד שליש דינר כזה
  550 3
3 ו 183 11
1      
Exchange Problem - Currencies:
If the question is vice versa, that the gold is unknown to us, as our saying: ואם השאלה היתה להפך שנעלם לנו הזהב כאומרנו
  • If 3 gold dinar are worth 50 silver dinar, how many [gold dinar] will 183⅓ silver dinar be worth?
\scriptstyle3:50=x:\left(183+\frac{1}{3}\right)
ואם ג' דינרי זהב שוים נ' של כסף 183 דינרי כסף ושליש דינר כמה שוים
We write them each type above its own type, as follows:
נשימם מין על מינו כזה
3 50 3
1 183 11
We multiply each type by the one that is not of its type, meaning the silver and the gold that are the diagonals; the product is 550. We divide it by the remaining of the silver type, which is 50; the result of division is 11 and they are the unknown gold dinar.
\scriptstyle{\color{blue}{x=\frac{\left(183+\frac{1}{3}\right)\sdot3}{50}=\frac{550}{50}=11}}
ונכפול מין בשאינו מינו פי' הכסף בזהב שהם האלכסונים ויעלו 550 ונחלקם על מינו שהוא הכסף הנשאר והוא הנ' ויצא בחילוק י"א והם דינרי זהב הנעלמים
It all comes down to the same thing. והכל עולה לענין אחד

Reasons

The reason for the solution of the first example:
The reason is that when we say: the ratio that 3 has to 7 - to whom does 5 have this ratio?
\scriptstyle3:7=5:x
[118]הטעם כי כאשר אמרנו הערך שיש לג' אצל ז' לה' אצל מי שיש לו זה הערך
We know that as the ratio that 3 is to 7, one, which is a third of 3, is to a third of 7, meaning that if 3 is, for instance, a third of 7, then one is a third of a third of 7, and this is clear. הנה ידענו שהערך שיש לג' אצל ז' יש לאחד שהוא שליש הג' אצל שליש ‫[הז' פי' שאם הג' על דרך משל שליש הז' הנה האחד הוא שליש שלישית הז' וזה ברור
Since we know that the ratio that 1 is to a third of 7 is as the ratio that 3 is to 7, which is the required ratio, and that a third of 7 is 7-thirds, then we know that 5 has that same ratio to 5 times 7-thirds.
\scriptstyle{\color{blue}{3:7=\left(\frac{1}{3}\sdot3\right):\left(\frac{1}{3}\sdot7\right)=1:\left(\frac{1}{3}\sdot7\right)=1:\frac{7}{3}=5:\left(\frac{7}{3}\sdot5\right)=5:\frac{5\sdot7}{3}}}
ואחר שידענו שערך א' אצל שליש ז' הוא‫]‫[119] ז' הוא כערך ג' אצל ז' שהוא הערך הנשאל ושליש ז' הוא ז' שלישיות הנה ידענו שזה הערך בעצמו יש לה' אצל ה' פעמים ז' שלישיות
To know how many thirds they are, we have to multiply 5 by 7 and the result are thirds ולדעת כמה שלישיות הם יש לנו לכפול ה' בז' והעולה הם שלישיות
To know how many integers they are, we divide them by 3. ולדעת כמה שלמים הם חלקנום על הג‫'
The reason for the solution of the second example:
Likewise in the second example: we know the ratio that 3 is to 7 and we wish to know who has this same ratio to 11 and 2-thirds.
\scriptstyle3:7=x:\left(11+\frac{2}{3}\right)
וכן בדמיון השני כי אחר שידענו ערך ג' אצל ז' ורצינו לידע למי יש לו זה הערך בעצמו אצל י"א וב' שלישיות
It is as if we know the ratio that 7 is to 3 and we wish to know to whom does 11 and 2-thirds has this ratio.
\scriptstyle7:3=\left(11+\frac{2}{3}\right):x
הרי הוא כאלו ידענו ערך ז' אצל ג' ונרצה לידע לי"א וב' שלישיות אצל מי יש לו זה הערך
The reason is clear, because it becomes as the first example it self. והנה הטעם ברור שהרי שב כדמיון הראשון בעינו
In order to elaborate the explanation I will explain from the beginning: אכן כדי להרחיב ביאור אבארנו בעודו בעינו
I say that we know that the ratio that 3 is to 7 is the same ratio that one, which is a third of 3, is to 7-thirds, which are a third of 7, as we explained.
\scriptstyle{\color{blue}{3:7=\left(\frac{1}{3}\sdot3\right):\left(\frac{1}{3}\sdot7\right)=1:\frac{7}{3}}}
ואומר כי אחר שידענו שהערך שיש לג' אצל ז' הוא הערך בעצמו שיש לאחד שהוא שליש הג' אצל ז' שלישיות שהם שליש הז' כאשר ביארנו
Hence, for every seven-thirds that are in 11 and 2-thirds, one is the related and as the number of 7-thirds that are in them, so is the number of units of the unknown that is related to them. א"כ לכל שבעה שלישיות אשר בי"א וב' שלישיות הנערך אליהם הוא א' וכמספר כמה ז' שלישיות יש בהם כך הוא המספר אחדי הנערך אליהם הנעלם
To know how many whole 7-thirds there are in 11 and 2-thirds, we should know first how many thirds are they and this is known by multiplying them by 3. We multiply them by 3; the result is 35, so we know that there are 35 thirds in them. ולדעת כמה שלמים ז' שלישיות יש בי"א וב' שלישיות נדע תחלה כמה שלישיות הוא וזה יודע בכפלהו אותם בג' לכן כפלנום בג' ועלה ל"ה הנה ידענו שיש בהם [ל"ה‫]‫[120] שלישיות
To know how many times 7-thirds are in them, we divide them by 7; we get 5 and this is the number of times that 7-thirds are in 11 and 2-thirds.
\scriptstyle{\color{blue}{\left(11+\frac{2}{3}\right):\frac{7}{3}=\frac{\left(11+\frac{2}{3}\right)\sdot3}{7}=\frac{35}{7}=5}}
ולדעת כמה פעמים יש בהם ז' שלישיות חלקנום על ז' ויצא לנו ה' והוא המספר הפעמים אשר יש ז' שלישיות בי"א וב' שלישיות
We already know that 1 integer is the related to every 7-thirds, so the related to 5 times 7-thirds is 5 integers. וכבר ידענו שהנערך אצל כל ז' שלישיות הוא א' שלם א"כ הנערך אצל ה' פעמים ז' שלישיות הוא ה' שלמים
But, we know that 11 and 2-thirds is 5 times 7-thirds, so the related to them is 5 integers.
\scriptstyle{\color{blue}{3:7=1:\frac{7}{3}=5:\left(\frac{7}{3}\sdot5\right)=5:\left(11+\frac{2}{3}\right)}}
ואולם ידענו שהי"א וב' שלישיות הוא ה' ‫[121]פעמים ז' שלישיות א"כ הנערך אליהם הוא ה' שלמים
The reasons for the solutions of the exchange problems:
In the examples of the dinar: ועוד במשלי הדינרים
  • We know that 3 gold dinar are worth 50 silver [dinar].
\scriptstyle3:50=11:x
כי כאשר ידענו שג' דינרי זהב שוים נ' של כסף
It is known that one gold dinar is worth one-third of 50 silver dinar, which is fifty-thirds of a dinar. נודע שדינר זהב אחד שהוא שוה שליש נ' דינרים של כסף שהוא חמישים שלישי דינר
It is known from this that 11 gold dinar are worth 11 times 50-thirds of a silver dinar. ונודע מזה שהי"א דינרי זהב שוים י"א פעמים נ' שלישי דינר כסף
To know how many thirds they are, we multiply 11 by 50; the result is 550, so we know that 11 gold dinar are worth 550-thirds of a silver dinar. ולדעת כמה שלישים הם כפלנו הי"א בנ' ועלה 550 הנה ידענו שהי"א דינרי זהב שוים 550 שלישי דינר כסף
To know how many silver dinar they are, we divide them by 3; the result is 183 and one-third and they are the silver dinar that are worth 11 gold dinar and this is clear. ולדעת כמה דינרי כסף הם חלקנום על ג' ויצא 183 ושליש והם הדינרי כסף ששוים הי"א דינרי זהב וזה ברור
\scriptstyle{\color{blue}{3:50=1:\left(\frac{1}{3}\sdot50\right)=1:\frac{50}{3}=11:\left(11\sdot\frac{50}{3}\right)=11:\frac{11\sdot50}{3}=11:\frac{550}{3}=11:\left(183+\frac{1}{3}\right)}}
  • I will explain it also in the second example: since we know that 3 gold dinar are worth 50 silver dinar, each gold dinar is worth 50-thirds of a silver dinar, as we explained.
\scriptstyle3:50=x:\left(183+\frac{1}{3}\right)
ועוד אבארנו במשל השני והוא כי ביודעינו שג' דינרי זהב שוים נ' דינרי כסף כל דינרי זהב שוה נ' שלישי דינר כסף כמו שביארנו
Therefore, every 50-thirds of a dinar that is in 183 and one-third is worth one gold dinar. וא"כ כל נ' שלישי דינר אשר בק'פ'ג' ושליש שוה דינר זהב
To know how many 50-thirds of a dinar there are in them, we should know first how many thirds of a dinar they are and this is known by multiplying them by 3 as we did; the result is 550, which are thirds of a dinar.
\scriptstyle{\color{blue}{\left(183+\frac{1}{3}\right):\frac{50}{3}=\frac{\left(183+\frac{1}{3}\right)\sdot3}{50}=\frac{550}{50}=11}}
ולדעת כמה פעמים יש בהם נ' שלישי דינר נדע תחלה כמה שלישי דינר הם וזה יודע בכפלנו אותם בג' כאש' עשינו ועלו 550 והם שלישי דינר
Every 50 of them are worth one gold dinar, so when we divide them by them, as we did, we know how many gold dinar they are worth and this is as the result of division, which is 11. All this is clear. וכל נ' מהם שוים דינר זהב א"כ בחלקנום אותם על נ' כאשר עשינו נדע כמה דינרי זהב שוים שהוא כמספר היוצא בחלוקו הוא י"א וכל זה ברור
It becomes clear from all that is mentioned with a little investigation that for every four proportional numbers, the product of the first of the formers by the second of the latter is as the product of the second of the formers by the first of the latter.
\scriptstyle{\color{OliveGreen}{a_1:a_2=a_3:a_4\longrightarrow a_1\sdot a_4=a_2\sdot a_3}}
והנה יתבאר מכל הנזכר במעט עיון כי כל ד' מספרים נערכים כפל הראשון מאלו בשני מן האחרים ככפל השני בראשון מן האחרים
  • Because, in the first example, the product of 5 by 7, which is 35, is as the product of 3 by 11 and 2-thirds, which is the unknown.
\scriptstyle{\color{blue}{3:7=5:\left(11+\frac{2}{3}\right)\longrightarrow5\sdot7=35=3\sdot\left(11+\frac{2}{3}\right)}}
כי בדמיון הראשון כפל הה' בז' שהוא ל"ה ככפל הג' בי"א וב' שלישיות אשר היה הנעלם
Therefore, when one of them is unknown, whichever it may be, we multiply the knowns, first of these by the second of those, and we know that it is itself the product of the unknown by the one that remains of the knowns. Therefore, when we divide it by the known, the result is the unknown. ולזה כאש' נעלם אחד מהם איזה מהם שיהיה כפלנו מהנודעים הראשון מאלו בשני מאלו וידענו שזה בעצמו הוא כפל הנעלם בנשאר מהנודעים ולזה בחלקנו אותו לנודע יצא הנעלם

Proportional Triad

Sometimes the proportional numbers are only three, i.e. the mean is the first of those that are last and the second of those that are first.
\scriptstyle{\color{OliveGreen}{a_1:a_2=a_2:a_3}}
[122]ולפעמים לא יהיו המספרים הנערכים כי אם ג' פי' שהאמצעי יהיה ראשון לאחרונים ושני לראשונים
We have already explained that for every four proportional numbers the product of the first of those by the second of those is as the product of the first of those by the second of thos, i.e. the product of the first by the last is as the product of the two means by each other.
\scriptstyle{\color{OliveGreen}{a_1:a_2=a_3:a_4\longrightarrow a_1\sdot a_4=a_2\sdot a_3}}
ואולם כבר ביארנו שכל ד' מספרים נערכים כפל הראשון מאלו בשני מאלו בשני מ ככפל הראשון מאלו בשני מאלו פי' כפל הראשון באחרון ככפל הב' האמצעיים זה בזה
When they are only three, the mean stands instead of the two means, which are the second of those that are first and the first of those that are last, so the product of the first by the third, which is the second of those that are last, is as the product of the mean by itself, which is both first [of those that are last] and second [of those that are first], as we explained.
\scriptstyle{\color{OliveGreen}{a_1:a_2=a_2:a_3\longrightarrow a_1\sdot a_3=\left(a_2\right)^2}}
ואולם כשהם ג' לבד האמצעי עומד במקום השנים האמצעיי' שהוא שני לראשונים וראשון לאחרונים א"כ כפל הראשון בשלישי שהוא השני מהאחרונים ככפל האמצעי בעצמו שהוא ראשון ושני כאשר ביארנו
  • When the mean and one of the others are known, the unknown is extracted, for we multiply the mean by itself , then divide [the product] by the other that is known and the result is the unknown.
  • \scriptstyle{\color{OliveGreen}{a_1=\frac{\left(a_2\right)^2}{a_3}}}
  • \scriptstyle{\color{OliveGreen}{a_3=\frac{\left(a_2\right)^2}{a_1}}}
ולזה בהודע האמצעי ואחד מן האחרים יודע הנעלם כי נכפול האמצעי בעצמו ונחלקנו לאחר הנודע ויצא הנעלם
  • When the two [extremes] are known, the mean is extracted, by multiplying the two that are known [one by the other] and the product is as the product of the mean by itself, i.e. as its square.
  • \scriptstyle{\color{OliveGreen}{\left(a_2\right)^2=a_1\sdot a_3}}
גם בהודע השנים יודע האמצעי וזה בהכפל השנים הנודעים והעולה הוא ככפל האמצעי בעצמו פי' שהוא כמרובע
The mean is the root - we extract the root of this number by finding a number whose product by itself is as this product and the resulting root is the unknown mean.
  • \scriptstyle{\color{OliveGreen}{a_2=\sqrt{a_1\sdot a_3}}}
והאמצעי הוא השרש ונוציא שורש זה המספר שהוא לבקש מספר שכפלו על עצמו עולה כפי החשבון והשרש אשר יצא הוא האמצעי הנעלם
The method of extracting the roots is very difficult and there are numbers whose real root is never known only approximately, so I have assigned a special chapter to this and it is the next chapter. ודרך הוצאת השרשים הוא קשה מאד ויש מספרים אשר לא יודע בהם שרש אמיתי לעולם כי בקירוב על זה הקצתי לו פרק לעצמו והוא הפרק הבא אחר זה
Example for the three proportional numbers: דמיון זה ג' מספרים נערכים
  • As we say: the ratio of 2 to 4 is as the ratio of 4 to 8
\scriptstyle{\color{blue}{2:4=4:8}}
הוא כאומרנו הערך אשר לב' אצל הד' כערך ד' אצל ח‫'
  • 4 is the mean, instead of the two [means], which is the second of those that are first and the first of those that are last.
שהד' האמצעי הוא במקום שנים שהוא שני מן הראשונים וראשון מן האחרונים
  • If one of the extremes is unknown, such as 2, whereas 4 and 8 are known:
\scriptstyle{\color{blue}{x:4=4:8}}
ואם הנעלם מהקצוות המשל הב' ונודע הד' והח‫'
  • Meaning that one asks: Who has the ratio to 4, as the ratio of 4 to 8?
כלומר ששאל השואל למי יש ערך אצל ד' כערך אשר לד' אצל שמונה
Exchange Problem - Currencies:
  • Or if he says: How many golden dinar are worth 4 silver dinar, if 4 golden dinar are worth [8] silver dinar?
או שאמ' כמה דינרי זהב שוים ד' דינרי כסף אם ד' דינרי זהב שוים אחד דינרי כסף
We know that the product of 4 by 4, which is the mean, that is 16 is as the product of the known 8 by the unknown
\scriptstyle{\color{blue}{4\sdot4=16=8\sdot x}}
הנה ידענו שכפל ד' בד' שהוא האמצעי שהוא שהם י"ו שהוא ככפל ח' הידוע ‫[123]בנעלם
Thus, we divide it by 8 and the result of division, which is 2, is the unknown.
\scriptstyle{\color{blue}{x=\frac{16}{8}=2}}
לכן נחלקם על הח' והיוצא והוצרך בחלוק והוא ב' הוא הנעלם
  • If 2 and 4 are known, and 8 is unknown:
\scriptstyle2:4=4:x
וכן אם נודעו השנים והד' ונעלם הח‫'
  • That is, one asks: the ratio of 2 to 4 - 4 has this ratio to whom?
ששאל השואל הערך אשר לב' אצל ד' אצל מי יש לד' זה הערך
Exchange Problem - Currencies:
  • Or, if he asks: If 2 golden dinar are worth 4 silver dinar, how many silver dinar will 4 golden dinar be worth?
או ששאל אם שני דינרי זהב שוים ד' דינרי כסף ד' דינרי זהב כמה דינרי כסף שוים
We multiply 4 by itself; the result is 16. We divide it by [2]; the result of division is [8] and this is the unknown.
\scriptstyle{\color{blue}{x=\frac{4\sdot4}{{\color{red}{2}}}=\frac{16}{{\color{red}{2}}}={\color{red}{8}}}}
נכפול הד' בעצמו ויעלה י"ו ונחלקם על הח' ויצא בחילוק ב' והוא הנעלם
  • If the unknown is 4, which is the mean that stands instead of the two [means], whereas 2 and 8, the first and the last, are known:
\scriptstyle2:x=x:8
ואם היה הנעלם הד' שהוא האמצעי העומד במקום שנים והנודעים הב' והח' ראשון ואחרון
We multiply 2 by 8; the result is 16 and it is the product of the unknown mean by itself, as we have explained; the 16 is the square of the mean.
\scriptstyle{\color{blue}{x^2=2\sdot8=16}}
נכפול הב' בח' ויעלה י"ו וזה כפל האמצעי הנעלם בעצמו כמו שביארנו ואלו הי"ו הם מרובע האמצעי
The mean is its root - the root of 16 is 4.
\scriptstyle{\color{blue}{x=\sqrt{16}=4}}
והאמצעי הוא שרושם ושרש י"ו הוא ד‫'
Everything is explained in these examples. והכל מבואר בדמיונות אלו
If 16 is a number, whose root extraction is difficult for us, or it is impossible for us to know its real root, only by approximation, we proceed in the extraction of the root as explained in chapter six that is assigned to it. ואם זה הי"ו היה החשבון אשר יקשה עלינו בקשת שרשו או שהוא נמנע בחקנו לידע שרשו האמיתי כי אם בקרוב נדרוך בבקשת השרש ההוא כמו שיתבאר בפרק ו' זה אשר הקציתי לו

Chapter Six: Roots

הפרק השישי בהוצאת השרשים

written extraction of roots

description of the procedure

When you wish to extract the root of a certain number, count the number of the ranks, whether it is even or odd. כאשר תרצה להוציא שורש שום מספר תמנה מספר מעלות ההוא אם זוג ואם נפרד
  • If it is odd, consider the last digit [= leftmost digit] as if it is units, [then seek] a number such that when we multiply it by itself that product is the last digit or as close to it as possible and we write it beneath it.
ואם הם נפרד עיין הרושם האחרון כאלו היא אם אחדים איזה מספר נכפול על עצמו ויצא כל זה הרושם האחרון או היותר שנוכל ונשימנו תחתיו
If something remains from the last upper digit after subtracting the product of the number that you wrote beneath it by itself, write this remainder above the last digit.
ואם ישאר שום דבר מזה החשבון האחרון העליון אחר הוצאת כפל המספר אשר שמת תחתיו בעצמו תשים הנשאר ההוא על המספר האחרון
  • If the number of the ranks of the number, whose root you wish to know, is even, consider the last digit as tens and what you find in the preceding rank as units.
ואם מספר מעלות החשבון אשר רצית לדעת שרשו יהיה זוג תקח האות האחרון לעשרות ואשר תמצא במעלה אשר לפניה לאחדים
Then seek a number whose square is the same as these tens and units or as great as possible to be subtract from them and write this number you find beneath the rank that precedes the last rank.
ותבקש מספר שיהיה מרובעו בכל אלו העשרות והאחדים אשר לקחת או היותר שתוכל להוציאו מהם וזה המספר אשר מצאת תשימהו ‫[124]תחת המעלה אשר לפני המעלה האחרונה
If tens remain after subtracting the square of the number you find from the units and tens that are found in the last two ranks, write them above the last digit; if units [remain], write them above [the digit] that precedes the last digit.
ואשר ישאר אחר הוצאת מרובע המספר אשר מצאת מאלו האחדים והעשרות אשר מצאת בשתי המעלות האחרונו' אם ישאר שום עשרת שימהו על האות האחרון ואם אחדים תשימם אשר לפני האות האחרון
After doing all that, both for a number whose number of ranks is even and for [a number] whose number of ranks is odd, double the number that you placed beneath the upper digit. ואחר עשותך כל זה הן במספר אשר מעלותיו זוג הן באשר הן מעלותיו מספר נפרד תכפול זה המספר אשר שמת תחת המספר העליון
  • If no tens result from this doubling, place the units of the double [the number] beneath the rank that precedes the rank in which you placed [that number] at first.
ואם לא יעלה מזה הכפל שום עשר תשים אחדי הכפל הזה תחת המעלה אשר לפני המעלה אשר שמת אותו בתחלה
  • If tens or more result, place the tens beneath the rank in which the number was at the beginning, and the units in the rank that precedes it.
ואם עלה לעשר או יותר תשים העשר תחת המעלה אשר היה שם המספר הזה בתחלה והאחדים במעלה אשר לפניו
  • If there are no units there, ?
ואם לא יהיו שם אחדים תשים במעלה אשר לפניו
Cross the first number you doubled with a pen. ותעבור הקולמוס על המספר הראשון אשר כפלת
Thereafter, seek a number to place in the rank that precedes the mentioned one, such that when multiplying it by the number or numbers, which you have just placed that resulted from the first doubling, and also by itself, then subtracting each product from the corresponding rank, all is gone or as much as possible. ואחר כך תבקש מספ' אשר תשים במעלה אשר לפני אלו הנזכרות אשר בכפול אותו במספר או מספרים אשר שמת עתה שנתחדשו מכפל הראשון וגם בעצמו והוציא כל כפל וכפל מהם מהמעלה אשר כנגדו ויצא הכל או היותר שתוכל
Write it in the mentioned rank, i.e. in the rank that precedes the ranks in which you wrote the double of the first number.
ותשימנו במעלה הנזכרת ר"ל במעלה הנזכרת ר"ל במעלה שלפני המעלות אשר שמת בהם כפל המספר הראשון
Multiply it by the first numbers, except the the one you wrote first that is crossed by a pen.
ותכפלנו במספרים הראשונים מלבד אשר שמת ראשון שעבר עליו הקולמוס
Subtract the product from the digits that above them.
ואשר יעלה תוציאנו מהרשמים אשר על ראשם
Multiply [the number] by itself and subtract [the product] from the rank above it.
ותכפלנו המספרים הראשונים מלבד אשר שמת ראשון שעבר עליו הקולמוס על עצמו ותוציאנו ‫[125]מהמעלה אשר על ראשו
Wherever there is a remainder, write it above the digit from which it remains.
והנשאר בשום מקום תשימנו על הרושם אשר ממנו נותר
  • When you double the number and write its double in the preceding rank, if the digit that is above it is not enough to subtract [the double] even once, and that enough remains in the preceding rank to subtract from it the product of the other digit by itself, write 0 before it and lower it by one rank, whether there is a 0 there or any other digit. Then seek a number to write before it, so that you multiply it by each of the [digits of the root] and by itself and subtract every [product] from what is above it.
ואם כאשר כפלת המספר ושמת כפלו במעלה אשר לפניו אם אין ברשמים אשר עליהם כדי להוציאם אפי' פעם אחת ושישאר במעלה אשר לפניהם אחד להוציא ממנו כפל האחר בעצמו אז תשים 0 לפניהם ותורידם מעלה אחת גם ל0 גם לכל רושם מהם ותבקש מספר שתשים לפניהם ותכפלנו בכל אחד מהם ובעצמו ותוציא כל דבר מאשר על ראשו
Write the remainder above the digit that is above it and lower again the [digits of the root] by one rank, as long as you lower them, whenever you lower them, as they are, without doubling, except for the last digit that is generated at that same phase that you double it.
והנותר תשים על הרושם אשר על ראשו ותורידם עוד מעלה אחרת ובלבד שתורידם לעולם בכל הורדה שתורידם שיורדו כמות שהם בלי כפל כלל זולתי המספר האחרון שנתחדש בפעם ההיא שתכפלנו
  • If no tens are generated [in double the digit of the root], write it in the rank that precedes the ranks in which you write the other digits as they are lowered.
ואם לא נתחדש שם עשר תשימנו במעלה שלפני המעלות אשר תשים הרשמי' האחרים בהורדתם
  • If a ten is generated, add it to the digit that you write first to the right, and if this digit is only 0, write the 1, i.e. the ten instead of it. Write the units that are generated with the ten from this double, in the preceding rank.
ואם מהכפל ההוא יתחדש עשר תחברנו עם הרושם אשר שמת ראשון לצד ימין ואם מהכפל ההוא יתחדש עשר תחברנו עם הרושם אשר שמת ראשון לצד ימין ואם לא היה כי אם 0 תסירנה ותשים הא' ר"ל העשר במקומה והאחדים אשר נתחדשו מהכפל עם זה העשרה שימם במעלה שלפניהם
  • If no tens are generated [in double the digit of the root], as when the last digit is a five and its double is a ten without units, write the ten as I said instead of the 0, or add it to what you find in the rank to the right, and since there are no units, write 0 before these ranks.
ואם לא נתחדשו שם אחדים כגון שהרושם האחרון היה חמשה וכפלו יהיה עשרה שלם בלתי אחדים תשים הי' כאשר אמרתי במקום ה0 או תחברנו עם אשר תמצא במעלה לצד ימין ואחר שאין אחדים שם תשים 0 לפני המעלות ההם
Repeating the process: seek for another number as stated and proceed like this until their end. ותבקש עוד מספר כמו שנזכר וכן תעשה עד תומם
The root consists of all the numbers you seek for in all the phases without their doubling. [126]והשרש הוא כל המספרים אשר בקשת בכל עת בלי כפל

examples

  • We wish to seek the root of 344680129066.
\scriptstyle\sqrt{344680129066}
המשל רצינו לבקש שרש 344680129066
    117
   1250642
 1151248513
 98261861540
344680129066
 5
 108
  1167
   11740
    117409
     1174184
[Illustration of the procedure:]
\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{34>5^2}}\\&\scriptstyle{\color{red}{34-{\color{blue}{5}}^2=}}{\color{green}{9}}\\&\scriptstyle{\color{red}{2\times5=}}{\color{blue}{10}}\\\end{align}}   \scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{9-\left(1\times{\color{blue}{8}}\right)=}}{\color{green}{1}}\\&\scriptstyle{\color{red}{{\color{blue}{8}}^2=}}{\color{YellowOrange}{64}}\\&\scriptstyle{\color{red}{6-{\color{YellowOrange}{4}}=}}{\color{green}{2}}\\&\scriptstyle{\color{red}{14-{\color{YellowOrange}{6}}=}}{\color{green}{8}}\\&\scriptstyle{\color{red}{2\sdot8=}}{\color{blue}{16}}\\\end{align}} 1          
9            982        
344680129066 344680129066 344680129066
5           5          
10           108        
    116       
The ranks of this number are 12 and it is an even number. We take the two last digits - the last as tens and the one that precedes it as units; they are 34.
והנה מעלות מספר זה הם י"ב והם זוג נקח השני רשמים האחרונים האחרון אחרון לעשרות ואשר לפניו לאחדים ויהיו 34
  • We seek for a number, such that when we multiply it by itself, it will consume the whole 34, or as much as possible of it; it is 5. We write it beneath the 4.
ונבקש מספר שנכפלנו על עצמו ויוציא כל ה34 או היותר שאפשר והוא ה' ונשימנו תחת הד‫'
We say: 5 times 5 is 25. We subtract it from 34; 9 remains.
\scriptstyle{\color{blue}{34-5^2=34-25=9}}
ונאמר ה' פעמים ה' הם כ"ה נוציאם מהל"ד ישארו ט‫'
We cross the 3 with a pen and write 9 above the 4.
ונעביר קולמוס על הג' ונשים הט' על הד‫'
We double the 5 and cross it with a pen. Its double is 10. We write 1 beneath the 5 and since there are no units with the ten at all, we write 0 before the one.
ונכפול הה' ואחר שאין ונעביר עליו הקולמוס והנה כופלו הוא י' נשים א' תחת הה' ואחר שאין עם עשר זה אחדים כלל נשים לפני זה האחד 0
  • We seek for a number to write in the rank that precedes the 0, multiply by 1 and by itself, and to subtract as much as we can from what remains above the 4 and from the 48 before it that are the ranks that are above [this number]. It is 8. We write it before them.
ונבקש מספר נשימהו במעלה שלפני ה0' ונכפלנו ב בא' ובעצמו ונוציא כל היותר שנוכל מאשר נשאר על הד' גם מהמ"ו אשר לפניו שהם השלימות המעלות אשר עליהן ויהיה ח' ונשימנו לפניהם
  • We multiply 8 by 1; it is 8. We subtract it from the 9 that is above it; one remains. We write it above it.
\scriptstyle{\color{blue}{9-\left(1\times8\right)=9-8=1}}
ונכפול ח' בא' יהיו ח' נוציאם מהט' אשר עליו ישאר אחד נשימנו עליו
  • We also multiply 8 by itself; the result is 64.
\scriptstyle{\color{blue}{8^2=64}}
עוד נכפול ח' על עצמו ויעלה ‫[127]ס"ד
We subtract the 4 units from the 6 that is above it; 2 remains. We write it above the 6.
\scriptstyle{\color{blue}{6-4=2}}
ונוציא הד' האחדים מהו' אשר על ראשו ישארו ב' נשימם על הו‫'
We cannot subtract the 6 tens from the 4 that is after the 6, which is tens with respect to it. We take the 1 that is after it and cross it with a pen; it becomes ten in the rank of the mentioned 4. We add to it the 4 itself; they are 14 all together. We subtract from it the 60, which are 6 tens; 8 remains. We write it above the 4.
\scriptstyle{\color{blue}{14-6=8}}
והס' שהם ו' עשרות לא נוכל להוציאם מהד' שאחר הו' שהוא עשרות נגדו ונקרא הא' אשר אחריהם ונעביר עליו הקולמוס ויהיה עשר במעלת הד' הנזכר ונחבר אליהם הד' עצמו יהיו כלם י"ד נוציא מהם הס' אשר הם ו' עשרות נשארו ח' ונשימנו על הד‫'
Then, we lower it by one rank and double the 8 that is generated at that phase. Since units and a ten result from its double, we do not write 0, but we write 1 for the ten instead of it and the 6 units before it.
\scriptstyle{\color{OliveGreen}{2\times8=16}}
אחר זה נורידם מעלה אחת ונכפול הח' אשר נתחדש בפעם הזאת ואחר אשר נתחדש מכפלו אחדים ועשר לא נשים ה0' אבל נשים א' בעד העשר במקומה ונשים הו' אחדים לפניו
[Illustration of the procedure:]
\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{8-\left(1\times{\color{blue}{7}}\right)=}}{\color{green}{1}}\\&\scriptstyle{\color{red}{12-\left(1\times{\color{blue}{7}}\right)=}}{\color{green}{5}}\\&\scriptstyle{\color{red}{6\times{\color{blue}{7}}=}}{\color{YellowOrange}{42}}\\&\scriptstyle{\color{red}{8-{\color{YellowOrange}{2}}=}}{\color{green}{6}}\\&\scriptstyle{\color{red}{5-{\color{YellowOrange}{4}}=}}{\color{green}{1}}\\&\scriptstyle{\color{red}{6-{\color{YellowOrange}{5}}=}}{\color{green}{1}}\\&\scriptstyle{\color{YellowOrange}{50-49}}={\color{green}{1}}\\&\scriptstyle{\color{red}{{\color{blue}{7}}^2=}}{\color{YellowOrange}{49}}\\&\scriptstyle{\color{red}{2\sdot7=}}{\color{blue}{{\color{YellowOrange}{1}}4}}\\&\scriptstyle{\color{red}{6+{\color{YellowOrange}{1}}=}}{\color{blue}{7}}\\\end{align}}    1        
1151       
 98261      
344680129066
5          
 108        
  1167      
   1174     
  • We look for a number to place before them, to multiply by them and by itself and subtract as much as possible from what is above them; it is 7. We write it before them.
ונבקש מספר שנשים לפניהם שנכפלנו בהם ובעצמו ונוציא היותר שאפש' מאשר עליהם ויהיה ז' ונשימנו לפניהם
  • We say: seven times 1 is 7. We subtract it from the 8 that is above it; 1 remains. We write it above it.
\scriptstyle{\color{blue}{8-\left(1\times7\right)=8-7=1}}
ונאמ' שבעה פעמים א' הם ז' נוציאם מהח' אשר על ראשו וישאר א' ונשימנו עליו
  • We also say: 7 times 1, by the 1 that is before it, is 7.
\scriptstyle{\color{blue}{1\times7=7}}
עוד נאמר ז' פעמים א' על הא' אשר לפניו הם ז‫'
We cannot subtract it from the 2 that is above it. We take the 1 that we wrote above the 8 just now, and cross it with a pen; it becomes ten and with the 2 it is 12. We subtract the 7 from it; 5 remains. We write it above the 2.
\scriptstyle{\color{blue}{12-7=5}}
ולא נוכל להוציאם מהב' אשר על ראשם נקח הא' אשר שמנו עתה על הח' ונעביר עליו הקולמוס ויהיו לעשרה ועם הב' יהיו י"ב נוציא מהם הז' ישארו ה' נשימם על הב‫'
  • We also multiply 7 by 6; the result is 42.
\scriptstyle{\color{blue}{6\times7=42}}
עוד נכפול הז' בו' יעלו מ"ב
We subtract the 2 from the 8 that is above it; 6 remains. We write it above it.
\scriptstyle{\color{blue}{8-2=6}}
נסיר הב' מהח' ואש' עליהם ישארו ו' נשימם עליהם
We subtract the 4 tens from the 5 that is in the rank that follows; 1 remains. We write it above it.
\scriptstyle{\color{blue}{5-4=1}}
ונסיר הד' עשרות מהה' אשר במעלה שאחריהם וישאר א' ונשימנו עליו
  • We also multiply 7 by itself; the result is 49.
\scriptstyle{\color{blue}{7^2=49}}
עוד נכפול הז' על עצמו ויעלה מ"ט
We cannot subtract even the units from the 0 that is above it. So, we take [5] from the 6 that is after the 5; 1 remains and [the 5] becomes 50 in the rank of the 0. We subtract from it the 49; 1 remains. We write it above it.
\scriptstyle{\color{blue}{50-49=1}}
ומה0 אשר עליו לא נוכל להסיר אפילו האחדים לכן נסיר מהו' שאחרי הה' וישאר א' ויהיה נ' במעלתם ה0' נסיר מהם המ"ט וישארו א' ונשימנו עליהם
We lower them again by one rank and double the 7 that is generated at that phase; it is 14. We add the ten to the 1 with the 6 that follows it to the left; it is 7. Then, we write the 4, which is the units, before the 7.
\scriptstyle{\color{OliveGreen}{2\times7=14}}
עוד נורידם מעלה אחת ונכפול הז' אשר נתחדש בזאת הפעם ויהיו י"ד ונחבר העשר לא' עם הו' אשר אחריו לצד שמאל ויהיו ז' אחרי כן נשים הד' שהם האחדים לפני הז‫'
  • We look for a number to multiply by all of them and by itself, as in the other phases. We do not find even one, as they cannot be subtracted from what is above them even once. So, we write a zero before them.
[128]ונבקש מספר לכפול על כולם ועל עצמו כבשאר הפעמים ולא נמצא כי אין גם אחד לפי שלא יוכלו לצאת מאשר על ראשם אפי' פעם אחת לכן נשים [סיפרא]‫[129] לפניהם
We lower them by one rank again, but we do not double any number, since no number is generated at this phase and the 0 is not a number to be doubled.
ונורידם עוד מעלה אחת ולא נכפול שום מספר כי לא נתחדש מספ' בפעם הזאת וה0' אינה מספר לכפלה
  • We look for a number to place before them; it is 9.
ונבקש מספר שנשים לפניהם ויהיה ט‫'
  • We multiply it by each of them and subtract [the product] from what is above it, also by itself and subtract [the product] from what is above it; as you see in the written diagram.
ונכפלנו בכל אחד ונוציאנו מאשר ימצא על ראשו וגם בעצמו ונוציאנו מאשר על ראשו כאשר תראה בצורה הרשומה
We lower them again and double the 9 that is generated at that phase; it is 18. Since a ten is generated here with the units, we do not write the 0, in this lowering, but we write 1 for the ten instead of it. We write the 8 that are the units before it.
\scriptstyle{\color{OliveGreen}{2\times9=18}}
עוד נורידם ונכפול הט' שנתחדש עתה בפעם הזאת ויהיו י"ח ואחר שנתחדש כאן עשר עם האחדים לא נשים ה0' בהורדה זו אבל נשים א' לעשר במקומה ונשים הח' שהם אחדים לפניו
  • We look for a number to place before them as in the previous phases; it is 4.
ונבקש מספר נשים לפניהם כפעם בפעם ויהיו ד‫'
  • We multiply it by each of them and by itself and subtract [each product] from its corresponding place as mentioned.
ונכפלנו בכל אחד גם בעצמו ונוציא כל דבר ממקומו הראוי לו כנזכר
Now, we reached the first rank, so we should not lower them.
והנה הגענו למעלה הראשונה לכן אין לנו להורידם
The root are the digits that are generated in each phase, and they are: 587094.
ויהיה השרש המספר שחדשנו בכל פעם אחד והם 587094
If nothing were left, this root would have been a proper root, but since something remains, which is 764230, this root is not a proper root, but approximate.
ואם לא היה נשאר דבר היה זה השרש אמיתי אבל אחר שנשאר דבר והוא 764230 אין השרש הזה אמיתי כי אם בקרוב
\scriptstyle\longrightarrow{\color{Violet}{\begin{align}&\scriptstyle587094\ the\ root\\&\scriptstyle764230\ the\ remainder\\\end{align}}}
It will be explained afterwards how we come closer to the truth, even if the truth is absent. ועוד נתבאר אחר זה איך נתקרב יותר אל האמת ואם האמת נעדרת
  • Another example: we wish to know the root of the number 10375.
\scriptstyle\sqrt{10375}
משל אחר רצינו לדעת שרש מספר זה 10375
\scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{1-{\color{blue}{1}}^2=}}{\color{green}{0}}\\&\scriptstyle{\color{red}{2\times1=}}{\color{blue}{2}}\\\end{align}}   \scriptstyle\xrightarrow{\begin{align}&\scriptstyle{\color{red}{3-\left(2\times{\color{blue}{1}}\right)=}}{\color{green}{1}}\\&\scriptstyle{\color{red}{5-{\color{blue}{1}}^2=}}{\color{green}{4}}\\\end{align}}   14
10375 10375 10375
120   120  
    201

\scriptstyle\longrightarrow{\color{Violet}{\begin{align}&\scriptstyle101\ the\ root\\&\scriptstyle174\ the\ remainder\\\end{align}}}
Since the number of the ranks is odd, which is 5, we take the 1 that is in the last rank.
ואחר שמספר המעלות נפרד שהן ה' נקח הא' אשר נמצא במעלה האחרונה
  • We seek for a number to multiply by itself so that all of it will be cast out, or as much as possible of it; it is 1. We write it beneath it.
ונבקש מספר שנכפלנו בעצמו ונוציאנו כלו או היותר שאיפשר ויהיה א' ונשימנו תחתיו
We multiply 1 by itself and subtract it from the 1 that is above it. We cross it with a pen.
\scriptstyle{\color{blue}{1-1^2}}
ונכפול לא' זה על עצמו ונוציאנו מהא' ‫[130]אשר על אשר על ראשו ונעביר עליו קולמוס
We double it and lower it, but we cannot subtract it even once from the 0 that is above it and above the 1 there is nothing left. So we write 0 before it and lower it again, but we do not double anything, since no number is generated at this phase.
ונכפלנו ונורידנו ולא נוכל להוציאם מה0' אשר עליהם אפי' פעם אחת גם על האחד לא נותר דבר לכן נשים 0 לפניו עוד נורידם ולא נכפול דבר כי לא נתחדש מספר בזה הפעם
  • We seek for a number to write before it as mentioned; it is 1. We write it before it.
ונבקש מספר אשר נשים לפניהם כנזכר ויהיה א' ונשימנו לפניהם
  • We multiply 1 by 2; it is 2. We subtract it from the 3 that is above it; 1 remains. We write it above it.
\scriptstyle{\color{blue}{3\left(1\times2\right)=3-2=1}}
ונכפול הא' על הב' ויהיו ב' נסירם מהג' אשר עליהם ישאר א' ונשימנו עליו
  • We multiply 1 by itself; the result is 1. We subtract it from the 5 that is above it; 4 remains. We write it above it.
\scriptstyle{\color{blue}{5-1^2=5-1=4}}
ונכפול הא' על עצמו ויעלה א' נסירנו מהה' אשר עליו וישארו ד' נשימם עליו
The ranks are completed, so we do not lower again.
וכבר שלמו המעלות ולא נוריד עוד
The digits that are generated in each phase are the root, which is: 101.
והנה האותיות והם שנתחדשו פעם בפעם הם השרש והוא 101
  1 4
10375
120
  201
Since a number is left there, this is not a proper root, but approximate.
ולפי שנשאר ולפי שנשאר שם מספר מה אין זה שרש אמיתי אבל הקרוב
It will be explained how we come closer to the truth. ועוד נתבאר איך נתקרב יותר אל האמת

reason: procedure

The reason we say that if the number of the ranks is an odd number we take the last digit alone and seek a number to put beneath it and if it is an even number we take the two last digits, the last as tens and the one that precedes it as units: because for every product of a non-units rank by itself, the rank of the units of this product [\scriptstyle{\color{OliveGreen}{\left(a\sdot10^n\right)^2}}] is always an odd number [\scriptstyle{\color{OliveGreen}{\left(2n-1\right)}}]. וטעם אמרנו שאם מספר מעלות החשבון נפרד שנקח האחרון לבד ונבקש מספר נשים תחתיו וכו' ואם הם זוג שנקח השני רשמים האחרונים האחרון לעשרות ושלפניו לאחדים הוא לפי שכל כפל כלל בעצמו הנה מעלת האחדים העולים בכפל ההוא היא נפרד לעולם
Since the decimal place of the product of every two digits, i.e. the rank of this product is as [the sum of] the ranks of both digits minus one, as we have explained in chapter three. לפי שמקום הנחת כפל כל שני מספרים ר"ל שמדרגת הכפל ההוא כמדרגות שני המספרים יחד חסר אחד כמו שביארנו בפרק הג‫'
Hence, the rank of the units of the product of every number by itself is double its rank minus one, and this is always an odd number. ולזה מדרגת אחדי מספר כפל מספר על עצמו והיא כפל מדרגותיו חסר אחד והנה הם הנפרדים לעולם
So, when the number of ranks of the number is odd, we subtract from the last rank [= the leftmost rank] the square of the root, i.e. the square of the digit that we write beneath it, which is part of the root. ולזה כשהמספר מעלות המספר נפרד אנו מוציאים מהמעלה האחרונה שהיא נפרדת מרובע השרש ר"ל מרובע המספרים אשר שמנו תחתיו שהוא חלק השרש
But, if the number [of ranks] is even, we subtract [the square of the last rank of the root from] the two last ranks [of the number] one as tens and the other as units. For the units of the product of a number by itself is always placed in an odd rank and the tens in an even rank, and this is clear. ואם הם זוג לקחנו השתים האחרונות זו לעשרות וזו לאחדי' ‫[131]בענין שלעולם אחדי כפל כל מספר בעצמו יצאו ממעלה נפרדת והעשרות ממעלת זוג וזה ברור
Since we have explained that the rank of the units of the product [of a number by itself] is double the ranks of the root, which is the number that we multiply by itself, minus one, we find that if the root is in the first [rank], the product is also in the first [rank]; if the root is in the second [rank] the square is in the third [rank]; if [the root is in] the third, [the square is] in the fifth; if [the root is in] the fourth, [the square is] in the seventh; and so on. ואחר שביארנו שמדרגות אחדי הכפל הם כפל מעלות השרש שהוא המספר שכפלנוהו על עצמו חסר אחת נמצא שאם השרשם הוא בראשונה [הכפל ג"כ בראשונה]‫[132] ואם השרש בשנית המרובע בשלישית ואם בשלישית בחמישית ואם ברביעית בשביעית וכן לעולם
Thus, the addition of one rank in the root requires an addition of two ranks in the square. הנה כי תוספת מעלה אחת בשרש יחייב תוספת א"כ ב' מעלות במרובע
We do accordingly in the procedure: for every two ranks added to the number, we add one [rank] to the root, by lowering the root each time by one rank and adding one rank to it. וכן נעשה במעשה כ כי לכל ב' מעלות מתוספת בחשבון אנו מוסיפים אחד בשרש וזה שאנו מורידין השרש מעלה אחת בכל פעם ומוסיפים עליו מעלה אחת והוא המספר אשר אנו שמים לפניהם בכל פעם
We find that tnumber of the shifting phases [in the procedure] is as the number of the even ranks of the [given] number from the first decimal position as well as the number of ranks of the root from the first rank. You will see all this explained in the diagram. נמצא שכמספר פעמי ההורדה כך הוא מספר זוגי מעלות החשבון על מקום ההנחה הראשונה וכמספר זה הוא זהו מספר מעלות השרש על המעלה האחת הראשונה וכל זה תראה מפורש בצורה
The reason for shifting the subtrahend one rank to the right each phase:
The reason for lowering by one rank each time is that what is added in the root at that time is one rank lower than what was [before], therefore, the rank of the [square] is also lower by one rank, i.e. what is added now in the root multiplied by what is already given to the root in the previous phase or phases. והטעם הורדת מעלה אחת בכל פעם הוא לפי שהמתוסף בשרש בפעם הזאת הוא מעלה אחת פחות מאשר נתוסף בתחלה וא"כ מעלת הכפל יהיה ג"כ מעלה אחת פחות ר"ל כפול זה המתוסף עתה בשרש באשר היה כבר המונח לשרש בפעם או בפעמים העוברים
Because if what is given at first is, for instance, a product of the digit by itself, what we add now in the root is less than the former by one rank, and when we multiply it by the former, [the product] is subtracted from the rank that [the former] is subtracted. כי ע'ד'מ' המושם בתחלה הוא מכפל המספר בעצמו וכאשר אנחנו מוסיפים עתה בשרש זה המתוסף הוא פחות מעלה אחת מהראשון וכאש' כפלנוהו בראשון יגרע זאת המעלה אשר גרע זה ממנו
Example: if the product of [the last digit of the root] is subtracted from the fifth rank, then the rank of [that digit] is in the third rank, and therefore [its product] is subtracted from the fifth rank, which is double its rank minus one [5=(3+3)-1].
\scriptstyle{\color{OliveGreen}{\left(a00\right)^2=\left(a^2\right)0000}}
כי המשל אם כפל השרש הראשון בעצמו היה לוקח מהמעלה החמישית הוא היה מן המעלה השלישית ולזה לקח ‫[133]מהחמישית שהוא כפל מעלותיו חסר אחת
When we add now to the root, what is added is in the second rank, and when we multiply what is in the second rank by what is in the third rank, the rank of this product is in the fourth rank, which is the number of the ranks of both digits minus one [4=(3+2)-1]. Therefore, we shift what was first one rank lower, as it should be subtracted from there.
וכאשר נוסיף זה עתה בשרש יהיה המתוסף מהמעלה השנית וכאשר כפלנו אשר מהמעלה השנית על אשר במעלה הג' ר"ל כאשר אנו כופלים זה המתחדש עתה שהוא במעלה הב' באשר היה בתחלה שהוא מהמעלה הג' יהיה מדרגת זה הכפל במדרגת הד' שהם מספר מעלות שני המספרים חסר אחת ולזה שמנו אשר בתחלה מעלה אחת למטה כי משם הוא ראוי לקחתו
When we multiply the added root by itself, [the product] is subtracted from the third rank only, for the product of [a digit in the second rank] by [a digit in the second rank] should be subtracted from the third [rank], which is as [the sum of] the ranks of the two digits minus one [3=(2+2)-1]. Therefore, we shift [the former digit of the root] one rank lower, as [its product] should be subtracted from there.
\scriptstyle{\color{OliveGreen}{\left(ab0\right)^2=\left(a^2\right)0000+\left[2\sdot\left[\left(a\sdot b\right)000\right]\right]+\left(b^2\right)00}}
השרש המתוסף כאשר כפלנוהו בעצמו יגרע מעלה אחרת ואין לו לקח' כי אם מהמעלה השלישית כי כפל בעל שתי מעלות בבעל שתי מעלות יש לו לקחת מהשלישית שהוא כמדרגות שני המספרים חסר אחת לכן שמנוהו מעלה אחת לפניהם כי משם ראוי לו לקחת
In each phase, the rank, from which the product of [the digit added in the root] by the former [digits] is to be subtracted, is lower by one than [the rank of] the product of [the digit added in the root] in the previous phase by the [former digits], and [the rank of] its product by itself is lower by two. וכן בכל פעם יחסר מעלה ממקום הראוי לקחת עתה בכפל המתחדש בראשונים מאשר היה מכפל המתחדש בפעם העובר עמהם וכפלו בעצמו יחסר שתים
All this is explained in reason and in diagram. וכל זה מבואר בטעם ובצורה
When we cannot subtract [the product] even once, we shift [the digit added in the root] once, and what is added in the root is lower by two ranks from [the former digit], so we lower it by two ranks, to be subtracted from the rank that is lower by two and the product of what is added in the root by itself is subtracted from the rank that is lower by four ranks [from where the product of the former digit was subtracted], since [the added digit] is lower by two ranks. וכאשר אין אנו יכולים להוציאם אפי' פעם אחת אנו שמים ומורידים אותם פעם אחרת כי כאשר תוסף בשרש יהיה פחות ב' מעלות מאשר בתחלה לכן הורדנום ב' מעלות שיקחו מב' מעלות פחות וכפל השרש המתוסף בעצמו יקח מד' מעלות פחות לפי שירד שני מעלות
Example: if the first [digit of the root] is in the fourth [rank], its product by itself is subtracted from the seventh rank, and if [the preceding digit of the root] is a zero, what is added [after it in the root] is in the second [rank] and its product by itself should be subtracted from the third [rank], so we subtract four ranks.
\scriptstyle{\color{OliveGreen}{\left(a0b0\right)^2=\left(a^2\right)000000+\left[2\sdot\left[\left(a\sdot b\right)00000\right]\right]+\left(b^2\right)00}}
כי המשל אם הראשון היה ברביעית היה לו ליקח כפלתו בעצמו מהמעלה השביעית ואשר מתוסף עתה כשהיה 0 בפעם אשר בנתים יהיה בשנית וראוי לקחת כפלו בעצמו מהשלישית הרי כשנגרע ד' מעלות
All this is also explained in reason and in diagram. גם כל זה הוא מבואר בטעם ובצורה
The reason for doubling the digits of the root:
The reason for doubling the root, i.e. that in every [phase of the procedure] we multiply [the digit that is added to the root] by double the former [digit of the] root and by itself, is because every thing that is added to the root is added to both sides [= multiplicands] of the square. וטעם הכפל השרש ר"ל שבכל הולדה אנו כופלים אשר הו נתחדש אז ונמצא ‫[134]שאנו כופלים המתחדש בכפל השרש הראשון ובעצמו הוא לפי שכאשר ניתוסף דבר בשרש הוא ניתוסף בשתי צלעות המרובע
I.e. if the root at the beginning is 30, the square is 900.
\scriptstyle{\color{blue}{\left(30\right)^2=900}}
ר"ל שאם מתחלה היה השרש 30 הנה המרובע היה 900
If we add 5 to it, it becomes 35 and its square is 35 by 35, which is as saying: the product of 30 by 30, the product of 5 by 30, the product of 30 by 5, and the product of 5 by 5.
ואם אנו מוסיפים עליו ה' יהיוה ל"ה ומרובעו הוא כפל ל"ה על ל"ה שהוא כאומרנו לכפל ל' בל' וכפל ה' [בל' וכפל ל' בה' וכפל ה']‫[135] בה‫'
We find that because of the addition of 5 [to the root], [the square] increases by twice the product of 5 by 30, and once the product of 5 by 5.
נמצא שנתוסף בסבת תוספת הה' כפל ה' על ל' פעמים ר"ל ה' בה' פעם אחת ובעצמו פעם אחת
  • \scriptstyle{\color{blue}{\left(30+5\right)^2=\left(35\right)^2=35\sdot35=\left(30\sdot30\right)+\left(5\sdot30\right)+\left(30\sdot5\right)+\left(5\sdot5\right)=\left(30\right)^2+\left[\left[2\sdot\left(5\sdot30\right)+5^2\right]\right]}}
Therefore, we double the root, but when we lower [the digits of the root], we double only the [digit] the was added in the preceding phase that was not doubled yet, as all the [other digits] are already doubled, therefore we do not double them again, since the root consists of the digits that are added in each phase that are not doubled at all. ולזה אנו כופלים השרש וכשאנו מורידים אין אנו כופלים אלא אשר מתוסף בפעם העובר בסמוך שלא נכפל אבל כל אחדים כבר נכפלו לכן אין אנו כופלים אותו פעם אחרת כלל ומכל זה תדע כי השרש הוא המספרים המתחדשים בכל פעם פשוטים בלי כפל כלל

Approximations

When something remains there after you have completed the extraction of the root, and you wish to come closer to the truth, consider this remainder.
\scriptstyle{\color{OliveGreen}{a^2+b}}
וכאשר נשאר שם דבר מה אחר אשר השלמת להוציא השרש ותרצה להתקרב עוד אל האמת עיין אשר נשאר
  • First approximation:
  • If it is less than the root, double the root and set it as a denominator to divide the remainder. The result is the addition to the integer [received through the algorithm] in the [new approximate] root.
\scriptstyle{\color{OliveGreen}{b<a\longrightarrow\sqrt{a^2+b}\approx a+\frac{b}{2a}}}
ואם הוא פחות מהשרש כפול השרש והוצא את מוריו וחלק השארית ההיא עליהם והיוצא הוא העודף בשרש על השלמים ההם
  • If the remainder is greater or equal to the root, and you do not intend to come closer to the root except by this time alone, then double the root, add one, and divide the remainder by [the sum]. The result is the fractions added in the root to the initial integer.
\scriptstyle{\color{OliveGreen}{b\ge a\longrightarrow\sqrt{a^2+b}\approx a+\frac{b}{2a+1}}}
ואם השארית היתה גדולה מהשרש או כמותו ואין דעתך להתקרב עוד אל השרש כי אם מה שתתקרב אליו בפעם זו לבד תכפול השרש ותוסיף עליו א' ותחלק עליהם זאת השארית והיוצא הם השברים הנוספים בשרש על השלמי' אשר יצאו ראשונה
  • Second approximation:
If you wish to come closer to the truth, even if the truth is hidden from the eyes of all living [Job 28, 21], as Euclid proved, multiply the integer and fractions by themselves, as I will explain in the chapter on multiplication, in the section on fractions and the result will exceed or fall short of the initial number [whose root is being extracted].
ואם תרצה להתקרב עוד אל האמת ואם האמת נעלמה מעיני כל חי[note 32] כאשר ביאר אוקלידס במופת כפול אלו השלמים והשברים על עצמם כאשר אבאר בחלק השברים בפרק הכפל ויעלה פחות או יותר מהחשבון הראשון
Double the root, as stated, and divide the excess or deficit by [the result].
וכפול השרש כאשר אמרנו וחלק אליו זה העודף ‫[136]או חסרון
  • Subtract the result from the preceding fractions if the number [whose root is being extracted] is less than the square of the root that you extracted in the previous stage.
והיוצא הוציאנו מהשברים הראשונים אם המספר היה פחות ממרובע השרש אשר הוצאת בפעם הקודמת
\scriptstyle{\color{OliveGreen}{\left(a+\frac{b}{2a}\right)^2>a^2+b\longrightarrow\sqrt{a^2+b}\approx\left(a+\frac{b}{2a}\right)-\frac{\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)}{2\sdot\left(a+\frac{b}{2a}\right)}}}
  • If the square is less than the [given] number, add the result to the preceding fractions.
ואם היה המרובע פחות מהמספר תוסיף זה היוצא על השברים הראשונים
\scriptstyle{\color{OliveGreen}{\left(a+\frac{b}{2a}\right)^2<a^2+b\longrightarrow\sqrt{a^2+b}\approx\left(a+\frac{b}{2a}\right)+\frac{\left(a^2+b\right)-\left(a+\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}}}
The sum or the remainder will be the fraction added in the root to the initial integer.
והעולה או הנותר יהיו השברים העודפי' בשרש על השלמים הראשונים
  • The example for this is 174 in the second diagram.
\scriptstyle{\color{OliveGreen}{\sqrt{10375}}}
המשל בזה הוא בצורה השנית 174
  • First approximation:
If it were less than the root, we would have divide it by double the root, which is 202, without adding one.
ואם היה פחות מהשרש היינו מחלקים אותו לכפל השרש שהוא 202 בלי תוספת אחד
Since it is more than the root, we double the root, which is 101; so it is 202. We add one to it; they are 203.
{\color{blue}{\scriptstyle174>101\longrightarrow\left(2\sdot101\right)+1=202+1=203}}
וכן עתה שהוא יותר מהשרש נכפול השרש שהנו 101 ויהא 202 ונוסיף עליו א' ויהיו 203
We extract its denominators: we find that it is divisible by seven and its seventh is 29. Hence, these are its denominators, i.e. 7 and 29.
\scriptstyle{\color{blue}{203=7\sdot29}}
ונוציא מוריו ונמצא שיש לו שביעית ושביעיתו 29 ואלו הם מוריו ר"ל ז' כ"ט
We divide the remainder, which is 174, by them; the result of division is 6 sevenths and these are the fractions that are added to 101, which are the first integers, in the root.
\scriptstyle{\color{blue}{\sqrt{10375}\approx101+\frac{174}{203}\approx101+\frac{6}{7}}}
ונחלק אליהם השארית שהוא 174 ויצא בחילוק ו' שביעיות שלמות ואלו הם השברים העודפים בשרש על הק"א השלמים הראשונים
  • Second approximation:
If we wish to come closer to the truth, we multiply this root, i.e. 101 integers and 6 sevenths, by itself; they are 10374 integers, 6 sevenths and a seventh of a seventh; as will be explained in the third chapter of the second section.
\scriptstyle{\color{blue}{\left(101+\frac{6}{7}\right)^2=10374+\frac{6}{7}+\left(\frac{1}{7}\sdot\frac{1}{7}\right)}}
ואם נרצה להתקרב עוד אל האמת נכפול זה השרש ר"ל ק"א שלמים וו' שביעיות על עצמו 10374 שלמים וו' שביעיות שלימות ושביעית שביעית כאשר יתבאר בחלק הב' בפרק הג‫'
This is less than the requested number by 6 sevenths of a seventh.
\scriptstyle{\color{blue}{10375-\left(101+\frac{6}{7}\right)^2=\frac{6}{7}\sdot\frac{1}{7}}}
וזהו פחות מהחשבון הנשאל בו' שביעיות שביעית
Therefore, if you wish to come closer to the truth, you have to double the root, i.e. the 101 integers and 6 sevenths, and divide the 6 sevenths of a seventh by [this product]; then you should add the result to the previous root, which is 101 integers and 6 sevenths and so on.
\scriptstyle{\color{blue}{\left(101+\frac{6}{7}\right)^2<10375\longrightarrow\sqrt{10375}\approx\left(101+\frac{6}{7}\right)+\frac{\frac{6}{7}\sdot\frac{1}{7}}{2\sdot\left(101+\frac{6}{7}\right)}}}
לכן אם אתה רוצה להתקרב עוד אל האמת יש לך לכפול השרש ר"ל הק"א שלימים וו' שביעיות שלימות ולחלק אליהם אלו הו' שביעיות שביעית לכן אם אתה רוצה להתקרב עוד אל האמת יש לך לכפול השרש ר"ל הק"א שלימים וו' שביעיות שלמות ולחלק אליהם אלו הו' שביעיות שביעית והיוצא היה לך להוסיף אותו על השרש הקודם שהיה ק"א שלימים וו' שביעיות וכן לעולם
This is the rule [of approximating the root]: זה הכלל
First, divide the remainder by double the root plus 1, if the remainder is greater than the root or equal to it.
ראשונה תחלק הנשאר לכפל השרש עם תוספת א' אם הנשאר גדול מהשרש או כמותו
If it is less, do not add 1.
[137]ואם פחות לא תוסיף א‫'
Add the result to the root.
והיוצא תוסיפנו על השרש
  • \scriptstyle{\color{OliveGreen}{b\ge a\longrightarrow\sqrt{a^2+b}\approx a+\frac{b}{2a+1}}}
  • \scriptstyle{\color{OliveGreen}{b<a\longrightarrow\sqrt{a^2+b}\approx a+\frac{b}{2a}}}
Then, multiply the root, integers and fractions, by itself.
ותכפול אותו השרש על עצמו שלמים ונשברים
If the product is more than the first number, divide the excess by double the root and subtract [the quotient] from [the first approximate root].
ואם יצא יעלה יותר מהחשבון הראשון תחלק העודף ההוא על כפל השרש ותחסרנו ממנו
  • \scriptstyle{\color{OliveGreen}{\left(a+\frac{b}{2a}\right)^2>a^2+b\longrightarrow\sqrt{a^2+b}\approx\left(a+\frac{b}{2a}\right)-\frac{\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)}{2\sdot\left(a+\frac{b}{2a}\right)}}}
If the product is less than the number, see by how much, divide [the excess] also by double the root, then add [the quotient] to [the first approximate] root.
ואם היה העולה פחות מהחשבון תראה בכמה הוא ותחלקנו לכפל השרש ג"כ ותוסיפנו על השרש הקודם
  • \scriptstyle{\color{OliveGreen}{\left(a+\frac{b}{2a}\right)^2<a^2+b\longrightarrow\sqrt{a^2+b}\approx\left(a+\frac{b}{2a}\right)+\frac{\left(a^2+b\right)-\left(a+\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}}}
And so on. וכן לעולם
You come ever closer to the truth, but you will never attain it. ולעולם תתקרב יותר אל האמת ולא תשיגנה לעולם
Shortcuts
If you look closely, you will see that you do this with less effort. וכאשר תעיין הטב תראה שתוכל לעשותו בלי כ"כ יגיעה
This is by looking at the fraction attained in the [first] step. והוא שתעיין השברים שנתחדשו בעת ההיא
  • The first approximation
\scriptstyle{\color{OliveGreen}{\sqrt{a^2+b}\approx a+\frac{b}{2a+1}}}
The error of the approximation
\scriptstyle{\color{OliveGreen}{\left(a^2+b\right)-\left(a+\frac{b}{2a+1}\right)^2=\frac{b}{2a+1}\sdot\left(1-\frac{b}{2a+1}\right)}}
If it is an addition [to the integer received through the extraction algorithm] and it was produced by adding 1 to twice the root [in the denominator], find the product of the fraction attained in this step by its complement [with respect to 1]. This product will be the deficit when you multiply the [approximate] root by itself, with respect to the initial number [whose root is extracted].
ואם היו לתוספת ונעשה בתוספת א' על כפל השרש

ראה כמה כפל השברים המתחדשים ההם בפעם ההיא במה שיש מהשברים ההם עד תשלום
והעולה הוא אשר יחסר כאשר תכפול השרש בעצמו מהחשבון הראשון

The second approximation
\scriptstyle{\color{OliveGreen}{\sqrt{a^2+b}\approx\left(a+\frac{b}{2a+1}\right)+\frac{\frac{b}{2a+1}\sdot\left(1-\frac{b}{2a+1}\right)}{2\sdot\left(a+\frac{b}{2a+1}\right)}}}
You should, therefore, divide it by double the [approximate] root itself and added to this root.
והוא אשר יש לך לחלק עוד על כפל השרש בעצמו ולהוסיפו עליו
You can see it clearly in the previous example, which had [a fraction] added and involved adding one [in the denominator], where the fraction was six sevenths.
וזה תוכל לראות ברור בדמיון שעבר שהיה לתוספת ובתוספת א' והשברים ההם שהיו ששה שביעיות
Its complement [with respect to one] is one seventh, and when you multiply them by this complement the product is six sevenths of a seventh; this is indeed the deficit we found with respect to the original number [whose root was extracted], and so we instructed to divide it by double the [approximate] root and add [the result] to this root.
\scriptstyle{\color{blue}{10375-\left(101+\frac{6}{7}\right)^2=\frac{6}{7}\sdot\left(1-\frac{6}{7}\right)=\frac{6}{7}\sdot\frac{1}{7}}}
והנה השלמתם לשלם הוא שביעית אחת וכאשר תכפלם בהשלמה זו יעלה ו' שביעיות שביעית וזה בעצמו הוא שמצינו חסר בכפל השרש מהחשבון [הא']‫[138] וצוינו לחלקו לכפל השרש ולהוסיפו על השרש
  • The first approximation
\scriptstyle{\color{OliveGreen}{\sqrt{a^2+b}\approx a+\frac{b}{2a}}}
The error of the approximation
\scriptstyle{\color{OliveGreen}{\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)=\left(\frac{b}{2a}\right)^2}}
But if the additional [fraction] does not involve adding 1 [in the denominator] and falling short [of the initial number whose root is extracted], then we multiply the [additional] fraction by itself, and divide by double the [approximate] root, because this is the excess of the square of the [approximate] root over the original number [whose root is extracted].
אך אם היה לתוספת בלי תוספת א' שהיו למגרעת

נראה כפל השברים אשר נתחדשו על עצמם ונחלקם לכפול השרש
לפי שזהו בעצמו אשר יהיה כפל השרש בעצמו יותר על החשבון

  • The second approximation
\scriptstyle{\color{OliveGreen}{\sqrt{a^2+b}\approx\left(a+\frac{b}{2a}\right)-\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}}}
We subtract the result from the previous [approximate] root, and so on.
והיוצא נחסרנו לעולם מהשרש הקודם וכן לעולם
Therefore, if you wish to repeat the procedure in order to come closer to the truth, [do this], because the more you repeat, the nearer you come to the truth, even if you can never attain it, as we have explained. ולזה אם רצונך להכפל זה המעשה כדי להתקרב אל האמת כי כל מה שתוסיף להכפל זה הענין ‫[139]תוסיף להתקרב אל האמת ואם לא תשיגנה לעולם כמו שביארנו
[If you repeat the procedure], never add 1 to double the root, even if the remainder is very large with respect to the [approximate] root, so as to avoid confusion, for [adding 1] was instructed only for a single [approximation] step. לא תוסיף א' לעולם על כפל השרש [ואף אם יהיה הנשאר הרבה מאד על השורש]‫[140] כדי שלא יבלבל עליך כי לא ציויתיו אלא למסתפק בפעם אחת
Adding 1 [\scriptstyle{\color{OliveGreen}{a+\frac{b}{2a+1}}}] when the remainder is the same as the [approximate] root or greater, improves the approximation, as I explained, but if one repeats the procedure [\scriptstyle{\color{OliveGreen}{a+\frac{b}{2a}}}], one does not need this addition, because by repeating the procedure one approaches [the truth] very closely even without adding 1. It is better not to add it, so as to maintain a standard form of procedure and prevent confusion. ובתוספת הא' כשהנשאר כשרש או יותר הוא מתקרב יותר כמו שכתבתי

אבל המכפיל פעמי המעשה אינך צריך לתוספת זה
כי בהכפל המעשה יתקרב מאד מאד אף מבלי תוספת הא‫'
וטוב שלא נוסיפנו כדי שיהיה כל מעשהו בסגנון אחד ולא יתבלבל

The reason that if the remainder is smaller than the approximate root \scriptstyle{\color{OliveGreen}{b<a}}, it is divided by double the root \scriptstyle{\color{OliveGreen}{\frac{b}{2a}}}:
The reason we say that if there is a remainder that is smaller than the [approximate] root, then we should divide it by double the root, is because that which is added to the root will add to the square its product by twice the previous root and its product by itself, as we explained with regard to integers.
\scriptstyle{\color{OliveGreen}{\left(a+b\right)^2-a^2=2ab+b^2}}
וטעם אומרנו שאם ישאר דבר והוא פחו' מהשרש שנחלקנו לכפל השרש

הוא לפי שאש' יתוסף בשורש יוסיף במרובע כפלו בשורש הראשון פעמים גם כפלו בעצמו כאשר ביארנו בשלמים

  • The excess of the first approximation:
\scriptstyle{\color{OliveGreen}{\left(a+\frac{b}{2a}\right)^2\approx a^2+\left[2\sdot\left(a\sdot\frac{b}{2a}\right)\right]=a^2+b}}
But, we proceed as if it only adds its product by twice the root. If this were true, i.e. that what is added to the root adds to the square only the product of what is added to the root by twice the root, then we would have this product, which equals the excess of the number [whose root is extracted] over the square of the integer [received through the extraction algorithm]. ואנו עושים מעשינו כאלו אינו מוסיף כי אם כפלו בשרש פעמים

ואם היה זה האמת ר"ל שהמתוסף על השרש לא היה מוסיף על המרובע כי אם כפל זה המתוסף בכפל השרש לבד
הנה היה בידינו המספר העולה מהכפל הזה והוא השארית הנזכרת שהיא נוספת בחשבון על מרובע השלימים

Hence, when we add in the root what is equal to its product by twice the root, as this excess itself, we reach the required result. וכאשר נוסיף בשרש דבר מה שיהיה שוה כפלו בכפל השרש כזה התוספת בעצמו הגענו אל מבוקשנו
Altough this addition is unknown to us, as we know the result of the multiplication, which is the mentioned remainder, and we also know one of the multiplicands, which is double the root, when we divide the product by double the root, the result is the unknown, which is the addition, i.e. by multiplying this addition by double the root, the result is the mentioned remainder and this is clear.
\scriptstyle{\color{OliveGreen}{2a\sdot\frac{b}{2a}=b}}
ועם היות שנעלם ממנו תוספת זה ומ"מ אחר שידענו העולה מהכפל ההוא והיא השארית הנזכרת גם ידענו אחד מהנכפלים והוא כפל השרש [הנה בחלקנו זה העולה לכפל השורש יצא]‫[141] יצא הנעלם שהוא התוספת ר"ל כי בכפול זה התוספת בכפול השרש יעלה כנשאר הנזכר וזה ברור
Since, that which is added to the root, adds also to the square its product by itself, i.e. the product of this addition by itself. אכן לפי שהמתוסף על השרש מוסיף עוד במרובע כפלו בעצמו ר"ל כפל התוספת הזה בעצמו
Therefore, when we multiply the root by itself after this addition is added to it, the square will exceed the initial number [whose root is extracted] by the square of the addition. This is what we explained above.
\scriptstyle{\color{OliveGreen}{\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)=\left(\frac{b}{2a}\right)^2}}
לכן כאשר נכפול השרש בעצמו אחר הוסיף ‫[142]עליו זה התוספת יעלה המרובע מוסף על החשבון הראשון כפל התוספת הזה בעצמו וכן ביארנוהו למעלה
The second approximation
\scriptstyle{\color{OliveGreen}{\sqrt{a^2+b}\approx\left(a+\frac{b}{2a}\right)-\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}}}
If we want to come even closer, we divide this addition by double the root and the result is subtracted from the [approximate] root, as we explained.
ואם היינו רוצים להתקרב עוד ואנו מחלקים זה התוספת לכפל השרש הזה והיוצא יחסר מזה השרש כאשר ביארנו למעלה
  • The excess of the second approximation:
\scriptstyle{\color{OliveGreen}{\left(a+\frac{b}{2a}\right)^2-\left[\left(a+\frac{b}{2a}\right)-\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]^2=\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\sdot\left[2\sdot\left[\left(a+\frac{b}{2a}\right)-\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]\right]+\left[\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]^2}}
[The square of the approximate root] from which we subtract exceeds over the square [of the second approximate root] by the product [of the subtracted fraction] by double the subtracted [approximate] root after the subtraction and its product by itself.
הנה זה שאנו מחסרים היה מוסיף על המרובע ככפלו על כפל השרש המחוסר הזה לאחר חסרונו וכפלו על עצמו בלי כפל
We divide the addition that we have by double the [approximate root] before subtracting from it, and it is as if we divide it by double the subtracted root plus double the subtracted [fraction].
\scriptstyle{\color{OliveGreen}{\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}=\frac{\left(\frac{b}{2a}\right)^2}{\left[2\sdot\left[\left(a+\frac{b}{2a}\right)-\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]\right]+\left[2\sdot\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]}}}
ואולם התוספת אשר היה לנו חלקנוהו על כפל כל השרש טרם טרם החסרו והוא כמו שחלקנוהו על כפל השרש הזה המחוסר ועל כפל החסרון זה
But, [The square of the first approximate root] exceeds [over the square of the second approximate root] by the product [of the subtracted fraction] by double the subtracted [approximate] root plus its product by itself.
ואולם הוא לא היה מוסיף כי אם כפלו על כפל השרש הזה המחוס' וכפלו על עצמו בלי כפל
We find that we did not subtract all that is needed, as the square of the subtracted [approximate root] exceeds over the original number by the product of the subtracted [fraction] by itself. This is clear and is always so.
\scriptstyle{\color{OliveGreen}{\left[\left(a+\frac{b}{2a}\right)-\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]^2-\left(a^2+b\right)=\left[\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]^2}}
נמצא שלא חסרנו בכל הצורך אבל עוד ישאר במרובע זה השרש המחוסר תוספת על החשבון הראשון ככפל זה החסרון על עצמו וזה ברור וכן יהיה לעולם
So, when we do not add 1 [to the denominator], and wish to come closer to the truth [using a repetitive procedure for extracting the root], [in the first step] we should only add the fraction of the first step [i.e., the remainder divided by twice the approximate root]. לכן כאשר לא נוסיף א' ונרצה להתקרב אל האמת אין לנו להוסיף על השרש כי אם השברים הראשונים אשר נתחדשו בפעם הראשון מאשר נשאר לנו
But, from there on we must divide the square of the fraction produced at that step by twice the previous [approximate] root. And the result should always be subtracted from the previous [approximate] root. אבל מכאן ואילך לעולם יש לנו לחלק כפל השברים המתחדשים בפעם ההיא על כפל השרש הקודם לו והיוצא נחסרהו לעולם מהשרש הקודם לו
  • Example: we seek the root of 7.
\scriptstyle\sqrt{7}
המשל בקשנו שרש ז‫'
The integer that is in its root is 2 and 3 remains.
הנה השלמי' אשר בשרשו הם ב' ונשארו ג‫'
If we divide it by double the [approximate] root, the quotient is 3-quarters.
\scriptstyle{\color{blue}{\sqrt{7}\approx2+\frac{7-4}{2\sdot2}=2+\frac{3}{4}}}
ואם חלקנום לכפל השרש יצא בחילוק ג' רביעיות
When we add this addition to the 2 integers and consider the whole sum as a root, its square exceeds over the square of 2, which is 4 integers, by the product of these three-quarters by themselves.
\scriptstyle{\color{blue}{\left(2+\frac{3}{4}\right)^2-2^2=3+\left(\frac{3}{4}\right)^2}}
והנה זה התוספת כאשר נחברהו אל הב' השלמים ונעשה מהכל שרש אחת הנה יתוסף במרובעו יותר על מרובע הב שיהיה ד' שלמים ככפל שלש רביעיות אלו בעצמם
But, our remainder is as the product of 3-quarters by 4 integers, which are double the first [approximate] root.
\scriptstyle{\color{blue}{7-2^2=3=4\sdot\frac{3}{4}=2^2\sdot\frac{3}{4}}}
ואולם ‫[143]שאריתנו לא היה כי אם ככפל הג' רביעיות בד' השלמים אשר הם כפל השרש הראשון
We find that too many fractions are added to our root, so that the square of the sum exceeds the 7 integers by the product of 3-quarters by themselves, which is 9-quarters of a quarter that are 2-quarters and a quarter of a quarter. This is clear, because the product of 2 and 3-quarters [by itself] is 7 integers and [9]-quarters of a quarter, as will be explained in chapter three of section two.
\scriptstyle{\color{blue}{\left(2+\frac{3}{4}\right)^2-7=\left[7+\left(\frac{3}{4}\right)^2\right]-7=\left(\frac{3}{4}\right)^2=\frac{9}{4}\sdot\frac{1}{4}=\frac{2}{4}+\left(\frac{1}{4}\sdot\frac{1}{4}\right)}}
נמצא שנתוספו בשרשנו זה שברים יותר מדאי עד שמרובע הכל יהיה יותר על הז' שלמים ככפל הג' רביעיות בעצמם שהם ט' רביעיות רביעית שהם ב' רביעיות שלמות ורביעית רביעית

וזה ברור כי כפל ב' וג' רביעיות עולה ז' שלמים וב' רביעיות רביעית כאשר יתבאר בחלק הב' בפרק הג' ממנו

Therefore, we should divide this excess by double the root as we explained.
ולזה ראוי לנו לחלק תוספת זה על כפל השרש כאשר ביארנו
Double the root is 5 integers and 2-quarters, which are one-half.
והנה כפל השרש הוא ה' שלמים וב' רביעיות שהם חצי שלם
When we divide 2-quarters and a quarter of a quarter by it, the quotient is 9 parts of 11 of half a quarter.
וכאשר נחלק עליהם ב' רביעיות ורביעית רביעית יצא בחילוק ט' חלקים מי"א מחצי רביעית
When we subtract it from the former root, the remainder is 2 integers, 2-quarters, half a quarter, and 2 parts of 11 of half a quarter. The procedure of all this is explained in section two.
וכאשר נסירם מהשרש הקודם ישאר ב' שלמים וב' רביעיות שלמות וחצי רביעית וב' חלקים מי"א מחצי רביעית וכל זה יתבאר מעשהו בחלק הב‫'
\scriptstyle{\color{blue}{\begin{align}\scriptstyle\sqrt{7}&\scriptstyle\approx\left(2+\frac{3}{4}\right)-\frac{\frac{2}{4}+\left(\frac{1}{4}\sdot\frac{1}{4}\right)}{2\sdot\left(2+\frac{3}{4}\right)}=\left(2+\frac{3}{4}\right)-\frac{\frac{2}{4}+\left(\frac{1}{4}\sdot\frac{1}{4}\right)}{5+\frac{2}{4}}=\left(2+\frac{3}{4}\right)-\frac{\frac{2}{4}+\left(\frac{1}{4}\sdot\frac{1}{4}\right)}{5+\frac{1}{2}}=\left(2+\frac{3}{4}\right)-\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\\&\scriptstyle=2+\frac{2}{4}+\left(\frac{1}{2}\sdot\frac{1}{4}\right)+\left(\frac{2}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\\\end{align}}}
The square of this [approximate] root. i.e. the 2 integers, 2-quarters, half a quarter, and 2 parts of 11 of half a quarter is less than the [square of the] former [approximate root] by the product of this remainder, i.e. 9 parts of 11 of half a quarter by double the subtracted root plus its product by itself.
והנה יחסר מרובע השרש הזה ר"ל הב' שלמים וב' רביעיות וחצי רביעית וב' חלקים מי"א מחצי רביעית אחרי החסרו מאשר לפניו ככפל החסרון הזה ר"ל הט' חלקים מי"א מחצי רביעית על כפל השרש המחוסר וככפלו לעצמו
\scriptstyle{\color{blue}{\left(2+\frac{3}{4}\right)^2-\left[2+\frac{2}{4}+\left(\frac{1}{2}\sdot\frac{1}{4}\right)+\left(\frac{2}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\right]^2=\left[\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\sdot\left[2\sdot\left[2+\frac{2}{4}+\left(\frac{1}{2}\sdot\frac{1}{4}\right)+\left(\frac{2}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\right]\right]\right]+\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)^2}}
But, the first excess of the square over the [given] number is as the product of this remainder by double the first [approximate] root, i.e. by double this subtracted root and by double this remainder, since, when we divide the addition by double the former [approximate] root, i.e. by double the subtracted root and by double this remainder, the result of division is this remainder.
ואולם התוספת הראשו' אשר היה במרובע על החשבון היה ככפל החסרון זה בכפל השרש הראשון ר"ל בכפל השרש הזה המחוסר ובכפל החסרון הזה שהרי כאשר חלקנו התוספת על כפל השרש הקודם ר"ל על כפל השרש המחוסר ועל כפל זה החסרון [יצא בחלוק זה החסרון]‫[144]
We find that the product of this remainder, i.e. 9 parts of 11 of half a quarter, by double the first [approximate] root, which is 2 integers and 3-quarters, whose double is 5 integers and a half, which is the same as double this subtracted root, i.e. the 2 integers, 2-quarters, [half a quarter], and 2 parts of 11 of half a quarter plus double the remainder, which is 9 parts of 11 of half a quarter, is as the excess we have, which is the 2-quarters and a quarter of a quarter, by which we have divided.
נמצא שכפל זה החסרון ר"ל הט' חלקים מי"א מחצי רביעית בכפל השרש הראשון שהוא ב' שלמים וג' רביעיות שכפלו ה' שלימים וחצי שהוא כמו כפל ‫[145]השרש המחוסר הזה ר"ל הב' שלימים וב' רביעיות וב' חלקים מי"א מחצי רביעית וכפל זה החסרון שהוא הט' חלקים מי"א מחצי רביעית וכפל זה החסרון שהוא הט' חלקים מי"א הוא כמו התוספת אשר היה לנו שהוא הב' רביעיות ורביעית רביעית שחלקנו עליהם
\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\sdot\left[2\sdot\left(2+\frac{3}{4}\right)\right]&\scriptstyle=\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\sdot\left(5+\frac{1}{2}\right)=\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\sdot\left[\left[2\sdot\left[2+\frac{2}{4}+\left(\frac{1}{2}\sdot\frac{1}{4}\right)\left(\frac{2}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\right]\right]+\left[2\sdot\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\right]\right]\\&\scriptstyle=\frac{2}{4}+\left(\frac{1}{4}\sdot\frac{1}{4}\right)\\\end{align}}}
It is known with little intelligence that the product of a number by a number is as its product by all the parts of the other number, each one by itself.
\scriptstyle{\color{OliveGreen}{a\sdot\left(b_1+b_2+\ldots+b_n\right)=\left(a\sdot b_1\right)+\left(a\sdot b_2\right)+\ldots+\left(a\sdot b_n\right)}}
כי ידוע הוא במעט התבוניות כי כפל מספר על מספר הוא ככפלו בכל חלקי המספר האחד כל אחד בפני עצמו
This is the reason of the product of a known number by the double of another number. והוא הטעם שכפל מספר ידוע על כפל מספר ידוע אחר
Example: the product by the double of 4 is as its product by double all its parts, each one by itself, for instance, by the double of 3 and by the double of 1.
\scriptstyle{\color{blue}{a\times\left(2\sdot4\right)=a\sdot\left(2\sdot3\right)+a\sdot\left(2\sdot1\right)}}
המשל על כפל ד' הוא ככפלו על כפל כל חלקיו כל אחד בפני עצמו

המשל על כפל ג' ועל כפל א‫'

This is as our saying: the product of 9 parts of 11 of half a quarter by double the first [approximate] root, which is 2 integers and 3-quarters, is as its product by all of its parts, each one by itself, i.e. by double the subtracted root and by double the remainder that are the parts of the former [approximate] root. This is clear.
וזהו כאומרנו שכפל הט' חלקים מי"א מחצי רביעית בכפל השרש הראשון שהוא הב' שלמים וג' רביעיות הוא כמו כפלו בכל חלקיו כל אחד בפני עצמו ר"ל בכפל השרש המחוסר ובכפל החסרון שהם חלקי השרש הקודם וזה ברור
\scriptstyle{\color{blue}{\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\sdot\left[2\sdot\left(2+\frac{3}{4}\right)\right]=\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\sdot\left[\left[2\sdot\left[2+\frac{2}{4}+\left(\frac{1}{2}\sdot\frac{1}{4}\right)\left(\frac{2}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\right]\right]+\left[2\sdot\left(\frac{9}{11}\sdot\frac{1}{2}\sdot\frac{1}{4}\right)\right]\right]}}
  • \scriptstyle{\color{OliveGreen}{\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)=\left(\frac{b}{2a}\right)^2=\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\sdot\left[2\sdot\left(a+\frac{b}{2a}\right)\right]}}
Since the former [approximate] root exceeds over the number, whose root we wish to know, by the product of the subtracted [fraction] by double the whole former [approximate] root, as when we divide it by double the former [approximate] root, the result is this excess. Therefore, when we multiply this subtracted [fraction] by double the former [approximate] root, which is the product of the quotient by the divisor, the result is the dividend, which is the excess that we have.
ואחר שהמרובע הקודם היה מוסיף על החשבון אשר רצינו לידע שרשו ככפל החסרון על כפל כל השורש הקודם שהרי כשחלקנו אותו על כפל השורש הקודם [יצא זה החסרון הנה כאשר נכפול זה החסרון בכפל השורש הקודם]‫[146] שהוא כפל היוצא בחילוק במספר אשר חלקנו עליו יעלה כמספר המתחלק שהוא התוספת שהיה לנו
  • \scriptstyle{\color{OliveGreen}{\left(a+\frac{b}{2a}\right)^2-\left[\left(a+\frac{b}{2a}\right)-\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]^2=\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\sdot\left[\left[2\sdot\left(a+\frac{b}{2a}\right)\right]-\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]}}
But, because of the subtracted [fraction] that we subtract from the [former approximate] root, the square [of the second approximate root] is less that [the square of] the first [approximate root] only by the product of the subtracted [fraction] by double the subtracted [approximate root] plus its product by itself.
ואולם בשביל זה החסרון אשר אנו מחסרים עתה מהשרש לא יחסר המרובע הזה מהראשון כי בכפל זה החסרון בכפל המחוסר ובעצמו בלי כפל
  • \scriptstyle{\color{OliveGreen}{\left[\left(a+\frac{b}{2a}\right)-\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]^2-\left(a^2+b\right)=\left[\frac{\left(\frac{b}{2a}\right)^2}{2\sdot\left(a+\frac{b}{2a}\right)}\right]^2}}
Hence, the remainder [of the second approximate root] is the product of the subtracted [fraction] by itself.
א"כ ישאר עוד מהתוספת כפל זה החסרון בעצמו
Thus, we have explained that when we repeat this [procedure] a few times, the excess of the square [of the approximate root over the given number] is always the square of the fraction resulting from the division at that phase, that we have to add to the [approximate] root in the first phase, or to subtract from the [approximate] root in all other phases. This is provided that we do it without adding one, i.e. if we do not add one to double the [approximate] root, by which we divide [the excess], when the excess is greater than the [approximate] root, but we divide the excess only by double the [approximate] root without adding one at all. הנה ביארנו כי בעשותינו זה כמה פעמים לעולם ישאר במרובע תוספת מרובע השברים שיצאו בחילוק בעת ההיא שהם אשר עלינו להוסיף על השרש ‫[147]במעשה הראשון או לחסרו מן השרש בשאר הפעמים כלם אם לא נעשנו בתוספת אחד ר"ל אם לא נוסיף אחד על כפל השרש לחלק על הכל אם יהיה התוספת גדול מהשרש אלא שנחלק התוספת על כפל השרש לבד בלי תוספת אחד כלל
This is the reason that we say that when we do not add one, we always take the square of the additional or subtracted fraction resulting the last phase, divide it by double the [approximate] root, then subtract the quotient from the [approximate] root. The reason of this procedure is clear. ולזה אמרנו כי כאשר לא נעשה בתוספת אחד לעולם נקח מרובע השברים אשר יצאו בפעם האחרונה הן לתוספת או למגרעת ונחלקם על כפל השרש המחוסר והיוצא נחסרנו מהשרש וכן נעשה לעולם וכל זה ברור בטעם
The reason that if the remainder is equal to the approximate root or greater than it \scriptstyle{\color{OliveGreen}{b\ge a}}, it is divided by double the root plus one \scriptstyle{\color{OliveGreen}{\frac{b}{2a+1}}}:
The reason we say that when the remainder equals to the [approximate] root or greater than it, we should divide it by double the root plus one, as long as we do not intend to repeat the procedure so as to further approach the truth except for this [step] only, is that if we had not added one, the square of the root consisting of the integer and fraction would exceed the number [whose root is extracted] by the square of the fraction received in the division. But this would be a quarter or more. וטעם אומרנו כי כאשר הנשאר הוא כשורש או יותר ממנו שיש לנו לחלקו על כפל השרש בתוספת אחד

אם אין דעתינו להכפיל המעשה להתקרב עוד אל האמת זולתי בפעם הזאת לבד
הוא לפי שאם לא היינו מוסיפים אחד היה מרובע השרש המקובץ מהשלמים והשברים עודף על החשבון ככפל השברים אשר יצאו בחילוק וזה יהיה רביעית אחת או יותר

\scriptstyle{\color{OliveGreen}{b\ge a\longrightarrow\sqrt{a^2+b}\approx a+\frac{b}{2a+1}}}
\scriptstyle{\color{OliveGreen}{b\ge a\longrightarrow\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)=\left(\frac{b}{2a}\right)^2\ge\frac{1}{4}}}
For, if [the remainder] is equal to the root itself, and we divide it by double the root, the result of division will be a half. Its square, i.e. its product by itself, which is the excess, will then be an entire quarter.
\scriptstyle{\color{OliveGreen}{b=a\longrightarrow\left(\frac{b}{2a}\right)^2=\left(\frac{a}{2a}\right)^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}}}
לפי שאם יהיה כשורש בעינו ונחלקנו על כפל השרש יצא בחלוק חצי ומרובעו ר"ל כפלו בעצמו שהוא התוספת שיהיה רביעית שלמה
And if the remainder is greater than the root, when we divide it by double the root, the result will be more than a half, and its square more than a quarter.
\scriptstyle{\color{OliveGreen}{b>a\longrightarrow\left(\frac{b}{2a}\right)^2>\left(\frac{a}{2a}\right)^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}}}
ואם יהיה השארית יותר גדול מהשרש כשנחלקנו על כפל השרש יהיה היוצא יותר מחצי ומרובעו יותר מרביעית
  • Example: we wish to know the root of 6.
\scriptstyle\sqrt{6}
והמשל בקשנו לידע שרש ו‫'
The integer that results in the root is 2 and 2 remains, which is as the root itself.
הנה השלמים אשר יצאו בשרש הם ב' וישארו ב' שהוא כמו השרש בעצמו
If we divide it by double the [approximate] root without adding one, it is divided by 4, which is double the root and the quotient is a half, so the whole root is 2 integers and a half.
\scriptstyle{\color{blue}{\sqrt{6}\approx2+\frac{6-4}{2\sdot2}=2+\frac{2}{4}=2+\frac{1}{2}}}
ואם חלקנום על כפל השרש בלי תוספת אחת יתחלק לד' שהוא כפל השרש ויצא בחילוק חצי ויהיה כל השרש ב' שלמים וחצי
Its square is 6 integers and a quarter.
\scriptstyle{\color{blue}{\left(2+\frac{1}{2}\right)^2=6+\frac{1}{4}}}
ומרובעם ו' שלמים ורביע
\scriptstyle{\color{OliveGreen}{b\ge a\longrightarrow\left(a^2+b\right)-\left(a+\frac{b}{2a+1}\right)^2=\frac{b}{2a+1}\sdot\left(1-\frac{b}{2a+1}\right)<\frac{1}{2}\sdot\left(1-\frac{1}{2}\right)=\frac{1}{4}}}
If we add one, the square [of the approximate root] will be smaller [than the given number] by the product of the quotient, which is less than a half, by its complement with respect to 1, so it will be less than a quarter.
ואם היינו מוסיפים ‫[148]א' הנה יחסר מהמרובע ככפל היוצא בחילוק שיהיה פחות מחצי בהשלמתו לאחד וזה יהיה פחות מרביע
Therefore it is close to the truth, for the square [of the approximate root] is smaller than the [given] number by less than a quarter.
הנה א"כ הוא קרוב אל האמת כי לא יחסר רביע במרובע מהחשבון
If we do not add one, we increase [the excess] to a quarter [at least] and all the more so if it is greater than the [approximate] root.
ואם לא נוסיף א' נוסיף רביע וכ"ש אם היה גדול מהשרש
For, when we divide it by double the [approximate] root, the quotient is greater than a half and its square is greater than a quarter, as you can see in the preceding example.
\scriptstyle{\color{OliveGreen}{b>a\longrightarrow\left(\frac{b}{2a}\right)^2>\left(\frac{1}{2}\right)^2=\frac{1}{4}}}
כי כאשר נחלקנו לכפול השרש יצא בחילוק יותר מחצי ומרובעו יותר מרביע כאשר תראה במשל הקודם לזה
If you divide [the remainder] by double the root plus 1, the square of the root will be less than the sought number by the product of the quotient and its complement with respect to one, which can never in any way reach a quarter. ואם תחלקנו על כפל השרש בתוספת א' יחסר מרובע השרש המקובץ מהחשבון הנשאל ככפל היוצא בחלוק בהשלמתו לאחד ולא יהיה אפי' רביע בשום פנים
\scriptstyle{\color{OliveGreen}{b\ge a\longrightarrow\left(a^2+b\right)-\left(a+\frac{b}{2a+1}\right)^2=\frac{b}{2a+1}\sdot\left(1-\frac{b}{2a+1}\right)<\frac{1}{2}\sdot\left(1-\frac{1}{2}\right)=\frac{1}{4}}}
For, the product of a portion of a line or a number by its complement never reaches a quarter.
כי כאשר תכפול קצת הקו או המספר בקצתו האחר לא יעלה לעולם לרביע
Because, if you multiply its half by its half the result will be a quarter.
\scriptstyle{\color{blue}{\frac{1}{2}\sdot\frac{1}{2}=\frac{1}{4}}}
שאם תכפול חציו בחציו יהיה רביע
And clearly if you multiply its smaller portion by its larger [complementing] portion [the product] will not be a quarter but smaller than it by the square of their distances from half the line or the number.
\scriptstyle{\color{OliveGreen}{\left(1-\frac{n}{m}\right)>\frac{n}{m}\longrightarrow\frac{1}{4}-\left[\frac{n}{m}\sdot\left(1-\frac{n}{m}\right)\right]=\left(\frac{1}{2}-\frac{n}{m}\right)^2}}
ואם תכפול מעוטו ברובו לא יהיה רביע וזה ברור אבל יחסר ממנו כמרובע מרחקם מחצי הקו או המספר
For instance, if we divide a line into a quarter and 3-quarters, when you multiply its half by its half it is as if you multiply a quarter of the line by a quarter of the line four times.
\scriptstyle{\color{blue}{\frac{1}{2}\sdot\frac{1}{2}=4\sdot\left(\frac{1}{4}\sdot\frac{1}{4}\right)}}
כי ע'ד'מ' אם חלקנו הקו לרביע הקו וג' רביעיות הנה אם תכפול החצי בחצי הוא כאלו תכפול רביע הקו עם ברביע הקו ד' פעמים
If you multiply a quarter of the line by its 3-quarters, which is its complement with respect to one, it is exactly as the product of a quarter of the line by a quarter of the line three times.
\scriptstyle{\color{blue}{\frac{1}{4}\sdot\left(1-\frac{1}{4}\right)=\frac{1}{4}\sdot\frac{3}{4}=3\sdot\left(\frac{1}{4}\sdot\frac{1}{4}\right)}}
ואם תכפול רביע הקו בג' רביעיות המשלימות אותו לאחד שלם לא יהיה כי אם כפל רביע הקו ברביע הקו ג' פעמים ואם תכפול רביע הקו בג' רביעיות המשלימות אותו לאחד שלם לא יהיה כי אם
It is less than the product of a quarter by a quarter, which is the distance of each portion of the line from its half.
\scriptstyle{\color{blue}{\left(\frac{1}{2}\sdot\frac{1}{2}\right)-\left[\frac{1}{4}\sdot\left(1-\frac{1}{4}\right)\right]=\frac{1}{4}\sdot\frac{1}{4}}}
הנה יחסר מחצי על חצי ככפל רביע על רביע שהוא מרחק כל אחד מחלקי הקו מהחצי
For instance, if you multiply a half of 12 by its half, which is 6 by 6, the result is 36, which is the product of 6 by 5 that is 30, and the product of 6 by 1, which is 6.
\scriptstyle{\color{blue}{\left(\frac{1}{2}\sdot12\right)\sdot\left(\frac{1}{2}\sdot12\right)=6\sdot6=36=30+6=\left(6\sdot5\right)+\left(6\sdot1\right)}}
ואם תכפול ע'ד'מ' חצי מספר י"ב בחציו שהוא ו' בו' יעלה ל"ו שהוא כפל ו' בה' שהם ל' וכפלו ו' בא' שהם ו‫'
But, if you multiply 5 by 7, which is its complement with respect to [twelve], it is only 35, because it is as the product of 5 by 6, which is 30, and the product of 5 by 1, which is 5.
\scriptstyle{\color{blue}{\left(6-1\right)\sdot\left(6+1\right)=5\sdot7=35=30+5=\left(5\sdot6\right)+\left(5\sdot1\right)}}
ואולם אם תכפול ה' בז' שהם השלמתו לאחד לא יהיה כי אם ל"ה לפי שהוא ככפל ה' בו' שהם ל' וכפל ה' בא' שהם ה‫'
The [greater] the fraction, the greater is the excess.
וכל מה ‫[149]שיתחלקו יותר החלקים יחסר יותר
That is, its difference from a quarter is as the square of its difference from a half.
\scriptstyle{\color{OliveGreen}{\left(1-\frac{n}{m}\right)>\frac{n}{m}\longrightarrow\frac{1}{4}-\left[\frac{n}{m}\sdot\left(1-\frac{n}{m}\right)\right]=\left(\frac{1}{2}-\frac{n}{m}\right)^2}}
וזה שהחסרון מרביע הוא כמרובע הרחקתם מחצי
? כבמשלנו זה שהיה כמרובע האחד אשר נתרחקו מו' שהוא החצי
If we multiply 3 by its complement with respect to twelve, which is 9, the result is only 27 and it is less than [the square of its] half by the square of 3, which is 9.
ואם היינו כופלים ג' בהשלמתו לי"ב שהוא ט' הנה לא יעלה כי אם כ"ז ויחסר כמרובע ג' שנתרחקו מהחצי שהוא ט‫'
\scriptstyle{\color{blue}{\left[\left(\frac{1}{2}\sdot12\right)\sdot\left(\frac{1}{2}\sdot12\right)\right]-\left[3\sdot\left(12-3\right)\right]=\left(6\sdot6\right)-\left(3\sdot9\right)=36-27=9=3^2}}
This is because the product of 6 by 6 is as the product of 6 by 3 and the product of 6 by 3, which is twice the product of 3 by 3.
\scriptstyle{\color{blue}{\left(\frac{1}{2}\sdot12\right)\sdot\left(\frac{1}{2}\sdot12\right)=6\sdot6=\left(6\sdot3\right)+\left(6\sdot3\right)=\left[2\sdot\left(3\sdot3\right)\right]+\left[2\sdot\left(3\sdot3\right)\right]}}
וזה כי כפל ו' בו' הוא ככפל ו' בג' וככפלו ו' בג' שהוא כפל ג' בג' פעמים
But, the product of 3 by 9 is only the product of 3 by 6 and the product of 3 by 3.
\scriptstyle{\color{blue}{3\sdot\left(12-3\right)=3\sdot9=\left(3\sdot6\right)+\left(3\sdot3\right)}}
ואולם כפל ג' בט' אינו כי אם כפל ג' בו' וכפל ג' בג' פעם אחת לבד
So, its difference from a quarter of a square number is as the product of its difference from the half by itself, which is a quarter of a quarter.
לכן יחסר מרביע מרובע המספר ככפל ריחוקם מהחצי בעצמו והוא רביע רביע
\scriptstyle{\color{OliveGreen}{\frac{1}{4}n^2-\left[m\sdot\left(n-m\right)\right]=\left[\left(\frac{1}{2}n\right)\sdot\left(\frac{1}{2}n\right)\right]-\left[m\sdot\left(n-m\right)\right]=\left[\left(\frac{1}{2}n\right)-m\right]^2}}
Since its difference is 3, which is a quarter of 12. Deduce from this.
\scriptstyle{\color{blue}{\left[\left(\frac{1}{2}\sdot12\right)\sdot\left(\frac{1}{2}\sdot12\right)\right]-\left[3\sdot\left(12-3\right)\right]=3^2=\left(\frac{1}{4}\sdot12\right)^2}}
לפי שרחוקם היה ג' שהוא רביע הי"ב דוק ותשכח
The reason for \scriptstyle{\color{OliveGreen}{\left(a^2+b\right)-\left(a+\frac{b}{2a+1}\right)^2=\frac{b}{2a+1}\sdot\left(1-\frac{b}{2a+1}\right)}}
Our saying that when we divide [the remainder] by double the root plus 1, the square of the summed [approximate] root is smaller than the [original] number by the product of the quotient by its complement with respect to one - ואולם אומרנו שכאשר נחלקנו לכפל השרש בתוספת אחד שיהיה החסרון אשר במרובע השרש המקובץ מהחשבון ככפל היוצא בחילוק בהשלמתו
I shall explain it first by the previous examples, then I shall explain its reason: אבארנו תחלה במשלים העוברים וא'ח'כ' אבארנו בטעם
  • When we seek the root of 7.
\scriptstyle\sqrt{7}
המשל כאשר בקשנו שרש ז‫'
The result is 2 integers and 3 remains, which is greater then the [approximate] root.
והיה ב שלמים ונשארו ג' שהם יותר מהשרש
We divide it by double the root plus 1, i.e. by 5; the quotient is 3-fifths.
\scriptstyle{\color{blue}{\sqrt{7}\approx2+\frac{7-4}{\left(2\sdot2\right)+1}=2+\frac{3}{5}}}
וחלקנום לכפל השרש בתוספת א' ר"ל על ה' יצא בחילוק ג' חמישיות
When we multiply two integers and 3-fifths by itself, its square is 6 integers, 3-fifths and 4-fifths of a fifth.
וכאשר נכפול שני שלמים וג' חמישיות על עצמו יהיה מרובעו ו' שלמים וג' חמישיות וד' חמישיות חמישית
But, the required number is 7 integers, so this square is smaller than 7 integers by one-fifth and a fifth of a fifth.
והחשבון הנשאל היה ז' שלימים הנה יחסר זה המרובע מז' שלמים חמישית [אחת שלמה וחמישית חמישית
This itself is as the product of 3-fifths, which is the quotient, by its complement with respect to one, which is 2-fifths.
וזה]‫[150] וזה בעצמו הוא כפל הג' חמישיות אשר יצאו בחלוק על השלמתם לאחד שלם שהוא ב' חמישיות
For, the product of 3-fifths by 2-fifths is 6-fifths of a fifth, which is one-fifth and a fifth of a fifth.
כי כפל ג' חמישיות בב' חמישיות הוא ו' חמישיות חמישית שהן חמישית אחד שלם וחמישית חמישית
\scriptstyle{\color{blue}{7-\left(2+\frac{3}{5}\right)^2=7-\left[6+\frac{3}{5}+\left(\frac{4}{5}\sdot\frac{1}{5}\right)\right]=\frac{1}{5}+\left(\frac{1}{5}\sdot\frac{1}{5}\right)=\frac{6}{5}\sdot\frac{1}{5}=\frac{3}{5}\sdot\frac{2}{5}=\frac{3}{5}\sdot\left(1-\frac{3}{5}\right)}}
  • In the second example: if we seek the root [of 6].
\scriptstyle\sqrt{6}
ובמשל בשני אם בקשנו שרש
The result is 2 integers and 2 remains, which is the same as the root.
\scriptstyle{\color{blue}{\sqrt{6}\approx2+\frac{6-4}{\left(2\sdot2\right)+1}=2+\frac{2}{5}}}
והנה יצאו ב' שלמים ונשארו ב' שהוא כמו השרש
If we divide it by double the root plus 1, i.e. by 5; the quotient is 2-fifths.
אם חלקנום על כפל השרש בתוספת א' ר"ל על ה' ‫[151]יצא בחילוק ב' חמישיות
When we multiply two integers and 2-fifths by itself, its square is 5 integers, 3-fifths and 4-fifths of a fifth.
וכאשר כפלנו שני שלמים וב' חמישיות על עצמם יעלה ה' מרובעו ה' שלמים וג' [חמישיות]‫[152] וד' חמישיות חמישית
But, the required number, whose root we seek, is 6 integers, so this square is smaller than that number by one-fifth and a fifth of a fifth.
ואולם החשבון הנשאל אשר בקשנו שרשו היה ו' שלמים הנה יחסר זה המרובע מהחשבון ההוא חמישית אחת שלימה וחמישית חמישית
This is as the product of 2-fifths, which is the quotient, by its complement with respect to one, which is 3-fifths.
והוא ככפל הב' חמישיות אשר יצאו בחילוק בהשלמתם לאחד שהוא ג' חמישיות
For, the product of 2-fifths by 3-fifths is 6-fifths of a fifth, which is one-fifth and a fifth of a fifth as we have explained.
כי כפל ב' חמישיות בג' חמישיות הוא ו' חמישיות חמישית שהן חמישית אחד שלמה וחמישית חמישית כאשר ביארנו
\scriptstyle{\color{blue}{6-\left(2+\frac{2}{5}\right)^2=6-\left[5+\frac{3}{5}+\left(\frac{4}{5}\sdot\frac{1}{5}\right)\right]=\frac{1}{5}+\left(\frac{1}{5}\sdot\frac{1}{5}\right)=\frac{6}{5}\sdot\frac{1}{5}=\frac{2}{5}\sdot\frac{3}{5}=\frac{2}{5}\sdot\left(1-\frac{2}{5}\right)}}
The reason is that the remainder is as the result of division multiplied by twice the [previous approximate] root plus one.
\scriptstyle{\color{OliveGreen}{b=\frac{b}{2a+1}\sdot\left(2a+1\right)=\left(\frac{b}{2a+1}\sdot2a\right)+\left(\frac{b}{2a+1}\sdot1\right)}}
והטעם הוא לפי שהשארית היה ככפל זה היוצא בחילוק בכפל השרש הראשון ובאחד
For, when we divide the remainder by double the [approximate] root plus 1, we find that the remainder is as the product of this quotient by double the [approximate] root plus 1. שהרי בחלקנו השארית לכפל השרש בתוספת א' יצא זה בחלוק נמצא שהשארית היה ככפל זה היוצא בחלוק בכפל השרש הקודם [ובא‫']‫[153] לא יוסיף במרובע
The addition of the result to the previous [approximate] root, however, will add to the square only its product by twice the previous root and its product by itself.
\scriptstyle{\color{OliveGreen}{\left(a+b\right)^2-a^2=\left(2\sdot a\sdot b\right)+b^2}}
ואולם תוספת זה היוצא בשרש הקודם לא יוסיף במרובע כי אם ככפלו בכפל השרש הקודם ובכפלו בעצמו
But, its product by itself subtracted from its product by 1 is its product by its complement [with respect to 1].
\scriptstyle{\color{OliveGreen}{\left(b\sdot1\right)-b^2=b\sdot\left(1-b\right)}}
וכפלו בעצמו יחס' מכפלו בא' כפלו בהשלמתו לאחד
For example, the product of a third by one is as its product by all the parts [of 1], namely by a third, which is itself, and by two thirds, which is its complement with respect to one; this is clear.
\scriptstyle{\color{blue}{\left(\frac{1}{3}\sdot1\right)=\left(\frac{1}{3}\sdot\frac{1}{3}\right)+\left(\frac{2}{3}\sdot\frac{1}{3}\right)=\left(\frac{1}{3}\sdot\frac{1}{3}\right)+\left[\frac{1}{3}\sdot\left(1-\frac{1}{3}\right)\right]}}
כי המשל כפל שליש באחד הוא ככפלו בכל חלקיו ר"ל ככפלו בשליש ר"ל בעצמו וככפלו בשתי שלישים אשר הם המשלים אותו כאחד וזה ברור
\scriptstyle{\color{OliveGreen}{b\ge a\longrightarrow\left(a^2+b\right)-\left(a+\frac{b}{2a+1}\right)^2<\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)}}
closer approximation:\scriptstyle{\color{OliveGreen}{a+\frac{b}{2a+1}}}
Thus, we have explained that when the remainder is as the [approximate] root or greater than it, if we divide it by double the [approximate] root plus 1, it comes closer to the truth by subtraction more than it come closer to the truth by addition when we divide it by double the [approximate] root without adding 1. הנה ביארנו כי כאשר השארית היה כשרש או יותר ממנו כי בחלקנו אותו לכפל השרש בתוספת א' יתקרב אל האמת לחסרון מאשר יתקרב אל האמת לתוספת בחלקנו אותו לכפל השרש בלי תוספת אחד
\scriptstyle{\color{OliveGreen}{b<a\longrightarrow\left(a^2+b\right)-\left(a+\frac{b}{2a+1}\right)^2>\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)}}
closer approximation: \scriptstyle{\color{OliveGreen}{a+\frac{b}{2a}}}
But, if the remainder is less than the [approximate] root it is vice versa. ואולם אם השארית פחות מהשרש יהיה להפך
  • Example: if we wish the root of 29.
\scriptstyle\sqrt{29}
[154]המשל אם בקשנו שרש כ"ט
The integer resulting in the root is 5 and 4 remains. If we divide it by double the root without addition, which is 10, the result is 4-tenths.
\scriptstyle{\color{blue}{\sqrt{29}\approx5+\frac{29-25}{2\sdot5}=5+\frac{4}{10}}}
הנה השלמים אשר יצאו בשרש הם ה' ונשארו ד‫'

ואם חלקנום לכפל השרש בלי תוספת שהוא י' יצאו ד' עשיריות

Its excess over the truth is as the product of this result by itself, which is 16-tenths of a tenth, i.e. 16 parts of 100.
\scriptstyle{\color{blue}{\left(5+\frac{4}{10}\right)^2-29=\frac{16}{10}\sdot\frac{1}{10}=\frac{16}{100}}}
וריחוקו מן האמת לתוספת הוא ככפל זה היוצא בעצמו שהוא י"ו עשיריות עשירית ר"ל י"ו חלקים מק' שבשלם
If we divide it by [double the approximate root] plus one, which is [1]1, the quotient is 4 parts of 11.
\scriptstyle{\color{blue}{\sqrt{29}\approx5+\frac{29-25}{\left(2\sdot5\right)+1}=5+\frac{4}{{\color{red}{1}}1}}}
ואם חלקנום בתוספת א' שהוא שה ל"א יצאו בחלוק ד' חלקים מי"א בשלם
Its distance from the truth is as the product of the quotient by its complement with respect to 1, which is 7 parts of 11, as we explained and it is 28 parts of 11 of one part of 11, i.e. 28 parts of 121, which is more that one-fifth.
\scriptstyle{\color{blue}{29-\left(5+\frac{4}{11}\right)^2=\frac{4}{11}\sdot\left(1-\frac{4}{11}\right)=\frac{4}{11}\sdot\frac{7}{11}=\frac{28}{11}\sdot\frac{1}{11}=\frac{28}{121}>\frac{1}{5}}}
ויתרחק מן האמת בכפל וההיוצא בהשלמתו לאחד שהוא ז' חלקים מי"א כאשר ביארנו והוא כ"ח חלקים מי"א מחלק אחד עשר בשלם ר"ל כ"ח חלקים מקכ"א בשלם והוא יותר מחמישית שלם
But, the former was not even one-sixth. Deduce from this.
\scriptstyle{\color{blue}{\left(5+\frac{4}{10}\right)^2-29=\frac{16}{10}\sdot\frac{1}{10}=\frac{16}{100}<\frac{1}{6}}}
ואולם הראשונים לא היו אפי' שישית אחת והקש על זה
The reason is that the excess of the latter over the truth is less than a quarter by the product of its distance from a half by itself.
\scriptstyle{\color{OliveGreen}{\left(a^2+b\right)-\left(a+\frac{b}{2a+1}\right)^2=\frac{1}{4}-\left(\frac{1}{2}-\frac{b}{2a+1}\right)^2}}
והטעם כי זה יחסר רחוקו מן האמת מרביעיתו ככפל מרחקו מחצי בעצמו
While the excess of the former over the truth is less [than a quarter] by the product of its distance from a half by itself plus twice the product of this distance by the addition in the root.
\scriptstyle{\color{OliveGreen}{\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)=\frac{1}{4}-\left[\left(\frac{1}{2}-\frac{b}{2a}\right)^2+\left[2\sdot\frac{b}{2a}\sdot\left(\frac{1}{2}-\frac{b}{2a}\right)\right]\right]}}
וזה יחסר רחוקו מן האמת ככפל רחוקו מחצי בעצמו וככפל זה הריחוק פעמים בזה השרש המתוסף
Example: in our previous example, when it is done with the addition of 1. We divide 4 by 11, the result is 4 parts of 11. The excess over the truth is as the product of these 4 [parts] by 7 [parts] as aforesaid, which is less than a quarter by the product of one part [of 11] of one and a half, which is the distance of [4 parts of 11] from a half, by itself, which is the distance of its square that is 2 and a quarter.
המשל במשלנו הקודם כי כאשר יעשה [בתוספת א' המשל שחלקנו הד' על י"א ויצאו ד'י"א הנה]‫[155] י"א הנה יתרחק מן האמת ככפל אלו הד' בז' כנזכר ויחסר מרביע ככפל חלק אחד וחצי שהוא מרחקו מחצי הי"א בעצמו שהוא מרובע מרחקו שהוא ב' ורביע
\scriptstyle{\color{blue}{29-\left(5+\frac{4}{11}\right)^2=\frac{4}{11}\sdot\frac{7}{11}=\frac{1}{4}-\frac{2+\frac{1}{4}}{11^2}=\frac{1}{4}-\left[\left(1+\frac{1}{2}\right)\sdot\frac{1}{11}\right]^2=\frac{1}{4}-\left(\frac{1}{2}-\frac{4}{11}\right)^2}}
But, when we divide it without an addition, i.e. by 10, the result of division is 4-tenths. The excess over the truth is as its product by itself, which is less than a quarter by the square of its distance from a half, which is one, plus twice the product of this one by double this root. The total is 9.
ואולם כאשר חלקנוהו מבלי תוספת המשל על י' הנה עלה בחלוק ד' עשיריות ויתרחק מן האמת ככפלו בעצמו שהוא פחות מרביע כמרובע מרחקו מחצי שהוא האחד וכפל זה האחד בכפל זה השרש שעולה הכל ט‫'
\scriptstyle{\color{blue}{\left(5+\frac{4}{10}\right)^2-29=\left(\frac{4}{10}\right)^2=\frac{16}{100}=\frac{1}{4}-\frac{9}{100}=\frac{1}{4}-\left[\left(\frac{1}{2}-\frac{4}{10}\right)^2+\left[2\sdot\frac{4}{10}\sdot\left(\frac{1}{2}-\frac{4}{10}\right)\right]\right]}}
Although the excesses are not equal A single handful does not satisfy a lion [Talmud, Berakhot 3, 2]. ועם היות שאין הריחוקים שוים ולא החלקים מ"מ אין הקומץ משביע את הארי[note 33]
I do not feel to be more precise, because I have been precise enough at this place. ולא חששתי לדקדק יותר כי די באשר דקדקתי בזה המקום
We already stated that the one who wants to repeat the procedure does not need to add one [to double the approximate root], even if the remainder is greater than the root, because by repeating [the procedure] he comes as closer to the truth as possible. He should not be confused in the procedure by adding one, but always apply it without addition, and he should not speculate, only to take the square of the fraction resulting at that phase, divide it by double the [approximate] root, then subtract the quotient from its [approximate] root and so on. Because, I instructed to add one just when the remainder is as the [approximate] root or greater, only for the one who settles for one time. But the one who wants to come very closer and repeat the procedure should not add [one to double the approximate root] and not get confused. [156]ועוד שכבר אמרנו שהרוצה להכפיל המעשים שאין לו צורך להוסיף אחד אף אם יהיה השארית גדול מהשרש כי בהכפל יתקרב אל האמת בכל מאויו ולא יתבלבל במעשיו בתוספת אחד אבל לעולם יעשה בלי תוספת ואין לו לעיין כי אם לקחת מרובע השברים היוצאים בחלוק בפעם ההיא ולחלקו לכפל השרש והיוצא יחסרהו משרשו וכן לעולם

כי לא ציויתי להוסיף אחד כאשר השארית כשרש או יותר אלא למסתפק בפעם אחת
אבל הרוצה לידע להתקרב מאד ולהכפיל המעשים לא יוסיף ולא יתבלבל

[= He should use this approximation \scriptstyle{\color{OliveGreen}{a+\frac{b}{2a}}} instead of the previous approximation \scriptstyle{\color{OliveGreen}{a+\frac{b}{2a+1}}}, even if b≥a, in order to avoid confusion]
Another approximation:
  • \scriptstyle{\color{OliveGreen}{\sqrt{a^2+b}\approx a+\frac{2\sdot a\sdot b}{\left(2a\right)^2+b}}}
If you wish to come closer to the truth at once with little effort, add the remainder [i.e. the difference between the number and the approximate the root] to the square of double the [approximate] root that is in your hand, and divide by it the product of the remainder and double the [approximate] root. Add the result to the [approximate] root that is in your hand, and this root will be very near the truth.
ואם תרצה להתקרב אל האמת ברגע במעט עמל

חבר הנשאר למרובע כפל השרש שבידיך וחלק עליו כפל הנשאר בכפל השרש
והיוצא חברהו לשרש שבידיך ויהיה שרש קרוב מאד אל האמת

The second approximation:
  • \scriptstyle{\color{OliveGreen}{\sqrt{a^2+b}\approx\left[a+\frac{2\sdot a\sdot b}{\left(2a\right)^2+b}\right]+\frac{2\sdot\left[a+\frac{2\sdot a\sdot b}{\left(2a\right)^2+b}\right]\sdot\frac{b^3}{\left[\left(2a\right)^2+b\right]^2}}{\left[2\sdot\left[a+\frac{2\sdot a\sdot b}{\left(2a\right)^2+b}\right]\right]^2+\frac{b^3}{\left[\left(2a\right)^2+b\right]^2}}}}
If you wish to come closer to the truth, [divide] the cube of the above remainder by the denominator squared.
ואם תרצה להתקרב יותר אל האמת קח מעוקב הנשאר הנזכר מהמורה כפול
  • I.e. if we wish to know the root [of 3].
\scriptstyle{\color{OliveGreen}{\sqrt{3}}}
ר"ל שאם רצינו לדעת שרש
Double the root is added to the remainder; the total is six and the remainder at the beginning is two.
\scriptstyle{\color{blue}{\sqrt{3}\approx1+\frac{2\sdot1\sdot\left(3-1\right)}{\left(2\sdot1\right)^2+\left(3-1\right)}=1+\frac{2\sdot1\sdot2}{\left(2\sdot1\right)^2+2}=1+\frac{4}{6}}}
והיה כפל השרש מחובר עם הנשאר היה הכל ששה והנשאר בתחלה היו שתים
Take the cube of two, which is eight, name it by a sixth of a sixth, i.e. 8 that is called a sixth [= whose denominator is six] and this is the excess of the square over double the last [approximate] root.
\scriptstyle{\color{blue}{3-\left(1+\frac{4}{6}\right)^2=\frac{2^3}{\left[\left(2\sdot1\right)^2+2\right]^2}=\frac{8}{6}\sdot\frac{1}{6}}}
תקח מעוקב השנים שהוא שמונה ותקרא לו שם משישית שישית ר"ל ח' ששמה שישית וזה יהיה הנשאר במרובע על כפל השרש האחרון
Do with it and with the last [approximate] root as you did with the first remainder and the first [approximate] root; the resulting root is 1 integer and 112 parts of 153.
\scriptstyle{\color{blue}{\sqrt{3}\approx\left(1+\frac{4}{6}\right)+\frac{2\sdot\left(1+\frac{4}{6}\right)\sdot\left(\frac{8}{6}\sdot\frac{1}{6}\right)}{\left[2\sdot\left(1+\frac{4}{6}\right)\right]^2+\left(\frac{8}{6}\sdot\frac{1}{6}\right)}=1+\frac{112}{153}}}
ותעשה ממנו עם זה השרש האחרון כמו שעשית לשארית הראשון עם השרש הראשון ויעלה כל השרש א' שלם וקי"ב חלקים מקנ"ג בשלם
Whose square is 3 integers minus 2 parts of the square of 153.
\scriptstyle{\color{blue}{\left(1+\frac{112}{153}\right)^2=3-\frac{2}{153^2}}}
שמרובעו הוא ג' שלימים חסר ב' חלקים ממרובע קנ"ג בשלם
See, indeed, see [Samuel 1 24, 12], you have come closer to the truth, so that between the square of your root and the required square there is only one of a thousand and this is enough. וראה גם ראה[note 34] גם נתקרבת אל האמת שאין ממרובע השרשך למרובע הנשאל אחד מרבבה בשלם ודי

Section Two: Fractions

[157]החלק השני בשברים

Introduction

Before the chapters, I will open with an introduction that consist of three chapters: לפני הפרקים אקדים הקדמה אחת ובה שלשה פרקים
  • Chapter one on decomposing to a fraction
השער הא' בפריטה
  • Chapter two on multiplication [= fractions of fractions, fractions of integers]
השער הב' בהכאה
  • Chapter three on expansion to a common denominator
השער השלישי בהשואה

Chapter One on Decomposing to a Fraction

השער הראשון בפריטה
Definition: Decomposing to a fraction is converting the integers to fractions of whichever type you wish. הפריטה היא חזרת השלימים לחלקים מהמין אשר תרצה
If you have integers and fractions - converting all to the type of these fractions
ואם יש בידיך שלמים ושברים להשיב הכל ממין השברי' ההם
If you have fractions and fractions of fractions - converting all to the lower type of them.
וכן אם יש לך שברים ושברי שברים כמו שיהיו להשיב כלם מהמין הקטן מהם
Example for integers and fractions:
\scriptstyle{\color{OliveGreen}{n+\frac{a}{b}=\frac{\left(n\sdot b\right)+a}{b}}}
המשל שלימים בשברים
  • If you have 3 integers and 5 sevenths.
\scriptstyle3+\frac{5}{7}
אם היו בידיך ג' שלמים וה' שביעיות
The integers are converted to sevenths, which is the type of fractions that are with them, by multiplying these three integers by the denominator of the sevenths, which is 7. The result is 21. By adding the 5 sevenths to them, the total is 26 sevenths.
\scriptstyle{\color{blue}{3+\frac{5}{7}=\frac{\left(3\sdot7\right)+5}{7}=\frac{21+5}{7}=\frac{26}{7}}}
הנה השילימים ישובו שביעיות שהוא מין שברים שעמו בהכפל אלו השלשה שלימים במורה השביעיות שהוא הז' ויעלו כ"א ובחברך אליהם הה' שביעיות אשר עמהם יהיו הכל כ"ו שלימים שביעיות
All this is seen clear and its reason is explained in the examination of the [divisors] as clarified in chapter four - this is the rule and the reason. וכל זה תראה ברור ומפורש בטעם בבחינת המתחלק למורים כמו שנתבאר בפרק הד' והוא הדין והוא הטעם
If you have fractions and fractions of fractions, multiply the fractions by the denominator of the fractions of fractions, then add to them the fractions of fractions.
\scriptstyle{\color{OliveGreen}{\frac{g}{b}+\left(\frac{a}{b}\sdot\frac{c}{d}\right)=\frac{\left(g\sdot d\right)+\left(a\sdot c\right)}{b}\sdot\frac{1}{d}}}
כי אם אין בידיך כי אם שברים ושברי שברים שתכפול השברים במורה השברי שברים ושבר שברים שתכפול ותחבר אליהם השברי שברים וכן לעולם
I will give one example for all this: ואביא משל א' לכל זה
  • Example: if you have 3 integers, 2 quarters of a fifth and 4 eighths of quarters of a fifth, like this:
\scriptstyle3+\left(\frac{2}{4}\sdot\frac{1}{5}\right)+\left(\frac{4}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)+\left(\frac{2}{3}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)
המשל אם היו לך ג' שלימים וב' רביעיות חמישית וד' שמיניות רביעית חמישית כזה
3 9 8 4 5
2   4 2  
  • First we convert the 3 integers to fifths by multiplying them by 5, which is their denominator. This is because each integer is 5 fifths. Hence, they are 15 fifths.
\scriptstyle{\color{blue}{3=\frac{3\sdot5}{5}=\frac{15}{5}}}
נשיב ראשונה הג' שלמים לחמישיות והוא בכפלנו אותם בה' שהוא המורה עליהם וזה כי כל שלם הוא ה' חמישיות ויהיה ט"ו חמישיות
If there was a number beneath it [as the numerator of the 5] we would have add it to them, so they are also fifths.
ואם היה תחתיו מספר היינו מחברים אותו עליהם שהיו [158]ג"כ חמישיות
  • Since there is no [number beneath the 5], we further convert them to quarters of a fifth, which is the denominator of the 2, by multiplying them by 4. Because each fifth is 4 quarters of a fifth. The result is 60 quarters of a fifth. We add to them the two that is beneath [the 4], which is also of the same type, i.e. quarters of a fifth. The total is 62.
\scriptstyle{\color{blue}{\frac{15}{5}+\left(\frac{2}{4}\sdot\frac{1}{5}\right)=\frac{\left(15\sdot4\right)+2}{4}\sdot\frac{1}{5}=\frac{60+2}{4}\sdot\frac{1}{5}=\frac{62}{4}\sdot\frac{1}{5}}}
אכן אחר אשר לא נמצא שם נשיבם עוד רביעיות חמישית [שהוא המורה הב' וזה שנכפלם בד' כי כל חמישית שלמה היא ד' רביעיות החמישית ויעלו ס' רביעיות חמישית]‫[159] ונחבר אליהם השנים אשר תחתיו שהם ג"כ מזה המין ר"ל רביעיות חמישית ויעלו ס' רביעיות חמישית ונחבר אליהם הב' אשר תחתיו שהם ג"כ מזה המין ר"ל רביעיות חמישית יעלה הכל ס"ב
  • We convert them to eighths of quarters of a fifth by multiplying them by 8, the result is 496. We add to them the 4 that is beneath [the 8], which is of their type. The total is 500.
נשיבם שמיניות רביעיות חמישית וזה בשנכפלם בח' יעלה תצ"ו נחבר להם הד' אשר תחתיו שהם ממינם יעלה הכל ת"ק
\scriptstyle{\color{blue}{\left(\frac{62}{4}\sdot\frac{1}{5}\right)+\left(\frac{4}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)=\frac{\left(62\sdot8\right)+4}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{496+4}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{500}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}}}
  • We convert them to ninths of eighths of quarters of a fifth by multiplying them by 9, the result is 4500. Since we do not find anything beneath [the 9] we do not add anything to them.
\scriptstyle{\color{blue}{\frac{500}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{500\sdot9}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{4500}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}}}
נשיבם תשיעיות שמינית רביעית חמישית וזה בשנכפלם בט' יעלו 4500 ואחרי שלא נמצא תחתיו דבר לא נחבר אליהם דבר
  • We convert them to thirds of ninths of eighths of quarters of a fifth by multiplying them by 3, the result is 13500. We add to them the 2 that is beneath [the 3], which is of their type. The total is 13502 and we completed the procedure.
אבל נשיבם שלישיות תשיעית שמינית רביעית חמישית והוא שנכפלם בג' יעלו 13500 נחבר אליהם הב' אשר תחתיו שהוא ממינם יעלה הכל 13502 וכלינו כל מלאכתנו
\scriptstyle{\color{blue}{\left(\frac{4500}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)+\left(\frac{2}{3}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)=\frac{\left(4500\sdot3\right)+2}{3}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{13500+2}{3}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{13502}{3}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}}}
  • If there are no integers there at all.
\scriptstyle{\color{OliveGreen}{\left(\frac{2}{4}\sdot\frac{1}{5}\right)+\left(\frac{4}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)+\left(\frac{2}{3}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)}}
ואם לא היה שם שלמים כלל
  • We should start from the 2 that is beneath the first denominator beneath which there is a number, even if it were the second of the denominators. We multiply them by 8, which is the next denominator. The result is 16. We add to them the 4 that is beneath [the 8]. The result is 20.
היה לנו להתחיל מהב' אשר תחת המורה הראשון אשר תחתיו מספר מה ואם הוא שני לחשבון המורים והיה לנו לכפלם בח' שהוא המורה הסמוך ויעלו י"ו ולחבר להם הד' אשר תחתיו ויעלו כ‫'
\scriptstyle{\color{blue}{\left(\frac{2}{4}\sdot\frac{1}{5}\right)+\left(\frac{4}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)=\frac{\left(2\sdot8\right)+4}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{16+4}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{20}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}}}
Then we multiply them by 9. The result is 180. We multiply them also by 3. The result is 540. We add to them the 2 that is beneath [the 3]. The total is 542.
ונכפלם עוד בט' יהיו ק"פ נכפלם עוד בג' יעלו 540 נחבר להם הב' אשר תחתיו ויעלה הכל 542
\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left(\frac{20}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)+\left(\frac{2}{3}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)&\scriptstyle=\left(\frac{20\sdot9}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)+\left(\frac{2}{3}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)=\frac{\left(180\sdot3\right)+2}{3}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\\&\scriptstyle=\frac{540+2}{3}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{542}{3}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\\\end{align}}}
Thus, we have everything explained by the procedure and by reason - how everything is converted into the final type, whether there are integers with fractions, or there are no integers there; the result is of the final type. הרי לנו הכל מפורש במעשה ובטעם איך ישוב הכל מהמין האחרון בין אם יש שלמים עם שברים בין אם אין שם שלמים והיוצא באחרונה הם מהמין האחרון
I.e. for the result in our mentioned example are thirds of a ninth of an eighth of a quarter of a fifth. ר"ל כי אלו אשר יצאו לנו במשלנו הנזכר הם שלישיות תשיעית שמינית רביעית חמישית

Chapter Two on Multiplication [= compound fractions]

השער השני בהכאה
Definition: The multiplication [= compound fractions] is when the fractions are not [fractions] of one integer, or of one fraction, but they are [fractions] of a number of integers or a number of fractions. ההכאה היא כאשר השברים אינם שברים [160]משלם אחד או משבר אחד אבל הם ממספר שלמים או ממספר שברים
  • As when we say: two fifths of three quarters of 5 integers, like this:
\scriptstyle\frac{2}{5}\sdot\frac{3}{4}\sdot5
ר"ל כאומרנו שתי חמישיות משלש רביעיות מה' שלמים כזה
  5
  4
5 3
2
Our saying two fifths of 3 quarters of 5 integers is as saying that we take 5 integers and divide them into 4 equal parts. We take 3 of them, which are 3 quarters of the 5 integers, and divide these three parts further into 5 equal parts. Then we take 2 of them, which are 2 fifths of 3 quarters of 5 integers.
והנה אומרנו שני חמישיו' מג' רביעיות מה' שלמים הוא כאומרנו שלקחנו ה' שלמים ועשינו מהם ד' חלקי' שוים ולקחנו הג' מהם שזהו ג' רביעיות מה' שלמים וחלקנו עוד אלו הג' חלקים לה' חלקים שוים ולקחנו הב' מהם שזהו פי' ב' חמשיות מג' רביעיות מה' שלמים
The fractions here are of one type only, therefore, there is no need for decomposing to a fraction at all. ואין כאן שברים כי אם ממין אחד ואינך צריך לעשות פריטה כלל
\scriptstyle{\color{OliveGreen}{\frac{a}{b}\sdot\frac{c}{d}=\frac{a\sdot c}{b}\sdot\frac{1}{d}}}
\scriptstyle{\color{OliveGreen}{\frac{a}{b}\sdot\frac{c}{d}\sdot n=\frac{a\sdot c\sdot n}{b}\sdot\frac{1}{d}}}
Yet, there is a need for multiplication. אבל אתה צריך לעשות הכאה
For, our saying: 2 fifths of 3 quarters is as our saying: 2 fifths of a quarter, plus 2 fifths of a quarter, plus 2 fifths of a quarter. Therefore, we multiply 2 by 3, which is the number of the quarters. The result is 6. Hence, we know that the 2 fifths of 3 quarters are 6 fifths of a quarter and this clear by the operation and by reason.
והוא כי אומרנו ב' חמישיות מג' רביעיות הרי הוא כאומרנו ב' חמישיות רביעית וב' חמישיות רביעית וב' חמישיות רביעית ולזה נכה הב' בג' שהוא מספר הרביעיות יעלו ו' הנה ידענו שהב' חמישיות מג' רביעיות הם ו' חמישיות רביעיות והוא ברור במעשה ובטעם
\scriptstyle{\color{blue}{\frac{2}{5}\sdot\frac{3}{4}=\left(\frac{2}{5}\sdot\frac{1}{4}\right)+\left(\frac{2}{5}\sdot\frac{1}{4}\right)+\left(\frac{2}{5}\sdot\frac{1}{4}\right)=\frac{2\sdot3}{5}\sdot\frac{1}{4}=\frac{6}{5}\sdot\frac{1}{4}}}
Since we say "of 5 integers" it is as if we have 6 fifths of a quarter of one five times. Therefore, we multiply 6, which is the number of the fractions that we have, by 5, which is the number of the integers, as the number of the duplications of what we have. The result is 30. Hence, 2 fifths of 3 quarters of 5 integers are 30 fifths of a quarter.
ולפי שאמרנו מה' שלמים הוא כאלו יש לנו בידינו ו' חמישיות רביעית משלם וכן עד ה' פעמים לכן נכה הו' שהוא מספר השברים אשר בידינו בה' שהוא מספר השלמים שהוא כמספר הפעמים אשר ישנך בידינו ויעלו ל' הרי לנו שהב' חמישיו' מג' רביעיות מה' שלמים הם ל' חמישיות רביעית והקש על זה
\scriptstyle{\color{blue}{\frac{2}{5}\sdot\frac{3}{4}\sdot5=\frac{6}{5}\sdot\frac{1}{4}\sdot5=\frac{6\sdot5}{5}\sdot\frac{1}{4}=\frac{30}{5}\sdot\frac{1}{4}}}
Sometimes the fractions and fractions of fractions are of a number of fractions or integers and for this you should apply both operations i.e. decomposing to a fraction and multiplication. ולפעמים יהיה כמספר שברים ושברי שברים משבר אחת גם ממספר שברים או שלמים ולזה תצטרך לעשות שני דברים המעשים ר"ל הפריטה והכאה
  • Example: two quarters and 3 fifths of a quarter of 3 sevenths of an eighth and 4 fifths of sevenths of an eighth of 3 ninths of a tenth of 4 integers.
\scriptstyle\left[\frac{2}{4}+\left(\frac{3}{5}\sdot\frac{1}{4}\right)\right]\sdot\left[\left(\frac{3}{7}\sdot\frac{1}{8}\right)+\left(\frac{4}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left(\frac{3}{9}\sdot\frac{1}{10}\right)\sdot4
המשל שני רביעיות וג' חמישיות רביעית מג' שביעיות שמינית וד' חמישיות שביעית שמינית מג' [161]תשיעיות עשירית מד' שלמים
Set the following diagram:
תעשה הצורה כזה
      4
9 10
5 7 8 3
5 4 4 3
3
First decompose each of them to a fraction:
ועשה הפריטה לכל אחד מהם תחלה
  • Decompose the 3 sevenths of an eighth that are related [to the four fifths of sevenths of an eighth] by multiplying them by each other, that is by multiplying the 3 that is the number of the [sevenths] by 5, which is the next denominator. The result is 15. We add to them the 4 that is beneath [the 5], which is of the same type. The total is 19.
ונעשה פריטה לג' שביעיות שמינית שהן נקשרות בשנכפול זו בזו וזה בשנכפול הג' שהם מספ' השברים בה' שהוא המורה הסמוך ויעלו ט"ו ונחבר להם הד' אשר תחתיו שהם ממין זה יהיו כלם י"ט
\scriptstyle{\color{blue}{\left(\frac{3}{7}\sdot\frac{1}{8}\right)+\left(\frac{4}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)=\frac{\left(3\sdot5\right)+4}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}=\frac{15+4}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}=\frac{19}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}}}
  • We decompose 2-quarters and 3 fifths of a quarter that are also related, by multiplying 2 by 5. The result is 10. We add to them the 3 that is beneath [the 5]. The result is 13.
עוד נעשה פריטה לב' רביעיות וג' נחשת חמשיות רביעית שהם ג"כ נקשרות וזה שנכפול הב' בה' ויעלו י' ונחבר להם הג' אשר תחתיו ויעלו י"ג
\scriptstyle{\color{blue}{\frac{2}{4}+\left(\frac{3}{5}\sdot\frac{1}{4}\right)=\frac{\left(2\sdot5\right)+3}{5}\sdot\frac{1}{4}=\frac{10+3}{5}\sdot\frac{1}{4}=\frac{13}{5}\sdot\frac{1}{4}}}
Thus, our first question is as if saying: we have 13 fifths of a quarter of 19 fifths of sevenths of an eighth of 3 ninths of a tenth of 4 integers. As follows:
הנה שאלתנו הראשונה הוא כאלו אמרו שיש בידינו י"ג חמישיות רביעית מי"ט חמישיות שביעית שמינית מג' תשיעיות עשירית הד' שלמים כזה
      4
9 10
5 7 8 3
5 4 19
13
\scriptstyle{\color{blue}{\left[\frac{2}{4}+\left(\frac{3}{5}\sdot\frac{1}{4}\right)\right]\sdot\left[\left(\frac{3}{7}\sdot\frac{1}{8}\right)+\left(\frac{4}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left(\frac{3}{9}\sdot\frac{1}{10}\right)\sdot4=\left(\frac{13}{5}\sdot\frac{1}{4}\right)\sdot\left(\frac{19}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\sdot\left(\frac{3}{9}\sdot\frac{1}{10}\right)\sdot4}}
Hence, the explanation of our question is if we were told:
  • We took 4 integers and divided them, i.e. the four of them together, into ten equal parts.
והנה ביאור שאלתנו הוא כאלו אמרנו לנו לשלקחנו ד' שלמים ועשינו מהם ר"ל מארבעתם ביחד עשרה חלקים שווים
  • We took one part of them and divided it into 9 parts.
ולקחנו [חלק אחד מהם ועשינו אותו ט' חלקים
  • We took 3 parts of these 9 latter together and divided them into 8 equal parts.
ולקחנו]‫[162] ג' חלקים מאלו הט' האחרונים ביחד ועשינו ח' חלקים שוים
  • We took one part of them, divided it into 7 equal parts, then divided each part of them into 5.
ולקחנו חלק אחד מהם ועשינו אותו ז' חלקים וחלקנו כל חלק מהם לה‫'
  • We took 19 parts of the type of the latter, divided them into 4 equal parts, then divided each part of them into 5.
ולקחנו י"ט חלקים ממין אלו האחרונים ביחד ועשינו אותם ד' חלקים שוים וחלקנו כל חלק מהם לה' חלקים
  • So we have 13 of the type of these latter parts and we wish to know which are they.
ויש לנו ממין אלו החלקים האחרונים י"ג ונרצה לידע מה המה אלה
We should understand, since it is said "of 19 fifths" etc. and it is said "of 3 ninths" etc. and it said "of 4 integers", that from this we know that they are not of one fraction nor of one integer, but of a number of integers and fractions.
והננו צריכים להבנה לפי שאמרו מי"ט חמישיות וכו' גם לאומרם מג' תשיעיות וכו' גם לאומרם מד' שלמים כי בזה ידענו שאינם משבר אחד אף לא משלם אחד כי מספר שלמים וממספר ש שברים
Therefore, we multiply the number of the fractions we have by the number of the fractions that are mentioned and by the number of integers, one after the other.
[163]לכן נכה מספר השברים אשר בידינו במספר השברים אשר הזכירו גם במספר השלמים זה אחר זה
Because, our saying: "13 fifths of quarters of 19 fifths" etc. is as our saying "19 times 13 fifths of a quarter of a fifth" etc.
וזה כי אומרנו י"ג חמישיות רביעיות י"ט חמישיות וכו' הוא כאומרנו י"ט פעמי' י"ג חמישיות [רביעית חמישית]‫[164] וכו‫'
So, we multiply 13 by 19; the result is 247 fifths of quarters of a fifth etc.
לכן נכפול הי"ג בי"ט ויעלו 247 חמישיות רביעיות חמישית וכו‫'
\scriptstyle{\color{blue}{\left(\frac{13}{5}\sdot\frac{1}{4}\right)\sdot\left(\frac{19}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)=\frac{13\sdot19}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}=\frac{247}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}}}
Also, when we are told: "of 3-ninths", it is as if we are told: "3 times all that we have".
גם כאשר אמרו לנו מג' תשיעיות הוא כאלו אמרו לנו ג' פעמים כל אשר בידינו
So, we multiply all that we have, which is 247, by 3; the result is 741, which are fifths of quarters of fifths of sevenths of eighths of ninths of a tenth etc.
‫[ולזה נכפול כל אשר בידינו]‫[165] שהוא 247 בג' ויעלה 741 והם חמישיות רביעיות חמישיות שביעיות שמיניות תשיעיות עשירית וכו‫'
\scriptstyle{\color{blue}{\left(\frac{247}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\sdot\left(\frac{3}{9}\sdot\frac{1}{10}\right)=\frac{247\sdot3}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}=\frac{741}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}}}
As we are told: "of 4 integers", it is as if we are told: "4 times all that we have".
ולפי שאמרו לנו מד' שלמים הוא כאלו אמרו לנו ד' פעמים כל אשר בידינו
So, [we multiply] all that we have, which is 741, by four; the result is 2964-fifths of a quarter of a fifth of a seventh of an eighth of a ninth of a tenth.
לכן כל אשר בידינו שהוא 741 בארבעה ויעלה 2964 חמישיות רביעית חמישית שביעית שמינית תשיעית עשירית
\scriptstyle{\color{blue}{\left(\frac{741}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)\sdot4=\frac{741\sdot4}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}=\frac{2964}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}}}
Always remember that the number you find on top of another number is the denominator, not the bottom [number]. וזכור לעולם כי המספר אשר תמצא על ראשו מספר אחר שהתחתון איננו מורה כי העליון
If we want to know how many integers, or fractions, or fractions of fractions are these decomposed fractions: ואם בקשנו לידע כלם אלו החלקים הנפרטו' כמה שלמים או כמה שברים או שברי שברים מאלו הם
You already know that there are seven denominators. Arrange them as you wish, according to their order now, or calculatedly, in order that the fractions will be more proper. For the order is harmless, except in addition and subtraction, as we explain in chapter 4. כבר ידעת שיש כאן שבעה מורים ותושיבם כרצונך או כסדרם עתה או בהשגחה כדי שיצאו החלקים יותר נאותים כי הסדר לא יזיק לעולם כי אם התוספת בהם או המגרעת כאשר ביארנו בפרק הד‫'
We divide by them the 2964, which is the decomposed number that we have, and we call it a reduced fraction [lit. perfect beauty].
ונחלק עליהם 2964 שהוא מספר אשר בידינו נפרטות וקראנו לזה כלילת יופי
Since this number has a quarter, we place [the 4] last, in order that it will be removed and we divide [2964] by 4; the result of division is 741 and nothing remains.
ואחר שיש לחשבון רביעית נשימהו לאחרון כדי שיתבטל ונחלקם על ד' ויצא בחילוק 741 ולא ישאר דבר
This result of division is indivisible by the remaining denominators, therefore we place whichever we want before the last that we wrote. Let it be 5. We divide it by 5; the result of division is 148 and 1 remains. We write it beneath it.
וזה היוצא בחלוק אין לו אחד מהמורים הנשארים לכן נשים אשר נספק לפני האחרון אשר שמנו ויהיה ה' ונחלקם על הה' ויצא בחלוק 148 וישאר א' ונשימנו תחתיו
Since this number has a quarter, we factorize the denominator of the eighth, which is 8, to 4 and 2 and write them instead of it; this indicates half of a quarter, of a quarter of a half, or an eighth. We shall explain it at the end of the book. After we have factorized it, i.e. removed it and placed 2 and 4 instead of it, we write 4 before the written denominators and divide what we have by it; the result of division are 37 [parts].
ואחר שיש לו החשבון ‫[166]רביעית נתיך המורה השמינית שהוא הח' ונעשה ממנו ב'ד' ונשימם במקומו כך הוא הוראת חצי רביעית או רביעית חצי [כמו]‫[167] או שמינית ועוד נבאר זה בסוף הספר ואחר התיכנו אותו ר"ל שנסירהו ונשים במקומו ב'ד' נשים הד' לפני המורי' המושמים ונחלק לו אשר בידינו ויצא בחלוק ל"ז חלקים
We divide them by whichever we want. Let it be 7. The result of division is 5 and 2 remains. We write it beneath it.
ונחלקם לאשר נחפוץ ויהיה על הז' ויצא בחילוק ה' וישארו ב' ונשימם תחתיו
We divide the 5 resulted from the division by the denominator of the first fifth; the result of division is 1 and nothing remains.
ונחלק הה' שיצאו בחלוק למורה הה' הא' ויצא א' בחלוק ולא ישאר דבר
Since the result of division is less than the smallest denominators mentioned, we should not divide further, but write them orderly before those that were written calculatedly. We write the one resulted from the last division beneath the denominator that is next to those that were written up to this phase.
ואחר שאשר יצא בחלוק הוא פחות מהקטן שבכל המורים הנזכרים אין לנו לחלק עוד אבל נשימם על הסדר לפני המושמים בכל השגחה ונשים זה האחד אשר יצא בחילוק באחרונה תחת המורה הסמוך למושמים עד הנה
Thus, we get what we wanted and it is that the required at first is half a ninth of a tenth, two-sevenths of a fifth of a half of a ninth of a tenth, and a fifth of a quarter of a seventh etc.
והנה יצא לנו מבוקשינו והוא שהנשאל לנו תחלה עולה חצי תשיעית עשירית ושתי שביעיות חמישית חצי תשיעית עשירית וחמישית רביעית שביעית וכו‫'
\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left[\frac{2}{4}+\left(\frac{3}{5}\sdot\frac{1}{4}\right)\right]\sdot\left[\left(\frac{3}{7}\sdot\frac{1}{8}\right)+\left(\frac{4}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left(\frac{3}{9}\sdot\frac{1}{10}\sdot4\right)&\scriptstyle=\frac{2964}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}=\frac{2964}{4}\sdot\frac{1}{5}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}\\&\scriptstyle=\frac{741}{5}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}\\&\scriptstyle=\left(\frac{148}{4}\sdot\frac{1}{2}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)+\left(\frac{1}{5}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)\\&\scriptstyle=\left(\frac{37}{7}\sdot\frac{1}{2}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)+\left(\frac{1}{5}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)\\&\scriptstyle=\left(\frac{5}{5}\sdot\frac{1}{2}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)+\left(\frac{1}{2}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)+\left(\frac{1}{5}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)\\&\scriptstyle=\left(\frac{1}{2}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)+\left(\frac{2}{7}\sdot\frac{1}{5}\sdot\frac{1}{2}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)+\left(\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{2}\sdot\frac{1}{9}\sdot\frac{1}{10}\right)\\\end{align}}}
5 4 7 5 2 9
1   2   1
Do not be surprised that you had onle seven denominators and now they are eight, as this is due to the factorization of the denominator of the eighth that is 8, which we removed and instead of which we placed two denominators that are 2 and 4.
ואל תתמה שלא היו לך כי אם ז' מורים ועתה הם ח' כי זה היה להתכת המורה השמינית והוא הח' שהסרנו אותו מהם ושמנו במקומו שני מורים והם ב'ד‫'
Apply this, because the entire procedure and the reason are clear. והקש על זה כי הכל ברור המעשה והטעם

Chapter Three on the Expansion to a Common Denominator

השער השלישי בהשואה
Definition: The expansion to a common denominator is when you have fractions of various types that are not related to each other at all, i.e. the type of these fractions is not the type of fractions of the others. ההשואה היא כאשר יהיו לך שברים ממינים שונים בלתי נקשרים זה בזה כלל ר"ל שאין אלו שברי שברים אלו
  • Example: if you have two integers, 3-eighths and 2-quarters of an eighth, 4-fifths, 6-sevenths and 3-eighths of a sevenths, like this, and you wish to convert all of them into one type.
\scriptstyle\left[2+\frac{3}{8}+\left(\frac{2}{4}\sdot\frac{1}{8}\right)\right]\quad\frac{4}{5}\quad\left[\frac{6}{7}+\left(\frac{3}{8}\sdot\frac{1}{7}\right)\right]
המשל אם היו בידיך שני שלמים ועוד וג' שמינית וב' רביעיות שמינית ועוד ד' חמישיות ועוד ו' שביעיות וג' שמיניות שביעית כזה ‫[168]ותרצה להשיבם כלם ממין אחד
8 7 5 4 8 2
3 6 4 2 3
First we decompose the 2 integers plus the 3-eighths and the 2-quarters of an eighth, since they are related to the 6-sevenths and the 3-eighths of a seventh, for the related also need decomposing to a fraction.
ונעשה תחלה פריטה לב' שלמים וג' שמיניות וב' רביעיות שמינית ועוד ד' חמישיות ועוד ו' שביעיות אחרי היותם נקשרים גם לו' שביעיות וג' שמיניות שביעית כי גם הם נקשרים וצריכים פריטה
  • We start by saying: 2 units, how many eighths are they? This is known by multiplying them by 8; they are 16. We add to them the 3 that is beneath [the 8] and the total is 19.
\scriptstyle{\color{blue}{2+\frac{3}{8}=\frac{\left(2\sdot8\right)+3}{8}=\frac{16+3}{8}=\frac{19}{8}}}
ונתחיל לומר ב' אחדים כמה שמיניות הם וזה יודע בהכפלם בח' יהיו י"ו ונחבר להם הג' אשר תחתיו יהיו כלם י"ט
We convert them further to quarters of an eighth by multiplying them by 4; the result is 76. Then we add to them the 2 that is beneath [the 4]; the result is 78 quarters of an eighth.
\scriptstyle{\color{blue}{\frac{19}{8}+\left(\frac{2}{4}\sdot\frac{1}{8}\right)=\frac{\left(19\sdot4\right)+2}{4}\sdot\frac{1}{8}=\frac{76+2}{4}\sdot\frac{1}{8}=\frac{78}{4}\sdot\frac{1}{8}}}
עוד נשיבם רביעיות שמיני' וזה יהיה בהכפלם כלם בד' יעלו ע"ו ונחבר להם הב' אשר תחתיו יעלו ע"ח רביעיות שמינית
  • We also decomposing the 6-sevenths plus 3-eighths of a seventh to a fraction by saying: 6-sevenths, how many eighths of a seventh are they? This is known by multiplying them by 8; they are 48. We add to them the 3 that is beneath [the 8]; the result is 51 eighths of a seventh.
\scriptstyle{\color{blue}{\frac{6}{7}+\left(\frac{3}{8}\sdot\frac{1}{7}\right)=\frac{\left(6\sdot8\right)+3}{8}\sdot\frac{1}{7}=\frac{48+3}{8}\sdot\frac{1}{7}=\frac{51}{8}\sdot\frac{1}{7}}}
עוד נפרוט הו' שביעיות וג' שמיניות שביעית ונאמרו ו' שביעיות שלמות כמה שלמות שמיניות שביעית הם וזה יודע בהכפלם בח' ויעלו מ"ח ונחבר להם הג' אשר תחתיו ועלו נ"א שמיניות שביעית
It is as if we were asked to convert 78 quarters of an eighth, 4 fifths, and 51 eighths of a seventh into one type. Like this:
\scriptstyle{\color{blue}{\frac{78}{4}\sdot\frac{1}{8}\quad\frac{4}{5}\quad\frac{51}{8}\sdot\frac{1}{7}}}
והרי הוא כאלו שאלו לנו להשיב למין אחד עין מ' ע"ח רביעיות שמינית וד' חמישיות ונ"א ע"ח שמיניות שביעית שביעי כזה
8 7 5 4 8
51   4 78
Since we have different denominators and different fractions, we should explain how to convert all of them into one type without changing them, i.e. that they will all be fractions of the same denominators.
ואחרי היות בידינו מורים משונים ושברים משונים ראוי לנו לבאר איך נשיבם כלם ממין אחד מבלתי שינוי ביניהם ר"ל שיהיו כלם שברים ממורים אחדים
First, I will explain that the order of the denominators neither increases nor decreases:
\scriptstyle{\color{OliveGreen}{\frac{1}{a}\sdot\frac{1}{b}=\frac{1}{b}\sdot\frac{1}{a}}}
וקודם זה אציע שסדור המורים אינו מעלה ומוריד
Because, the seventh of an eighth, for instance, is the the same as the eighth of a seventh, since each is a part of [56], which is the number that consists of these denominators and this is clear.
\scriptstyle{\color{blue}{\frac{1}{7}\sdot\frac{1}{8}=\frac{1}{{\color{red}{56}}}=\frac{1}{8}\sdot\frac{1}{7}}}
כי כך הוא שביעית שמינית עד"מ כמו שמינית שביעית כי כל אחד מהם הוא חלקנו מה' בשלם שהוא המספר אשר הוא מורכב מאלו המורים וזה ברור
  • So, when we have, for example, 3-sevenths and 4-eighths.
\scriptstyle\frac{3}{7}\quad\frac{4}{8}
לכן כאשר היה לנו עד"מ ג' שביעיות וד' שמינית
We convert all of them into sevenths of an eighth, which are eighths of a seventh.
נשיבם כלם שביעיות שמינית שהוא שמיניות שביעית
  • This is done by multiplying the 3 that are the number of the sevenths by 8; they are 24 eighths of a seventh.
\scriptstyle{\color{blue}{\frac{3\sdot8}{8}\sdot\frac{1}{7}=\frac{24}{8}\sdot\frac{1}{7}}}
וזה יעשה בכפול הג' שברי השביעיות בח' ויהיו כ"ד שמיניות שביעיות
This is clear, since every seventh is 8-eighths of a seventh, as each integer is eight eighths.
וזה ברור כי כל שביעיות הוא ח' שמיניות שביעית כמו שכל שלם ‫[169]הוא שמונה שמיניות השלם
  • We do the same with the 4-eighths: we convert them into sevenths of an eighth by multiplying the 4, which is the number of the fractions, by 7, which is the denominator of the seventh; the result is 28.
\scriptstyle{\color{blue}{\frac{4\sdot7}{7}\sdot\frac{1}{8}=\frac{28}{7}\sdot\frac{1}{8}}}
וכן נעשה לד' שמיניות שנשיבם לשביעיות שמינית והוא בכפול הד' שהוא מספר השברים בז' שהוא מורה השביעיות ויעלו כ"ח
They are 28 sevenths of an eighth and the others are 24 eighths of a seventh, so all are of the same type, as we said that there is no difference between saying a seventh of an eighth and saying an eighth of a seventh.
והם כ"ח שביעיות שמינית והאחרות עלו כ"ד שמיניות שביעית הנה כלם ממין אחד כמו שהזכרנו שאין חלוף בין אומרנו שביעית שמינית לאומרנו שמינית שביעית
After explaining this premise, we return to our first procedure, which is multiplying each numerator of the fractions that we have by the denominators of the others successively, thus each fraction will be of all the denominators, so they are of the same type, for the order of the denominators forward or backward does not matter.
\scriptstyle{\color{OliveGreen}{\frac{a}{b}=\frac{a\sdot d}{b}\sdot\frac{1}{d}=\frac{a\sdot d}{d}\sdot\frac{1}{b}}}
\scriptstyle{\color{OliveGreen}{\frac{a}{b}=\frac{a\sdot d}{d}\sdot\frac{1}{b}=\frac{a\sdot d}{b}\sdot\frac{1}{d}}}
ואחר שהצענו הצעה זו נשוב למעשינו הראשון והוא לכפול כל מספר שברים אשר בידינו במורי חברותיה זה אחר זה וכן לכלם ואז תהיה כל אחד שברים מכל המורים והנה הם שוים כי סדור המורים בקדימה ואיחור לא יזיק
  • We start our procedure by saying: when we multiply 78 quarters of an eighth by 5, which is the denominator of the fifths, the result is 390 fifths of a quarter of an eighth.
\scriptstyle{\color{blue}{\frac{78\sdot5}{5}\sdot\frac{1}{4}\sdot\frac{1}{8}=\frac{390}{5}\sdot\frac{1}{4}\sdot\frac{1}{8}}}
ונתחיל במעשינו ונאמר 78 רביעיות שמינית כאשר נכפלם בה' שהוא מורה החמישיות יעלו 390 חמישיות רביעית שמינית
We also multiply this product by 7, which is the denominator of the seventh; the result is 2730 sevenths of fifths of a quarter of an eighth.
\scriptstyle{\color{blue}{\frac{390\sdot7}{7}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{8}=\frac{2730}{7}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{8}}}
עוד נכפול זה המחובר בז' שהוא מורה השביעית ויעלו 2730 שביעיות חמישיות רביעית שמינית
We also multiply all this by 8, which is the denominator of the eighths; the result is 21840 eighths of sevenths of fifths of quarters of eighths and this is the result of 78 quarters of eighths.
\scriptstyle{\color{blue}{\frac{2730\sdot8}{8}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{8}=\frac{21840}{8}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{8}}}
עוד נכפול כל זה בח' שהוא המורה השמיניות ויעלו 21840 שמיניות שביעיות חמישיות רביעיות שמיניות וזהו העולה מה78 רביעיות שמיניות
  • We also multiply the 4 that are 4-fifths by all the denominators of the others, one after the other. We say: 4 by 8 is 32 eighths of a fifth.
\scriptstyle{\color{blue}{\frac{4\sdot8}{8}\sdot\frac{1}{5}=\frac{32}{8}\sdot\frac{1}{5}}}
עוד נכפול הד' שהוא ד' חמישיות בכל מורי חברותיה זה אחר זה ונאמר ד בח' הם [ל"ב]‫[170] שמיניות חמשית
We also multiply them by 4; they are 128 quarters of eighths of a fifth.
\scriptstyle{\color{blue}{\frac{32\sdot4}{4}\sdot\frac{1}{8}\sdot\frac{1}{5}=\frac{128}{4}\sdot\frac{1}{8}\sdot\frac{1}{5}}}
עוד נכפלם בד' יהיו 128 רביעיות שמיניות חמישית
We also multiply them by 7; they are 896 sevenths of a quarter of an eighth of a fifth.
\scriptstyle{\color{blue}{\frac{128\sdot7}{7}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{5}=\frac{896}{7}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{5}}}
ונכפלם בז' יהיה 896 שביעיות רביעית שמינית חמישית
We also multiply them by 8; the result is 7168 eighths of a seventh of a quarter of an eighth of a fifth.
\scriptstyle{\color{blue}{\frac{896\sdot8}{8}\sdot\frac{1}{7}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{5}=\frac{7168}{8}\sdot\frac{1}{7}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{5}}}
עוד נכפלם בח' 8 יעלו 7168 שמיניות שביעית רביעית שמינית חמישית
  • We also multiply the 51 that are 51-eighths of a seventh by 5; the result is 255 fifths of eighths of a seventh.
\scriptstyle{\color{blue}{\frac{51\sdot5}{5}\sdot\frac{1}{8}\sdot\frac{1}{7}=\frac{255}{5}\sdot\frac{1}{8}\sdot\frac{1}{7}}}
עוד נכפול הנ"א שהם נ"א שמיניות שביעית בה' יעלו 255 2 חמישיות שמיניות שביעית
We multiply them by 4; the result is 1020 quarters of fifths of eighths of a seventh.
\scriptstyle{\color{blue}{\frac{255\sdot4}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\sdot\frac{1}{7}=\frac{1020}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\sdot\frac{1}{7}}}
נכפלם בד' יעלו 1020 רביעית חמישיות שמיניות שביעית
We also multiply them by 8; the result is 8160 eighths of quarters of a fifth of an eighth of a seventh.
\scriptstyle{\color{blue}{\frac{1020\sdot8}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\sdot\frac{1}{7}=\frac{8160}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\sdot\frac{1}{7}}}
עוד נכפלם בח' יעלו 8160 ‫[171]שמיניות רביעיות חמישית שמינית שביעית
Now all are of one type, for the denominators are the same, because the order neither increases nor decreases as we have explained.
הרי כלם ממין אחד כי המורים שוים כי הסדר אינו מעלה ומוריד כאשר ביארנו
Beware lest you make a mistake when doing this expansion to a common denominator, not to add what is beneath the denominators to the product of the numerators by the denominators, for this is done only when decomposing to a fraction, when we want to sum up all the mentioned related fractions and to decompose them to the lowest fraction. והשמר לך מאד פן תטעה בעשותך השואה זו לחבר לעולה מכפל השברים במורים מה שנמצא תחת המורי' כי זה לא יעשה כי אם בפריטה לבד שאנו רוצים לחבר כל השברים הנזכרים הנקשרים ולפרטם למין הפרוטות
  • Example: the one who has peraḥim and peruṭot and wishes to convert the peruṭot that he has, or to convert the peraḥim into zehuvim [gold coins], i.e. to see how many zehuvim they are, to add the zehuvim that he has to the result, then to convert all the zehuvim to peruṭot and add to them the peruṭot that he has, so that all is summed and decomposed [to lowest value (peruṭot)].
המשל במי שיש לו פרחים וזהובים ופרוטות שרוצה להשיב הפרוטות שיש לו או להשיב הפרחים זהובים ר"ל לראות כמה זהובים יעלו ולחבר לעולה הזהובים אשר היו בידו ואחר כך להשי' כל הזהובים פרוטות ולחבר עמהם הפרוטות אשר בידו ויהיה אז הכל מחובר ונפרט
But, the expansion to a common denominator does not includes summing at all, but to convert all the fractions to same type of units, so one does not sum them at all and this is clear by reason. אבל ההשואה אין בה חבור כלל כי אם לעשות כל שברים מהם ממין האחדים לכן לא יחברם כלל וזה מבואר בטעם
Therefore I gave them different names that indicate this matter by hint. ולזה שמתי להם שמות שונים מורי' על הענין ברמז
  • For, to the conversion of the fractions that are not related together into one type of fractions by multiplying each of these fractions by the denominators of the others, I called Hašavah [expansion to a common denominator], yet our intention is not at all to sum the fractions together, but only to equalize [their denominators].
כי להחזרת השברים הבלתי נקשרות למין אחד בהכאת כל אחד מהם במורי חברותיה קראתי השואה שאין כונתינו חבור כלל כי אם ההשואה לבד
  • To the conversion of fractions that are related together into the lowest type of fractions I called Periṭah [decomposing to a fraction].
ולהשבת השברים הנקשרים כלם יחד למין השברים הגרועים מהם קראתי פריטה
For two reasons:
לשתי כוונות
1) It is as converting [= poreṭ] peraḥim and zehuvim [kinds of coins] to peruṭot [currency of the lowest value] and as converting [= poreṭ] the general to particular [= peraṭim] [meaning: the Hebrew word for converting = poreṭ has the same linguistic root of periṭah that is used for decomposing to a fraction]
האחת שהוא כפורט ועושה מהפרחים וזהובים ופרוטות פרוטות וכמשיב הכללים לפרטים
2) By this word one is reminded of the details [= peraṭ, again the same linguistic root] that are found beneath the denominators [i.e. the numerators].
והכונה השנית היא כי בשם זה יזכר שיש לו לקחת עמו הפרט והעוללות אשר ימצא תחת המורים
For every number that requires multiplication and decomposing to a fraction - the decomposing to a fraction should be applied first to the multiplicands, and then the multiplication is applied. ובכל מספר שצריך הכאה עם הפריטה יעשה קודם הפריטה לבעלי ההכאה ואחר ההכאה
Therefore, wherever we mention and instruct to decompose to a fraction, we mean that it is followed by the multiplication if needed, or whatever is needed, if you have a number that consists of fractions that require multiplication and decomposing to a fraction. לכן בכל מקום אשר נזכיר ונצוה לעשות פריטה רצוננו ואחריה ההכאה אם הוצרך איליה או אשר מהם יצטרך שאם יהיה לך מספר ‫[172]מורכב מהשברים הצריכים הכאה ועם הצריכים פריטה
  • Example: 3-quarters of 2-fifths and 3-quarters of fifths of 4-sixths and a third of a sixth.
\scriptstyle\frac{3}{4}\sdot\left[\frac{2}{5}+\left(\frac{3}{4}\sdot\frac{1}{5}\right)\right]\sdot\left[\frac{4}{6}+\left(\frac{1}{3}\sdot\frac{1}{6}\right)\right]
המשל ג' רביעיות מב' חמישיות וג' רביעיות חמישיות מד' ששיות ושלישית ששית
Arrange them like this:
תשימם על הסדר כזה
  3 6
  4 5 1 4
4 3 2
3
  • Decompose 4-[sixths] and a third of a sixth by multiplying 4 by 3 and add the 1 that is beneath it; the result is 13-thirds of a sixth.
\scriptstyle{\color{blue}{\frac{4}{6}+\left(\frac{1}{3}\sdot\frac{1}{6}\right)=\frac{\left(4\sdot3\right)+1}{3}\sdot\frac{1}{6}=\frac{13}{3}\sdot\frac{1}{6}}}
ותעשה פריטה לד' שביעיות ושלישית שישית והוא שתכפול הד' בג' ותחבר להם האחד אשר תחתיו ויעלו י"ג שלישיות ששית
  • Do the same with 2-fifths and 3-quarters of a fifth; the result is 11-quarters of a fifth.
\scriptstyle{\color{blue}{\frac{2}{5}+\left(\frac{3}{4}\sdot\frac{1}{5}\right)=\frac{11}{4}\sdot\frac{1}{5}}}
וכן תעשה לב' חמישיות וג' רביעיות חמישית ויעלו י"א רביעיות חמישית
Your number becomes as if saying 1[1]-quarters of a fifth of 13-thirds of a sixth, like this.
\scriptstyle{\color{blue}{\frac{3}{4}\sdot\left[\frac{2}{5}+\left(\frac{3}{4}\sdot\frac{1}{5}\right)\right]\sdot\left[\frac{4}{6}+\left(\frac{1}{3}\sdot\frac{1}{6}\right)\right]=\frac{3}{4}\sdot\left(\frac{1{\color{red}{1}}}{4}\sdot\frac{1}{5}\right)\sdot\left(\frac{13}{3}\sdot\frac{1}{6}\right)}}
וישוב מספרך כאלו אמרו ג' רביעיות מי"ח רביעיות חמישית מי"ג שלישיות שישית כזה
  3 6
  4 5 13
4 11
3
  • After you decompose to a fraction as mentioned, you apply the multiplication, that is to multiply the 3, which is the last numerator, by the numerators, not by the denominators, and they are written by the name of the product, because the result of the multiplication is the numerator and the numerator is beneath the denominator, as the fractional is low and despised by peoples [Psalms 22, 7].
ואחר עשותך פריטה זו כנזכר תעשה ההכאה והוא לתת סבות להכות הג' שהם השברים האחרונים במספר השברים לא במורים השברים וגם לזה ירשמו בשם ההכאה כי בהכאה יבא השבר והשבר הוא תחת המורה כמו שהנשבר הוא שפל ובזוי עם[note 35]
You start to multiply and say: three by 11 is 33; 33 by 13 is 429; so the result of the required fractions is 429-[quarters] of a quarter of a fifth of a third of a sixth, like this:
ותתחיל להכות ולומר שלשה בי"א הם ל"ג ול"ג בי"ג הם 429 הרי עלו כל השברים הנשאלים 429 רביעית חמישית שלישית שישית כזה
\scriptstyle{\color{blue}{\frac{3}{4}\sdot\left[\frac{2}{5}+\left(\frac{3}{4}\sdot\frac{1}{5}\right)\right]\sdot\left[\frac{4}{6}+\left(\frac{1}{3}\sdot\frac{1}{6}\right)\right]=\frac{3}{4}\sdot\left(\frac{11}{4}\sdot\frac{1}{5}\right)\sdot\left(\frac{13}{3}\sdot\frac{1}{6}\right)=\frac{3\sdot11\sdot13}{4}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}=\frac{33\sdot13}{4}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}=\frac{429}{4}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}}}
4 4 5 3 6
429
  • Divide these 429 by the denominators, i.e. by 4, then the result by the other 4, the result by 5, and so on until they gone.
ותחלק אלו ה429 למורים אלו ר"ל לד' והיוצא לד' האחר והיוצא לה' וכן לכלם עד כלותם
When something remains in any of these division, write it beneath that denominator.
וכאשר ישאר דבר בשום חלוקה מהן תשימהו תחת המורה ההוא
When the number is gone before the denominators are gone and you get in the division by one of them less than the denominator that precedes it, write this result beneath this preceding denominator, then you know how many sixths or how many thirds of sixths they are.
וככלות החשבון קודם כלות המורים ויצא לך בחלוק על אחד מהן פחות מהמורה אשר לפניו תשים אותו היוצא תחת המורה הזה אשר לפני ואז תדע כמה ש שישיות או כמה שלישיות שישיות הן
This is called the most beautiful [arrangement] as mentioned above, because it is to convert the particular to general, so that the fractions become greater and nicer. וזה נקרא כלילת יופי ‫[173]כמו שנזכר למעלה לפי שהוא לעשות מהפרטים כללים יען יהיו השברים יותר גדולים ויותר יפים
The real beauty is see first if the dividend has any of these divisors and write it last [to the right], then once again with the quotient, and on the third time and so on. והיופי האמיתי כשתעיין בתחלה המספר המתחלק אם יש לו שום אחד מהמורים ההם ואותו תשים אחרון וכן בשנית ביוצא וכן בשלישית וכן לעולם
Do this only if you are asked how much are the remaining fractions, for if you did it for the purpose of expansion to a common denominator or for the purpose of [the operations discussed in] one of the next chapters, do not divide it by the denominators at all. Because I write it here only to teach you the procedure, although it is not its place and it is mentioned in other places. ולא תעשה זה כי אם כאשר ישאלו לך כמה עולים חלקים אלו הנשארות אכן אם עשית זה לצורך ההשואה או לצורך אחד מהשערים הבאים לא תחלקהו על המורים כלל כי לא כתבתיו כאן כי אם ללמדך על המעשה ואם אין זה מקומו ונזכר כבר במקומות אחרים
  • When you do it in our example: i.e. you divide the 429 by 4, which is the last denominator, the result of division is 107 and 1 remains. Write it beneath it.
\scriptstyle{\color{blue}{\frac{429}{4}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}=\left(\frac{107}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)+\left(\frac{1}{4}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)}}
ובעשותך זה בדמיוננו זה ר"ל שתחלק ה429 על הד' שהוא המורה האחרון יצא בחילוק 107 וישאר א' ותשימהו תחתיו
  • Divide this result by 4 that precedes it; the result of division is 26 and 3 remains. Write it beneath it.
\scriptstyle{\color{blue}{\frac{107}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}=\left(\frac{26}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)+\left(\frac{3}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)}}
‫[ותחלק זה היוצא לד' הקודם לו יצא בחלוק כ"ו וישארו ג' תשימם תחתיו
  • Divide this result by 5; the result of division is 5 and 1 remains. Write it beneath it.
\scriptstyle{\color{blue}{\frac{26}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}=\left(\frac{5}{3}\sdot\frac{1}{6}\right)+\left(\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)}}
ותחלק זה היוצא לה' ויצא בחלוק ה' וישאר א' ותשימהו תחתיו
  • Divide this 5 by 3; the result is 1 and 2 remains. Write it beneath it.
\scriptstyle{\color{blue}{\frac{5}{3}\sdot\frac{1}{6}=\frac{1}{6}+\left(\frac{2}{3}\sdot\frac{1}{6}\right)}}
ותחלק]‫[174] ותחלק ה' אלו על הג' ויצא א' וישארו ב' ותשימם תחתיו
If this 1 was greater than 6, which is the denominator that precedes this one, next to it, we would have had to divide it by it and the result of division would have been integers, since it is first and the denominators are all gone. We would have written the remainder beneath it and it were sixths.
וזה הא' אם היה גדול מהו' מדות שהוא המורה אשר לפני אלו הסמוך להם היה לנו לחלקם עליו והיוצא בחלוק היה שלימים אחר שהוא ראשון וכבר כלו המורים והנשאר הינו שמים אותו תחתיו והיה שישיות שלמות
Since it is less than it, we write it beneath it immediately, and we get that the remaining fractions are one-sixth, 2-thirds of a sixth, a fifth of a third of a sixth, 3-quarters of a fifth of a third of a sixth and a quarter of a quarter of a fifth of a third of a sixth.
אכן לפי שהוא פחות ממנו נשימם תחתיו מיד ויצא לנו מזה שהשברים הנשארים עלו ששית א' שלמה וב' שלישיות ששית וחמישית שלישית שישית וג' רביעיות חמישית שלישית שישית ורביעית רביעית חמישית שלישית שישית
\scriptstyle{\color{blue}{\frac{3}{4}\sdot\left[\frac{2}{5}+\left(\frac{3}{4}\sdot\frac{1}{5}\right)\right]\sdot\left[\frac{4}{6}+\left(\frac{1}{3}\sdot\frac{1}{6}\right)\right]=\frac{1}{6}+\left(\frac{2}{3}\sdot\frac{1}{6}\right)+\left(\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)+\left(\frac{3}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)+\left(\frac{1}{4}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{3}\sdot\frac{1}{6}\right)}}
According to the most beautiful [arrangement], i.e. to write the denominators calculatedly in order, the fractions result as in the second diagram and all yield the same sum.
ועל דרך היופי ר"ל לשים המורים בסדר בהשגחה יצאו החלקים כפי הצורה השנית והכל עולה לסך אחד
To make it easier for you, when you expande to a common denominator, if you find any denominator that appears the same number of times in all the numbers [to be expanded], i.e. for instance, that 8 is in each of them once, or twice, or three times, do not multiply by this denominator at all. When you write all the denominators, write it only as many times as it apears in one of the numbers.
\scriptstyle{\color{OliveGreen}{\frac{a}{b}\sdot\frac{1}{n}\quad\frac{c}{d}\sdot\frac{1}{n}}}
וכדי להקל מעליך כאשר תעשה ההשואה אם תמצא לכל אחד מהמספרים שום מורה שוה לכלם פעמים שוות ר"ל ע'ד'מ' שהח' בכל אחת מהם פעם אחת או פעמי' ‫[175]שלש לא תכפול שום המספרים ההם במו[ר]ה ההוא כלל ובהשימך כל המורים לא תשימה כי אם כפעמים שישנו באחד מהמספרי‫'
If it is in all of them, but not the same number of times - for instance, once in this one and twice or three times in the other - where it is found the maximal number of times, do not multiply by this denominator at all; as for the rest of the numbers, multiply each by this denominator, as many times as the excess of the maximal number of times over the number of times it is found in the present number. When you write the denominator, write it only as many times as the maximal number of times that it apears.
\scriptstyle{\color{OliveGreen}{\frac{a}{b}\sdot\frac{1}{n}=\frac{a}{b}\sdot\frac{1}{n}\sdot\frac{n}{n}\sdot\frac{n}{n}\quad\frac{c}{d}\sdot\frac{1}{n}\sdot\frac{1}{n}\sdot\frac{1}{n}}}
ואם הוא בכלם אבל אינו בהם פעמים שוות אבל בזה פעם אחת ובזה שנים או שלשה ע'ד'מ' אשר ישנו שם פעמים לא תכפלנו במורה זה [כלל וכל אחד משאר המספרים תכפלנו במורה זה‫]‫[176] כ"כ פעמים כפעמים שהוא יותר כמספר הרב הפעמים שבמספר הזה הנכפל בו עתה ובהשימך המורה לא תשימנו כי אם כפעמים אשר הוא באשר הוא יותר פעמים
If it is not in all of them, but in two or three of them, multiply each of the numbers, in which it is not found at all, by this denominator, as the maximal number of times that it apears in one of them. Do not multiply the number, in which it is found the maximal number of times, by it. [As for the rest of] the numbers, in which it is found, multiply each by it, as many times as the excess of the maximal number of times over the number of times it is found in the present multiplicand.
\scriptstyle{\color{OliveGreen}{\frac{a}{b}=\frac{a}{b}\sdot\frac{n}{n}\sdot\frac{n}{n}\quad\frac{c}{d}\sdot\frac{1}{n}\sdot\frac{1}{n}}}
ואם אינו בכלן כי אם בשנים או בג' מהם המספרי' אשר אינו בהם כלל תכפול כל אחד מהם במורה זה כמספר הפעמים אשר הוא באשר הוא יותר פעמים והמספר אשר הוא בו יותר פעמים לא תכפלנו כלל והמספרים אשר ישנו בהם תכפול כל אחד בו כמספר הפעמים העודפים באשר הוא היותר פעמים מבזה הנכפל
If it is found in them the same number of times, do not multiply by it any of the numbers, in which it is found, and when you write the denominators, write it only as many times as the maximal number of times that it apears. ואם הוא בהם פעמים שוות לא תכפול בו שום אחד מהמספרים אשר הוא בו ובהשימך המורים לא תשימנו כי אם כפעמים אשר הוא באשר הוא יותר רב פעמים
It follows that in the example of the expansion to a common denominator that we had at the beginning of this chapter, we did not have to multiply the 78-quarters of an eighth by 8 at all, nor the eighths of the seventh, as it is found in both equally.
ויצא מזה כי במשל ההשואה שעשינו בתחלת שער זה לא היה לנו לכפול הע"ח רביעיות שמינית בח' כלל גם לא השמיניות שביעית להיותו בשניהם בשוה
We also had to [multiply] the 8 only once, as it is found, by one of the others.
גם לא היה לנו לשום הח' כי אם פעם אחת כאשר הוא באחד מהאחרים
Among the denominators, we had to write the 8 only once, as the number of times that it is found in each of them.
ובמורים לא היה לנו לשום הח' כי אם פעם אחת כפעמים אשר ישנו באחד מהם
It does not matter if all this is not done, but this will make the procedure more difficult. וכל זה אינו מזיק אם לא יעשה אבל כי תכבד העבודה

Chapter One: Addition

הפרק האחד עשר[177]בחבור
In it the discussion on [conversion] and summing. בחיבור ובו מאמ' האמרה והאחדות
The procedure:
When you wish to add fractions with integers or fractions with fractions of another type, first, decompose each of the numbers that requires decomposing to [the lowest type of] fraction by itself, then multiply what needs to be multiplied, and after you decompose [and multiply] whichever requires either both decomposing and multiplication, or one of them, expand the numbers to one type, sum up all their results together, i.e. the numerators, then we divide [the sum] by all the denominators of all the fractions. כאשר תרצה לחבר שברים עם שלמים ושברים [או]‫[178] עם שברים ממין אחר בתחלה תפרוט כל אחד מהמספרים לבדו אשר יצטרך פריטה גם תכה הצריך להכאה ואחר שתפרוט וכל אחד מהם הצריך להם או לאחד מהם ר"ל לפריטה או להכאה תשוה המספרים אחד אל אחד עד שיהיו כלם ממין אחד והעולה בכל אחד מהם חבר הכל יחד ר"ל מספר השברים וחלקנו על כל המורים אשר לכל אחד השברים
  • For instance, if in the example for the expansion to a common denominator that we have presented at the beginning of the third chapter, you are asked to sum up them and say how much they are:
\scriptstyle\left[2+\frac{3}{8}+\left(\frac{2}{4}\sdot\frac{1}{8}\right)\right]+\frac{4}{5}+\left[\frac{6}{7}+\left(\frac{3}{8}\sdot\frac{1}{7}\right)\right]
כי ע'ד'מ' אם במשלנו אשר עשינו בהשואה בתחלת השער הג' שאלו לך שתחברם ותאמ' כמה הם
You had to do all that we have done: the decomposing of each of them and the expansion of all until they become what they are:
היה לך לעשות כל אשר עשינו הפריטה לכל אחד וההשואה לכלם עד שיגיעו לאשר הגיעו
  • The two integers, 3-eighths and 2-quarters of an eighth become 21840 eighths of a seventh of a fifth of a quarter of an eighth.
\scriptstyle{\color{blue}{2+\frac{3}{8}+\left(\frac{2}{4}\sdot\frac{1}{8}\right)=\frac{21840}{8}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{8}}}
והוא שהשנים השלמים וג' שמיניות וב' רביעיות שמינית עלו ל21840 ‫[שמיניות שביעית חמשית רביעית שמינית
  • The 4-fifths become 8160 parts of all the denominators.
\scriptstyle{\color{red}{\frac{4}{5}=\frac{7168}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\sdot\frac{1}{7}}}
והד' חמשיות עלו ל‫8160]‫[179] מכל המורים
After you do all this, you have to sum all the numbers of the fractions, i.e. 21840 with 7168 and 8160; the result is 37168, which are parts of the five mentioned denominators, i.e. 8, 4, 5, 7, and 8 that are all the denominators of the original numbers.
ואחר עשותך כל זה היה לך לחבר יחד כל מספרי השברים ר"ל ה21840 עם ה7168 ועם ה8160 ויעלו 37168 והם מהה' מורים הנזכרים ר"ל ה8 וה4 והה' והז' והח' שהם כל מורי המספרים הראשונים
\scriptstyle{\color{blue}{\left[2+\frac{3}{8}+\left(\frac{2}{4}\sdot\frac{1}{8}\right)\right]+\frac{4}{5}+\left[\frac{6}{7}+\left(\frac{3}{8}\sdot\frac{1}{7}\right)\right]=\left(\frac{21840}{8}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{8}\right)+\left(\frac{7168}{8}\sdot\frac{1}{7}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{5}\right)+\left(\frac{8160}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\sdot\frac{1}{7}\right)=\frac{37168}{8}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\sdot\frac{1}{7}}}
  • Arrange them in order as you wish, or by observation, as we noted in the fourth chapter, so that the fraction will be more appropriate. You will find it explained properly there.
ותשימם על הסדר כאשר תרצה או בהשגחה כאשר הזכרנו בפרק הרביעי כדי שיצאו החלקים יותר נאותים ושם תמצאנו מבואר באר הטב
  • Since this number 37168 is divisible by eight, which is one of the denominators, we place it last, i.e. first.
\scriptstyle{\color{red}{\frac{37168}{8}=4646}}
ולהיות לזה החשבון 37168 המתחלק שמינית שהוא אחד מהמורים נשימנו אחרון ר"ל הראשון
  • We divide our number by it, i.e. by 7; the result of division is 663 and 5 remain. We place them beneath.
\scriptstyle{\color{blue}{\frac{4646}{7}=663+\frac{5}{7}}}
ונחלק חשבונננו זה עליו ר"ל 7 ויצא בחילוק 663 [נ' 3]‫[180] וישארו ה' ונשימם תחתיו
  • We divide them by 4; the result of division is 33 and nothing remains.
\scriptstyle{\color{blue}{\frac{663}{4}=33}}
ונחלקם על הד' ויצא בחילוק ל"ג ולא ישאר דבר
  • We divide these 33 resulting in division by the 8, which is the remaining denominator; the result of division is 4, which are integers, since all the denominators are gone. We place them aside. One remains, which is an eighth. We place it beneath, like this:
\scriptstyle{\color{blue}{\frac{33}{8}=4+\frac{1}{8}}}
ונחלקם אלו הל"ג היוצאים בחילוק על הח' שהוא המורה הנשאר ויצא בחלוק ד' ד' והם שלמים לפי שכבר כלו כל המורים ונשימם מחוץ וישאר א' והוא ‫[181]שמינית שלימה ונשימה תחת כזה
4 7 4 5 8
  5 3   1
We get that when we sum two integers, 3-eighths and 2-quarters of an eighth with 4-fifths, and with 6-sevenths and 3-eighths of a seventh, the total sum is 4 integers, one eighth, 3-quarters of a fifth of an eighth, and 5-sevenths of a quarter of a fifth of an eighth. Deduce from this.
הנה עלה בידינו שכאשר חברנו השנים שלמים וג' שמיניות וב' רביעיות שמינית עם ד' חמישיות ועם ו' שביעיות וג' שמיניות שביעית שעלה הכל ד' שלמים ושמינית אחת וג' רביעיות חמישית שמינית וה' שביעיות רביעית חמישית שמינית והקש על זה והה‫'
\scriptstyle{\color{blue}{\left[2+\frac{3}{8}+\left(\frac{2}{4}\sdot\frac{1}{8}\right)\right]+\frac{4}{5}+\left[\frac{6}{7}+\left(\frac{3}{8}\sdot\frac{1}{7}\right)\right]=4+\frac{1}{8}+\left(\frac{3}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\right)+\left(\frac{5}{7}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\right)}}
This is the reason that if you are told [to sum] numerous numbers, you need to multiply first, before the expansion [to a common denominator], then the expansion and afterwards the summing, as mentioned. והוא הטעם אם אמרו לך מספרים רבים והיו בהם שצריכין ג"כ הכאה קודם השיווי שתעשה להם ג"כ ההכאה קודם השיווי ואחר כך ההשוואה וא'ח'כ' החבור כנזכר
  • If you are asked in general, how many are they?
ואולם אם לא שאלו לך בסתם כמה הם
  • For example, if you are told: how many fifths are they?
אבל אמרו לך ע'ד'מ' כמה חמישיות
Since 5 is one of the denominators, you do not need to perform another procedure, but place the 5 as the first among the denominators, like this:
הם אחר שזה הה' הוא במורים אינך צריך לעשות פועל חדש כי אם שתשים הה' הראשון מהמורים כזה
4 7 4 8 5
  5 3 25  
You receive 4 integers, 25-eighths of one-fifth of a fifth, 3-quarters of one-eighth of a fifth and 5-sevenths of one-quarter of one-eighth of a fifth. It is all the same and it is enough for the one who understands.
ויעלה בידך ד' שלמים כ"ה שמיניות חמישית חמישית וג' רביעיות שמינית חמישית וג' רביעית שמינית חמישית וה' שביעיות רביעית שמינית חמישית והכל אחד ודי למבין
\scriptstyle{\color{blue}{\left[2+\frac{3}{8}+\left(\frac{2}{4}\sdot\frac{1}{8}\right)\right]+\frac{4}{5}+\left[\frac{6}{7}+\left(\frac{3}{8}\sdot\frac{1}{7}\right)\right]=4+\frac{1}{8}+\left(\frac{3}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\right)+\left(\frac{5}{7}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{8}\right)=4+\left(\frac{25}{8}\sdot\frac{1}{5}\sdot\frac{1}{5}\right)+\left(\frac{3}{4}\sdot\frac{1}{8}\sdot\frac{1}{5}\right)+\left(\frac{5}{7}\sdot\frac{1}{4}\sdot\frac{1}{8}\sdot\frac{1}{5}\right)}}
  • If you are told to convert them to another type that is not among the denominators:
אכן אם אמרו לך להחזירם ממין אחר שאינו במורי‫'
  • For example, you are told: how many ninths are they?
המשל שאמרו לך כמה תשיעיות הן
This is called the conversion category: after decomposing, multiplying, and expanding [to a common denominator], before you divide by the mentioned denominators, multiply the resulting numerator of these fractions, i.e. 37168, by the denominator, to which it is required to convert, i.e. 9, which is the denominator of the ninth; the result is 334512. We write the 9 as the first denominator and all the other denominators after it, randomly or by observation.
\scriptstyle{\color{blue}{37168\sdot9=334512}}
זה יקרא מאמר ההמרה והוא שאחרי עשותך הפריטה וההכאה וההשואה קודם שתחלקם למורים הנזכרים תכפול כל חשבון השברים ר"ל ה37168 בזה המורה אשר רצו להחליפם אליו ר"ל הט' שהוא המורה התשיעית ויעלו 334512 ונשים הט' למורה ראשון וכל המורים האחרי' אחריו אם כאשר יזדמן אם בהשגחה
  • When we divide first by 8, the result of division is 41814 and nothing remains.
\scriptstyle{\color{blue}{\frac{334512}{8}=41814}}
ובחלקנו ראשונה לח' ויצא בחילוק 41814 ולא ישאר דבר
  • We divide the result by 4; the quotient is 10453 and 2 remain. We place them beneath it.
\scriptstyle{\color{blue}{\frac{41814}{4}=10453+\frac{2}{4}}}
ונחלק זה היוצא לד' ויצא בחילוק 10453 וישארו ב' ונשימם תחתיו
  • \scriptstyle{\color{OliveGreen}{\frac{10453}{5}=2090+\frac{3}{5}}}
  • We divide it by 7; the result of division is 298 and 4 remain. We place them beneath it.
\scriptstyle{\color{blue}{\frac{2090}{7}=298+\frac{4}{7}}}
ונחלקנו ‫[182]לז' ויצא בחילוק 298 וישארו ד' ונשימם תחתיו
  • We divide the result by 8; the quotient is 37 and 2 remain. We place them beneath it.
\scriptstyle{\color{blue}{\frac{298}{8}=37+\frac{2}{8}}}
ונחלק זה היוצא על הח' ויצא בחילוק ל"ז וישארו ב' ונשימם תחתיו
  • We divide the result by 9; the quotient is 4, which are integers, and 1 remains. We place it beneath it.
\scriptstyle{\color{blue}{\frac{37}{9}=4+\frac{1}{9}}}
ונחלק זה היוצא על הט' ויצא בחילוק ד' והם שלמים וישאר א' ונשימהו תחתיו
Thus, we have converted the fractions into ninths and parts of ninths.
והנה המרנו החלקים ר"ל השברים לתשיעית וחלקי תשיעית
\scriptstyle{\color{blue}{\left[2+\frac{3}{8}+\left(\frac{2}{4}\sdot\frac{1}{8}\right)\right]+\frac{4}{5}+\left[\frac{6}{7}+\left(\frac{3}{8}\sdot\frac{1}{7}\right)\right]=4+\frac{1}{9}+\left(\frac{2}{8}\sdot\frac{1}{9}\right)+\left(\frac{4}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\right)+\left(\frac{3}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\right)+\left(\frac{2}{4}\sdot\frac{1}{5}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{9}\right)}}
The rule of this category [i.e. conversion] is that whenever you are asked with regard to a known type of fractions, whether various or not, to convert them to another type, whether a fraction or a fraction of a fraction: כלל זה מאמר זה הוא שכאשר ישאלו לך על חלקי' ידועים שונים ובלתי שונים שתמירם למין אחר בין אם יאמרו לך לשבר או לשבר שבר
  • As, if you are told to convert them to fifths of one-seventh of an eighth, or something similar.
כמו שיאמרו לך השיבם לחמישיות שביעית שמינית או הדומה לזה
You should first decompose, multiply, and expand the fractions, if they are various, then sum them together and multiply the sum by the denominator or the denominators, to which you need to convert them. יש לך לעשות תחלה פריטה והכאה והשואה לשברים אם היו שונים ושוב תחברם יחד ושוב תכפלם כלם ביחד על המורה או המורים אשר רוצים שתמירם אליהם
  • I.e. if you are told to convert them into fifths, multiply them by 5 alone.
ר"ל שאם אמרו לך שתמירם לחמישיות תכפלם בה' לבד
  • But, if you are told [to convert them] into fifths of a seventh of an eighth, multiply them by 8, then the product by 7, and again by 5.
ואם אמרו לך לחמישיות שביעית שמינית תכפלם בח' והעולה בז' והעולה בה‫'
After you do all that, write the denominator or denominators of the first conversion to the right by the required order: first the 8, after it the 7, after it the 5, then arrange after them the denominators that you have randomly of calculatedly and divide by them the number that you get from the multiplication of the numerators by the denominator or denominators of the conversion. All this is clear by reason. ואחר עשותך כל זה תשים מורה או מורה ההמרה ראשונה לצד ימין על הסדר שנשאל הח' תחלה ואחריו הז' ואחריו הה' ושוב תסדר אחריהם מורה שבידך כפי המזדמן או בהשגחה ותחלק על כלם המספר אשר עלה לידיך מכפל מספר שבריך במורה או מורי ההמרה וכל זה ברור בטעם
For, if you multiply what you have by given denominators, the product always have these denominators in addition to its original denominators. Therefore, when you wish to reduce them, i.e. to convert these decomposed fractions to proper integers and fractions, you have to arrange these denominators, by whice they were multiplied, with their original denominators and the order does not matter. Since it is asked how many fractions of these denominators they are, we write them first in this procedure. כי לעולם אם תכפול אשר בידך במורים מונחים הנה יהיה למקובץ מורים אלו מוספים על מוריו הראשונים ולכן כאשר תרצה לעשות להם כלילת יופי ר"ל להשיב שברים אלו הנפרטות לכללים וחלקים יפים יש לך לסדר עם מוריו הראשונים אלו המורים אשר הוכפלו בהם והסדר לא יזיק ולפי ששאלו כמה חלקים הם מהמורים האלו לכן נשימם ראשונה במלאכה
If you are told to convert them to another fraction as greater as possible, it is called ha-Aḥdut [lit. unification] and it is an important issue, because by it we can divide the smaller by the greater and to generate denominators without extracting the denominators of the number by which we want to divide or to add to its denominators. אכן אם יאמרו לך להשיבם לחלק אחר הגדול שאיפשר לכן נקראה האחדות והוא ענין נכבד ‫[183]כי ממנו יצא לנו לחלק מעט על רב ולחדש מורים ב בעצמינו מבלי הוצאת מורי המספר שרצינו לחלק עליו או גם להוסיף על מוריו
For this I assigned it a discussion of its own and I write it in this chapter as it is a kind of addition. לזה הקצתי לו מאמר לבדו ואכתבנו בזה הפרק לפי שהוא כעין חבור
I named it "ha-Aḥdut" [lit. unification], since we want to convert them to one fraction whether it is possible or not. וקראתי לו שם שם האחדות לפי שאנו רוצים לעשותם חלק אחד אם איפשר ואם הוא בלתי איפשר
If it is impossible, we have to add one in the procedure as will be explained. ואם הוא בלתי איפשר יש לנו להוסיף אחד במלאכה כאש' יתבאר
For these two reasons I called it "ha-aḥdut". לב' כוונות אלו קראתי לו שם האחדות

Summing fractions to one fraction

מאמר האחדות
If you wish to convert fractions, equal or different, into one fraction if possible, or as greatest as possible. אם רצית להשיב שברים שוים שוים או שונים לחלק אחד אם איפשר או לגדול שאיפשר
  • Example: two-fifths of 2-ninths of 2 integers, and one-eighth, and two-ninths of one-seventh of one-eighth of one-quarter and two-sixths of one-quarter.
\scriptstyle\left(\frac{2}{5}\sdot\frac{2}{9}\sdot2\right)+\left[\left[\frac{1}{8}+\left(\frac{2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left[\frac{1}{4}+\left(\frac{2}{6}\sdot\frac{1}{4}\right)\right]\right]
המשל שני חמישיות מב' תשיעיות מב' שלמים ועוד שמינית אחת ושני תשיעיות שביעית שמינית מרביעית ושתי ששיות רביעית
Arrange them like this:
תשימם על הסדר כזה
  2
  9
5 2
2
  6 4
9 7 8 2 1
2   1
Apply on them [the operations of] decomposition, multiplication, expansion [to a common denominator], and summation. תעשה להם פריטה והכאה והשוואה וחיבור
In order to train you more in the procedure I will perform them one by one: וכדי להרגילך עוד במעשה אעשה אחת אחת
We decompose the quarter and the two-sixths of one-quarter: we multiply 1 by 6; they are 6; we add to them the units that are beneath them, i.e. the 2; the result is 8-sixths of a quarter.
\scriptstyle{\color{blue}{\frac{1}{4}+\left(\frac{2}{6}\sdot\frac{1}{4}\right)=\frac{\left(1\sdot6\right)+2}{6}\sdot\frac{1}{4}=\frac{6+2}{6}\sdot\frac{1}{4}=\frac{8}{6}\sdot\frac{1}{4}}}
נעשה פריטה לרביעית ושתי שישיות רביעית

נכפול א' בו' יהיו ו' ונחבר להם הפרט אשר נמצא תחתיו ר"ל הב' יעלו ח' שישיות רביעית

We also decompose the seventh and the 2-ninths of one-seventh of one-eighth: we multiply 1 by 7, then we multiply them further by 9; they are 63; we add to them the two; the result is 65-ninths of one-seventh of an eighth.
עוד נעשה פריטה לשביעית וב' תשיעיות שביעית שמינית

נכפול א' בז' נכפלם עוד בט' יהיו ס"ג ונחבר להם השנים ויעלו ס"ה תשיעיות שביעיות שמינית

\scriptstyle{\color{blue}{\frac{1}{8}+\left(\frac{2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)=\frac{\left(1\sdot7\sdot9\right)+2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}=\frac{63+2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}=\frac{65}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}}}
It is as if one says: 65-ninths of a seventh of an eighth of 8-sixths of a quarter, like this:
\scriptstyle{\color{blue}{\left[\frac{1}{8}+\left(\frac{2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left[\frac{1}{4}+\left(\frac{2}{6}\sdot\frac{1}{4}\right)\right]=\left(\frac{65}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\sdot\left(\frac{8}{6}\sdot\frac{1}{4}\right)}}
והרי הוא כאלו אמרו ס"ה תשיעיות שביעית שמינית מח' שישיות רביעית כזה
  6 4
9 7 8 8
65
We also multiply the two numbers we have:
עוד נעשה הכאה לשני מספרי' שבידינו
We start with the first number and say: 2 by 2 is 4. We multiply it also by the two integers; it is 8-fifths of a ninth, like this:
ונתחיל במספ' הראשון ונאמ ב' בב' הם ד' נכפלם עוד בשני השלמים יהיו ח' חמישיות תשיעית שלימה ‫[184]כזה
\scriptstyle{\color{blue}{\frac{2}{5}\sdot\frac{2}{9}\sdot2=\frac{2\sdot2\sdot2}{5}\sdot\frac{1}{9}=\frac{4\sdot2}{5}\sdot\frac{1}{9}=\frac{8}{5}\sdot\frac{1}{9}}}
5 9
8  
We multiply also the second number, the eight-sixths of a quarter, by 65; the result is 520-ninths of a seventh of an eighth of a sixth of a quarter, like this:
עוד נכה במספר השני השמונה ששיות רביעית בס"ה ויעלו 520 תשיעיות שביעית שמינית שישית רביעית כזה
9 7 8 6 4
520        
\scriptstyle{\color{blue}{\left[\frac{1}{8}+\left(\frac{2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left[\frac{1}{4}+\left(\frac{2}{6}\sdot\frac{1}{4}\right)\right]=\left(\frac{65}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\sdot\left(\frac{8}{6}\sdot\frac{1}{4}\right)=\frac{65\sdot8}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}=\frac{520}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}}}
We expand these two numbers [to a common denominator]:
ונעשה ההשואה לאלו השני מספרים
Since the denominator 9 is found in each of them once, we do not multiply any of the numbers by it and we write it only once, as I mentioned at the end of chapter three.
ואחר היות בכל אחת מהם מורה הט' פעם אחת לא נכפול בו שום אחד מהמספרים ולא נסדרהו כי אם פעם אחת כאשר הזכרתי בסוף השער הג‫'
We multiply the 8-fifths of ninths by all the denominators of the other number, except for the 9, as explained, and we say: eight by 4 is 32. We multiply it by 6; the result is 192. We multiply it by 8; the result is 1536. We multiply it by 7; the result is 10752.
ונכפול הח' חמישיות תשיעיות בכל מורה המספר האחר זולתי הט' כאשר התבאר ונאמר שמונה בד' יעלה ל"ב נכפלם בו' יעלו 192 נכפלם בח' יעלו 1536 נכפלם בז' יעלו 10752
\scriptstyle{\color{blue}{8\sdot4\sdot6\sdot8\sdot7=32\sdot6\sdot8\sdot7=192\sdot8\sdot7=1536\sdot7=10752}}
\scriptstyle{\color{blue}{\frac{2}{5}\sdot\frac{2}{9}\sdot2=\frac{8}{5}\sdot\frac{1}{9}=\frac{8\sdot4\sdot6\sdot8\sdot7}{5}\sdot\frac{1}{9}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{8}\sdot\frac{1}{7}=\frac{10752}{5}\sdot\frac{1}{9}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{8}\sdot\frac{1}{7}}}
We multiply also the 520, which is the numerator of the other fractions, by 5, which is the denominator of the other, but not by 9 as mentioned; the result is 2600.
עוד נשוב לכפול ה520 שהם מספ' השברים האחרים בה' שהוא מורה חבריהם ולא בט' כנזכר ויעלו 2600
We arrange them one above the other, like this:
נסדרם זה על זה כזה
10752
 2600
13352
\scriptstyle{\color{blue}{\left[\frac{1}{8}+\left(\frac{2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left[\frac{1}{4}+\left(\frac{2}{6}\sdot\frac{1}{4}\right)\right]=\frac{520}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}=\frac{520\sdot5}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}\sdot\frac{1}{5}=\frac{2600}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}\sdot\frac{1}{5}}}
We sum them together; the result is 13352.
ונחברם יחד יעלו 13352
We arrange all the denominators, i.e. all the denominators of both numbers, except for the 9 that we write only once and we write our number beneath the last denominator, as it is the numerator that is decomposed to all of these denominators.
נסדר כל המורים ר"ל כל מורי שני המספרי' בלתי הט' שלא נשימנו כי אם פעם אחת ונשים מספרינו תחת המורה האחרון לפי שהוא שברים נפרטות מכל אלו המורים
So, it is as if we are asked: which fraction are 13352-sevenths of an eighth of a sixth of a quarter of a fifth of a ninth, are they realy fraction of one, or as greater fraction as possible?
והרי זה כאלו שאלו לנו 13352 שביעיות שמינית שישית רביעית חמישית תשיעית איזה חלק הם אם הם חלק אחד ממש או החלק הגדול שאפשר
\scriptstyle{\color{blue}{\left(\frac{2}{5}\sdot\frac{2}{9}\sdot2\right)+\left[\left[\frac{1}{8}+\left(\frac{2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left[\frac{1}{4}+\left(\frac{2}{6}\sdot\frac{1}{4}\right)\right]\right]=\left(\frac{10752}{5}\sdot\frac{1}{9}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{8}\sdot\frac{1}{7}\right)+\left(\frac{2600}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}\sdot\frac{1}{5}\right)=\left(\frac{13352}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{9}\right)}}
Definition of the common denominator: first we examine which number has all these denominators alone, i.e. that consists of them and we call this number "the common denominator" [lit. the mother of the denominators], for it gave tham birth and they came out from it. נעיין תחלה איזהו המספר שהוא בעל אלו המורים כלם לבדם ר"ל שהוא מורכב מהם ונקרא למספר הזה אם המורים כי היא ילדתם וממנה יצאו
This is known by multiplying all the denominators one by the other and the product by another and so on until they end. וזה יודע בכפול כל המורים אחד באחד והעולה באחר וכן כלם עד כלותם
We say: 9 by 5 are 45. We multiply it by 4; the result is 180. We multiply it by 6; the result is 1080. We multiply it by 8; the result is 8640. We multiply it by 7; the result is 60480.
ונאמ' ט' בה' יעלו מ"ה נכפלם בד' יעלו [180 נכפלם בו' יעלו 1080 נכפלם בח' יעלו‫]‫[185] 8640 נכפלם בז' יעלו 60480
\scriptstyle{\color{blue}{9\sdot5\sdot4\sdot6\sdot8\sdot7=45\sdot4\sdot6\sdot8\sdot7=180\sdot6\sdot8\sdot7=1080\sdot8\sdot7=8640\sdot7=60480}}
Dividing the common denominator by the summed numerator
\scriptstyle{\color{OliveGreen}{\frac{a\sdot n}{a}=n\longrightarrow\frac{a}{a\sdot n}=\frac{1}{n}}}
Therefore, we [divide] the common denominator by the numerator, i.e. we divide 6[0]480 by 13352 and if it is divided into integers without addition or subtraction, the reduced result of division is the denominator of all the required fractions together, i.e. one quarter or similar to it.
\scriptstyle{\color{blue}{\frac{6{\color{red}{0}}480}{13352}}}
ולזאת קרינו אם המורים למספר השברים ר"ל שנחלק ה68480 ל13352 ואם יתחלק כלו לשלימים בלי תוספת ‫[186]ומגרעת הנה היוצא בחילוק בצמצום הוא מורה החלק אשר הם כל השברים הנשאלים יחד מהשלם ר"ל רביעית אחד או הדומ' לו
ואם לא יתחלק כלו לשלמים בלי תוספת ומגרעת הנה היוצא בחלוק בצמצום הוא מורה החלק אשר הם כל השברים הנשאלים יחד מהשלם ר"ל רביעית אחת או הדומה לו
If it is not entirely divided into integers, but there is a remainder:
\scriptstyle{\color{OliveGreen}{\frac{\left(a\sdot n\right)+r}{a}=n+\frac{r}{a}\longrightarrow\frac{a}{\left(a\sdot n\right)+r}=\frac{1}{n+1}+\frac{a-r}{\left(n+1\right)\sdot\left[\left(a\sdot n\right)+r\right]}}}
ואם לא יתחלק כלו לשלמים וישאר שום מספר
As in our example, in which the result of division is 4 and the remainder is 7072.
\scriptstyle{\color{blue}{\scriptstyle\frac{60480}{13352}=4+\frac{7072}{13352}}}
כמשלינו זה שיצא בחילוק ד' ונשאר 7072
We add 1 to the result of division; it is 5 and this is the denominator of the greatest possible fraction, i.e. one-fifth.
נוסיף א' על היוצא בחילוק ויהיה ה' והוא מורה החלק הגדול שאפשר ר"ל חמשית אחת
We also subtract the remaining 7072 from the 13352 by which we divide; the remainder is 6280, which are parts of all the denominators of this fraction, i.e. one-fifth.
עוד נחסר ה7072 הנשארים מה13352 אשר חלקנו עליו וישאר 6280 שהוא חלקים מכל המורים מזה החלק ר"ל מחמישית אחת
I.e. we receive that all the required fractions are one-fifth and 6280-sevenths of an eighth of a sixth of a quarter of a fifth of a ninth of a fifth, like this:
ר"ל שיצא לנו שכל השברים הנשאלים הם חמישית אחת ו6280 שביעיות שמינית שישית רביעית חמישית תשיעית חמישית כזה
\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left(\frac{2}{5}\sdot\frac{2}{9}\sdot2\right)+\left[\left[\frac{1}{8}+\left(\frac{2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left[\frac{1}{4}+\left(\frac{2}{6}\sdot\frac{1}{4}\right)\right]\right]&\scriptstyle=\left(\frac{13352}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{9}\right)=\frac{13352}{60480}=\frac{1}{4+1}+\frac{13352-7072}{5\sdot60480}\\&\scriptstyle=\frac{1}{5}+\left(\frac{6280}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{5}\right)\\\end{align}}}
5 9 5 4 6 8 7
1           0826
The order of the denominators of compound fractions of fractions is unimportant, but the denominator of the simple fraction should be placed separately, on the right:
If you want to reduce these fractions, i.e. to divide them by the denominators, arrange them as they are now, or randomly, or calculatedly as mentioned above, provided that you write the 5 first to the right with the 1 beneath it, because you cannot change this, and all the others are related to it, i.e. all of them are fractions and fractions of fractions of it, i.e. of a fifth of the whole. ‫[ואם תרצה לעשות לשברים אלו כלילת יופי ר"ל לחלקם על המורים תסדרם‫]‫[187] תסדרם כפי שהם עתה או כפי המזדמן או בהשגחה כנזכר למעלה ובלבד שתניח הה' ראשון לצד ימין עם הא' אשר תחתיו כי זה אין בידיך לשנותו וכל האחרים נקשרים בו ר"ל שהם כלם שברים ושברי שברים ממנו ר"ל מחמשית מהשלם
We divide them first by 8; the result of division is 785 and nothing remains.
ונחלקם תחלה לח' ויצא בחלוק 785 ולא ישאר דבר
We divide this result by 5; the result of division is 157 and nothing remains.
ונחלק זה היוצא לה' ויצא בחילוק 157 ולא ישאר דבר
We divide it by 4; the result of division is 39 and 1 remains. We write it beneath it.
ונחלקם לד' ויצא בחילוק ל"ט וישאר א' ונשימנו תחתיו
We divide it by 6; the result of division is 6 and 3 remains.
ונחלקם לט'[ו']‫[188] ויצא בחילוק ו' וישארו ג‫'
We factorize the 9, i.e. we convert it to two denominators that are 3 and 3, since a third of a third is as a ninth, and I shall discuss this further in the last chapter with God's help.
ונתיך הט' ר"ל שנעשה ממנו ב' מורים שהם ‫[189]ג' ג' כי כך הוא שלישית שלישית כמו תשיעית ועוד אדבר בזה בכלל האחרון ב"ה י"ת
We divide the 6 resulting in the last division by one of them, i.e. by the 3; the result of division is 2 and nothing remains.
ונחלק הו' אשר יצאו בחלוק באחרונה על האחד מהם ר"ל על הג' ויצא בחילוק ב' ולא ישאר דבר
Since this 2 is smaller than the rest of the denominators, we should not divide it further, only to write it beneath the next denominator that we write before them, which is the second 3, so that it would not be forgotten.
ואלו הב' אחר שהוא מספר קטן משאר המורים אין לנו עוד לחלקם רק להשימם תחת המורה הסמוך אשר נשים לפניהם ויהיו הג' השני כדי שלא ישכח ונשימם תחתיו
We write also the 6, which is the remaining denominator, before them and before it the first 5. We write the 1 beneath it, which is the denominator of the greatest possible fraction that we sought.
ונסדר עוד הט [הו']‫[190] המורה הנשאר לפניהם ולפניו הה' ראשונה ונשים תחתיו הא' אשר היה תחתיו שהוא המורה היותר חלק גדול הגדול שאיפשר אשר בקשנו
We receive that the required fractions are one-fifth, 2-thirds of a seventh of a fifth, 3-sixths of a third of a third of a seventh of a fifth, and one-quarter of a sixth of a third of a third of a seventh of a fifth, like this:
הנה יצא לנו שהשברים הנשאלים יעלו חמשית א' שלמה וב' שלישיות שביעית חמישית וג' ששיות שלישית שלישית שביעית חמישית ורביעית שישית שלישית שלישית שביעית חמישית כזה
\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left(\frac{2}{5}\sdot\frac{2}{9}\sdot2\right)+\left[\left[\frac{1}{8}+\left(\frac{2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left[\frac{1}{4}+\left(\frac{2}{6}\sdot\frac{1}{4}\right)\right]\right]&\scriptstyle=\frac{1}{5}+\left(\frac{6280}{7}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{5}\right)=\frac{1}{5}+\left(\frac{6280}{8}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{9}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\&\scriptstyle=\frac{1}{5}+\left(\frac{785}{5}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{9}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)=\frac{1}{5}+\left(\frac{157}{4}\sdot\frac{1}{6}\sdot\frac{1}{9}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\&\scriptstyle=\frac{1}{5}+\left(\frac{39}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\&\scriptstyle=\frac{1}{5}+\left(\frac{6}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{3}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\&\scriptstyle=\frac{1}{5}+\left(\frac{2}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{3}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\\end{align}}}
4 6 3 3 7 5
1 3 0 2 0 1
Deduce from that והקש על זה

Reason

The reason we say that if there is no remainder, the result of the division is itself the denominator of the fractions of the whole, is because our saying "these portions of the denominators" is as our saying "the portions of their common denominator in the whole". וטעם אומרנו שאם לא ישאר דבר שהיוצא בחילוק בעצמו הוא מורה החלק אשר השברים מהשלם הוא לפי שאמרנו אלו החלקים מאלו המורים הוא כאלו אמרנו כ"כ מחלקי אם המורים בשלם
\scriptstyle{\color{OliveGreen}{\frac{a\sdot n}{a}=n\longrightarrow\frac{a}{a\sdot n}=\frac{1}{n}}}
\scriptstyle{\color{OliveGreen}{\frac{a}{b}\sdot\frac{c}{d}=\frac{a\sdot c}{b\sdot d}}}
  • I.e., for instance, if we have 2-thirds of a quarter:
\scriptstyle\frac{2}{3}\sdot\frac{1}{4}
ר"ל כי ע'ד'מ' אם היו לנו ב' שלישיות רביעית
It is as our saying "two parts of 12 in the whole", which is the common denominator of these denominators, i.e. it consists of them, since the product of 3 by 4 is 12.
\scriptstyle{\color{blue}{\frac{2}{3}\sdot\frac{1}{4}=\frac{2}{3\sdot4}=\frac{2}{12}}}
הוא כאומרנו שני חלקים מי"ב בשלם שהיא אם אלו המורים ר"ל שהוא מורכב מהם שכפל ג' בד' עולה י"ב
  • Similarly, our saying "3-quarters of a half of a third".
\scriptstyle\frac{3}{4}\sdot\frac{1}{2}\sdot\frac{1}{3}
וכן אומרנו ג' רביעיות חצי שלישית
It is as our saying "3 parts of 24 in the whole", which is the common denominator of these three denominators and this is clear.
\scriptstyle{\color{blue}{\frac{3}{4}\sdot\frac{1}{2}\sdot\frac{1}{3}=\frac{3}{24}}}
היא כאומרנו ג' חלקים מכ"ד בשלם שהוא אם שלש מורים אלו וזה ברור
It clear from chapter four of the first section. ועוד נחבר בפ' הרביעי מהחלק הא‫'
We know that these numerators are portions of their common denominator in one whole.
הנה ידענו שאלו השברים הם חלקים מחלקי האם בשלם
  • If they are its third, they are a third of the whole.
\scriptstyle{\color{blue}{\frac{\frac{1}{3}\sdot a}{a}=\frac{1}{3}\sdot1}}
ואם הם היה שלישיתם הם שלישית השלם
  • If its quarter, [they are] a quarter [of the whole].
\scriptstyle{\color{blue}{\frac{\frac{1}{4}\sdot a}{a}=\frac{1}{4}\sdot1}}
ואם רביעיתם רביעית
  • If the same as [the common denominator], they are one integer.
\scriptstyle{\color{blue}{\frac{1\sdot a}{a}=1\sdot1}}
ואם כמותם הם א' שלם
  • For instance, if the numerator is fifth of the common denominator, i.e. fifth of the whole, when we divide the common denominator by it, the result of division is 5 and nothing remains.
\scriptstyle{\color{blue}{\frac{\frac{1}{5}\sdot a}{a}=\frac{1}{5}\sdot1\longrightarrow\frac{a}{\frac{1}{5}\sdot a}=5}}
וע וע'ד'מ' אם מספר השברים היה חמישית האם ר"ל חמישית השלם בחלקנו האם עליהם ‫[191]היה היוצא בחלוק ה' ולא היה נשאר דבר
  • If it is its quarter, the result is 4.
\scriptstyle{\color{blue}{\frac{\frac{1}{4}\sdot a}{a}=\frac{1}{4}\sdot1\longrightarrow\frac{a}{\frac{1}{4}\sdot a}=4}}
ואם היה רביעית יצאו ד‫'
We receive that the result of division indicates the portion that the numerator is of the whole and the reason for this is clear, when all is divided with no remainder. הרי לנו שהיוצא בחילוק הוא המורה החלק אשר השברים מהשלם וזה ברור בטעם כאשר נתחלק הכל ולא נשאר דבר
To clarify the reason of our saying that when there is a remainder, we add one to the result etc. I shall bring another example:
\scriptstyle{\color{OliveGreen}{\frac{\left(a\sdot n\right)+r}{a}=n+\frac{r}{a}\longrightarrow\frac{a}{\left(a\sdot n\right)+r}=\frac{1}{n+1}+\frac{a-r}{\left(n+1\right)\sdot\left[\left(a\sdot n\right)+r\right]}}}
ולברר טעם אומרנו שכאשר נשאר שם דבר שנוסיף א' על היוצאות וכו' אביא משל אח‫'
  • Example: we have 3-quarters of a seventh, i.e. three parts of 28, which is the common denominator of the whole.
\scriptstyle\frac{3}{4}\sdot\frac{1}{7}
\scriptstyle{\color{blue}{\frac{3}{4}\sdot\frac{1}{7}=\frac{3}{28}}}
המשל היו בידינו ג' רביעיות שביעית ר"ל שלשה חלקים מכ"ח שהוא אם המורים בשלם
If we divide 28 by 3 the result of division is 9 and 1 remains.
\scriptstyle{\color{blue}{\frac{28}{3}=9+\frac{1}{3}\longrightarrow\frac{3}{28}=\frac{1}{9+1}+{\color{red}{\frac{3-1}{\left(9+1\right)\sdot28}}}=\frac{1}{10}+{\color{red}{\frac{3-1}{10\sdot28}}}}}
ואם נחלק אלו הכ"ח אל הג' יצאו ט' בחילוק וישאר א‫'
We add 1 to the 9 resulting from the division; the result is ten, which indicates the tenth.
נוסיף א' על הט' היוצא בחילוק יעלה עשרה המורה על העשירית
If the original fraction was 3 parts of 30, it was one-tenth by reduction, because when we divide 30 by three, the result is [10] and nothing remains, so it was a whole tenth, as we explained.
\scriptstyle{\color{blue}{\frac{30}{3}=10\longrightarrow\frac{3}{30}=\frac{1}{10}}}
ואם החלקים הראשונים היו ג' חלקים מל' באחד היו עשירית אחד בצמצום כי בחלקנו הל' בשלשה היו יוצאים ולא היה נשאר דבר ואז היו עשירית שלמה כמו שביארנו
Since it is 3 parts of 28, it is greater than one-tenth. To know by how much it is greater, we multiply 28 by 30; the result is 840.
אכן להיותם ג' חלקים מכ"ח בשלם יותר מעשירית אחת ולדעת כמה הם יותר נכפול הכ"ח בל' ויעלו 840
Our saying: "one part of 840 in the whole" is as our saying: "one part of 30 of 28 in the whole", or "one part of 28 of 30 in the whole", because they are the divisors, of which it is composed and all this is well explained in chapter 4 of the first section.
\scriptstyle{\color{blue}{28\sdot30=840\longrightarrow\frac{1}{840}=\frac{1}{30}\sdot\frac{1}{28}=\frac{1}{28}\sdot\frac{1}{30}}}
והנה אומרנו חלק אחד מ840 בשלם הוא כאומרנו חלק אחד מל' מכ"ח בשלם או חלק אחד מכ"ח מל' בשלם כי הם המורים אשר מהם הורכב וכל זה נתבאר הטב בפרק הד' מהחלק הא‫'
Therefore, 30 parts of 840 of the whole are one part of 28 of the whole.
\scriptstyle{\color{blue}{\frac{30}{840}=\frac{1}{28}}}
וא"כ הל' חלקים מה840 בשלם הם חלק אחד מכ"ח בשלם
Whereas 28 parts of 840 of the whole are one part of 30 of the whole.
\scriptstyle{\color{blue}{\frac{28}{840}=\frac{1}{30}}}
וכן הכ"ח חלקים מ840 בשלם הם חלק אחד מל' בשלם
So, one part of 30 of the whole is 28 parts of 840 of the whole.
\scriptstyle{\color{blue}{\frac{1}{30}=\frac{28}{840}}}
הרי לנו שהחלק אחד מל' בשלם הוא כ"ח חלקים מ840 בשלם
And one part of 28 of the whole is 30 parts of 840.
\scriptstyle{\color{blue}{\frac{1}{28}=\frac{30}{840}}}
וכן החלק מכ"ח בשלם הוא ל' חלקים מ840
We find that 3 parts of 28 of the whole is 3 times 30, which is 90 parts of 840 of the whole.
\scriptstyle{\color{blue}{\frac{3}{28}=\frac{3\sdot30}{840}=\frac{90}{840}}}
נמצא שהג' חלקי' מכ"ח בשלם הוא ג' פעמים ל' שהם 90 חלקים מ840 בשלם
And 3 parts of 30 of the whole is 3 times 28, which is 84 parts of 840.
\scriptstyle{\color{blue}{\frac{3}{30}=\frac{3\sdot28}{840}=\frac{84}{840}}}
והג' חלקים מל' בשלם הם ג' פעמים הם כ"ח שהם פ"ד חלקים מ840
So, they exceed over them by 6 parts of 860 of the whole, i.e. 6 parts of 30 of 28 of the whole, because they are its divisors.
\scriptstyle{\color{blue}{\frac{3}{28}-\frac{3}{30}=\frac{90}{840}-\frac{84}{840}=\frac{6}{840}=\frac{6}{30\sdot28}}}
הנה יעדפו עליהם ו' חלקים מ840 בשלם ר"ל ו' חלקים מל' מכ"ח בשלם כי הם מוריו
Every 3 parts of these are a tenth of 30, which are, i.e. the 30, are one part of 28 of the whole, as explained.
וכל ג' חלקים ‫[192]מאלו הם עשירית הל' שהם ר"ל שהם הל' הם חלקי א' מכ"ח בשלם כמו שנתבאר
Hence, every three of them are one-tenth of a part of 28 of the whole, i.e. one part of 28 of a tenth of the whole.
א"כ כל שלשה מהם הם עשירית [חלק מכ"ח בשלם ר"ל חלק מכ"ח מעשירית בשלם שהוא]‫[193] הל' שהם ר"ל הל' הם חלקי א' מכ"ח בשלם כמו שנתבאר
Which is a quarter of a seventh of a tenth of the whole.
\scriptstyle{\color{blue}{\frac{3}{840}=\frac{1}{10}\sdot\frac{30}{840}=\frac{1}{10}\sdot\frac{1}{28}=\frac{1}{28}\sdot\frac{1}{10}=\frac{1}{4}\sdot\frac{1}{7}\sdot\frac{1}{10}}}
א"כ כל שלשה מהם הם עשירית הל' חלק מכ"ח בשלם ר"ל חלק מכ"ח מעשירית בשלם שהוא רביעית שביעית עשירית מהשלם
The additional six, by which we find that the 3 parts of 28 that we have exceed over the 3 parts of 30, which are a whole tenth, are therefore 2-quarters of a seventh of a tenth.
\scriptstyle{\color{blue}{\frac{3}{28}-\frac{3}{30}=\frac{6}{840}=\frac{2}{4}\sdot\frac{1}{7}\sdot\frac{1}{10}}}
והששה הנוספות אשר מצאנו לג' חלקים מכ"ח אשר היו בידינו על הג' חלקים מל' אשר מצאנו לג' חלקים היו עשירית שלמה יעלו א"כ ב' רביעיות שביעית עשירית
We receive that when we divide 28, which is the common denominator, by 3, which are the numerator, so that the result is 9 and 1 remains, that when we add one to the 9, so that the result is 10, which indicates a tenth, we are left with an excess of 2-quarters of a seventh of a tenth, which is the excess that the number, by which we divide, which is 3, exceeds over the remainder, which is 1. I.e. these 2 are parts of the denominators that are a quarter of a [seventh] of the denominator that was generated, which is a tenth.
הרי לנו שכאשר חלקנו הכ"ח שהוא האם על הג' שהיו מספר החלקים ויצא ט' ונשאר א' שכאשר הוספנו אחד על הט' ועלה י' והורה עשירית שנשאר לנו לתוספת ב' רביעיות שביעית עשירית שהם התוספת אשר למספר אשר חלקנו עליו שהיה ג' על השארית שהיה א' ר"ל שאלו הב' הם חלקים מהמורים שהיו רביעית שמינית מהמורה שנתחדש שהוא עשירית
All this is clear by reason to the one who understands and deduce from this. וכל זה ברור בטעם למבין והקש על זה
\scriptstyle{\color{blue}{\scriptstyle\frac{28}{3}=9+\frac{1}{3}\longrightarrow\frac{3}{28}=\frac{1}{9+1}+\frac{3-1}{\left(9+1\right)\sdot28}=\frac{1}{10}+\frac{2}{10\sdot28}=\frac{1}{10}+\left(\frac{3}{28}-\frac{3}{30}\right)=\frac{1}{10}+\left(\frac{2}{4}\sdot\frac{1}{7}\sdot\frac{1}{10}\right)}}
Dividing a small number by a greater number - without divisors or with divisors
We receive that the one who wants to divide a smaller by a greater can divide it with or without extraction of the divisors. ויצא לנו מזה שהרוצה לחלק מעט על רב שיוכל לחלקו בלי הוצאת המורים או בהוצאת המורים
We also get the greatest part that can be pronounced by a single name. ויצאו לנו ג"כ החלק היותר גדול שאיפשר בשם אחד
This is very helpful when we want to divide a prime number, such as 101, that has no divisors. וזה יועיל מאד כאשר אנו רוצים לחלק למספר פשוט כמו ק"א או כדומה לו שאין לו מורים
In order to explain this matter well, I shall bring two examples - one with extraction of divisors and one without extraction of divisors: וכדי לבאר הענין יפה יפה אביא שני משלים אחד עם הוצאת המורים ואחד מבלי הוצאת המורים
  • Example: we wish to divide 73 by 240.
\scriptstyle73\div240
המשל רצינו לחלק 73 על 240
Its divisors are 6, 8, and 5, because they are the divisors, of which it is composed, and it is the common denominator.
\scriptstyle{\color{blue}{240=6\sdot8\sdot5}}
והנה מוריו הם אלו ו' ח' ה' כי מהם מורים הוא מורכב והוא האם
We divide the common denominator, which is the greater number, by which we want to divide, by the smaller number, i.e. 73, which is the number that we want to divide; the result of division is 3 and 21 remains.
\scriptstyle{\color{blue}{\frac{240}{73}=3+\frac{21}{73}}}
ונחלק האם שהוא המספר הגדול אשר רצינו לחלק עליו על המספר הקטן ר"ל ה73 אשר הוא המספר אשר רצינו לחלק עליו על המספר[194]הקטן ר"ל ה73 אשר הוא המספר אשר רצינו לחלק ויצא בחילוק ג' וישארו כ"א
We add 1 to the result, it is 4 and this is the denominator of the greatest fraction, which is one-quarter. We write it first and we write 1 beneath it.
נוסיף א' על היוצא יהיה ד' והוא המורה החלק גדול והוא רביעית אחת ונשימנו ראשונה ונשים תחתיו א‫'
We also put aside the 21 that remains from the 73, which is the number by which we divide now; 52 remain and it is added to the quarter, i.e. the result from dividing 73, which is the smaller number, by 240, which is the greater number, is one-quarter and 52 parts of 240 of a quarter.
עוד נשים הכ"א הנותרים מהע"ג שהוא החשבון אשר חלקנו עליו עתה ישארו נ"ב והם מוסיפים על הרביעית ר"ל שהעולה שיצא לנו בחלוק ה73 המספר הקטן על ה240 שהוא המספר הגדול רביעית אחת רביעית אחת ונ"ב חלקים מ240 מרביעית
Or, if you wish, take the divisors instead and say: one-quarter and 52-fifths of an eighth of a sixth of a quarter.
או אם תרצה תקח מורה במקומו ותאמר רביעית אחת ונ"ב חמישיות שמינית שישית רביעית
If you wish, you can reduce them; the result is one-quarter, one-fifth of a quarter, and 4-eighths of a sixth of a fifth of a quarter. Deduce from that.
ואם תרצה תעשה להם כלילת יופי ויעלו רביעית אחת וחמישית רביעית וד' שמיניות שישית חמישית רביעית והקש על זה
\scriptstyle{\color{blue}{73\div240=\frac{1}{3+1}+\frac{73-21}{\left(3+1\right)\sdot240}=\frac{1}{4}+\frac{52}{240}\sdot\frac{1}{4}=\frac{1}{4}+\left(\frac{52}{5}\sdot\frac{1}{8}\sdot\frac{1}{6}\sdot\frac{1}{4}\right)=\frac{1}{4}+\left(\frac{1}{5}\sdot\frac{1}{4}\right)+\left(\frac{4}{8}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}\right)}}
I shall bring another example, in which there are no divisors. ועוד אעשה משל אחר מאשר אין לו מורים כלל
I will illustrate there that we can apply our procedure repeatedly time after time, until the number ends and until reaching to a simple fraction [whose numerator is 1]. ושם אאריך שאנו יכולים לעשות מעשינו זה פעם אחר פעם עד כלות המספר והגיעו לחלק אחד
I call it also Aḥdut [= unification], as it brings all to one. כי גם לזה קראתיו אחדות כי יגיעם כלם לאחד
Even between all the denominators and the last denominator we can insert a new denominator as we wish. ואפי' בין כל המורים למורה האחרון נוכל להכניס מורה חדש ככל חפצנו
  • Example: to divide 38 by 101, because this number, i.e. 101 [is prime].
\scriptstyle38\div101
המשל לחלק ל"ח לק"א כי זה המספר ר"ל ק"א
We divide 101 by 38; the result of division is 2 and 25 remains.
\scriptstyle{\color{blue}{\frac{101}{38}=2+\frac{25}{38}}}
ונחלק הק"א לל"ח [ויצאו בחלוק ב' וישארו כ"ה
We add 1 to the 2; it is 3. We write it as the first denominator and we write 1 beneath it.
\scriptstyle{\color{blue}{38\div101=\frac{1}{2+1}+\frac{38-25}{\left(2+1\right)\sdot101}=\frac{1}{3}+\left(\frac{13}{101}\sdot\frac{1}{3}\right)}}
נוסיף א' על הב' יהיו ג' ונשימהו למורה ראשון ונשים תחתיו א‫'
We subtract the remainder from 38, by which we divide now; 13 remains.
ונגרע השארית מהל"ח אשר‫]‫[195] אשר חלקנו עליו עתה וישארו י"ג
If it were not that much, we would write the 101 as a second denominator and write this remainder, i.e. the 13, beneath it. Then, we would say that when divising 38 by 101, each gets one-third and 13 parts of 101 of a whole third.
ואם לא היו כ"כ הינו שמים למורה שני הק"א והינו שמים זה השארית ר"ל אלו הי"ג תחתיו והינו אומרים שהמחלק ל"ח על ק"א שיגיע לכל אחד מהם שלישית אחת וי"ג חלקים מק"א משלישית שלמה
Since it is that much and in order to find more proper fractions, we divide again the 101 by 13; the result of division is 7 and 10 remains.
\scriptstyle{\color{blue}{\frac{101}{13}=7+\frac{10}{13}}}
אכן להיותם הרבה וכדי שנמצא חלקים יותר נאותות נשוב לחלק הק"א לאלו הי"ג ויצא בחילוק ז' וישאר י‫'
We write the 7 plus one, which is 8, as a second denominator, and we write 1 beneath it. We put aside the 10, which is the remainder from the 13, by which we divide now; 3 remains.
ונשים זה הז' בתוספת אחד והוא ח' למורה שני ונשים תחתיו א' ונשים הי' שהם השארית ‫[196]מהי"ג אשר חלקנו עליהם עתה וישארו ג‫'
If you wish, you have already finished the whole procedure. Write the 101 as a third denominator and write the 3, which is the remainder, beneath it.
ואם תרצה כבר כלית כל מלאכתך ותשים הק"א למורה שלישי ותשים למורה שלישי ותשים אלו הג' תחתיו שהם השארית הנשארה
\scriptstyle{\color{blue}{38\div101=\frac{1}{3}+\frac{13}{101}\sdot\frac{1}{3}=\frac{1}{3}+\frac{1}{3}\sdot\left[\frac{1}{7+1}+\frac{13-10}{\left(7+1\right)\sdot101}\right]=\frac{1}{3}+\frac{1}{3}\sdot\left[\frac{1}{8}+\frac{3}{8\sdot101}\right]=\frac{1}{3}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)+\left(\frac{3}{101}\sdot\frac{1}{3}\sdot\frac{1}{8}\right)}}
If you want to repeat the procedure in order to reach a complete unification [Aḥdut], i.e. there would not be any numerator other than one, divide the 101 again by the 3; the result of division is 33 and 2 remains.
\scriptstyle{\color{blue}{\frac{101}{3}=33+\frac{2}{3}}}
אכן אם תרצה עוד להכפל המעשיך יען תגיע לאחדות גמורה ר"ל שלא יהיו שם מנין שברים כי אם אחד אחד תשוב תחלק הק"א על אלו הג' ויצא בחילוק ל"ג וישארו ב‫'
We add 1 to the 33; it is 34. We write it as a third denominator and we write 1 beneath it.
ונוסיף א' על הל"ג ויהיו ל"ד ונשימם למורה שלשי ונשים א' תחתיו
We subtract the remaining two from the 3, by which we divide now; 1 remains and we have reached the complete unification and finished our procedure entirely.
ונחסר אלו הב' הנשארים מהג' אשר חלקנו עליהם עתה וישאר א' וכבר הגענו לאחדות הגמור וכלינו מלאכתנו מכל וכל
We write 101 as a fourth denominator and write 1 beneath it.
ונשים ק"א למורה [רביעי] ונשים א' תחתיו
\scriptstyle{\color{blue}{\begin{align}\scriptstyle38\div101&\scriptstyle=\frac{1}{3}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)+\left(\frac{3}{101}\sdot\frac{1}{3}\sdot\frac{1}{8}\right)=\frac{1}{3}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)+\left[\frac{1}{3}\sdot\frac{1}{8}\sdot\left[\frac{1}{33+1}+\frac{3-2}{\left(33+1\right)\sdot101}\right]\right]\\&\scriptstyle=\frac{1}{3}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)+\left[\frac{1}{3}\sdot\frac{1}{8}\sdot\left[\frac{1}{34}+\frac{1}{34\sdot101}\right]\right]\\&\scriptstyle=\frac{1}{3}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)+\left(\frac{1}{3}\sdot\frac{1}{8}\sdot\frac{1}{34}\right)+\left(\frac{1}{3}\sdot\frac{1}{8}\sdot\frac{1}{34}\sdot\frac{1}{101}\right)\\\end{align}}}
You have three forms, all of which are true. You can switch to whichever of them you want. You are allowed to do it differently, when you divide the common denominator, as in the first example. We write all the denominators that are generated, time after time, one after the other, one instead of the other. הרי לך שלש צורות שכלם אמיתיות ותוכל להשיב כאשר תרצה מהם וכן היה הרשות בידך לעשות זה פעם אחר [כאשר היתה מחלק אם המורים כבמשל הא' ונשים כל המורים המתחדשים פעם אחר פעם זה‫]‫[197] פעם זה אחר זה כ"א תחת כל אחד
The term Aḥdut [= unification] is useful for all this, so that you will not forgat to write 1 beneath each generated denominator, then write the common denominator itself, or its divisors instead of it, and 1 beneath the last, if you have reached the complete unification, and if not, write beneath it what remains last, after you have subtracted the remainder from the number, by which you divide at that last time. Write that last rem,ainder beneath the last divisor of the common denominator. כי לכל זה יועיל שם האחדות שלא תשכח מלשים א' תחת כל מורה מתחדש ואחר תשים האם עצמה או מוריה במקומה ותחת האחרון א' אם הגעת לאחדות הגמורה ואם אין תשים תחתיו הנשאר באחרונה אחרי הסירך הנשאר מהמספר אשר אתה מחלק עליו בעת ההיא באחרונה [.]השארית האחרונה ההיא תשים תחת המורה האחרון אשר לאם
If it is greater than it, reduce them, I mean, divide that remainder by the last denominator and write the remainder beneath it and so on until it is complete. All this is clear and repeated many times. ואם יהיה רב ממנו תעשה מהם כלילת יופי רצוני לומר לחלק השארית הא' ההיא על המורה האחרון והיוצא שלפניו והנשאר תשים תחתיו וכן לעולם עד כלותו וכל זה מבואר ונכפל פעמים רבות
For every other number that you divide into divisors, if you see that what you wrote beneath the last denominator is a large number and you want to set between the former denominators and the last one to the left a new denominator or denominators, divide the last denominator by what is beneath it, as you have done in the second and third examples. וגם בכל מספר אחר אשר חלקת הכל למורים אם תראה שאשר שמת תחת המורה האחרון הוא מספר רב ותרצה להמציא בין כל המורים הראשונים זה האחרון אשר לצד שמאל משום מורה מחודש או מורים חלק ‫[198]המורה האחרון על אשר תחתיו כאשר עשית במה שבין הצורה השנית והשלישית
101 was the last denominator in the first example and since you found 13, which is a large number, beneath it, you formed the denominator 8 that you wrote second and it is third in the second example.
שהרי הק"א היה המורה האחרון בצורה הראשונה ולפי שמצאת הי"ג שהם מספר רב תחתיו המצאת המורה הח' ששמת שני והוא שלישי בידך שבא בצורה השנית
Likewise, from the second example to the third, you formed another denominator, which is 31, and you wrote the 101 fourth.
וכן עשית פעם אחת מהצורה השנית לשלישית והמצאת מורה אחר והוא הל"א ושמת הק"א רביעי
Provided that you do it only with the last denominator to the left. ובלבד שלא תעשה זה כי אם למורה האחרון אשר לצד שמאל
All this is clear to the one who understands by the first reason. וכל זה מבורר בטעם הראשון למבין
If you want to extract denominators between the middle denominators and the last denominator to the right, you have to extract [the common denominator] of all [the denominators], then this common denominator is divided by the numerators that are beneath those denominators, after they were decomposed, if it is divisible by them. All this is clear by reason. ואם תרצה להוציא המורים בין המורים האמצעיים תצטרך להוציא המורים לכל המורה האחרון אשר לצד שמאל והאם ההיא תחלק למנין השברים אשר היו תחת המספר המורים ההם אחרי עשות להם פריטה אם כבר נתחלק להם המספר וכל זה ברור בטעם
Because, after you have extracted the common denominator of these denominators, they are all become as one denominator and you seek between the formers and the [last] another denominator or denominators, and after you have set the denominators that you want, you write this common denominator after them to the left, or the denominators, of which it is composed, one after the other, instead of it, as it is all the same. כי אחר שהוצאת האם למורים האם הרי שבו כלם כמורה אחד ואתה מבקש בין הראשונים ובינו מורה או מורים אחרים ואחר שהמצאת המורים אשר רצית תשים האם הזאת אחריהם לצד שמאל או המורים אשר הורכבה מהם זה אחר זה במקומה כי הכל אחד
This is enough for the one who understands. ודי למבין

Check

If you want to check your practice, decompose all the fractions you have received. ואם תרצה לבחון מעשיך עשה פריטה לכל אלו השברים אשר באו לך
If the large number, by which you wanted to divide, is among your denominators, i.e. 101 in the last example, divide the resulting decomposed numerator by all other denominators except for it one after the other, or by their common denominator, what you receive should be as the small number that you wanted to divide [originally]. [If] nothing remains in any of these divisions, your procedure was true and correct; if not, know that you were wrong. ואם יש במוריך אלו המספר הגדול אשר רצית לחלק עליו ר"ל הק"א במשל האחרון חלק זה העולה מהשברים הנפרטים על כל שאר המורים מבלעדיו זה אחר זה או על אמם ויצא לך באחרונה כמנין המספר הקטן אשר רצית לחלק ולא נשאר דבר בשום חלוקה מאלו הנה מעשיך אמת ונכון ואם לאו דע שטעית
If the original denominators, or the original divisor, are among you denominators, in the first example also, divide all the decomposed numerators by the rest of the denominators that were generated in the unification operation, or by their common denominator. If nothing remains and the result is as the small number that you wanted to divide [originally], or as the decomposed fractions in the example at the beginning of the discussion, [the procedure was] true and correct; if not, know that you were wrong. [199]גם במשל הראשון אם יש במוריך אלו הם המורים הראשונים או המורים עצמם חלק כל מספר השברים הנפרטות על שאר המורים שנתחדשו במלאכת האחדות או על אמם ואם לא ישאר לעולם דבר ויצא באחרונה כמספר הקטן אש' רצית לחלק או כשברים הנפרטים במשל ראש המאמר הנה אמת הנה נכון ואם לאו דע שטעית
If the common denominator or the original divisor are not in your procedure, i.e. among the denominators, multiply the resulting decomposed numerator by the large number, by which you wanted to divide - whether by the common denominator of the required fractions as in the first example at the beginning of this discussion, or by the large number, by which you wanted to divide as in the second example - we divide the product by all the denominators or by their common denominator, and if the result is as the required decomposed numerator in the first example, or as the small number that you wanted to divide in the second example without any remainder, [the procedure] is true; if not, it is wrong. ואם אין במלאכתך זאת ר"ל במוריך לא אם המורים ולא המורים עצמם כפול כל המספר השברים הנפרטים בחשבון הגדול אשר רצית לחלק עליו אם באם המורים מהחלקים הנשאלים כבמשל הראשון אשר בראש זה המאמר אם במספר הגדול אשר רצית לחלק עליו כבמשל השני והעולה חלקנו לכל מוריך אלו או לאמם ואם יצא כמספר השברים הנפרטים הנשאלים במשל הראשון או כמספר הקטן אשר רצית לחלק במשל השני מבלי שארית כלל הנה אמת ואם לאו שקר
Before I start with the reason of this check, in order to train you in the procedure, I will check each one of the three mentioned examples: וקודם התחילי בטעם בחינה זאת כדי להרגילך במעשה אעשה בחינה בכל אחד משלשת המשלים הנזכרים
  • The decomposed [numerator] of the first example:
\scriptstyle\left(\frac{2}{5}\sdot\frac{2}{9}\sdot2\right)+\left[\left[\frac{1}{8}+\left(\frac{2}{9}\sdot\frac{1}{7}\sdot\frac{1}{8}\right)\right]\sdot\left[\frac{1}{4}+\left(\frac{2}{6}\sdot\frac{1}{4}\right)\right]\right]
הנה פריטת המשל הראשון
7 by 21 is 21; [plus 2 it is 23]. 23 by 2 is 69. 69 by 6 is 414; with the 3 it is 417. [417] by 4 is 1668. 1668 plus 1 is 1669. 1669 by 5 is 8345. 8345 by 8 is 66760. We receive that the decomposed [numerator] is 66760.
היה 1 3 7 7 7 ב3 3 21 23 ב3 69 69 ב6 4144 וה3 הם 417 וב4 1668 1668 ו1 1669 [5] 1669 8345 8345 [ב8] 66760 והנה עלה בידינו שהפריטה היא 66760
\scriptstyle{\color{blue}{\begin{align}\scriptstyle\frac{1}{5}+\left(\frac{2}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{3}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)&\scriptstyle=\left(\frac{\left(3\sdot7\right)+2}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{3}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\&\scriptstyle=\left(\frac{21+2}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{3}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\&\scriptstyle=\left(\frac{\left(23\sdot3\sdot6\right)+3}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\&\scriptstyle=\left(\frac{\left(69\sdot6\right)+3}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\&\scriptstyle=\left(\frac{414+3}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)\\&\scriptstyle=\frac{\left(417\sdot4\right)+1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}=\frac{1668+1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\\&\scriptstyle=\frac{1669\sdot5}{5}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}=\frac{8345\sdot8}{8}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\\&\scriptstyle=\frac{66760}{8}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\\\end{align}}}
Had we not have all the original denominators, we would have multiplied it by all the original denominators, then we would have divided the result by all these eight denominators, one by one, or by their common denominator and the result were the required decomposed numerator, which is 13352.
ואם לא היו בידינו כל המורים הראשונים היו כופלים זה בכל המורים הראשונים והעולה היינו מחלקים אל כל שמונת מורים אלו אחד אחד אחד או לאמם והיא יוצא מספר פריטת השברים הנשאלים והיא 13352
Since we have all the original denominators, i.e. all the denominators of the required fractions - and do not be mistaken that there is no 9 here, as 3 and 3, which are its divisors, are instead of it - we divide what we received from the decomposing, i.e. 66760 by the denominators that were generated from our procedure, i.e. by the first 5 alone, because no other was generated; the result of division is 13352, which is the required decomposed numerator and nothing remains, so it is true.
אכן אחרי היות בידינו כל המורים הראשונים ר"ל כל מורה השברים ‫[200]הנשאלים ואל יטעך שאין כאן הט' שהרי במקומו ג' ג' שהם מוריו ונחלוק זה אשר עלה לנו מפריטתינו זאת ר"ל ה66760 למורים שנתחדשו במלאכתינו ר"ל לה' הראשון לבדו כי לא נתחדשו עוד ויצא בחילוק 13352 שהוא מספר פריטת השברים הנשאלים ולא נשאר דבר והנה אמת
\scriptstyle{\color{blue}{\begin{align}\scriptstyle\frac{1}{5}+\left(\frac{2}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{3}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)+\left(\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\right)&\scriptstyle=\frac{66760}{8}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}\\&\scriptstyle=\frac{66760}{5}\sdot\frac{1}{8}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\sdot\frac{1}{5}=\frac{13352}{8}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{3}\sdot\frac{1}{7}\\\end{align}}}
  • In the second example:
\scriptstyle73\div240
ובמשל השני
The decomposed [numerator] is: 1 by 5 is 5; plus 1 it is 6. 6 by 6 is 36. [36] by 8 is 288; plus 4 it is 292.
הוא הפריטה א' בה' ה' וא' ו' ו' בו' ל"ו בח' 288 ו4 292
We divide it by 4, which is the new denominator; the result of division is 73 with no remainder and this is the small number that we want to divide, so it is correct.
נחלקם לד' שהוא המורה המתחדש יצא בחילוק מבלי שארית 73 שהוא המספר הקטן שרצינו לחלק והנה אמת
\scriptstyle{\color{blue}{\begin{align}\scriptstyle\frac{1}{4}+\left(\frac{1}{5}\sdot\frac{1}{4}\right)+\left(\frac{4}{8}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}\right)&\scriptstyle=\left(\frac{\left(1\sdot5\right)+1}{5}\sdot\frac{1}{4}\right)+\left(\frac{4}{8}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}\right)=\left(\frac{5+1}{5}\sdot\frac{1}{4}\right)+\left(\frac{4}{8}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}\right)\\&\scriptstyle=\frac{\left(6\sdot6\sdot8\right)+4}{8}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}=\frac{\left(36\sdot8\right)+4}{8}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}=\frac{288+4}{8}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}=\frac{292}{4}\sdot\frac{1}{240}=\frac{73}{240}\\\end{align}}}
  • In the third example:
\scriptstyle38\div101
ובמשל השלישי
In the first figure the decomposed [numerator] is 114. We divide it by 3, which is the new denominator; the result is 38, which is the small number that we wanted to divide.
\scriptstyle{\color{blue}{\scriptstyle\frac{1}{3}+\left(\frac{13}{101}\sdot\frac{1}{3}\right)=\frac{114}{3}\sdot\frac{1}{101}=\frac{38}{101}}}
בצורה הראשונה הנה הפריטה עולה 114 נחלקם לג' שהוא המורה המתחדש יצאו הל"ח שהוא המספר הקטן אשר רצינו לחלק
In the second figure the decomposed [numerator] is 912. We divide it by 3 and 8, which are the new denominators: first by 3; the result is 304. We divide it by 8; the result is 38.
ובצורה השנית הפריטה 912 נחלקם לג' ולח' שהם המורים החדשי' תחלה לג' יצא 304 נחלקם לח' ויצאו הל"ח
\scriptstyle{\color{blue}{\frac{1}{3}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)+\left(\frac{3}{101}\sdot\frac{1}{3}\sdot\frac{1}{8}\right)=\frac{912}{3}\sdot\frac{1}{8}\sdot\frac{1}{101}=\frac{304}{8}\sdot\frac{1}{101}=\frac{38}{101}}}
In the third figure the decomposed [numerator] is 31008. We divide it by 3; the result is 10336. We divide it by 8; the result is 1292. We divide it by 34, which is the denominator that remains from the new denominators; the result is 38, so it is true.
ובצורה השלישית הפריטה 31008 נחלקם לג' יצא 10336 נחלקם לח' יצא 1292 נחלקם לל"ד שהוא המורה הנשאר מהמורים החדשים יצא הל"ח והנה אמת
\scriptstyle{\color{blue}{\frac{1}{3}+\left(\frac{1}{3}\sdot\frac{1}{8}\right)+\left(\frac{1}{3}\sdot\frac{1}{8}\sdot\frac{1}{34}\right)+\left(\frac{1}{3}\sdot\frac{1}{8}\sdot\frac{1}{34}\sdot\frac{1}{101}\right)=\frac{31008}{3}\sdot\frac{1}{8}\sdot\frac{1}{34}\sdot\frac{1}{101}=\frac{10336}{8}\sdot\frac{1}{34}\sdot\frac{1}{101}=\frac{1292}{34}\sdot\frac{1}{101}=\frac{38}{101}}}
Reason: check
The reason of this check is clear because when the original denominators, or the common denominator, or the great number, by which we wanted to divide, are among our denominators, decomposing means the numerator of [the fraction that consists of] all the original as well as the new denominators and this is clear as was explained many times. וטעם בחינה זה הוא ברור כי כשיש במורינו המורי' הראשונים או האם או האם או המספר הגדול אשר רצינו לחלק עליו הנה הפריטה היא מספר שברים מכל המורים חדשים גם שנים וזה ברור כמו שנתבאר פעמים רבות
Since decomposing is to convert them to the lowest fraction, which is the last type and it is related to all the denominators. כי הפריטה הוא להשיבם פרוטות כי הפריטה הוא מספר שברים מכל המורים שהוא המין האחרון והוא נקשר בכל המורים
When we divide it by the new denominators it is as reducing, for the order does not matter. וכאשר נחלקם על המורים המתחדשים הוא כעושה כלילת יופי כי הסדר לא יזיק
After it is divided by all the new [denominators] and nothing remains, it is reduced and the result is a numerator of the new denominators, or their common denominator, or of the large number. ואחר שנתחלק על כל החדשים ולא נשאר ‫[201]דבר הנה יצאו מן הכלל והיוצא באחרונה הם שברים מהמורים הראשונים או מאמם כבראשונה או מהמספר הגדול
I.e. that the 38 that we received, after we divided the decomposed by the new denominators and they were reduced, are parts of 101 parts of the whole. Because each unit of the 38 is one part of 101 of the whole.
ר"ל שהל"ח שיצאו לנו אחר שחלקנו הפריטה במורים החדשי' ויצאו הם מן הכלל הם חלקים מק"א חלקים בשלם כי לכל אחד מהל"ח יעלה לכל אחד חלק אחד מק"א בשלם ומהל"ח ל"ח
The reason for our saying: "if the original denominators, or their common denominator, or the greatest number are not among our denominators, we multiply the decomposed by the original denominators, or by their common denominator, or by the greatest number and divide by all the denominators, so that the result is without a remainder as the required decomposed fractions in the first example, or as the smaller number in the second number" - is that the decomposed fraction consists of all these denominators and when we multiply it by the original denominators, or by their common denominator, or by the greatest number, we decompose it further to fractions of fractions of the original [denominators]. וטעם אומרנו שאם אין המורים הראשונים או אמם או המספר הגדול במורינו שנכפול הפריטה במורים הראשונים או באמם או במספר הגדול ונחלקנו בכל המורים שיצא מבלי שארית כמספר פריטת השברים הנשאלים במשל הראשון או כמספר הקטן במשל השני הוא לפי שהפריטה היא שברים מכל אלו המורים וכאשר אנו כופלים אותה במורים הראשונים או באמם או במספר הגדול הוא שאנו פורטים אותה עוד לשברי שברים מהראשונים
  • I.e. if we have 3-quarters of an eighth, for instance:
\scriptstyle\frac{3}{4}\sdot\frac{1}{8}
ר"ל כי אם יש בידינו ג' רביעיות שמינית ע'ד'מ‫'
If we multiply them by 7, the result are sevenths of a quarter of an eighth and this has been clarified many times.
\scriptstyle{\color{blue}{\frac{3}{4}\sdot\frac{1}{8}=\frac{7\sdot3}{7}\sdot\frac{1}{4}\sdot\frac{1}{8}}}
אם נכפלם בז' היוצא שביעית רביעית שמינית וזה נתברר פעמים רבות
Therefore, in our procedure, the product [by the original denominators] is a numerator of [a fraction that consists of] all these [renewed] denominators that we have, as well as of the original denominators, or of their common denominator, or of the large number that we added [to the new denominators] just now. When we divide it by our denominators, i.e. [the renewed denominators] without the original denominators that we added now [to the new denominators], or without their common denominator, or without the large number, because we do not divide by them, the result of division should be a numerator of [a fraction that consists of] the original denominators, or of their common denominator, or of the large number. והנה במעשינו היוצא אחר הכפל יהיו שברים מכל אלו המורים אשר לנו ומהראשונים או מאמם או מהמספר הגדול שהוספנו עליהם עתה וכאשר נחלקנו למורינו ר"ל מבלתי הראשונים אשר הוספנו עתה או מבלתי אמם או מבלתי המספר הגדול אשר הוספנו עתה כי להן לא נחלקם ישאר היוצא שברים מהמורים הראשונים או מאמם או מהמספר הגדול
If the result is as the decomposed numerator required in the first example, or as the small number in the second [example], it is restored to what it was in the beginning, so our calculation is correct. והנה אם היוצא היה כמספר פריטת השברים הנשאלים במשל הראשון או כמספר הקטן בשני הנה שב כבתחלה והנה כל מעשינו אמת ויציב
Know that the prime number, i.e. if the large number [by which the small number is divided] is a prime number that has no divisors, as in the third example, which is 101, it cannot be absent or converted [after the unification procedure], and this is clear because it cannot be divided completely by another number without a remainder, since it is prime. ודע כי ‫[202]המספר הפשוט ר"ל אם היה המספר הגדול מספר פשוט שאין לו מורים כבמשל השלישי שהוא קי"א כי לעולם לא יעדר ולא יומר וזה ברור כי הוא לא יתחלק לשום מספר בשלימות מבלי שארית אחר שהוא פשוט

Chapter Two: Subtraction

הפרק השני בחסרון
  • Example: if you are told: three-quarters and two-fifths of a quarter of two-ninths, subtract them from eight-ninths and three-sevenths of a fifth of a ninth of five-sixths of 3 integers
\scriptstyle\left[\left[\frac{8}{9}+\left(\frac{3}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\right)\right]\sdot\left(\frac{5}{6}\sdot3\right)\right]-\left[\left[\frac{3}{4}+\left(\frac{2}{5}\sdot\frac{1}{4}\right)\right]\sdot\frac{2}{9}\right]
המשל אם אמרו לך שלש רביעיות ושתי חמישיות רביעית משתי תשיעיות חסרם משמונה תשיעיות ושלש שביעיות חמשית תשיעית מחמש ששיות מג' שלמים
Set the first, which is the smaller number [i.e. the subtracted], like this:
תשים הצורה הראשונה והוא המעט כזה
  9
5 4 2
2 3
Set the second, which is the greater number [i.e. the minuend], like this:
והצורה השנית והוא הרב תשים כזה
  3
  6
7 5 9 5
3   8
The smaller number, after it is multiplied and decomposed, becomes 34 fifths of a quarter of a ninth, like this:
\scriptstyle{\color{blue}{\left[\frac{3}{4}+\left(\frac{2}{5}\sdot\frac{1}{4}\right)\right]\sdot\frac{2}{9}=\frac{34}{5}\sdot\frac{1}{4}\sdot\frac{1}{9}}}
והנה המעט אחרי אשר הוכה ונפרט יעלה 34 חמישיות רביעית תשיעית כזה
5 4 9
34    
The greater number, after it is multiplied and decomposed, becomes 4245 sevenths of a fifth of a ninth of a sixth.
\scriptstyle{\color{blue}{\left[\frac{8}{9}+\left(\frac{3}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\right)\right]\sdot\left(\frac{5}{6}\sdot3\right)=\frac{4245}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{6}}}
והרב יעלה אחרי שנפרט והוכה שביעיות 4245 שביעיות חמישית תשיעית ששית
After multiplying and decomposing, we should expand them by multiplying the numerator of one by the denominators of the other, then both are of the same fractions.
\scriptstyle{\color{red}{\frac{a}{b}=\frac{a\sdot d}{b}\sdot\frac{1}{d}\quad\frac{c}{d}=\frac{c\sdot b}{d}\sdot\frac{1}{b}}}
ואחרי שהוכו ונפרטו יש לנו להשוותם וזה בכפול מספר שברי כל אחת במורי חברתה ואז היו כל אחת מהם שברים
To make the procedure easier for us, since 9 and 5 are in the denominators of both the same number of times, which is once, we do not multiply any of [the numerators] by them, as explained at the end of the third chapter, and we set them only once.
אכן להקל עלינו המעשה אחרי היות בש[בריהם] הט' והה' פעמים שוות והוא פעם אחת לא נכפול בהם שום אחת מהם כמו שנתבאר בסוף השער הג' וגם לא נסדרם שום אחת מהם כי אם פעם אחת
The smaller – after it is multiplied by 6 and 7 one after another, which are the denominators of the other number, except for 9 and 5, by which we do not multiply as mentioned – becomes 1828; and since it is multiplied by 6 and 7, these denominators are added to its denominators, so they are 1428 sevenths of a sixth of a fifth of a quarter of a ninth.
והנה המעט אחרי הכפלו בו' ובז' זה אחר זה שהם מורי חברתה מזולת הט' והה' שלא נכפול בהם כנזכר יעלה 1828 ואחר שהוכה בו' ובז' ‫[203]נתוספו לו מורים אלו על מוריו לכן יהיו אלו ה1428 שביעיות שישית חמישית רביעית תשיעית
\scriptstyle{\color{blue}{\left[\frac{3}{4}+\left(\frac{2}{5}\sdot\frac{1}{4}\right)\right]\sdot\frac{2}{9}=\frac{34\sdot6\sdot7}{7}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{9}=\frac{1428}{7}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{9}}}
Hence, the reason is clear why we set all the denominators and why we do not set the 9 and the 5 once more, even though they are in the other number, this is because it was not multiplied by them and it is obvious.
ובכאן נתבאר הטעם למה אנו מסדרים כל המורים ולמה אין אנו מסדרי' הט' והה' פעם אחרת ואם הם בחברתה והוא לפי שלא נכפלו בהם וזה ברור
The greater – after it is multiplied by 4, which is the remaining denominator of the other number that is not in [the greater] – becomes 16980; and since it is multiplied by 4, it is added also to its denominators, so they are quarters of a seventh of a fifth of a ninth of a sixth.
והרב אחרי הכפלו בד' שהוא המורה הנשאר בחברתה שאינו בה יעלה 16980 ואחר שהוכה על הד' ונוסף גם הוא על מוריו יהיו רביעיות שביעית חמישית תשיעית ששית
\scriptstyle{\color{blue}{\left[\frac{8}{9}+\left(\frac{3}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\right)\right]\sdot\left(\frac{5}{6}\sdot3\right)=\frac{4245\sdot4}{4}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{6}=\frac{16980}{4}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{6}}}
So, [the denominators of] both are equal, because the order does not matter.
והנה שניהן שוות כי הסדר לא יזיק
We set the numbers one above the other, then we subtract as the procedure of integers; the remainder is 15552 quarters of a seventh of a fifth of a ninth of a sixth. If you wish, you can reduce them, so the remainder becomes 2 integers and 2-sevenths of a fifth.
ונשים המספרים זה על זה ונחסרנו כמעשינו בשלמים ונשארו 15552 רביעיות שביעית חמשית תשיעית שישית

ואם תרצה תעשה להם כלילת יופי ויעלה זה השארית ב' שלמים וב' שביעיות חמישית והקש על זה

\scriptstyle{\color{blue}{\left[\left[\frac{8}{9}+\left(\frac{3}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\right)\right]\sdot\left(\frac{5}{6}\sdot3\right)\right]-\left[\left[\frac{3}{4}+\left(\frac{2}{5}\sdot\frac{1}{4}\right)\right]\sdot\frac{2}{9}\right]=\left(\frac{16980}{4}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{6}\right)-\left(\frac{1428}{7}\sdot\frac{1}{6}\sdot\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{9}\right)=\frac{15552}{4}\sdot\frac{1}{7}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{6}=2+\left(\frac{2}{7}\sdot\frac{1}{5}\right)}}
This is the rule: we decompose and multiply both the greater [= the minuend] and the smaller [= the subtracted], or any of them that requires it, then we expand their [denominators], subtract [the numerator of] one from the other as the way of the integers and reduce the remainder that includes all the denominators that are included originally in each of them. זה הכלל שנעשה לכל אחד מהמספרים הרב והמעט פריטה והכאה או אשר יצטרך מהם ואחר כך נעשה להם השוואה ואחר כך נחסרם זה מזה כדרכנו בשלמים והנשאר נעשה לו כלילת יופי והוא כל השברים ר"ל היו לאחת מהם עם אשר הוכתה בהם מאשר בחברתה

Chapter Three: Multiplication

הפרק השלישי בכפל
The operation [described] in this chapter is the same operation [described] in the second principle of compound fractions. הנה מעשה זה הפרק הוא מעש' השער השני הנקרא שער ההכאה
  • Because, our saying: multiply 3-quarters by 4-fifths, for instance, is as our saying: 3-quarters of 4-fifths.
\scriptstyle{\color{blue}{\frac{3}{4}\times\frac{4}{5}}}
כי אמרנו כפול ג' רביעיות על ד' חמישיות ע'ד'מ' הוא כאומרנו ג' רביעיות מד' חמישיות
We multiply the numerator by the numerator, not by the denominators.
\scriptstyle{\color{OliveGreen}{\frac{a}{b}\times\frac{c}{d}=\frac{a\sdot c}{d}\sdot\frac{1}{b}}}
ונכפול מספר השברים במספר השברים לא במורים
I.e. 3 by 4; the result is 12 and this is the numerator of the denominators of both numbers, i.e. they are fifths of a quarter.
\scriptstyle{\color{blue}{\frac{3}{4}\times\frac{4}{5}=\frac{3\sdot4}{5}\sdot\frac{1}{4}=\frac{12}{5}\sdot\frac{1}{4}}}
‫[ר"ל הג' על הד' יעלו י"ב והם שברים ממורי שני המספרים ר"ל]‫[204] ר"ל שהן חמישיות רביעית
Therefore, there is no need in this chapter for expansion at all, because they are not two [different] types of fractions, but they are fractions that are related to each other, as we explained. ולזה אין מבוא בזה השער להשואה כלל כי אינם שני מינים שברים אבל הם שברים ‫[205]נקשרים זו בזו כמו שביארנו
In order to train you in the procedure I give an example: וכדי להרגילך במעשה אביא משל אחד
  • Example: we wish to multiply 4-sevenths of 5-ninths of an eighth by 3-fifths of a ninth of 2-thirds of 5 integers.
\scriptstyle\left[\left[\frac{4}{7}\sdot\left(\frac{5}{9}\sdot\frac{1}{8}\right)\right]\right]\times\left[\left(\frac{3}{5}\sdot\frac{1}{9}\right)\sdot\left(\frac{2}{3}\sdot5\right)\right]
המשל רצינו לכפול ד' שביעיות מה' תשיעיות שמינית על ג' חמשיות תשיעית מב' שלישיות מה' שלמים
You do not have to do anything except for relating them together and write "of" [the letter מ] instead of "by", i.e. say: they are 4-sevenths of 5-ninths of an eighth of 3-fifths of a ninth of 2-thirds of 5 integers. So, we are back to the chapter on compound fractions.
אין לך לעשות דבר כי אם לקשרם יחד ולשים במקום על מ' ר"ל שתאמר הם ד' שביעיות מה' תשיעיות שמינית [מג']‫[206] חמישיות תשיעית מב' שלישיות מה' שלמים והרי לנו חזרו לשער ההכאה
If you want to know how much they are, multiply them, for in this example there is no need for decomposing, then we reduce the result with all the denominators, because all are related to each other. The result after the multiplication is 600-sevenths of a ninth of an eighth of a fifth of a ninth of a third.
ואם תרצה לידע מה המה אלה עשה להם הכאה כי בזה המשל אין מבוא לפריטה והעולה נעשה לו כלילת יופי על כל המורים כי כלם נקשרים זה בזה ויעלה אחר ההכאה 600 שביעיות תשיעית שמינית חמישית תשיעית שלישית
\scriptstyle{\color{blue}{\left[\left[\frac{4}{7}\sdot\left(\frac{5}{9}\sdot\frac{1}{8}\right)\right]\right]\times\left[\left(\frac{3}{5}\sdot\frac{1}{9}\right)\sdot\left(\frac{2}{3}\sdot5\right)\right]=\frac{4}{7}\sdot\left(\frac{5}{9}\sdot\frac{1}{8}\right)\sdot\left(\frac{3}{5}\sdot\frac{1}{9}\right)\sdot\left(\frac{2}{3}\sdot5\right)=\frac{600}{7}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{3}}}
Know that the denominators are always [written] on top and you cannot find anything above them. By this you distinguish between the denominators and the numerators. ודע שלעולם המורים עליונים ולא תמצא עליהם דבר ובזה תבחין בין המורים למספר השברים
Although there is no proof to the matter, there is a reference to the matter [Mishnah, Sanhedrin 8, 2], to include Torah scholars [Talmud, Bekhorot 6, 2] - the denominators [morim, lit. teachers] should be high above all and the numerators are beneath them, as the student and his teacher, or a teacher's house that is wide open, so that whoever wishes comes. ואם א[י]ן ראיה לדבר זכר לדבר[note 36] את לרבות תלמידי חכמים[note 37] שהמורים ראויין להיות גבוהים על הכל והשברים למטה מהם כתלמיד לפני רבו או בית פתוח לרוחה תחת המורה ויבא מי שירצה
But, the integers - there is nothing above or beneath them. Their house is not open, for they are not denominators [lit. teachers]. אבל השלמים לעולם אין עליהם ולא תחתיהם דבר ולא בית פתוח כי אינם מורי הוראה
After we reduce them, they are five-ninths of a seventh of a ninth.
\scriptstyle{\color{blue}{\left[\left[\frac{4}{7}\sdot\left(\frac{5}{9}\sdot\frac{1}{8}\right)\right]\right]\times\left[\left(\frac{3}{5}\sdot\frac{1}{9}\right)\sdot\left(\frac{2}{3}\sdot5\right)\right]=\frac{600}{7}\sdot\frac{1}{9}\sdot\frac{1}{8}\sdot\frac{1}{5}\sdot\frac{1}{9}\sdot\frac{1}{3}=\frac{5}{9}\sdot\frac{1}{7}\sdot\frac{1}{9}}}
ואחרי עשותנו להם כלילת יופי שהן חמש תשיעיות שביעית תשיעית
This is the rule: we should not expand to a common denominator at all. All that we should do is only to relate [the fractions] to each other, which is to write "of" [the letter מ] instead of "by", as we explained, then multiply and decompose if necessary, and after all this to reduce, which is to divide by the denominators that are always on top as we explained, and the result is the required. זה הכלל שאין לנו לעשות בזה ההשואה כלל כי אין לנו לעשות כי אם לקשרם יחד והוא לשים מ' במקום על כמו שבארנו ואחר כן נעשה לה הכאה גם פריטה אם הוצרך אליה ואחר כל זה לעשות לה כלילת יופי והוא לחלקם על המורים שהרי העליונים לעולם כמו שביארנו והיוצא ‫[207]הוא המבוקש

Chapter Four: Division

הפרק הרביעי בחלוק
  • We wish to divide three-quarters and 2-thirds of a quarter by 4-ninths and 5-sixths of a ninth of 2-thirds.
\scriptstyle\left[\frac{3}{4}+\left(\frac{2}{3}\sdot\frac{1}{4}\right)\right]\div\left[\left[\frac{4}{9}+\left(\frac{5}{6}\sdot\frac{1}{9}\right)\right]\sdot\frac{2}{3}\right]
רצינו לחלק שלש רביעיות וב' שלשיות רביעית על ד' תשיעיות וה' ששיות תשיעית מב' שלישיות
The diagram of the greater number [the dividend] is like this:
הנה צורת הרב היא כזה
3 4
2 3
The diagram of the smaller number [the divisor] is like this:
וצורת המעט כזה
  3
6 9 2
5 4
The large number [= the dividend] requires only decomposing. The result after the decomposing is 11-thirds of a quarter.
\scriptstyle{\color{blue}{\frac{3}{4}+\left(\frac{2}{3}\sdot\frac{1}{4}\right)=\frac{11}{3}\sdot\frac{1}{4}}}
והרב אינו צריך כי אם פריטה ויעלה אחר הפריטה י"א שלישיות רביעיות
The small number [= the divisor] requires decomposing and multiplication. The result after the decomposing and multiplication is 58-sixths of a ninth of a third.
\scriptstyle{\color{blue}{\left[\frac{4}{9}+\left(\frac{5}{6}\sdot\frac{1}{9}\right)\right]\sdot\frac{2}{3}=\frac{58}{6}\sdot\frac{1}{9}\sdot\frac{1}{3}}}
אכן המעט צריך פריטה והכאה ויעלה אחר הפריטה וההכאה נ"ח ששיות תשיעית שלישית
After decomposing and multiplying each of them, if needed, we expand them to a common denominator. ואחר שעשינו לכל אחד מהם אשר הוצרך מפריטה והכאה נשוום יחד
Since the 3 is once in both of them, we do not multiply them by it.
ואחרי היות הג' בשתיהן פעם אחת לא נכפלם בו
The large number becomes 594 after the expansion.
\scriptstyle{\color{blue}{\frac{3}{4}+\left(\frac{2}{3}\sdot\frac{1}{4}\right)=\frac{11}{3}\sdot\frac{1}{4}=\frac{594}{6}\sdot\frac{1}{9}\sdot\frac{1}{3}\sdot\frac{1}{4}}}
ויעלה הרב אחר ההשואה 594
The small number becomes 232.
\scriptstyle{\color{blue}{\left[\frac{4}{9}+\left(\frac{5}{6}\sdot\frac{1}{9}\right)\right]\sdot\frac{2}{3}=\frac{58}{6}\sdot\frac{1}{9}\sdot\frac{1}{3}=\frac{232}{6}\sdot\frac{1}{9}\sdot\frac{1}{3}\sdot\frac{1}{4}}}
והמעט יעלה 232
These two numbers are fractions of four denominators, which are sixths of a ninth of a third of a quarter.
והם ר"ל שני המספרים האלו שברים מהד' מורים שהם שישיות תשיעית שלישית רביעית
Since they are expanded, it is as if we were asked to divide 594-sixths of a ninth of a third of a quarter, which is as if we are told to divide 594 integers by 232.
ואחרי היותם שוות הרי הוא כאלו שאלו לנו שנחלק 594 שישיות תשיעיות שלישית רביעית והרי הוא כאלו אמרו לנו נחלק 594 שלמים על 232
\scriptstyle{\color{blue}{\left[\frac{3}{4}+\left(\frac{2}{3}\sdot\frac{1}{4}\right)\right]\div\left[\left[\frac{4}{9}+\left(\frac{5}{6}\sdot\frac{1}{9}\right)\right]\sdot\frac{2}{3}\right]=\left(\frac{594}{6}\sdot\frac{1}{9}\sdot\frac{1}{3}\sdot\frac{1}{4}\right)\div\left(\frac{232}{6}\sdot\frac{1}{9}\sdot\frac{1}{3}\sdot\frac{1}{4}\right)=\frac{594}{232}}}
For, since they are of the same type, what do I care if they are integer or fractions, or zuzim or peraḥim, after all this operation is exactly the same as division of integers. כי אחר שהם ממין אחד מה לי אם הם שלמים או שברים או זוזים או פרחים והרי מעשהו שוה לחלוקת השלמים שוה בשוה
In order that we will receive fractions and integers together, we do not use the method of unifying, but the method of extracting the divisors, that is we extract the divisors of the number by which we want to divide and this is the small number in our example. וכדי שיצאו לנו שברים ושלמים יחד לא נביאנו על דרך האחדות כי אם ע"ד הוצאת המורים והוא שנוציא מורי המספר אשר רצינו לחלק עליו והוא המספר המעט אשר במשלינו
However, do not be mistaken in thinking that its denominators that are above it are the divisors of the decomposed after the expansion and that these are the divisiors that you should seek for and divide by them, for this is not the case at all. You should divide by them only when you reduce. ואל תטעה לחשוב כי מוריו אשר עליו מוריו אשר עליו הם המורים לחלקי הפריטה אחר ההשואה ושאלו ‫[208]הם המורים אשר לך לבקש ולחלק עליהם כי זה אינו כלל ואין לך לחלק עליהם כי אם בעשותך כלילת יופי
The divisors that you should seek for, means to know if the 232, which is the numerator of the number by which we want to divide the other numerator, is prime or composite, or of which numbers it consists. אבל המורים אשר לך לבקש הוא לדעת ה232 שהוא מספר השברים אשר רצינו לחלק עליהם מספר השברים האחרים אם הוא פשוט או מורכב או מאי זה מספרים הוא מורכב
Know that after you multiplied the result of decomposing by 4 in the expansion procedure, it is known that the product has a quarter [= 4 is its divisor], as well as all the denominators of the other [that were not among its own denominators].
ודע לך שאחר שכפלת והעולה בפריטתה בד' בעת ההשואה בידוע שיש לה רביעית וכן כל המורים אשר היו בחברתה ולא בה
Therefore, if you want to make the procedure easier for you, do not multiply by them and then you will not need to divide by them, when extracting the divisors. But, take them as denominators, by which you divide, with the resulting decomposed. Seek for the divisors of the resulting decomposed and write them with them. לכן אם תרצה להקל מעליך המעשה לא תכפלנו בהם ולא תצטרך לחלקה עתה להם בעת הוצאת המורים אבל תקחם למורים שתחלק עליהם ועל היוצא מפריטתה ותבקש מורי המספר היוצא מפריטתה ותבקש ותשימם עמהם
All this was said about the number, by which you want to divide, but as for the number that you want to divide, you always need to multiply it by the denominators that are in the other [that were not among its own denominators]. וכל זה אמרנו במספר אשר תרצה לחלק עליו אבל המספר אשר תרצה לחלק עליו אבל המספר אשר תרצה לחלק צריך אתה לעולם לכפלו במורים אשר בחברתה ולא בה
Example: in our example, if we want to seek for the divisors of 232, since the result of the decomposing and multiplication was multiplied in the expansion operation by 4, which is the denominator of the other, we know that the product has a quarter. We divide it by 4 and the result of division is 58.
המשל לזה במשלינו כי אם רצינו לבקש מורים ל232 ואחר שבעת ההשואה הוכפל היוצא מהפריטה וההכאה בד' שהיא מורה חברתה ידענו שלזה העולה יש לו רביעית ונחלקנו על ד' ויצא בחילוק נ"ח
We seek also for the divisors of 58. We find that it has a half. We divide it by it, i.e. by 2; the result of division is 29 and this is a prime number.
ונבקש עוד מורים לנ"ח ונמצא לו חצי ונחלקנו עליו ר"ל ר"ל על ב' ויצא בחילוק כ"ט והוא מספר פשוט
So, the divisors of the numerator, by which we want to divide, are 2, 4, 29.
\scriptstyle{\color{blue}{232=4\sdot58=4\sdot2\sdot29}}
הנה מורי מספר השברים אשר רצינו לחלק עליהם הם הב' והד' והכ"ט
In that you see clearly what I said that if we would have wanted to make the procedure easier for us, we would have taken the 4 as a first denominator from the start. ובזה תראה ברור מה שאמרתי שאם הינו רוצים להקל המעשה מעלינו היינו לוקחים מתחלה מתחלה הד' למורה ראשון
Even if they are numerous, we do not have to multiply by them the number, by which we want to divide, i.e. the 58. But, we seek for the divisors of 58, or write it by itself as a denominator, and write the 4 with it. All is the same.
וכן אם היה שם הרבה ולא היינו צריכים לכפול בהם המספר אשר רצינו לחלק עליו ‫[209]ר"ל הנ"ח אבל נבקש מורים לנ"ח או לשים אותה עצמה למורה ולשים עמהם הד' והכל אחד
The reason for this is clear, because multiplication and division are inverse operations. והטעם ברור כי הכפל והחלוקה הפכים הם
\scriptstyle{\color{OliveGreen}{\frac{a\sdot b}{b}=a}}
If we multiply a number, i.e. the 58, by any number, i.e. by the 4, and then we divide the product by this same number, i.e. by the 4, we get what we had at the beginning, i.e. the 58.
\scriptstyle{\color{blue}{\frac{58\sdot4}{4}=58}}
ואם נכפול מספר ר"ל הנ"ח על מספר מה ר"ל הד' ונחלק העולה לזה המספר בעצמו ר"ל לד' יצא לנו אשר היה לנו בתחלה ר"ל הנ"ח
The operation is the same, but the procedure is easier. והמעשה עולה אחד והמלאכת יותר קלה
As long as you do not make a mistake in multiplying the number that you want to divide, i.e. the 11, by the denominators of the other, because it is always required. ובלבד שלא תטעה מלכפול המספר אשר רצית לחלק ר"ל הי"א במורי חברתה כי זה מחוייב לעולם
We complete the example: we divide the 594 by the three denominators that we received, one after another.
ונשלים המשל ונחלק ה594 על הג' מורים שיצאו לנו זה אחר זה
We divide it first by 3; the result of division is 3 integers and nothing remains. We write them aside.
ונחלקם תחלה לג' ויצא בחילוק ג' והם שלמי' ולא ישאר דבר ונשימם מחוץ
[it is not clear why the divisors 4, 2, 29 were replaced here by 3, 2, 29:]
The outcome is that when we divide the greater number by smaller number mentioned in the example, the result of division is 3 integers and 24 parts of 29 parts of one half of the whole.
\scriptstyle{\color{blue}{\frac{594}{3\sdot2\sdot29}=3+\left(\frac{24}{29}\sdot\frac{1}{2}\right)}}
הנה היוצא הוא כי בחלקנו המספר הרב למעט הנזכרים במשל שיצא בחילוק ג' שלמים וכ"ד חלקים מכ"ט חלקים מחצי שלם
I.e. that the smaller number is three times in the greater number.
ור"ל שהמספר המעט הוא ברב ג' פעמי‫'
This is the meaning of the three integers. If they were two integers it would have meant that it is twice in it. If they were more, it were more [times in it].
וזה ר"ל השלשה שלמים ואם יהיו שנים שלמים ירצה לומר שהוא בו שתי פעמים ואם יותר יותר
The fractions mean that it is in it additional parts of time as aforesaid, which are not a whole time.
והשברים ר"ל שהם עוד בו חלקי פעם כנזכר ולא היה פעם שלמה כלל
When the question is so, i.e. that we divide small fractions by numerous greater fractions, we can do this by the method of unification after we decompose, multiply, and expand [to a common denominator]. וכאשר השאלה כן ר"ל שהם עוד בו חלקי פעם כנזכר ולא היה פעם שלמה כלל וכאשר השאלה כן ר"ל שנחלק שברים קטנים לשברים רבים וגדולים מהם נוכל לעשות בדרך האחדות אחרי עשותנו הפריטה וההכאה וההשוואה
This is the rule: after we decompose and multiply each of them, or whichever is needed, then expand them as mentioned, we divide the [numerator] resulting in this by the [numerator] resulting in that, as integers. All the resulting integers are the number of times [that the divisor appears in the dividend] and the fractions are the [additional] parts of one time [that the divisor appears in the dividend]. All is clear. זה הכלל שאחר עשותנו הפריטה וההכאה וההשואה לכל אחד מהם או אשר תצטרך ואחר כך ההשוואה כנזכר נחלק היוצא בזו ליוצא באחרת ככל דרכם השלמים מכל וכל והשלמים היוצאים יהיו מספר הפעמים והשברים חלקי פעם והכל ברור
The proofs of all the preceding and the following chapters on fractions are the same as the proofs for integers, i.e. each to its the inverse operations: addition and subtraction to each other; division and multiplication to each other. The proofs of the proportions and roots [of fractions] are also the same as for integers. ומופתי כל פרקי השברים העוברים והבאים הם כמופתי השלמים ר"ל כל דבר להפכו החבור והחסרון זה לזה והחלוק והכפל זה לזה גם בערכים ובשרשים מופתיהם ‫[210]כמופתי השלמים

Chapter Five: Proportions

הפרק הה' בערכים
The proportion is as our saying: the ratio that these fractions have to known fractions - to whom these latter fractions have the same ratio, or who has this ratio to these latter fractions? הערכים הוא כאומרנו הערך שיש לשברים אלו אצל שברים ידועים אצל מי יש לשברים אלו האחרים זה הערך או למי יש זה הערך אצל אלו השברים האחרים
Or, if [a given number of] portions of gold are equal to [a certain number of] portions of silver, how many portions of silver worth another [number of] portions of gold?
או אם אלו השברים מזהב ע'ד'מ' שוים אלו של כסף אחרות אלו של זהב כמה שוים [אלו]‫[211] של כסף
Or, how many portions of gold worth [another number of] portions of silver
או אלו של כסף כמה שוים של זהב
All this is the same as with integers. כל זהו כמו בשלימים
Its procedure: the rule requires that we decompose and multiply each of the three numbers separately; then multiply the first of these by the second of these without expansion at all; then expand what resulted now that does not have the denominators of the other, i.e. to multiply the mentioned product by the denominators of what remains, which is the first or the second and so on, meaning to multiply the third by the denominators of the two that are the denominators of the mentioned product; finally to divide the [numerator] of the product after it was expanded by the [numerator of the] third after it was expanded. ומעשהו היה הדין נותן שנעשה פריטה והכאה לכל אחד מהג' מספרים לעצמו

ולכפול ר"ל להכות הראשון מאלו [בב' מאלו]‫[212] מבלי השואה כלל ויהיה היוצא חלקים ממורי שני מספרים אלו
ולהשוות זה העולה עתה שאין חלקים ממוריו גם ממורה חברתה אשר הוכפלה בה עם הנשאר ר"ל לכפול זה העולה מהכפל הנזכר במוריה הנשאר שהוא ראשון או שני וכן כלם זה פירושם גם לכפול השלישית במורי השנים שהם מורי זה העולה מהכפל כנזכר
ואחר שכל זה לחלק זה העולה אחר שהושווה לשלישי אחר שהושווה

\scriptstyle{\color{OliveGreen}{\frac{a_1}{b_1}:\frac{a_2}{b_2}=X:\frac{a_3}{b_3}\longrightarrow X=\frac{\frac{a_1}{b_1}\sdot\frac{a_3}{b_3}}{\frac{a_2}{b_2}}=\frac{\left(a_1\sdot a_3\right)\sdot b_2}{a_2\sdot\left(b_1\sdot b_3\right)}}}
The integers resulting in the division are proper integers of the unknown and the fractions are fractions of the whole. והיו השלמים היוצאים בחילוק שלמים ממש מהנעלם והשברים שבר שלם
  • Example: if 3-quarters of 3 integers minus one-quarter are equal to 4-fifths of 5 integers minus one-fifth, how much five-sixths of 6 integers minus one-sixth are equal?
\scriptstyle\left[\frac{3}{4}\sdot\left(3-\frac{1}{4}\right)\right]:\left[\frac{4}{5}\sdot\left(5-\frac{1}{5}\right)\right]=\left[\frac{5}{6}\sdot\left(6-\frac{1}{6}\right)\right]:X
המשל אם ג' רביעיות מג' שלמים פחות רביע שלם שוים ד' חמישיות מה' שלימים פחות חומש שלם חמש שישיות מו' שלימים פחות שישית שלם כמה שוים
We make a diagram for each, as follows:
נעשה לכל אחד צורה בפנים עצמה כזה
  4
4 3 2
3
  5
5 4 4
4
  6
6 5 5
5
This is because the saying: 3-quarters of 3 integers minus one-quarter, is as the saying: two integers and 3-quarters.
\scriptstyle{\color{blue}{\frac{3}{4}\sdot\left(3-\frac{1}{4}\right)=\frac{3}{4}\sdot\left(2+\frac{3}{4}\right)}}
וזה כי אומרו ג' רביעיות מג' שלימים פחות רביע שלם הוא כאומרו משני שלימי' וג' רביעיות שלם
Also, of 5 [integers] minus one-fifth is as of 4 integers and 4-fifths.
\scriptstyle{\color{blue}{\frac{4}{5}\sdot\left(5-\frac{1}{5}\right)=\frac{4}{5}\sdot\left(4+\frac{4}{5}\right)}}
וכן מהה' פחות חומש הוא כמו מד' ‫[213]שלמים וד' חמישיות משלם
Also, of six integers minus one-sixth, is as saying: of 5 integers and 5-sixths.
\scriptstyle{\color{blue}{\frac{5}{6}\sdot\left(6-\frac{1}{6}\right)=\frac{5}{6}\sdot\left(5+\frac{5}{6}\right)}}
וכן מששה שלמים פחות שישית כאומרו מה' שלימים וה' שישיות שלם
After we have determined the proper names of the figures, we decompose and multiply each: ואחרי ששם הצורות כתקנם נעשה לכל אחד פריטה והכאה
In the first figure, we decompose the 2 integers by multiplying them by the denominator of the quarters, which is 4; they are 8-quarters.
ובצורה הראשונה נפרוט הב' שלימים ונכפלם במורה הרביעיות והוא ד' ויהיו ח' רביעיות
We add to them the 3 that is beneath it, which are 3-quarters; the result is 11-quarters.
ונחבר להם הג' אשר תחתיו שהם ג' רביעיות שלם יעלו י"א רביעיות שלם
Thus, it is as if one says: 3-quarters of 11-quarters, so we multiply 11 by 3; the result is 33, which are 33-quarters of a quarter.
והרי הוא כאלו אמרו ג' רביעיות מי"א רביעיות לכן נכה הי"א בג' יעלו ל"ג הלא הם ל"ג רביעיות רביעית
\scriptstyle{\color{blue}{\frac{3}{4}\sdot\left(3-\frac{1}{4}\right)=\frac{3}{4}\sdot\left(2+\frac{3}{4}\right)=\frac{3}{4}\sdot\frac{\left(2\sdot4\right)+3}{4}=\frac{3}{4}\sdot\frac{8+3}{4}=\frac{3}{4}\sdot\frac{11}{4}=\frac{3\sdot11}{4}\sdot\frac{1}{4}=\frac{33}{4}\sdot\frac{1}{4}}}
We do the same with the second; the result is 96-fifths of a fifth.
\scriptstyle{\color{blue}{\frac{4}{5}\sdot\left(5-\frac{1}{5}\right)=\frac{4}{5}\sdot\left(4+\frac{4}{5}\right)=\frac{96}{5}\sdot\frac{1}{5}}}
וכן נעש' לשנית ויעלו 96175 חמישיות חמישית
Also with the first of the latter; the result is 175-sixths of a sixth.
\scriptstyle{\color{blue}{\frac{5}{6}\sdot\left(6-\frac{1}{6}\right)=\frac{5}{6}\sdot\left(5+\frac{5}{6}\right)=\frac{175}{6}\sdot\frac{1}{6}}}
וכן לראשונה מהאחרות ויעלו 175 שישיות שישית
It is all as if we are asked: if 33-quarters of a quarter are equal to 96-fifths [of a fifth], how much 175-sixths of a sixth are equal?
והנה שבא הכל כאלו שאלו לנו אם 33 רביעיות רביעית שוות 96 חמישיות 175 שישיות שישית כמה שוות
Or, the value that 33-quarters of a quarter have to 96-fifths of a fifth, to who do 175-sixths of a sixth have this value?
או הערך אשר ל33 רביעיות רביעיות אצל [.] 96 חמישיות חמישית ל175 שישיות שישית אצל מי יש לו זה הערך
\scriptstyle{\color{blue}{\left[\frac{3}{4}\sdot\left(3-\frac{1}{4}\right)\right]:\left[\frac{4}{5}\sdot\left(5-\frac{1}{5}\right)\right]=\left[\frac{5}{6}\sdot\left(6-\frac{1}{6}\right)\right]:X\longleftrightarrow\left(\frac{33}{4}\sdot\frac{1}{4}\right):\left(\frac{96}{5}\sdot\frac{1}{5}\right)=\left(\frac{175}{6}\sdot\frac{1}{6}\right):X}}
So, we have all the numerators and the denominators decomposed, each by itself.
והרי לנו כל השברים נפרטים ומורים כל אחד לבדו
Now, we have to multiply the second by the first, i.e. the 96-fifths of a fifth by 571-sixths [of a sixth] without expanding at all, since it is as our saying: 96-fifths of a fifth of 175-sixths of a sixth. We multiply them by each other, i.e. the numerator by the numerator, not by the denominators; the result is 16800-fifths of a fifth of a sixth of a sixth.
ויש לנו לכפול הב' בראשון ר"ל הו'ט' חמישיות חמישית 571 שישית שישיות מבלי השואה כלל לפי שהוא כאומרנו 96 חמישיות חמשית מ175 שישיות שישית ונכם זה בזה ר"ל מספר השברים בשברים לא במורים יעלו 16800 חמישיות חמישית ששית ששית
We have to divide them by the first of the formers, which is 33 quarters of a quarter.
ויש לנו לחלקם לראשון מהאחדים שהוא ה33 רביעיות רביעית
We have already said in the fourth chapter of this section that if we want, we can expand the dividend and the divisor first, i.e. that we multiply the 16800 that we want to divide by the denominators of the 33 quarters of a quarter, i.e. by 4; the result is 67200. We multiply it by the 4, other denominator; the result is 268800-quarters of a quarter of a fifth [of a fifth] of a sixth [of a sixth].
וכבר אמרנו בפ"ד מזה החלק שאם נרצה נשוה תחלה המתחלק ואשר נחלק עליו ר"ל שנכפול ה16800 אשר אנו רוצים לחלק במורה ה33 רביעיות רביעית ר"ל בד' ויעלה 67200 ונכפלם בד' המורה האחר ויעלה 268800 רביעיות רביעית חמישית שישית שישית
We also multiply the 33-quarters of a quarter, which is the number by which we want to divide, by the denominators of the dividend that are 6 and 5.
ונכפול ג"כ ה33 רביעיות ‫[214]רביעית והוא המספר אשר רצינו לחלק עליו במורי המספר המתחלק והם הו' והה‫'
After we multiply it one after another, we seek for the divisor of the total product and we divide the dividend, i.e. the 268800, by it.
ואחר שנכפלם בזה זה אחר זה נבקש מורה כל העולה ונחלק עליהם המספר המתחלק ר"ל ה268800
If we want, we divide by these six denominators, by which we multiply, i.e. the 6 and the 5, one after another.
ואם בקשנו לז' [לו]‫[215] אלו המורים אשר נכפול בהם ר"ל הו' והה' ונחלק אליהם אחד אחד
\scriptstyle{\color{blue}{X=\frac{\left(\frac{96}{5}\sdot\frac{1}{5}\right)\sdot\left(\frac{175}{6}\sdot\frac{1}{6}\right)}{\frac{33}{4}\sdot\frac{1}{4}}=\frac{\frac{16800}{5}\sdot\frac{1}{5}\sdot\frac{1}{6}\sdot\frac{1}{6}}{\frac{33}{4}\sdot\frac{1}{4}}=\frac{16800\sdot4\sdot4}{33\sdot5\sdot5\sdot6\sdot6}=\frac{67200\sdot4}{33\sdot5\sdot5\sdot6\sdot6}=\frac{268800}{33\sdot5\sdot5\sdot6\sdot6}}}
The result of the last division is 33, which is the number that we multiply by them one after another. Hence, why should we bother to multiply by it and to divide the product by it needlessly.
יצא בחילוק האחרון ל"ג שהוא המספר אשר כפלנו בהם אחד אחד ומאחר שכן למה ניגע לבהלה לכפול בהם ולחלק העולה עליהם לבטלה
Therefore, we do not multiply the number, by which we want to divide, i.e. the 33, by the denominators of the dividend, but we take these denominators as the first denominators and we write the 33 itself with them.
לכן לא נכפול המספר אשר רצינו לחלק עליו ר"ל ה33 במורי המספר המתחלק אבל נקח המורים ההם למורים ראשונים ונשים עמהם ה33 עצמו
Or, if we want, we seek for its divisors; they are 11 and 3, and we write them instead of it with the mentioned denominators, i.e. the denominators of the number that we want to divide. They are all: 3, 11, 5, 5, 6, 6.
או נרצה נבקש לו מורים ויהיו י"א ג' ונשימם במקומו עם המורים הנזכרים ר"ל מורי המספר אשר רצינו לחלק ויהיו כלם 6 6 5 5 11 3
We divide the dividend, which is 268800, by them; that is we reduce them.
ונחלק עליהם המספר המתחלק והוא 268800 וזה לעשות להם כלילת יופי
For, if we want, we can say that the unknown of the four proportional terms is 268800-thirds of a fifth [of a fifth] of a sixth [of a sixth] of 11 of the whole.
כי אם רצינו יכולנו לו' שהנעלם מהארבעה הנערכים הוא 268800 שלישיות חמישית ששית מאחד עשר בשלם
To know how much it is, we reduce it, which is that we divide it by these denominators; the result is 9 integers, a third of one part of 11 of the whole, and 4-sixths of a third of one part of 11 of the whole.
אכן לדעת מה המה אלה נעשה להם כלילת יופי והוא שנחלקם למורים אלו ויעלה ט' שלימים ושלשית חלק אחד מי"א בשלם וד' שישיות שלישית חלק אחד מי"א בשלם
6 5 5 6 3 11 9
      4 1  
\scriptstyle{\color{blue}{X=\frac{268800}{33\sdot5\sdot5\sdot6\sdot6}=\frac{268800}{3\sdot11\sdot5\sdot5\sdot6\sdot6}=\frac{268800}{3}\sdot\frac{1}{5}\sdot\frac{1}{5}\sdot\frac{1}{6}\sdot\frac{1}{6}\sdot\frac{1}{11}=9+\left(\frac{1}{3}\sdot\frac{1}{11}\right)+\left(\frac{4}{6}\sdot\frac{1}{3}\sdot\frac{1}{11}\right)}}
Check
If you want to check your procedure, multiply the second [of the second pair] that was unknown by the 33 quarters of a quarter, which is first of the first [pair], then divide the product by one of the remaining [numbers]; the result should be the other [remaining number] itself. If not, know that you were wrong. ואם תרצה לבחון מעשיך כפול זה השני שהיה נעלם בל"ג רביעיות רביעית שהוא הראשון מהאחדים וחלק העולה על אחד מהנשארים ויצא האחר בעינו ואם לא דע שטעית
\scriptstyle{\color{OliveGreen}{a_1:a_2=a_3:X\longrightarrow\begin{cases}\scriptstyle a_2=\frac{X\sdot a_1}{a_3}\\\scriptstyle a_3=\frac{X\sdot a_1}{a_2}\end{cases}}}
When we multiply it by 33-quarters of a quarter, it is as our saying: 33-quarters of a quarter of 9 integers and one-third of a part of 11 of the whole; like this:
\scriptstyle{\color{blue}{\left[9+\left(\frac{1}{3}\sdot\frac{1}{11}\right)+\left(\frac{4}{6}\sdot\frac{1}{3}\sdot\frac{1}{11}\right)\right]\sdot\left(\frac{33}{4}\sdot\frac{1}{4}\right)}}
והנה כאשר נכפול זה בל"ג רביעיות רביעית הוא כאומרנו ל"ג רביעיות רביעית מט' שלמים ושלישית חלק מי"א בשלם כזה
[216]
  6 3 11
4 4 4 1  
33 1
We decompose the 9 integers and the fractions that are with it; the result is [1792]-sixths of a third of 11 in the whole; like this:
ונפרוט הט' שלמים והשברים אשר עמו ויעלו 7921 ושישיות שלישית מי"א בשלם כזה
4 4 6 3 11
59136
\scriptstyle{\color{blue}{\left[9+\left(\frac{1}{3}\sdot\frac{1}{11}\right)+\left(\frac{4}{6}\sdot\frac{1}{3}\sdot\frac{1}{11}\right)\right]\sdot\left(\frac{33}{4}\sdot\frac{1}{4}\right)=\left(\frac{{\color{red}{1792}}}{6}\sdot\frac{1}{3}\sdot\frac{1}{11}\right)\sdot\left(\frac{33}{4}\sdot\frac{1}{4}\right)=\frac{59136}{4}\sdot\frac{1}{4}\sdot\frac{1}{6}\sdot\frac{1}{3}\sdot\frac{1}{11}}}
We divide it by the second of latter, which is 96-fifths of a fifth; the result is the remaining, which is 175-sixths of a sixth.
\scriptstyle{\color{blue}{\frac{\left[9+\left(\frac{1}{3}\sdot\frac{1}{11}\right)+\left(\frac{4}{6}\sdot\frac{1}{3}\sdot\frac{1}{11}\right)\right]\sdot\left(\frac{33}{4}\sdot\frac{1}{4}\right)}{\frac{96}{5}\sdot\frac{1}{5}}=\frac{175}{6}\sdot\frac{1}{6}}}
ונחלק לשני מהאחרות והיא 96 חמישיות חמישית ותצא הנשארת שהיא ה175 שישיות שישית
We multiply the dividend, i.e. 59136, by the denominators of 96 that are 5 and 5; the result is 1478400.
\scriptstyle{\color{blue}{59136\sdot5\sdot5=1478400}}
ונכפול המספר המתחלק ר"ל ה59136 במורי ה96 שהם 5 5 ויעלה 1478400
In order not to duplicate the matter as we explained, we do not multiply the 96 by the denominator of the other, but we take them as denominators to divide by them and by the 96.
וכדי שלא להכפל הענין כמו שביארנו לא נכפול ה96 במורי האחרת אבל נקחם למורים שנחלק עליה ועל ה96
If we want, we take its divisors that are 2, 8, 6 and write them with the formers.
ואם נרצה נקח מוריהם והם 6 8 2 ונשימם עם הראשונים
Since we want to know if the result of division is 175-sixths of a sixth, it is as if we are asked: how many sixth of a sixth result from the division.
ולפי שאנו מבקשים לידע אם רצה בחילוק 175 שישיות שישית הרי הוא כאלו שאלו לנו כמה שישיות שישית יצא מהחלוקה
If they were not among our denominators, we would have had to multiply the whole dividend by them, to add them to the other [denominators] and to write them first, as explained above.
ואם לא היו במורינו היינו צריכים לכפול כל המספר המתחלק בהם ולהוסיפם על האחרים ולשומם ראשונה כמו שנתבאר למעלה
Since they are among our denominators, we do not need to multiply by them, but only to write them first, like this: 11, 3, 4, 8, 4, 2, 6, 6, and divide by all the latter except for them.
אם אכן אחרי היותם במורינו לא נצטרך לכפול בהם אבל כי נשימם ראשונה במל[..]ת כזה 6 6 2 4 8 4 3 11 ונחלק על כל האחרונים זולתם
We see that when our division reached to 2, which is the denominator that is close to [the 6] in this diagram, if the result of the division is 175, we know that we were not wrong, because they are sixths of a sixth, provided that nothing remains written from the previous [denominators].
ונראה כאשר יגיע אליהם יצא בו בחלוק ר"ל בחלוקנו לב' שהו' המורה הסמוך להם בצורה זו אם יצא בחלוק 175 אז נדע שלא טעינו כי הם שישיות שישית ובלבד שלא ישאר בלרשום חלוק מהעוברים
To make it easier for us, you already know that the division by the denominators is the same as by their common denominator, so we extract the common denominator of all the denominators except for the 6 and 6 mentioned, by multiplying them one by the other and their product by another and so on; the common denominator is 8448.
וכדי להקל מעלינו כבר ידעת כי כך הוא החלק על המורים כעל אמם ונוציא אם כל המורים זולתי ה6 6 הנזכרים וזה בכפול אותם זה בזה והעולה באחר וכן כלם ותהיה האם 8448
If, when we divide our number by 8448, which is the common denominator of all the denominators except for the 6 and 6, the result of division is 175 and nothing remains, we know that we were not wrong.
ואם כאשר נחלק מספרינו על ה8448 שהיא אם המורים כלם זולתי ה66 יצא בחילוק ‫[217]175 ולא ישאר דבר נדע שלא טעינו
We find that if our number is received by multiplying this common denominator by 175, we know that we were not wrong.
נמצא שאם היה עולה מספרינו בכפול זאת האם בה'17 נדע שלא טעינו
To make it easier for us, because of the duplication in the division, we multiply the 175 by the common denominator, i.e. 8448, and we know if the result is our number.
וכדי להקל מעלינו כי הכפל במעשה החילוק נכפול הה'17 באם ר"ל ב8448 ונדע אם יצא מספרינו
The truth is indeed that the product of 175 by 8448 is [1]478400 and it is our number.
\scriptstyle{\color{blue}{175\sdot8448={\color{red}{1}}478400}}
והאמת כן הוא שכפל הה'17 ב8448 יעלה ‫478400 והוא מספרינו
Examine it. Our whole operation is true. Deduce from this. ובחנהו והנה כל מעשינו אמת והקש על זה
This is the rule: [to extract] the proportions of fractions is to decompose and multiply each of the three numbers separately, or which ever of these [operations] needed, then multiply the one by the other and divide [the product] by the third. זה הכלל שערכי השברים הוא לעשות לכל א' מהג' מספרים לבדו פריטה והכאה או אשר מהן יצטרך לכפול הראשון בשני ולחלקו בשלישי
The proof: to multiply the result by the unknown - if it is second [in one of the two pairs], we multiply it by the first of the other [pair]; if the unknown that we generated is first [in one of the two pairs], we multiply it by the second of the other [pair] - then we divide [the product] by one of the two remaining [numbers] and the result should be the other [remaining number]. והמופת לכפול היוצא לנו במקום הנעלם אם הוא שני נכפלנו בראשון שאינו ראשון ואם היה הנעלם אם הוא שני נכפלנו בראשון שאינו ראשון לו ואם היה הנעלם אשר חדשנו ראשון נכפלנו בשני שאינו שני לו ונחלקנו לאחד מהנשארים ויצא האחר
\scriptstyle{\color{OliveGreen}{a_1:a_2=a_3:a_4\longrightarrow\begin{cases}\scriptstyle a_1=\frac{a_2\sdot a_3}{a_4}\\\scriptstyle a_2=\frac{a_1\sdot a_4}{a_3}\\\scriptstyle a_3=\frac{a_1\sdot a_4}{a_2}\\\scriptstyle a_4=\frac{a_2\sdot a_3}{a_1}\end{cases}}}
The reason of all this is the same as its reason for integers, since the operation is the same, therefore the reason is the same. וטעם כל זה כטעמו בשלמים כי אם אחר שהמעשה אחד בעצמו גם הטעם אחד בעצמו

Chapter Six: Roots

הפרק הששי בשרשים
The procedure
You will need here also to decompose and multiply your fractions, or whatever is needed of [these operations], then multiply the result again by all the denominators one after another, or by the common denominator.
\scriptstyle{\color{OliveGreen}{\sqrt{\frac{a}{b}}=\sqrt{\frac{a\sdot b}{b}\sdot\frac{1}{b}}}}
גם בזה תצטרך לעשות לשבריך פריטה גם הכאה או מה שיצטרכו מהם והיוצא תשוב תכפול אותו בכל המורים אחד אחד זה אחר זה או באמם
Be very careful not to add to it what is beneath the denominators, for this is done only when decomposing. ושמור נפשך מאד שמר שלא תחבר לו הנמצא תחת המורי' כי זה לא יעשה כי אם בפריטה
Extract the root of the whole result, as you do with integers, and the integers resulting [from the extraction of] the root are parts [= numerator] of these denominators. ומכל העולה הוצא השרש ככל כמעשיך בשלימים והשלימים היוצאים בשרש הם חלקים משלם מאלו המורים
Reduce them, if you wish. ואם תרצה [עשה להם]‫[218] כלילת יופי
The fractions resulting [from the extraction of] the root are fractions of one part of all these denominators. והשברים היוצאים בשרש הם שברים מחלק אחד מכל אלו המורים בשלם
  • Example: we wish to know the root of 4-sixths of 4 integers and 5-ninths.
\scriptstyle\sqrt{\frac{4}{6}\sdot\left(4+\frac{5}{9}\right)}
המשל רצינו לדעת שרש ד' שישיות מד' ‫[219]שלמים וה' תשיעיות
Like this:
כזה
  9 4
6 5
4
The result is 94 units, which are 94 sixths of ninths:
ויצאו 94 שלימים שהם 94 שישיות תשיעיות
We decompose the 4 integers: we multiply them by 9; the result is 36 and with the 5, it is 41.
נפרוט הד' שלימים ונכפול אותם בט' יעלו 36 ועם ה5 יהיו 41
We multiply it by 4; the product is 164 sixths of a ninth.
נכם בד' יעלו 164 שישיות תשיעית כזה
The result is 94 units, which are 94 sixths of ninths and 20 remain.
ויצאו 94 שלימים שהם 94 שישיות תשיעיות ונשארו 20
\scriptstyle{\color{blue}{\sqrt{\frac{4}{6}\sdot\left(4+\frac{5}{9}\right)}=\sqrt{\frac{4}{6}\sdot\frac{\left(4\sdot9\right)+5}{9}}=\sqrt{\frac{4}{6}\sdot\frac{36+5}{9}}=\sqrt{\frac{4}{6}\sdot\frac{41}{9}}=\sqrt{\frac{4\sdot164}{6}\sdot\frac{1}{9}}=\sqrt{\frac{164}{6}\sdot\frac{1}{9}}\approx\left(\frac{94}{6}\sdot\frac{1}{9}\right)+\left(\frac{20}{94\sdot2}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)}}
If you want to come closer to the truth, double the root, which is 94, then divide by it, in the way of the integers, that is that we divide double the 94, which is 188, by 20; the result is 9 and 8 remain.
\scriptstyle{\color{blue}{\frac{94\sdot2}{20}=\frac{188}{20}=9+\frac{8}{20}}}
ואם רצית להתקרב אל האמת כפול השרש שהוא 94 וחלקם עליהם

ויעלה בדרך האחדות והוא שנחלק כפל ה94 שהוא 188 ל20 ועלו ט' ונשארו ח‫'

We add 1 to the 9; it is 10, which is the denominator, so it is one-tenth. We subtract the remaining 8 from 20; 12 remain, which are parts of 188 of a tenth.
הוספנו א' מעל הט' היה 10 שהוא מורה עשירית אחת ונחסר הח' הנותרים מן ה20 נשארו י"ב שהם חלקים מ188 ומעשירית
The denominator 188 is 47 [times 4], so the 12 are 12 quarters of a part of 47 of a tenth.
ומורה ה188 והם 47 [874]‫[220] והנה הי"ב הם י"ב רביעיות חלק ממ"ז בעשירית כזה
We reduce them by dividing them by 4; the result is 3 and nothing remains. Since it is less than 47 we write it beneath it.
נעשה להם כלילת יופי והוא שנחלקם לד' יצאו ג' ולא ישאר דבר ואחר שהם פחות מהמ"ז נשימם תחתיו כזה
4 47 10
  3 1
\scriptstyle{\color{blue}{\frac{20}{94\sdot2}=\frac{20}{188}=\frac{1}{9+1}+\frac{20-8}{\left(9+1\right)\sdot188}=\frac{1}{10}+\left(\frac{12}{188}\sdot\frac{1}{10}\right)=\frac{1}{10}+\left(\frac{12}{4}\sdot\frac{1}{47}\sdot\frac{1}{10}\right)=\frac{1}{10}+\left(\frac{3}{47}\sdot\frac{1}{10}\right)}}
We receive that the whole root is 94, a tenth and 3 parts of 47 of a tenth and all these are parts of a sixth of a ninth as mentioned.
הנה עלה לנו כל השרש 94 ועשירית וג' חלקים מ47 מעשירית וכל אלו הם חלקים משישית תשיעית כנזכר
Hence, the resulting root is 94 sixths of a ninth, a tenth of a sixth of a ninth, and 3 parts of 47 of a tenth of a ninth. Like this:
א"כ השרש היוצא הוא 94 שישיות תשיעית ועשירית שישית תשיעית וג' חלקים ממ"ז מעשירית שישית תשיעית כזה
47 10 6 9
3 1 94  
\scriptstyle{\color{blue}{\begin{align}\scriptstyle\sqrt{\frac{4}{6}\sdot\left(4+\frac{5}{9}\right)}\approx\left(\frac{94}{6}\sdot\frac{1}{9}\right)+\left(\frac{20}{94\sdot2}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)&\scriptstyle=\left(\frac{94}{6}\sdot\frac{1}{9}\right)+\left[\left[\frac{1}{10}+\left(\frac{3}{47}\sdot\frac{1}{10}\right)\right]\sdot\frac{1}{6}\sdot\frac{1}{9}\right]\\&\scriptstyle=\left(\frac{94}{6}\sdot\frac{1}{9}\right)+\left(\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{3}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)\\\end{align}}}
We reduce the 94; the result is 1 whole, which is a true integer, and 6-ninths, which are two-thirds, and 4-ninths of sixths, we also have a tenth of a sixth of a ninth, and 3 parts of 47 of a tenth of a sixth of a ninth. Like this:
ונעשה כלילת יופי ל94 ויעלה א' לשלם וזהו שלם באמת ועוד ו' תשיעיות שהם שני שלישיות ועוד ד' תשיעיות שישיות ויש לנו עוד עמהם עשירית שישית תשיעית וג' חלקים ממ"ז מעשירית ששית תשיעית כזה
\scriptstyle{\color{blue}{\begin{align}\scriptstyle\sqrt{\frac{4}{6}\sdot\left(4+\frac{5}{9}\right)}\approx\left(\frac{94}{6}\sdot\frac{1}{9}\right)+\left(\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{3}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)&\scriptstyle=1+\frac{6}{9}+\left(\frac{4}{6}\sdot\frac{1}{9}\right)+\left(\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{3}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)\\&\scriptstyle=1+\frac{2}{3}+\left(\frac{4}{6}\sdot\frac{1}{9}\right)+\left(\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{3}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)\\\end{align}}}
47 10 6 9
3 1 4 6
This is an approximate root.
וזהו השרש הקרוב

Check

If you want to check it, multiply it by itself and see if it gets close to the sought after, which is 1[64] sixths of a ninth plus one, as the square of the fractions that we added to the first approximate root of the fractions that we extracted.
ואם תרצה לבחון אותו כפול אותו על עצמו וראה אם יתקרב לנשאל שהוא 146 שישיות תשיעית ‫[221]בתוספת אחד בכמו מרובע השברים אשר הוספנו על שרש השברים הראשון אשר הוצאנו
The tenth of a sixth of a ninth, and 3 parts of 47 of a tenth of a sixth of a ninth, whose square, i.e. their product by themselves, after decomposing, is 2500 parts of 47 of a tenth of a sixth of a ninth of 47 of a tenth of a ninth.
והעשירית שישית תשיעית וג' חלקי' ממ"ז מעשירית שישית תשיעית שמרובעם ר"ל כפלם בעצמם אחר הפריטה יעלה 2500 חלקים ממ"ז מעשירית שישית תשיעיות ממ"ז מעשירית תשיעית
When you reduce them, the result is 4-ninths of 47 of 47 of a sixth of a ninth and one-sixth of a ninth of 47 of 47 of a sixth of a ninth.
וכאשר תעשה להם כלילת יופי יעלה ד' תשיעיות ממ"ז ממ"ז משישית תשיעית ושישית מתשיעית ממ"ז ממ"ז מששית תשיעית
\scriptstyle{\color{blue}{\left[\left(\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{3}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)\right]^2=\frac{2500}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\sdot\frac{1}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}=\left(\frac{4}{9}\sdot\frac{1}{47}\frac{1}{47}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{1}{6}\sdot\frac{1}{9}\sdot\frac{1}{47}\sdot\frac{1}{47}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)}}
The decomposition of this root yields 44230 parts of 47 of a tenth of a sixth of a ninth.
והנה פריטת זה השרש יעלה 44230 חלקים מחלק ממ"ז מעשירית משישית תשיעית
\scriptstyle{\color{blue}{\sqrt{\frac{4}{6}\sdot\left(4+\frac{5}{9}\right)}\approx1+\frac{2}{3}+\left(\frac{4}{6}\sdot\frac{1}{9}\right)+\left(\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{3}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)=\frac{44230}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}}}
When we multiply it by itself, it is as if we say: 44230 parts of 47 of a tenth of a sixth of a ninth of 44230 parts of 47 of a tenth of a sixth of a ninth, like this:
וכאשר נכפול זה על עצמו הוא כאומרנו 44230 חלקים מחלק מ"ז מעשירית שישית תשיעית ‫[מ442300 חלקים מחלק מ"ז מעשירית ששית תשיעית כזה]‫[222] כזה
  47 10 6 9
47 10 6 9 44230
44230
We multiply the 44230 [by itself]; the result is 195629[29]00 parts of 47 of a tenth of a sixth of a ninth of a part of 47 of a tenth [of a sixth] of a ninth, like this:
ונכה ה442320 [44230]‫[223] ויעלה 19562900 חלקים מחלק מ"ז מעשירית שישית תשיעית מחלק מ"ז מעשירית תשיעית בשלם כזה
47 10 6 9 47 10 6 9
1956292900
\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left[1+\frac{2}{3}+\left(\frac{4}{6}\sdot\frac{1}{9}\right)+\left(\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{3}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)\right]^2&\scriptstyle=\left(\frac{44230}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)^2=\frac{44230}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\sdot\frac{44230}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\\&\scriptstyle=\frac{1956292900}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\sdot\frac{1}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\\\end{align}}}
We reduce them, i.e. we divide them by all these denominators until reaching the first denominators 9 and 6. When we reach them, we know how many sixths of ninths they are, whether it is the required number, which is 164 sixths of a ninth plus the square of the additional mentioned fractions. The result of what we have is 164 sixths of a ninth plus 4-ninths of [a part of] 47 of [a part of] 47 of a sixth of a ninth and this excess is indeed equal to the square of the fractions that are added in the root to the first approximate root of the fractions. Thus, your calculation was correct.
ונעשה להם כלילת יופי ר"ל שנחלקנו לכל המורים האלו עד הגיענו אל הט' והו' המורים הראשונים ובהיגיענו שם נדע כמה שישית תשיעיות יעלה אם יגיע למספר הנשאל שהוא 164 שישיות תשיעית ועוד מרובע השברים הנוספים הנזכרים כנזכר ואשר עלינו זה עלה 164 שישיות תשיעית ועוד ד' תשיעיות ממ"ז ממ"ז [נ' ד'‫]‫[224] משישית תשיעית וזה התוספת שוה ממש למרובע השברים הנוספים בשרש על שרש השברים אשר יצא ראשונה והיה כל ‫[225]מלאכתך אמת
\scriptstyle{\color{blue}{\begin{align}\scriptstyle\left[1+\frac{2}{3}+\left(\frac{4}{6}\sdot\frac{1}{9}\right)+\left(\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{3}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)\right]^2&\scriptstyle=\frac{1956292900}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\sdot\frac{1}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\\&\scriptstyle=\left(\frac{164}{6}\sdot\frac{1}{9}\right)+\left[\left(\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{3}{47}\sdot\frac{1}{10}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)\right]^2\\&\scriptstyle\left(\frac{164}{6}\sdot\frac{1}{9}\right)+\left(\frac{4}{9}\sdot\frac{1}{47}\frac{1}{47}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)+\left(\frac{1}{6}\sdot\frac{1}{9}\sdot\frac{1}{47}\sdot\frac{1}{47}\sdot\frac{1}{6}\sdot\frac{1}{9}\right)\\\end{align}}}
We also get from this that what we have said in chapter seven of the first section is verified that when we divide the remainder by double the [approximate] root without another addition, the square of the latter exceeds the required number by the square of the additional fractions and it is always like that.
\scriptstyle{\color{blue}{\left(a+\frac{b}{2a}\right)^2-\left(a^2+b\right)=\left(\frac{b}{2a}\right)^2}}
ויצא לנו עוד מזה שנתאמת מה שאמרנו בפ"ז מהחלק הא' שכאשר נחלק הנשאר על כפל השרש מבלי תוספת אחר שיעדף המרובע האחרון על החשבון הנשאל כמרובע השברי' הנוספים וכן יהיה בכל פעם ופעם דוק ותשכח

Reasons

The reason for multiplying the numerator by the denominators
The reason we say that after decomposing we multiply the decomposed number by all the denominators is in order that the square will be duplicate parts of these denominators.
\scriptstyle{\color{OliveGreen}{\sqrt{\frac{a}{b}}=\sqrt{\frac{a\sdot b}{b^2}}}}
וטעם אמרנו שאחר הפריטה נכה המספר הפריטה בכל המורים הוא כדי שיהיה זה המרובע חלקים מאלו המורים פעמים ר"ל נשנים
  • If they were quarters, they are now quarters of a quarter.
\scriptstyle{\color{blue}{\left(\frac{1}{4}\right)^2=\frac{1}{4}\sdot\frac{1}{4}}}
שאם היו רביעיות יהיו עתה רביעיות רביעית
  • If they were fifths of a quarter, they are now fifths of a quarter of a fifth of a quarter.
\scriptstyle{\color{blue}{\left(\frac{1}{5}\sdot\frac{1}{4}\right)^2=\frac{1}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{4}}}
ואם היו חמישיות רביעית יהיו עתה חמישיות רביעית חמישית רביעית
And so on.
וכן לעולם
We need this because the denominators of the root are always duplicated as the denominators of the square. והוצרכנו לזה לפי שמורי השרש לעולם הם נשנים במורי המרובע
  • If the root is, for instance, 2-quarters, the square is 4-quarters of a quarter.
\scriptstyle{\color{blue}{\left(\frac{2}{4}\right)^2=\frac{4}{4}\sdot\frac{1}{4}}}
וזה שאם השרש ע'ד'מ' ב' רביעיות יהיה המרובע ד' רביעיות [רביעית]
  • If the root is 2-fifths of a quarter, the square is 4-fifths of a quarter of a fifth of a quarter.
\scriptstyle{\color{blue}{\left(\frac{2}{5}\sdot\frac{1}{4}\right)^2=\frac{4}{5}\sdot\frac{1}{4}\sdot\frac{1}{5}\sdot\frac{1}{4}}}
ואם יהיה השרש ב' חמישיות רביעית יהיה המרובע ד' חמישיות רביעית חמישית רביעית
The reason for that is that the multiplication of fractions, which is as our saying, for instance, the product of 2-quarters by 2-quarters, is as our saying 2-quarters of 2-quarters, as we explained above.
והטעם בזה לפי שהכפל בשברים שהוא אומרנו ע'ד'מ' כפל ב' רביעיות בב' רביעיות הוא כאומרנו ב' רביעיות מב' רביעיות כמו שביארנו למעלה
  • To know how many quarters of a quarter they are, we have to multiply 2 by 2.
\scriptstyle{\color{blue}{\frac{2}{4}\times\frac{2}{4}=\frac{2\sdot2}{4}\sdot\frac{1}{4}}}
ולדעת כמה רביעיות רביעית הם יש לנו להכות הב' בב‫'
I.e. the number of fractions of the root is multiplied by itself, like our method [in calculating] the square of an integer, as the number of the parts and their duplication.
\scriptstyle{\color{OliveGreen}{\left(\frac{a}{b}\right)^2=\frac{a\sdot a}{b^2}}}
ר"ל המספר שברי השרש בעצמם כדרכנו במרובע השלמים [כי מרובע השלמים במרובע השלמים‫]‫[226] כמספר החלקים והשינוי בהם
Because, in integers, the number of the root and the number of the square are of one type, i.e. they are both integers. כי בשלמים מספר השרש ומספר המרובע הם ממין אחד ר"ל שהם שלימים
Therefore, the square [of an integer] is always greater than the root.
\scriptstyle{\color{OliveGreen}{n>1\longrightarrow n^2>n}}
ולזה יהיה לעולם גדול המרובע מהשרש
Likewise, every product of an integer by a number.
\scriptstyle{\color{OliveGreen}{n,m>1\longrightarrow n\times m>n}}
וכן כל כפל מספר שלם במספר
Even if it is a product of integers by fractions.
\scriptstyle{\color{OliveGreen}{n>1\longrightarrow n\times\frac{a}{b}>\frac{a}{b}}}
ואף אם יהיה כפל שלימים בשברים
Since the number increases by multiplication, but the type [of number] does not change.
\scriptstyle{\color{OliveGreen}{n,m>1\longrightarrow n\times m>n}}
\scriptstyle{\color{OliveGreen}{n\times\frac{a}{b}=\frac{n\sdot a}{b}>\frac{a}{b}}}
וזה לפי שהמספר מתרבה בכפל והמין אינו משתנה
For, when you say, for example: multiply 3 integer by 4 integers or by 4-fifths, it is as your saying: multiply 3 times 4 integers, or 4-fifths. So, the number increases, but the type does not change.
כי כאשר תאמר ע'ד'מ' כפול ג' שלמים בד' שלימים או בד' חמישיות הוא כאומרך כפול ג' פעמים ד' שלימים או ד' חמישיות הנה שהמספר מתרבה והדין לא ישתנה
But, in fractions, our saying: multiply 2-quarters by 3-fifths, is as our saying: two-quarters of a time.
אבל בשברים אומרנו כפול ב' רביעיות בג' חמישיות הוא כאומרנו שני רביעיות פעם
And our saying: multiply one-quarter by 3-fifths, is as our saying: 3-fifths one-quarter of a time, which is 3-fifths of a quarter.
ואם ‫[227]אומרנו כפול רביעית אחת בג' חמישיות הוא כאומרנו ג' חמישיות רביעית פעם והוא ג' חמישיות רביעית
While our saying: [by] two-quarters, is by twice a quarter of a time, so each time is 3-fifth of a quarter, thus 2-quarters [by 3-fifths] are 6-fifths of a quarter.
ואולם אומרנו שני רביעיות יהיה בב' פעמים רביעית פעם וכל פעם הוא ג' חמישיות רביעית הנה הב' רביעיות יהיו ו' חמישיות רביעית
The number is increasing through the multiplication of the numerator by the numerator. וכן לעולם יתרבה המספר בכפל [מספר השברים במספר‫]‫[228] משבר השברים
The result is [a fraction] of the denominators of both multiplicands together, as in our example, which are fifths of a quarter.
\scriptstyle{\color{OliveGreen}{\frac{a}{b}\times\frac{c}{d}=\frac{a\sdot b}{b\sdot d}}}
ויהיה העולה מכל שני מורי שני המספרים הנכפלים יחד כבמשלנו זה שהם חמישיות רביעיות
Hence the numerator of the square is a square of the numerator of the root, exactly as it is in integers.
\scriptstyle{\color{OliveGreen}{\left(\frac{a}{b}\right)^2=\frac{a^2}{b^2}}}
ולזה יהיה מספר שברי המרובע כמרובע מספר שברי השרש כדרכו בשלם שוה בשוה
But, the denominators are duplicated, since we multiply the root by its similar, and the denominators of both are twice the denominator of one, because they are equal, and the reason of all this is clear. אבל כי המורים נשנים לפי שאנו כופלים השרש בכמותו ומורי שניהם יהיה כפל מורי האחד כי שוים הם במורים וכל זה ברור בטעם
It becomes clear also when we multiply a surface. גם זה יתבאר בשאנו כופלים בשטח
For, when we say about the surface: 3 times 4, it as our saying that the length is 4 [and the width is 4].
\scriptstyle{\color{blue}{3\times4}}
כי כאשר אנו או[מרי]ם בשטח ג' פעמים ד' הוא כאומרנו שיש בארך ד‫'
If its width were only 1, it would have been only 4.
\scriptstyle{\color{blue}{4\times1=4}}
ואלו לא היה ברחבו כי אם א' לא היו כי אם ד‫'
Since every unit that we note in the surface has 1 in length and 1 in width. לפי שכל אחד שאנו אומרים בשטח הוא שיהיה לו א' באורך וא' ברוחב
Likewise in the solid: 1 in length, 1 in width, and 1 in height. וכן בגשם א' באורך וא' ברוחב ואחד בגובה
Therefore, the square of one does not increase and neither the cube, for our saying: one, concerning the surface, is as our saying: one square, and the same concerning the cube solid.
\scriptstyle{\color{blue}{1=1^2=1^3}}
לזה לא יתרבה מרובע האחד ולא גם המעוקב כי אומרנו אחד בשטח הוא כאומרנו אחד מרובע וכן בגשם מעוקב
When it is 4 in length and 3 in width, it is as 3 stripes of 4, which is as our saying: 3 times 4, and so on.
\scriptstyle{\color{blue}{3\times4}}
וכאשר היו ד' באורך וג' ברוחב הרי הם ג' רצועות של ד' ד' והוא כאומרנו ג' פעמים ד' ול וכן לעולם
But, when we multiply a fraction by a fraction: אבל כשא[א]‫[229]נו כופלים שבר בשבר
  • Example: 3-quarters by 4-fifths, it is as our saying that its length is 4-fifths of the whole and its width is 3-quarters of the whole.
\scriptstyle{\color{blue}{\frac{3}{4}\times\frac{4}{5}}}
המשל ג' רביעיות בד' חמישיות הוא כאומרנו שארכו ד' חמישיות השלם ורחבו ג' רביעיות השלם
If its length were a whole unit, [its area] were 3-quarters of the whole, because the whole square lacks the quarter that is subtracted from its width. This is understandable with a bit of study.
\scriptstyle{\color{blue}{\frac{3}{4}\times1=1-\frac{1}{4}=\frac{3}{4}}}
ואם ארכו אחד שלם היה ג' רביעיות שלם כי מן השלם המרובע חסר הרביע שנפצל מרחבו וזה מובן במעט עיון
But, since a fifth is subtracted from its length also, it is as subtracting from 3-quarters their fifth and their 4-fifths remain. So the area is 4-fifths of 3-quarters and each fifth of them is a fifth of 3-quarters, which is three-quarters of a fifth. For, a fifth of a quarter is as a quarter of a fifth. Therefore, the 4-fifths of 3-quarters are 4 times 3-quarters of a fifth, which are 12 [fifths of a quarter].
\scriptstyle{\color{blue}{\frac{3}{4}\times\frac{4}{5}=\frac{3}{4}-\left(\frac{1}{5}\sdot\frac{3}{4}\right)=\left(\frac{1}{5}\sdot\frac{3}{4}\right)\sdot4=4\sdot\left(\frac{3}{4}\sdot\frac{1}{5}\right)=\frac{12}{4}\sdot\frac{1}{5}}}
אבל לפי שמארכו נפצל ג"כ חמישיתו הנה הוא כמי שהסיר מהג' רביעיות חמישיתם ונשארו ד' חמישיותיהם הנה השטח הוא ד' חמישיות מג' רביעיות [וכל חמישית מהם היא חמישית ג' רביעיות שהוא כשלש רביעיות חמישית כי כך הוא חמישית רביעית כרביעית חמישית א"כ הד' החמישיות מג' רביעיות הם ד' פעמים‫]‫[230] הם ד' פעמים ג' רביעיות ‫[231]רביעיות חמישית שהם י"ב
Therefore, we multiply the numerator by the numerator, [when extracting] the root, and it all comes down to the same thing. ולזה אנו כופלים בהכאה מספר השברים במספר השברים וכן בשרש והכל עולה לענין אחד
After we have explained that the denominators of the square are the duplication of the denominators of the root and that the numerator of the square is as the square of the numerator of the root, it is clear that if the square has duplicated denominators, i.e. 4 and 4, or 5 and 5 etc., we do not need to multiply by the denominators, but to extract the root of the numerator alone, as in the way of the integers, and the denominators of the root are half the denominators of the square. So, we divide [the root of the numerator] by half the denominators [of the square].
\scriptstyle{\color{OliveGreen}{\left(\frac{a}{b}\right)^2\longrightarrow\sqrt{\frac{a}{b}\sdot\frac{1}{b}}=\frac{\sqrt{a}}{b}}}
ואחר שביארנו שמורי המרובע הם נשנים ממורי השרש ומספר שברי המרובע הוא כמרובע מספר שברי השרש נתבא' שאם היו לזה המרובע מורים נכפלים ר"ל ד'ד' או ה'ה' וכדומה לזה שלא היינו צריכים לכפול במוריום כי אם להוציא השרש לבד מהמספר שב[..]ו כ[ער]ך בשלמים ומורי השרש היוצא היו חצי מוריו המרובע ונחלקנו אליהם ר"ל לחצי מוריו
Even if not all [the denominators] are duplicate, but each of those that are not twice in it are multiplied by themselves, i.e. they are squares as 4, or 9, take the root of that denominator of the square as a denominator of the root, i.e. 2 instead of 4, 3 instead of 9. Because you can write 2 and 2 as the denominators of the square, instead of the 4, or 3 and 3 instead of 9, then you take one of them for the root and all this is clear.
\scriptstyle{\color{OliveGreen}{\sqrt{\frac{a}{b^2}}=\frac{\sqrt{a}}{b}}}
  • \scriptstyle{\color{blue}{\sqrt{\frac{a}{9}}=\frac{\sqrt{a}}{3}}}
  • \scriptstyle{\color{blue}{\sqrt{\frac{a}{4}}=\frac{\sqrt{a}}{2}}}
וכן אפי' אם לא היו כלם כפולים אבל שכל אחד מאשר אינם בו פעמים הוא כפול ר"ל כי אם הם כפולים בעצמם ר"ל שהם מרובעים כד' או כט' תקח שרש המורה ההוא אשר למרובע במקומו למורה השרש ר"ל הב' במקום ד' והג' במקו' הט' וזה שהרי בידיך לשום כמורי המרובע במקום הד' השנים או במקום הט' ג'ג' ותקח אחד מהם בשרש וכל זה ברור
This will be further explained in the chapter on factorization that is in a section I intend to write the end of the book. ויתבאר עוד במאמ' ההתכה אשר בכלל אשר ייעדתי לשום בסוף הספר
If there are of those and of those, multiply the numerator by those that are not duplicate and are not squares, and add them to half those that are duplicate and to the roots of the square denominators that you take instead of them. Divide the integer resulting in the root by them and the fractions resulting in the root are parts of one part of these denominators, by which you divide the integers of the root.
\scriptstyle{\color{OliveGreen}{\sqrt{\frac{a}{b^2\sdot c}}=\sqrt{\frac{a\sdot c}{b^2\sdot c^2}}=\frac{\sqrt{a\sdot c}}{b\sdot c}}}
ואם יהיו שם מאלו ומאלו תכפול מספר שברי המרובע באשר אינם נכפלים ולא מרובעים ותוסיפם על חצי הנכפלים ושרשי המורים המרובעים אשר לקחת במקומם ועליהם תחלק השלימים היוצאים בשרש והשברים היוצאים בשרש הם חלקים מחלק אחד מאלו המורים אשר להם תחלק שלימי השרש
All is clarified in practice and reason. והכל נתבאר במעשה ובטעם
In order not to confuse you by examining if they are duplicate and taking their half, or taking the roots of the squares, I instruct you to multiply it by all [the denominators], so that the required square has now twice the denominators that it had originally and we divide the numerator by [the denominators] it had originally that are half of those it has now.
\scriptstyle{\color{OliveGreen}{\sqrt{\frac{a}{b^2}}=\sqrt{\frac{a\sdot b^2}{b^2\sdot b^2}}=\frac{\sqrt{a\sdot b^2}}{b\sdot b}}}
אכן כדי שלא לבלבלך בזה לראות אם הם נכפלים ולקחת חציים או לקחת מהמרובעים שרשם במקומם ציויתיך צויתיך לכפלו בכלם ויהיו לו ר"ל למרובע הנשאל כפל המורים אשר לו עתה ונחלק מספר ‫[232]שברי השרש לאשר לו בתחלה שהם חצי מאשר לו עתה
It is best for you to bother, even if it is not necessary, so as not to get confused, if you are not well versed in the procedure. וטוב שתטרח ואם לו לצורך כדי שלא תתבלבל אם אינך בקי במלאכה
But, if you see your self deserve to be prayer leader, a Cohen who lifts his hands, you can make the procedure easier for you. ואם ראית בעצמך שאתה ראוי להיות שצו ש'צ' כהן הנושא כפיו תוכל להקל מעליך העבודה ואתה רשאי ולא אני

General Rules for Operations with Fractions

After we have completed the six chapters on fractions, we start with all that we have designated that is beneficial to all. ואחר אש' השלמנו הו' פרקים אשר בשברים נתחיל בכל אשר ייעדנו שהוא מועיל לכלם

Finding the Common Denominator

The rule that is useful for all fractions. הכלל המועיל לכל השברים
If you wish to solve all the issues of the chapters on fractions perfectly, seek for one great denominator that includes all the numbers, i.e. a common denominator for all their denominators in question, by which you will clearly find everything you want, i.e. you will be able to find through this common denominator how much is the quarter, the fifth, or any of the fractions you need. אם תרצה להוציא כל ענייני פרקי השברים על השלימות תבקש לכל המספרים מורה א' גדול כולל אותם ר"ל אם כל מוריהם ושם תמצא כל מבוקשך בברור ר"ל שתוכל למצוא במורה ההוא כמה הוא הרביעית והחמישית או כל מה שתצטרך בכל השברים ההם
  • For example, if we say: sum 3-quarters of a ninth with 4-fifths of a ninth and 7-fifths of a seventh.
\scriptstyle\left(\frac{3}{4}\sdot\frac{1}{9}\right)+\left(\frac{4}{5}\sdot\frac{1}{9}\right)+\left(\frac{7}{5}\sdot\frac{1}{7}\right)
כי המשל אם אמרנו חבר ג' רביעיות תשיעית עם ד' חמישיות תשיעית עם 7 חמישיות שביעית
  • The great denominator of these numbers is, as said, the common denominator of these four denominators, which is [received] by multiplying one by the other and the product by the other until they end; it is 1260.
\scriptstyle{\color{blue}{4\sdot5\sdot7\sdot9=1260}}
הנה מורה החשבונים הגדול אשר אמרתי הוא אם ד' מורים אלו והוא בהכפל זה בזה והעולה באחר עד תומם ויהיה 1260
We consider one integer as 1260 parts.
והוא שעשינו האחד השלם 1260 חלקים
  • The ninth is 140, which is the product of three of the mentioned denominators, i.e. their common denominator.
\scriptstyle{\color{blue}{\frac{1}{9}\sdot1260={\color{red}{4\sdot5\sdot7}}=140}}
והנה תשיעית הוא ק"מ והוא ככפל הג' מורים הנזכרים ר"ל באמם
A quarter of the ninth is a quarter of it; it is 35 and it is the common denominator of the mentioned denominators, i.e. the product of 5 by 7.
\scriptstyle{\color{blue}{\left(\frac{1}{4}\sdot\frac{1}{9}\right)\sdot1260=\frac{1}{4}\sdot140=5\sdot7=35}}
ורביעית התשיעית יהיה ברביעית זה והוא ל"ה והוא אם המורים הנזכרים ר"ל ככפל ה' בז‫'
3-quarters of the ninth are three times 35, which is 105.
\scriptstyle{\color{blue}{\left(\frac{3}{4}\sdot\frac{1}{9}\right)\sdot1260=3\sdot35=105}}
והג' רביעיות התשיעית יהיו שלשה פעמים ל"ה שהם 105
  • The seventh is the common denominator of the three that remain; it is 180.
\scriptstyle{\color{blue}{\frac{1}{7}\sdot1260={\color{red}{4\sdot5\sdot9}}=180}}
ושביעית המורה הוא אם השלשה הנשארים והם 180
A fifth of a seventh is a fifth of it; it is 36 and it is the common denominator of the remaining.
\scriptstyle{\color{blue}{\left(\frac{1}{5}\sdot\frac{1}{7}\right)\sdot1260=\frac{1}{5}\sdot180=4\sdot9=36}}
וחמישית שביעית הוא חמישית זה והוא ל"ו והוא אם הנשארים
4-fifths of a seventh are 4 times 36, or if you want to say: 4 times the product of the two denominators by each other, i.e. 9 by 4, which is 36; the result is 144.
\scriptstyle{\color{blue}{\left(\frac{4}{5}\sdot\frac{1}{7}\right)\sdot1260=4\sdot36=4\sdot\left(4\sdot9\right)=144}}
והד' חמישיות שביעית הם ד' פעמים ל"ו או אם תרצה לומר ד' פעמים כפל הב' מורים זה בזה ר"ל ט' בד' שהוא ל"ו והעולה יהיה 144
Sum it up with 105 that are the 3-quarters of a ninth; the result is 249 of 1260 parts of a whole, for this denominator is the large denominator that you take and each part of them is one part of all these denominators.
\scriptstyle{\color{blue}{\left(\frac{3}{4}\sdot\frac{1}{9}\right)+\left(\frac{4}{5}\sdot\frac{1}{7}\right)=\frac{105+144}{5}\sdot\frac{1}{7}\sdot\frac{1}{4}\sdot\frac{1}{9}=\frac{249}{5}\sdot\frac{1}{7}\sdot\frac{1}{4}\sdot\frac{1}{9}=\frac{249}{1260}}}
[233]ותחברם עם הה'10 שעלו הג' רביעיות תשיעית יעלו 249 ב0ובא חלקים בשלם כי זה מורה הוא מספר המורה הגדול אשר לקחת וכל חלק מאלו הוא חלק מכל אלו המורים
This is because 140 is one-ninth,
וזה כי 140 הם תשיעיות אחד
35, which is its quarter, is a quarter of a ninth.
ול"ה שהם רביעיתם הם רביעית תשיעית
5, which is a seventh of 35, is a seventh of a quarter of a ninth.
והה' שהם שביעית הל"ה הם שביעית רביעית תשיעית
1, which is a fifth of 5, is a fifth of a ninth of a quarter of a seventh.
והא' שהוא חמישית הה' הוא חמישית תשיעית רביעית שביעית
So, the 249 are fifths of a ninth of a quarter of a seventh.
א"כ אלו ה249 הם חמישיות תשיעית רביעית שביעית
If you want to know how much they are, divide them by 5, since every 5 of them are ninths of a quarter of a [seventh]; the result are sevenths of a quarter of a ninth.
ואם תרצה לידע מה המה אלה הנה אחר שכל ה' מהם הם תשיעיות רביעית תשיעית תחלקם לה' והיוצא יהיו שביעיות רביעית תשיעית
If something remains, it is fifths of a ninth of a quarter of a seventh as in the beginning.
ואם נשאר דבר הוא כבתחלה חמישיות תשיעית רביעית שביעית
When you divide the sevenths of a quarter of a ninth by 7, the result are quarters of a ninth.
ומהשביעית רביעיות תשיעית וכאשר תחלק לז' יהיה היוצא רביעיות תשיעיות
When you this by 4, the result are ninths.
וכשתחלק זה היוצא לד' יהיה היוצא תשיעית
When you it by 9, the result are integers.
וכשתחלקנו לט' ה יהיה היוצא שלימים
The whole aforementioned procedure itself is as stated in diagrams that are not in the book, for the order is unimportant. Deduce from this. וכל זה אי המעשה הנזכר למעלה עין בעין כמו שנרמז בצורות הרמוזות מחוץ לספר כי הסדר לא יזיק דוק ותשכח
The result from summing the required fractions, in each of the methods, for they are all the same, is one-seventh, a quarter of a seventh, 4-ninths of a quarter of a seventh, and 4-fifths of a ninth of a quarter of a seventh.
והנה העולה מחבור השברים הנשאלות על כל א' מהדרכים כי הכל אחד הוא שביעית אחת ורביעית שביעית וד' תשיעיות רביעית שביעית וד' חמישיות תשיעית רביעית שביעית
Deduce on that in all the other chapters. והקש על זה בכל שאר הפרקים

Completion of Fractions

מאמר ההשלמה
Completion is when we have known fractions or fractions of fractions and we need to subtract them from other fractions or fractions of fractions that we have of the same types. It happens in the extraction of roots [for instance], as written in chapter six of this section. ההשלמה הוא כאשר יש בידינו שבורים ידועים או שברי שברים ואנו צריכים לגרעם משברים או שברי שברים אחרים שיש בידינו ממיניהם וזה יקרה בהוצאת השרשים כמו ‫[234]כפי שנכתב בפ' ו' מזה החלק
Sometimes the subtracted fractions of fractions are greater than those from which they are subtracted, but there are many fractions or integers to complete our deficiency. ולפעמים השברי שברים הנגרעי' הם רבים מאשר יגרע מהם אכן יש שם שברי רבים או שלימים למלאת די מחסורנו
Therefore, when we take the integer or the greater fraction, to subtract from it these fractions of fractions, we need to know easily the remainder from that integer or that great fraction after we subtract from it the deficiency of these fractions of fractions for a whole unit or for a larger fraction, and this is their complement for one.
\scriptstyle{\color{OliveGreen}{a-b=\left(a-c\right)+\left(c-b\right)}}
לכן אנו צריכים לידע כאשר נקח השלם או השבר הגדול להוציא ממנו שברי שברים אלו שנדע בקלות הנשאר מהשלם או מהשבר הגדול [ההוא אחר שהוצאנו ממנו שזה הוא מה שחסרים אלו השברי שברים מאחד שלם או שבר גדול‫]‫[235] להוציא ממנו שברי שברים אלו שנדע בקלות הנשאר מהשלם או מהשבר הגדול להוציא ממנו שברי שברים אלו שנדע בקלות הנשאר מהשלם או מהשבר הגדול ההוא אחר שהוצאנו ממנו שזה הוא מה שחסרים אלו השברי ה' שברים מאחד שלם או שבר גדול וזוהי השלמתן לאחד
When we know their complement for one, if we have fractions of fractions of their type, after we subtract from them those that we have that are smaller, we add this complement to them and the sum is the remainder. ואחר שנדע השלמתן לאחד אם היו לנו שברי שברים ממינם כאשר נגרע מהם אלו שהיו מעט אשר בידינו נחבר זאת ההשלמה עמהן והמחובר יהיה הנשאר
  • Example: we wish to subtract 7-ninths, 5-sevenths of a ninth, and 3-quarters of a seventh of a ninths, from 3 integers, 5-ninths, and three-sevenths of a ninth.
\scriptstyle\left[3+\frac{5}{9}+\left(\frac{3}{7}\sdot\frac{1}{9}\right)+\left(\frac{2}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]-\left[\frac{7}{9}+\left(\frac{5}{7}\sdot\frac{1}{9}\right)+\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]
המשל רצינו לגרוע ז' תשיעיות וה' שביעיות תשיעית וג' רביעיות שביעית תשיעית מג' שלמים וה' תשיעיות ושלש שביעיות תשיעית
Since 3-quarter is greater than 2-[quarters] and so is 5-sevenths than 3-[sevenths] and 7-ninths than 5-[ninths], we have to take one integer to supplement our deficiency; 2 integers remain.
הנה להיות הג' רביעיות רב מהב' גם הה' שביעיות מהג' גם הז' תשיעיות מהה' נצטרך לקחת אחד שלם למלאת די מחסורינו וישארו ב' שלמים
In order to know how much remains from it after we take enough, we have to complete it to a whole integer and the complement is the remainder. The reason is clear. ולדעת כמה ישאר ממנו אחר קחתנו ממנו די ספקנו נצטרך להשלימם לאחד שלם וההשלמה הוא השארית וזה ברור בטעם
Then, we add the complement to the fractions that we had that were not enough for us, for they have the right of redemption [Jeremiah 32, 7], and the sum is the remainder. וזאת ההשלמה נחברנה עם השברים אשר היו לנו ולא היה בהם די ספקנו כי להם משפט הגאולה[note 38] והמחובר הוא הנשאר
We say: what is the complement of 3-quarters of a seventh of a ninth for a seventh of a ninth? One quarter. We write 1 beneath them.
\scriptstyle{\color{blue}{\left(\frac{1}{7}\sdot\frac{1}{9}\right)-\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)=\frac{1}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}}}
ונאמר ג' רביעיות שביעית תשיעית בכמה יהיו שביעית תשיעית ברביע אחד נשים א' תחתיהם
We also say: we have completed [one-seventh of a ninth and with the five-sevenths of a ninth that we had they are 6. What is their complement for one whole ninth? One. We write it beneath them.
\scriptstyle{\color{blue}{\frac{1}{9}-\left[\left(\frac{1}{7}\sdot\frac{1}{9}\right)+\left(\frac{5}{7}\sdot\frac{1}{9}\right)\right]=\frac{1}{9}-\left(\frac{6}{7}\sdot\frac{1}{9}\right)=\frac{1}{7}\sdot\frac{1}{9}}}
עוד נאמר הרי השלמנו [לשביעית תשיעית אחד וחמש שביעיות תשיעית שהיו לנו הרי ו' ובכמה ישלומו לתשיעית אחד‫]‫[236] לתשיעית אחד שלמה באחד נשימנו ‫[237]תחתיו
We say: we have completed a whole ninth and with the 7 that we have in our hand there are 8. What is their complement for one integer? One. We write it beneath them.
\scriptstyle{\color{blue}{1-\left(\frac{1}{9}+\frac{7}{9}\right)=1-\frac{8}{9}=\frac{1}{9}}}
ונאמר הרי השלמנו לתשיעית שלמה וז' שיש בידינו הרי כאן ח' בכמה ישלמו לשלם באחד נשים תחתיהם א‫'
We are left with one-ninth, one-seventh of a ninth, and one-quarter of a seventh of a ninth from the one integer. We add them to what is above; the result is 2 integers, 6-ninths, 4-[sevenths] of a ninth [and 3-quarters of a seventh of a ninth] that are left in our hand. The reason for this is clear.
הרי לנו שנשאר מהאחד השלם תשיעית אחת ושביעית תשיעית ורביעית שביעית תשיעית ונחברם עם אשר בעליונה ויעלה שנשאר בידינו ב' שלימים וו' תשיעיות וד' רביעיות שביעית תשיעית [וג' רביעיות שביעית תשיעית‫]‫[238] וכל זה ברור בטעם
\scriptstyle{\color{blue}{\begin{align}&\scriptstyle
\left[3+\frac{5}{9}+\left(\frac{3}{7}\sdot\frac{1}{9}\right)+\left(\frac{2}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]-\left[\frac{7}{9}+\left(\frac{5}{7}\sdot\frac{1}{9}\right)+\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]\\&\scriptstyle=\left[\left(3-1\right)+\frac{5}{9}+\left(\frac{3}{7}\sdot\frac{1}{9}\right)+\left(\frac{2}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]+\left[1-\left[\frac{7}{9}+\left(\frac{5}{7}\sdot\frac{1}{9}\right)+\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]\right]\\&\scriptstyle=\left[2+\frac{5}{9}+\left(\frac{3}{7}\sdot\frac{1}{9}\right)+\left(\frac{2}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]+\left[\frac{1}{9}+\left(\frac{1}{7}\sdot\frac{1}{9}\right)+\left(\frac{1}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]=2+\frac{6}{9}+\left(\frac{4}{7}\sdot\frac{1}{9}\right)+\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\\\end{align}}}
In order to make the procedure easier for you, I shall give you a rule: we write the complement of the numerator for its denominator under the last [fraction] to the left. וכדי להקל מעליך המעשה אתן לך כלל כי לאחרון אשר לצד שמאל אשר שם יתחיל הצורך נשים תחתיו כדי השלמת מספר שבריו למורה אשר עליו שוה בשוה
I.e. 3-quarters: what is the complement of 3 for 4, which is the denominator that above it? It is 1. We write it beneath it. [= 1 under ¾ indicates that ¼ is its complement]
\scriptstyle{\color{blue}{1-\frac{3}{4}=\frac{4-3}{4}=\frac{1}{4}}}
ר"ל הג' רביעיות בכמה ישלימו הג' לד' שהוא המורה אשר עליו בא' נשימנו תחתיו
For all the others, until we find enough to take from it the one that we need, we always write beneath the numerator its complement for its denominator minus one and this is the one that is supplemented in what preceded to the left. ובכל האחרים עד אשר נמצא מקום רב אשר משם נקח האחד אשר הוצרכנו לעולם נשים תחת מספר השברים כדי השלמתן למורה אשר עליהם חסר אחד והוא האחד אשר הושלם כבר באשר אחריו לצד שמאל
If we want, we can apply the method that we use for integers, and then we do not need completion at all. ואם היינו רוצים היינו עושים כדרך שאנו עושי' בשלימי' ולא נצטרך להשלמה כלל
Borrowing one unit from a fraction of a higher type, and marking the loan with a dot as a reminder:
We say concerning the quarters, which is the last [fraction]: 3 cannot be subtracted from 2. [We Take] 1 from the sevenths that precede them and mark a dot above the number of the sevenths to be subtracted, in order to remind us to subtract it with them when we get there, as the way we do with integers, when we add 1 to the subtrahend for the dot, and then we subtract all from its corresponding.
והוא שנאמ' ברביעיות שהוא אחרון ג' מב' לא יוכלו לצאת כלו הא' ממקום השביעיות אשר לפניו ונשים נקודה על מספר השביעיות אשר לנו לגרוע כדי שנזכור להסירו עמהם בהגיענו שם כדרך שאנו עושים בשלימים להוסיף על הנגרעים א' בשביל הנקודה ונסירה כלו ממינו
After we have borrowed one and marked a dot, we take the denominator, which is 4, as this one, and say: 4 plus 2 is 6. We subtract 3 from it; 3 remains.
ואחר שלוינו האחד ושמנו זה הנקודה נקח בעד זה האחד כמורה שהוא ד' ונאמ' ד' וב' הם ו' נסיר מהם הג' ישארו ג‫'
\scriptstyle{\color{blue}{\left[\left(\frac{4}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)+\left(\frac{2}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]-\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)=\left(\frac{6}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)-\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)=\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}}}
We say: 5-sevenths and a dot are 6. We cannot subtract them from 3. We mark a dot above the 7-ninths to be subtracted and say: this one is 7 as the denominator, with 3 it is 10. We subtract 6 from it; 4 remains.
ונאמר ה' שביעיות ונקודה הם ו' לא נוכל להסירם מהג' נשים נקודה על הז' תשיעיות אשר לנו לגרוע ונאמר ‫[239]זה האחד הוא ז' כמורה וג' הרי י' נסיר מהם ו' ישארו ד‫'
\scriptstyle{\color{blue}{\left[\left(\frac{7}{7}\sdot\frac{1}{9}\right)+\left(\frac{3}{7}\sdot\frac{1}{9}\right)\right]-\left[\left(\frac{1}{7}\sdot\frac{1}{9}\right)+\left(\frac{5}{7}\sdot\frac{1}{9}\right)\right]=\left(\frac{10}{7}\sdot\frac{1}{9}\right)-\left(\frac{6}{7}\sdot\frac{1}{9}\right)=\left(\frac{4}{7}\sdot\frac{1}{9}\right)}}
We also say: 7 and a dot are eight, which cannot be subtracted from 5. We mark a dot above the place that should have been designated for integers if we had integers and say: this one is 9 as the denominator, with 5 it is 14. We subtract 8 from it; 6 remains.
\scriptstyle{\color{blue}{\left(\frac{9}{9}+\frac{5}{9}\right)-\left(\frac{1}{9}+\frac{7}{9}\right)=\frac{14}{9}-\frac{8}{9}=\frac{6}{9}}}
עוד נאמר ז' ונקודה הם שמונה לא יצאו מה' נשים נקודה מחוץ במקום הראוי לשלימים אם היו לנו שלימים ונאמר זה האחד הוא ט' כמורה וה' הרי י"ד נסיר מהם ח' ישארו ‫[ו‫'
We subtract the dot, which is 1 integer, from the 3 integers; 2 remains.
\scriptstyle{\color{blue}{3-1=2}}
עוד נסיר הנקודה שהוא א' שלם מהג' שלימים ישארו ב'‫]‫[240] ב' שלימים
\scriptstyle{\color{blue}{\left[3+\frac{5}{9}+\left(\frac{3}{7}\sdot\frac{1}{9}\right)+\left(\frac{2}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]-\left[\frac{7}{9}+\left(\frac{5}{7}\sdot\frac{1}{9}\right)+\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)\right]=2+\frac{6}{9}+\left(\frac{4}{7}\sdot\frac{1}{9}\right)+\left(\frac{3}{4}\sdot\frac{1}{7}\sdot\frac{1}{9}\right)}}
Thus, these procedures are the same and the reason is clear. והנה כל המעשה אחד והכל ברור בטעם
It is enough for the one who understands. ודי למבין

Discussion on the Decomposing and Composing of Fractions

מאמר התכת השברים והרכבתן או שתיהן יחד
Since sometimes there is a need to convert denominators to other denominators when expanding and reducing, I thought to explain how one denominator is decomposed to two denominators. לפי שלפעמים יצטרך להשיב מורים למורים אחרים בהשואה ובכלילת יופי להוציאם מן הכלל ראיתי לבאר איך יותך מורה אחד לשני מורים
This is when the denominator is composed. וזהו כאשר המורה מורכב
Such as 6, which is composed of 2 and 3, so we remove it and replace it with 2, 3.
\scriptstyle{\color{blue}{6=2\sdot3}}
כו' שהוא מורכב מב' וג' שנסירהו ונשים תחתיו ב'ג‫'
Also 3, 3 instead of 9.
\scriptstyle{\color{blue}{9=3\sdot3}}
וכן בעד ט' ג' ג‫'
And 2, 4 instead of 8.
\scriptstyle{\color{blue}{8=2\sdot4}}
ובעד ח' ב' ד‫'
This is the rule: the product of the replacing denominators is the same as the removed [original denominator]
\scriptstyle{\color{OliveGreen}{\frac{1}{a\sdot b}=\frac{1}{a}\sdot\frac{1}{b}}}
זה הכלל שכפל המורים המושמים תחתיו יהיה כמו המוסר
  • Sometimes we do the opposite, that we replace the two with one, i.e. we [remove] the 2 and the 4 and replace them with 8.
\scriptstyle{\color{blue}{2\sdot4=8}}
ולפעמים נעשה להפך שנשים הב' אחד ר"ל שנשים הב' והד' ונשים תחתיו הח' וכן בכללן
This as placing the common denominator instead of the denominators, or the denominators instead of the common denominator.
וזהו כמו לשים האם תחת המורים או המורים תחת האם
  • Other times we need both.
ולפעמים נצטרך הכל
Such as when we have 6, 4 and we need 3,8.
\scriptstyle{\color{blue}{6\sdot4=3\sdot8}}
כגון שיש בידינו ו' ד' ואנו צריכים ג' ח‫'
Or, when we have 3, 4 and we need 6, 2.
\scriptstyle{\color{blue}{3\sdot4=6\sdot2}}
או שיש בידינו ג' ד' ואנו צריכים ו' ב‫'
This is the rule: זה הכלל
  • If what we place is one instead of numerous, this number should be the same as the product of the denominators multiplied by each other.
\scriptstyle{\color{OliveGreen}{\frac{1}{a}\sdot\frac{1}{b}=\frac{1}{a\sdot b}}}
אם אשר שמנו הוא א' במקום רבים צריך שיהיה מספרו ככפל המורים זה בזה
  • If numerous instead of one, their product by each other should be the same as the removed number.
\scriptstyle{\color{OliveGreen}{\frac{1}{a\sdot b}=\frac{1}{a}\sdot\frac{1}{b}}}
ואם רבים תחת אחד שיהיה כפלם זה בזה כמספר המוסר
  • If numerous instead of numerous, their product by each other [should be the same as the product of the others by each other]
\scriptstyle{\color{OliveGreen}{a\sdot b=c\sdot d\longrightarrow \frac{1}{a}\sdot\frac{1}{b}=\frac{1}{c}\sdot\frac{1}{d}}}
ואם רבים במקום רבים שיעלה כפל אלו זה בזה
This is enough for the one who understands. ודי למבין

Short Rule for all Chapters on Fractions

כלל קצר לכל פרקי השברים

Addition

החבור
Multiply the [numerator] whose denominator or denominators are smaller by the excess of the denominators of the other over its denominators, then divide [the product] by the smaller denominators. Add the result of division to the numerators of both [and the sum is] the parts of the denominator or the denominators of the greater.
\scriptstyle{\color{OliveGreen}{b>d\longrightarrow\frac{a}{b}+\frac{c}{d}=\frac{a+c+\frac{c\sdot\left(b-d\right)}{d}}{b}}}
תכפול אשר מורהו או מוריו קטנים בתוספת מורי האחרת על מוריו ותחלקנו למורים הקטנים והיוצא בחילוק תחברנו לשברי שניהם חלקי המורה או המורים הגדולים
  • If something remains from the first division, it is a part of all the denominators, of the greater and the smaller.
ואם ‫[241]בחלוקה הראשונה ישאר דבר הוא חלק מכל המורים גדולים וקטנים
  • Example: if it is said: add 3-sevenths to 2-thirds.
\scriptstyle\frac{3}{7}+\frac{2}{3}
המשל אם אמרו חבר ג' שביעיות עם ב' שלישיות
Multiply 2 by 4; it is 8. Divide it by 3; the result of division is 2 and 2 remains.
כפול הב' בד' יהיו ח' חלקם לג' ויצא בחלוק ב' וישארו ב‫'
Add the 2 resulting in the division to 3 and 2 that are the numerators of both numbers; the sum is 7.
וב' אלו שיצאו בחלוק חברם עם הג' והב' שהם שברי שני המספרי' ויעלה הכל ז‫'
Divide it by 7; the result is 1 and nothing remains.
חלקם לז' יעלה א' ולא נשאר דבר
The 1 resulting in the division is 1 integer.
וזה האחד היוצא בחלוק הוא א' שלם
If there were anything left, it would have been sevenths.
ואם היה נשאר דבר היה שביעיות
The 2 that remains from the first division are thirds of a seventh.
והב' שנשארו בחלוקה ראשון הם שלישיות שביעית
We find that their total sum is one integer and two-thirds of a seventh.
נמצא שעלה מחבורם אחד שלם ושתי שלשיות שביעית
\scriptstyle{\color{blue}{\frac{3}{7}+\frac{2}{3}=\frac{3+2+\frac{2\sdot\left(7-3\right)}{3}}{7}=\frac{3+2+\frac{2\sdot4}{3}}{7}=\frac{3+2+\frac{8}{3}}{7}=\frac{3+2+2+\frac{2}{3}}{7}=\frac{7+\frac{2}{3}}{7}=1+\left(\frac{2}{3}\sdot\frac{1}{7}\right)}}
If you wish, multiply the numerator of the one by the denominator of the other, then divide by its own denominator and add the result of division to the numerator of the other; [the result] are parts of the denominator of the other.
\scriptstyle{\color{OliveGreen}{\frac{a}{b}+\frac{c}{d}=\frac{a+\frac{c\sdot b}{d}}{b}}}
[ו]אם תרצה כפול שברי האחד במורי האחרת וחלקנו למורי עצמה והיוצא ב בחלוק חברם לשברי האחרת ויהיו חלקים ממורי האחרת
  • If something remains from the division, it is parts of the denominators of both.
ואם נשאר שום דבר בחלוקה הם חלקים ממורי שתיהן
Example: multiply 2 by 7; the result is 14. Divide it by 3; the result is 3 and 2 remains.
המשל כפול ב' בז' יעלו י"ד חלקם לג' יצאו ד' וישארו ב‫'
Add the 4 to the 3 that is the numerator of the other; the sum is 7 and it is 7-sevenths, which is 1 integer. The 2 that remains from the division are 2-thirds of a seventh.
\scriptstyle{\color{blue}{\frac{3}{7}+\frac{2}{3}=\frac{3+\frac{2\sdot7}{3}}{7}=\frac{3+\frac{14}{3}}{7}=\frac{3+4+\frac{2}{3}}{7}=\frac{7+\frac{2}{3}}{7}=1+\left(\frac{2}{3}\sdot\frac{1}{7}\right)}}
חבר הד' לג' שהם שברי האחרת יעלו ז' והם ז' שביעי[ו]ת שהם א' שלם והב' שנשארו בחלוקה הם ב' שלשיות שביעית
It all comes down to one way. והכל עולה לדרך אחד

Subtraction

החסרון
Multiply the numerator of the greater by the denominator of the smaller, then divide the product by the denominator of the greater. Subtract the numerator of the smaller from the result of division and divide the [remainder] by the denominator of the [smaller]. The [result] are parts of the denominators of the smaller.
\scriptstyle{\color{OliveGreen}{\frac{a}{b}-\frac{c}{d}=\frac{\frac{a\sdot d}{b}-c}{d}}}
כפול שברי הגדולה במורי הקטנה והעולה תחלקנו למורי הגדולה ומהיוצא בחילוק תחסר שברי הקטנה והעולה תחלקנו למורי הגדולה והנשאר הוא חלקים ממורי הקטנה והגדולה
If there is something left from the first division, they are parts of the denominators of the smaller and the greater. ‫[ואם נשאר דבר בחלוקה ראשונה הם חלקים ממורי הקטנה והגדולה]‫[242]
  • Example: we wish to subtract 2-eighths from 2-quarters.
\scriptstyle\frac{3}{4}-\frac{2}{8}
המשל רצינו לחסר ב' שמיניות מג' רביעיות
We multiply 3 by 8; the result is 24. We divide it by 4; the result of division is 6. We subtract 2 from it; 4 remains and they are 4-eighth, which is the remainder.
\scriptstyle{\color{blue}{\frac{3}{4}-\frac{2}{8}=\frac{\frac{3\sdot8}{4}-2}{8}=\frac{\frac{24}{4}-2}{8}=\frac{6-2}{8}=\frac{4}{8}}}
נכפול הג' בח' ויעלו כ"ד נחלקם לד' יצא בחילוק ו' נסיר מהם הב' ישארו ד' והם ד' שמיניות והוא הנשאר
If there were anything left in the first division, it would have been quarters of an eighth.
ואם בחלוקה הראשונה היה נשאר שום דבר היה רביעיות שמיניות

Multiplication

ההכאה
It was already suggested that there is no need but to multiply the numerator by the numerator and the result are parts of the denominators.
\scriptstyle{\color{OliveGreen}{\frac{a}{b}\times\frac{c}{d}=\frac{a\sdot c}{b}\sdot\frac{1}{d}}}
כבר נרמז שאין צריך כי אם לכפול השברים בשברים והעולה הוא חלקים מכל המורים
  • Example: we wish to multiply 4-sevenths from 5-sixths.
\scriptstyle\frac{4}{7}\times\frac{5}{6}
המשל רצינו לכפול ד' שביעיות בה' שישיות
Multiply 4 by 5; the result is 20 and they are 20-sixths of a seventh. Divide them by them; the result is 3-sevenths and 2-sixths of a seventh.
\scriptstyle{\color{blue}{\frac{4}{7}\times\frac{5}{6}=\frac{4\sdot5}{6}\sdot\frac{1}{7}=\frac{20}{6}\sdot\frac{1}{7}=\frac{3}{7}+\left(\frac{2}{6}\sdot\frac{1}{7}\right)}}
הכה ד' בה' ויעלה כ' והם כ' שישיות שביעית וחלקם ‫[243]עליהם ויעלה ג' שביעיות וב' שישיות שביעית

Division

החלוק
Multiply the numerators of the greater by the denominators of the smaller, then divide the product by the denominators of the greater and the numerator of the smaller, considering them as denominators.
\scriptstyle{\color{OliveGreen}{\frac{a}{b}\div\frac{c}{d}=\frac{a\sdot d}{b}\sdot\frac{1}{c}}}
כפול שברי הגדולה במורי הקטנה והעולה חלקנו למורי הגדולה ושברי הקטנה בקחתך אותם למורים
  • Example: we wish to divide 6-sevenths by 2-fifths.
\scriptstyle\frac{6}{7}\div\frac{2}{5}
המשל רצינו לחלק ו' שביעיות על ב' חמישיות
Multiply 6 by 5; the result is 30, which are halves of sevenths. Divide them by [2 and 7]; the result is 2 integers and a seventh.
\scriptstyle{\color{blue}{\frac{6}{7}\div\frac{2}{5}=\frac{6\sdot5}{2}\sdot\frac{1}{7}=\frac{30}{2}\sdot\frac{1}{7}=2+\frac{1}{7}}}
כפול ו' בה' ויעלה ל' והם חצאי שביעיות חלקם עליהם יעלה ב' שלימים ושביעית אחת

Proportions

הערכים
Multiply the numerators of the second by the numerators of the third, multiply the product by the denominator of the first and the result are parts of the numerators of the first [multiplied by] the denominators of the second and the third.
\scriptstyle{\color{OliveGreen}{\frac{a_1}{b_2}:\frac{a_2}{b_2}=\frac{a_3}{b_3}:X\longrightarrow X=\frac{a_2\sdot a_3\sdot b_1}{a_1}\sdot\frac{1}{b_2}\sdot\frac{1}{b_3}}}
כפול שברי השנית בשברי השלישית והעולה כפול אותו במורה הראשונה והעולה הם חלקים משברי הראשונה ומורי השנית והשלישית
  • Example: we wish to know, if 3-sevenths are equal to 8-ninths, how much are 4-fifths equal to?
\scriptstyle\frac{3}{7}:\frac{8}{9}=\frac{4}{5}:X
המשל רצינו לידע אם ג' שביעיות שוים ח' תשיעיות ד' חמישיות כמה הם שוות
We multiply the 8 by 4; the result is 32. We multiply it by 7; the result is 224, which are thirds of a ninth of a fifth. We divide them by [3, 9, and 5]; the result is 1 integer, 3-fifths, 2-ninths of a fifth and 2-thirds of a ninth of a fifth.
\scriptstyle{\color{blue}{X=\frac{8\sdot4\sdot7}{3}\sdot\frac{1}{9}\sdot\frac{1}{5}=\frac{32\sdot7}{3}\sdot\frac{1}{9}\sdot\frac{1}{5}=\frac{224}{3}\sdot\frac{1}{9}\sdot\frac{1}{5}=1+\frac{3}{5}+\left(\frac{2}{9}\sdot\frac{1}{5}\right)+\left(\frac{2}{3}\sdot\frac{1}{9}\sdot\frac{1}{5}\right)}}
נכפול הח' בד' ויעלה ל"ב נכפול בז' יעלו 224 והם שלישיות תשיעית חמישית ונחלקם עליהם ויצא א' שלם וג' חמישיות וב' תשיעיות חמישית וב' שלישיות תשיעית חמישית

Roots

השרשים
Multiply the numerator of the number by its denominators, then extract the root of the product, as written above and the result is the parts of its denominators.
\scriptstyle{\color{OliveGreen}{\sqrt{\frac{a}{b}}=\frac{\sqrt{a\sdot b}}{b}}}
כפול שברי המספר במוריו ומהעולה נוציא שרשו כמו שכתו' למעלה ויהיה חלקים ממוריו
  • Example: we wish to know the root of 2-eighths.
\scriptstyle\sqrt{\frac{2}{8}}
המשל רצינו לדעת שרש ב' שמיניות
We multiply 2 by 8; the result is 16. We extract its root; it is 4, which are 4-eighths, and this is the root.
\scriptstyle{\color{blue}{\sqrt{\frac{2}{8}}=\frac{\sqrt{2\sdot8}}{8}=\frac{\sqrt{16}}{8}=\frac{4}{8}}}
נכפול ב' בח' יעלו י"ו נקח שרשו והוא ד' והם ד' שמיניות והוא השרש

Additional rule for division of fractions

In order to abbreviate the division operation further and to give a correct answer immediately, I saw it fitting to contrive and reverse it into multiplication by inverting the smaller - the numerator into denominator and the denominator into numerator. ולקצר עוד מעשה החלוק ולהשיב מיד תשובה נכונה לכל שואל ראיתי לתחבל ולהחזירו להכאה בהפוך הקטנה השברים למורים והמורים לשברים
  • Example: if you are told in our first example: we wish to divide 6-sevenths by 2-fifths.
\scriptstyle\frac{6}{7}\div\frac{2}{5}
המשל אם אמרו לך במשלינו הראשון רצינו לחלק ב' [ו'] שביעיות על ב' חמישיות
You answer immediately that they are 6-sevenths of 5-halves. Multiply them and it is as the first procedure itself.
\scriptstyle{\color{blue}{\frac{6}{7}\div\frac{2}{5}=\frac{6}{7}\sdot\frac{5}{2}}}
תשיב מיד שהם ו' שביעיות מה' חצאין והכה אותן והרי הוא כמעשה הראשון בעינו

Additional rule for proportions of fractions

In proportions also reverse the first and return to multiplication. וכן בערכים הפוך הראשונה ותחזור להכאה
  • I.e. in our example, when we say: if 3-sevenths equal 8-ninths, how much are 4-fifths equal?
\scriptstyle\frac{3}{7}:\frac{8}{9}=\frac{4}{5}:X
פי' במשלנו כאשר אמרנו אם ג' שביעיות שוים ח' תשיעיות ד' חמישיות כמה הם שוים
Answer immediately that they are 7-thirds of 8-ninths of 4-fifths. Multiply them and it is the same as the first procedure.
\scriptstyle{\color{blue}{X=\frac{3}{7}\sdot\frac{8}{9}\sdot\frac{4}{5}}}
תשיב מיד שהם ז' שלישיות מח' תשיעיות מד' חמישיות והכה אותן והרי הוא כמעשה הראשון
Over and done, thanks to the Creator of the world. תם ונשלם ת"ל בורא עולם

Notes


  1. ישעיהו מג, ד
  2. שיר השירים ד, ד
  3. משלי ל, ח
  4. דברים לב, ה
  5. קהלת א, טו
  6. שיר השירים ד, י"א
  7. משלי ג, י"ז
  8. ישעיה ל"ג, י"ט
  9. מועד, מגילה, ב, א
  10. דברים ל"ב, ל"ז
  11. איוב י"ב, ו
  12. איוב טז, כ"ב
  13. מלכים א י"ח, כ"א
  14. מלכים א ב, מ"ב
  15. מלכים א י"ד, ט"ו
  16. קהלת י, י"א
  17. קהלת ז, כ"ט
  18. תהילים קמד, י"ג
  19. תהילים ע"ה, ח
  20. ישעיה י"ז, ו
  21. תהילים צ, י"ז
  22. איוב ל"ו, כ"ב
  23. משלי ו, יג
  24. ישעיה י"ז, ו
  25. ישעיה לג, כ
  26. דברים כ"א, י"ז
  27. ישעיה י"ז, ה
  28. משלי לא, כט
  29. תהילים עג, ד
  30. איוב ח, יב
  31. איוב לח, י
  32. איוב כח, כא
  33. תלמוד בבלי, מסכת ברכות, דף ג ע"ב
  34. שמואל א כד, יב
  35. תהילים כב, ז
  36. משנה סנהדרין ח, ב
  37. בבלי, קודשים, בכורות, דף ו, ב
  38. ירמיה לב, ז

Apparatus

  1. 2r
  2. marg.
  3. marg.
  4. marg.
  5. 2v
  6. marg.
  7. marg.
  8. marg.
  9. 3r
  10. marg.
  11. 3v
  12. 4r
  13. marg.
  14. marg.
  15. 4v
  16. 5r
  17. marg.
  18. 5v
  19. 6r
  20. marg.
  21. marg.
  22. marg.
  23. 6v
  24. marg.
  25. 7r
  26. marg.
  27. 7v
  28. marg.
  29. marg.
  30. 8r
  31. marg.
  32. 8v
  33. 9r
  34. marg.
  35. 9v
  36. marg.
  37. marg.
  38. 10r
  39. 10v
  40. 11r
  41. marg.
  42. marg.
  43. 11v
  44. 12r
  45. marg.
  46. marg.
  47. marg.
  48. marg.
  49. 12v
  50. marg.
  51. marg.
  52. marg.
  53. 13r
  54. marg.
  55. 13v
  56. 14r
  57. 14v
  58. 15r
  59. marg.
  60. marg.
  61. marg.
  62. marg.
  63. 15v
  64. marg.
  65. marg.
  66. 16r
  67. 16v
  68. marg.
  69. marg.
  70. 17r
  71. 17v
  72. 18r
  73. marg.
  74. marg.
  75. 18v
  76. marg.
  77. marg.
  78. 19r
  79. marg.
  80. 19v
  81. 20r
  82. 20v
  83. 21r
  84. marg.
  85. 21v
  86. marg.
  87. 22r
  88. marg.
  89. marg.
  90. marg.
  91. 22v
  92. marg.
  93. 23r
  94. marg.
  95. marg.
  96. 23v
  97. 24r
  98. marg.
  99. 24v
  100. marg.
  101. marg.
  102. marg.
  103. 25r
  104. marg.
  105. 25v
  106. marg.
  107. 26r
  108. marg.
  109. marg.
  110. 26v
  111. marg.
  112. 27r
  113. marg.
  114. 27v
  115. marg.
  116. marg.
  117. 28r
  118. 28v
  119. marg.
  120. marg.
  121. 29r
  122. 29v
  123. 30r
  124. 30v
  125. 31r
  126. 31v
  127. 32r
  128. 32v
  129. marg.
  130. 33r
  131. 33v
  132. marg.
  133. 34r
  134. 34v
  135. marg.
  136. 35r
  137. 35v
  138. marg.
  139. 36r
  140. marg.
  141. marg.
  142. 36v
  143. 37r
  144. marg.
  145. 37v
  146. marg.
  147. 38r
  148. 38v
  149. 39r
  150. marg.
  151. 39v
  152. marg.
  153. marg.
  154. 40r
  155. marg.
  156. 40v
  157. 41r
  158. 41v
  159. marg.
  160. 42r
  161. 42v
  162. marg.
  163. 43r
  164. marg.
  165. marg.
  166. 43v
  167. marg.
  168. 44r
  169. 44v
  170. marg.
  171. 45r
  172. 45v
  173. 46r
  174. marg.
  175. 46v
  176. marg.
  177. 47r
  178. marg.
  179. marg.
  180. marg.
  181. 47v
  182. 48r
  183. 48v
  184. 49r
  185. marg.
  186. 49v
  187. marg.
  188. marg.
  189. 50r
  190. marg.
  191. 50v
  192. 51r
  193. marg.
  194. 51v
  195. marg.
  196. 52r
  197. marg.
  198. 52v
  199. 53r
  200. 53v
  201. 54r
  202. 54v
  203. 55r
  204. marg.
  205. 55v
  206. marg.
  207. 56r
  208. 56v
  209. 57r
  210. 57v
  211. marg.
  212. marg.
  213. 58r
  214. 58v
  215. marg.
  216. 59r
  217. 59v
  218. marg.
  219. 60r
  220. marg.
  221. 60v
  222. marg.
  223. marg.
  224. marg.
  225. 61r
  226. marg.
  227. 61v
  228. marg.
  229. marg.
  230. marg.
  231. 62r
  232. 62v
  233. 63r
  234. 63v
  235. marg.
  236. marg.
  237. 64r
  238. marg.
  239. 64v
  240. marg.
  241. 65r
  242. marg.
  243. 65v

Appendix I: Glossary of Terms

rank מדרגה, מעלה
dividend המתחלק
divisor אשר נחלק עליו
quotient היוצא בחילוק
common denominator אם המורים
treatise קצור, קיצור
book ספר (ה), ספרי
section חלק (ה... ב)
chapter כלל
chapter פרק (ה / ה.. ב), פרקי ה, פרקים (ב / ה)
chapter שער (ה / ה... ב), שערים
discussion מאמר (ה)
בחלק ה... בפרק ה... ממנו
introduction מבוא ב, מבוא ל
introduction הקדמה
to preface אקדים
word תיבה, הברותיו
letter אות
language בלשון
alien tongue לשון נכרי
Hebrew language לשון עברי
number מספר (ה), מספרים, מספרינו, מספרך, מספרם, מספרן
חשבון (ה), חשבונך, חשבוננו, החשבונים
number מנין
digit אות (ה), אותיות
digit רושם, רשמים, רושם ה, רשמי ה
digit מספר, מספרים, מספרי ה
zero סיפרא, סיפרות, ספרות
prime number מספר פשוט, פשוט, פשוטים
odd נפרד, חשבון נפרד, החשבון הנפרד, מספר נפרד, הנפרדים, נפרדת
even זוג, חשבון זוג, זוגי (ה), מספר זוגי
pair זוגי
unit אחד, אחדים, אחדי (ה), ידות
units אחדים, אחדי (ה)
units הפרט
product of tens, none-units כלל
tens עשרות, עשרי
hundreds מאות
thousands אלפים
ten thousand רבבה, רבבות
millions חשבונות
rank דרגה
מדרגה, מדרגת ה, מדרגתה ה, מדרגות, מדרגתם, מדרגותיה, מדרגותיו
מעלה (ה), מעלות (ה), מעלת ה, מעלתה, מעלתו, מעלתן, מעלותיו, מעלותיהן
empty rank מעלה חלקה ממספר, מעלה החלקה ממספר, מעלות חלקות מהמספר
positional value (relation) ערך המעלות
positional value בערך (ב / ה), כערך, ערך מקום ה, בערך המעלה, בערך מעלת ה
decimal place מקום (ה), מקום הנחת, מקום ההנחה, מקומו ה, מקומו הוא ב
place מקום (ה / ש), מקומו, מקומות
place holding שמירת המדרגות
line קו, קוים
point, dot נקודה, נקדה, נקודות, נקדות
row, line שורה, שורות, שורת (ה / ה... מה), שורתו
טור (ה), טורים
surface שטח
body גשם
cube מעוקב, המעוקב
stripe רצועות של
length ארך, אורך, באורך, ארכו
width רוחב, רחבו, ברוחב
height גובה
addition
addition חבור, חיבור
בחברך אליהם ה
לחבר (ל / על ה / עמהם ה / ... עם / ה... על ה / כל ה / יחד כל), לחברו (ל / עם, עמו), לחברם (עם / עם ה), לחבירו עם
חבר ( ... עם / ה... ל / ה... עם / הכל יחד)
חברהו (ל / עם), חברם ל, חברם עם ה, חברנו ה... עם, חברת אותם
יחבר ה... עם
יחברם
מחברים (אותו עליהם / אותם אליהם)
נחבר (אליהם / אליהם ה / ל / להם ה / ה... ל / ... עמהן)
נחברנה עם ה, נחברהו אל ה
נחברם (אליהם / אליהם ה / יחד / ל / להם ה / עם / כלם)
תחבר (אליהם ה / להם ה / לו ה)
תחברם (יחד / יחד ... עם / כלם / עם ה)
תחברנו (עם / עם ה / ל)
to be summed מחובר, מחוברות יחד
sum המתחבר, המחובר
sum המקובץ
sum סך
summed המקובץ (מ / מה)
summed מחובר עם ה
עלה חיבורם, עלה מחבורם, עולה חיבורם, העולה מהחיבור, העולה מחבור ה
addition תוספת (אשר ל / בהם / ה / על ה)
to add להוסיף (אותו על ה / אחד / מה / על ה / ... ב), להוסיפו (על ה / עליו), להוסיפם על ה
הוסיף ...על ה, הוסיף עליו זה התוספת
הוסף (על ה / עליו)
הוספנו (על / עליהם / ... מעל ה / ... על ה / עליהם ה)
הוספנוהו על ה
יוסיף לעולם על
מוסיפים (... ב / עליו)
נוסיף (ב / עליהם / עליו / ... ב / ... על / ... על ה / ה...על ה / ה... עם ה)
נוסיפנו
תוסיף (עליו / ... על / ה... על), תוסיפם על, תוסיפנו על ה
המתוסף ב, המתוסף עתה ב, המתוסף על ה
יתוסף ב, נתוסף, ניתוסף ב, ניתוסף דבר ב, נתוספו (ב / לו... על), מתוסף
בהוספת ה
added מוסף על ה, מוספים על
נוסף, נוספות, נוספים (ב... על / ב... על ה / על ה), נוספת ב... על
תוסף ב
יוסיף ב
מוסיף (על / על ה)
קיבוץ כל השורות יחד
plus בתוספת (ה)
by addition לתוספת
addition מתוספת ב
additive, additional היה לתוספת, היו לתוספת
exceeding מוסיפים על ה
subtraction
subtraction המגרעת
to subtract ונסור ה
subtraction בהסר מה
לגרוע (... מ), לגרעם מ
גרע (... ממנו / ממנו ה)
נגרע (ה... מה / מהם)
הנגרעים
יגרע (מהם)
החסרו מ
חסרון (מ), החסרון אשר ב... מה, חסרונו
לחסר (מה / ... מ / ה... מ), לחסרו (מ / מן ה), לחסרם מה
לחסו' ... מ
חסר מ, חסר ... מ
חסרם מ
חסרנו (ה / מ / ממנו / ממנו ה)
חסרת
יחסר (כ / מ / מה / ממנו כ / ... מ / ... מה / ... כ / ה... מה)
יחסר יותר
יחסרהו מ
נחסר (ה / אלו ... מה / ה...מה / ה... מן ה / ... מה)
נחסרה
נחסרנו (מה), נחסרנו לעולם מה, נחסרהו לעולם מה
נחסרם זה מזה
תחסר (ה / מה / מהם ה / הכל מה), תחסרנו ממנו
מחוסר
מחסרים, מחסרים עתה מה
מן ... חסר ה
חסרים אלו ה... מ
minus חסר, חסר אחת
אשר חסרנו ממנו
אשר חסרת, אשר חסרת ממנו
יחסר מעלה ממקום ה
בהסיר, בהסר מהם ה, להסירו, להסירם מה, הסירך ה
to subtract הסיר מה, הסר, הסרת (ה)
נסיר (ה / ... מה / ה ... מה / ה... מ / מה / מהם / מהם ה / ממנו ה)
נסירה (ממנו / כלו ממינו), נסירהו
נסירם (מה / ממנה)
נסירנו מה
תסיר (ה / מהם / ... מה), תסירנה, תסירנו
subtraction הוצאת... מ
להוציא (מה / ממנו / ... מ / ה... מה)
להוציאו מהם
להוציאם (מה / מהם ה)
הוצא (ה / מ / ה... מ)
הוצאנו ממנו
הוצאת (מהם / ה... מה / ה... מן)
הוציא... מה
הוציאהו מ
הוציאנו (מה)
יוציא כל ה
מוציאים מה
נוציא (כל / מ / מה / מהם ה / ה... מה / ... מ)
נוציאם מה
נוציאנו (מ / מה / מאשר על)
תוציא (ה... מן / ... מ)
להוציא כ"כ פעמים המספרים
to be subtracted, to be consumed ויצא כל זה ה, יצא הכל
לא תוציא ל
to subtract תוציאנו מה
ומהכל תוציא אשר
אשר עליו להוציא
to be subtracted לצאת (ה / כלו / מהם / מאשר על), יצא, יצאו (מ / ... מ)
בלי תוספת ומגרעת, מבלי תוספת ומגרעת
מבלי תוספת, מבלי תוספת ה
לבד בלי תוספת אחד כלל
ואם יחסר או יעדיף
Multiplication
multiplication of fractions הכאה, הכאת ... ב
להכות (ה... ב)
הכה (אותן / ... ב)
נכה (ב / ה / ה... ב), נכם ב
תכה הצריך להכאה
לעשות הכאה, נעשה הכאה ל, עשה להם הכאה, תעשה להם ג"כ ההכאה
ונכם זה בזה
הוכה (ב), הוכה... על, הוכו, הוכתה בהם
לבעלי ההכאה
product כפל (ב / ה / עם / ... ב / ... על / ... עם / ה... ב / ה... על / זה ה... ב / ... זה בזה / ה... זה בזה / כל ה)
כפליהן, כפלו על
product המחובר
product מקובץ
product אשר עלה לידיך מכפל ... ב
multiplying בהכפל (ה / ... ב), בכופלנו אותו ב, בכפול (אותו ב / ה... ב / ... אחד באחד / אותם זה בזה / ... ב), הכפלו ב, הכפלם (ב / כלם ב)
בכפול זה בזה, בהכפל זה בזה
to multiply כפלת ה... ב
בכפלנו אותו ב
לכפול (ב / בהם / בהם ה / ה / ה ... ב / ה... עם / ... ב / ... על / כל ה... בהם / כל ה.... עם ה)
לכפלה עם, לכפלו (ב / בכלם), לכפלם ב
כופל ב, כופלים (אותה ב / אותו / ב / ה / כל ה / ... ב / ה... ב)
כפול (אותו ב / אותו... ב / ... ב / ... על / ה... ב / ה... על / ... פעמים)
כפלהו (ב / שנית ב), כפלהו אותם ב
כפלו (ב / על / עם / ... ב)
כפלם זה בזה
כפלנו (אותם ב / בהם / ה... ב / ... ב / ... על)
כפלנוהו ב
כפלנום ב
כפלת
נכפול (אותם ב / ב / בהם / בו / זה ב / אותו... ב / ... ב / ... על / ה... ב)
נכפלהו ב, נכפלו... עם
נכפלם (ב / על ה / עוד ב / ... ב)
נכפלנו (ב / בהם)
תכפול (אותו ב / בו / ה... ב / ה... עם / ... ב / ... בו / ... על / ... ב... פעמים)
תכפלם (ב / ... על ה)
תכפלנו (ב / בהם)
to multiply כופלים בהכאה ... ב
כפל אלו זה בזה
כפלו ב... פעמים
product by itself כפלתו בעצמו
כפלו (בעצמו / על עצמו)
כפל... בעצמו, כפל ... על עצמו, כפל ה... בעצמו
כפל... בעצמם, כפל ה... על עצמם
ככפלו לעצמו
לכפול על כולם ועל עצמו
כופלים ה... בכמותו
כפול אותו על עצמו, כפול ... על עצמם
כפלם בעצמם
כפלנו ... על עצמם, כפלנוהו בעצמו, כפלנוהו על עצמו
נכפול (על עצמו / ... על עצמו / ה... על עצמו / ה... בעצמו / זה על עצמו)
נכפלנו (בעצמו / על עצמו)
תכפול (ה... בעצמו / אותו ה... על עצמו)
תכפלנו על עצמו
כפולים בעצמם
multiple כפלי (ה / מ), כפלים
multiplied כפול, כפולים
פעמים כפל ה... זה בזה
כפל הכפלים ההם
לכופליו
כופלו
אנו לוקחים אותם כפולות
to be multiplied הוכפל ה, הוכפלה בה, הוכפלו בהם, יוכפל כפלים ב
product עולה מהכפל, העולה מהכפל (ה / הזה), העולים מהכפל (... ב / ה... ב), העולים בכפל, העולות מזה הכפל, העולה מכפלו עם ה, העולה מכפלם
שעלה בכפל
תעלה מ...
היוצא אחר הכפל
נכפלו, נכפלו בהם
הכפלים, מנין הכפלים
כפול, כפולים
נכפל, נכפלים ב
הנכפל, הנכפלים, מספרים הנכפלים, המספרים הנכפלים, הנכפלים זה בזה
נכפל פעמים רבות
אשר אינם נכפלים
to be duplicate ישנו (ב / בהם), נשנים (ב / מ)
duplicated כפול, נכפלים
to duplicate לכפלו, ישנך
duplication כפל ה
duplication השינוי
double כפול, כפל (ה), כפלו
doubling כפל
to double כפול (ה), כפלת ה, נכפול ה, תכפול, תכפלנו
Division חלוקה, לחלוקה על ה... עליו, חלוקת ה, חלוק (ה), חילוק (ב / ה / ... ב), בחילוק, בחילוק על ה, חלוקנו, בחלוקנו ל, בחלקך ל, בחלקנו (אותו ל / ה / ה... ל / ה... עליהם / אותו ל / אותם ל / ... ל), בחלקינו... ל
בחלקנום אותם על
לחלק (ל / ... ל / ... על / ה... ל / ה... עליהם / אותן על / אליהם אלו ה / עליהם / על הכל)
לחלקה עתה להם, לחלקו (ב / ל / על / עליו)
לחלקם (ל / להם / על / על ה / עליהם / עליו / ראשונה על ה)
חלק (ל / עליו / ה... ל / ה... על / ה... עליהם / זה ה... על / אליו זה ה / ... על)
חלקהו ל
חלקם (ל / עליהם)
חלקנו (אותו על / ה / ה... ב / ה... על / ל / על / על ה / עליהם ה / עליו / ... ל / ... על / ... על ה)
חלקנוהו (על / על ה / עליו), חלקנום (ב / ל / על / על ה / עליו)
חלקת (ה... על ה / הכל ל)
יחלק ... על
מחלקים (אותו ל / אל / ... ל)
נחלוק ... ל
נחלק (אלו ה / אליהם / אליהם ה / ה / ל / לו / על / עליה / עליהם / עליהם ה / עליו / ... ל / ...על / ה... ל / ה... על / ה... על ה / אלו ה... ל / אלו ה... אל ה)
נחלק זה החשבון ל, נחלק חשבוננו זה עליו, נחלק מספרינו על
נחלק זה היוצא ל, נחלק זה היוצא על ה
נחלקם (ל / על / על ה / עליהם / עליו / תחלה ל)
נחלקם על מינו, נחלקנו למינו
נחלקנו (אליהם / ב / ל / על / עליו)
תחלק (... ל / ... על ה / על ה / עליו / ה... ל / ה... על / ה... על ה); תחלק (ל / עליהם); תחלק על כלם ה, תחלק כל החשבון ל, תחלק אליו לשלימים
תחלקה
תחלקם ל
תחלקנה ל
תחלקנו (ל / על)
יתחלק ל, יתחלק ... ל, יתחלקו
המחלק ... על
נחלק ל
נתחלק הכל
נתחלק על כל ה, נתחלק להם המספר
בחלוקה הראשונה
חלקתי הספר לב' חלקים
אשר אתה מחלק עליו
אשר רצינו לחלק (על ה / עליהם / עליהם ה / עליו / ל), שרצינו לחלק (עליו)
אשר רצית לחלק (עליו)
אשר תרצה לחלק (עליו)
אשר חלקנו (עליהם / עליו), שחלקנו עליהם
אשר חלקת עליו
אשר חלקת עליהם
אשר חלקנו כבר עליהם
אשר נחלק (אל / עליו), אשר נחלקו עליו
אשר תחלק עליו
עליהם תחלק ה
אשר להם תחלק
המתחלק (ל), החשבון המתחלק, המספר המתחלק, מספר המתחלק
quotient היוצא מן החלוק ה, היוצא בחלוק, היוצא בחילוק, היוצא בחלוקו, היוצאים בחלוק, היוצאים בחילוק
יוצאים בחילוק
יצא בחלוק, יצא בחילוק, יצא בחילוק (ה / ל), יצא לנו בחלוק, יצא זה בחלוק ה, יצא בחילוק ה... ל, יצאו בחלוק, יצא ה... בחילוק, יצאו... בחילוק, יצא בו בחלוק
יצא בחלוקה, יצא מהחלוקה
יצא בחלוקנו, יצא בחלוקם, יצא בחילוקם
העולה שיצא לנו בחלוק ה ... על ה
תצא ... בחילוק
יצא בחילוק מבלי שארית, היוצא בחילוק בצמצום, היוצא בחלוק בצמצום
יצא בחילוק לכל אחד
יצא בחילוק מספר מה
אשר יוצא עתה בחילוק
אשר יצא לנו בחילוק, אשר יצא בחילוק באחרונה, אשר יצא באחרונה בחלוק
אשר יצאו בחילוק, אשר יצאו בחלוק, אשר יצאו בחלוק באחרונה, שיצאו בחילוק
יצא לך בחלוק על
יצאו בחלוק
ויצא ... בחלוק, ויצא בחילו'
עלה בחלוק
factor, divisor מורה (ל / לו), מורים (ל), מורי, מוריו
part, divisor חלקיו
true divisor מורה צדק
indivisible לא נחלק לשלמים אל חשבון, לא יוכל להתחלק עליו, שלא יוכל להתחלק לשלמים, לא יתחלק כלו לשלמים
לא יתחלק לשום מספר בשלימות מבלי שארית
divisible יתחלק כלו לשלימים, הנחלק למספר מה, יתחלק אליו לשלימים מבלי שארית
divisible by two יש לו מחצית, יש לו ב'
divisible by three יש לו שלישית, יהיה לו שלישית, יש לו ג', היה לו שלישית
divisible by four יש לו רביעית, יש לו ד', יש לה רביעית, יש להם רביעית, יש לחשבון רביעית, היה להם רביעית, היה לו רביעית
indivisible by four אין לו רביעית, אין לנו רביעית
divisible by five יש לו חמישית, יש לו חמישיות שלמות, יש לזה ה... חמישית, היה לו ה'
divisible by six יש לו שישית
indivisible by six אין לו שישית
divisible by seven יש לו שביעית
indivisible by seven אין לו ז'
divisible by eight יש לה שמינית, יש לו שמינית, יש לו ח', יש להם שמינית
indivisible by eight אין לה שמינית
divisible by nine יש לו תשיעית, יש לו ט', יש למספר תשיעית
divisible by ten יש לו עשירית, יש לו עשר, יש לה י'
divisible by eleven יש לו י"א, יש לו הי"א, יתחלק לי"א על השלימות
indivisible by eleven אין לו י"א
divisible by thirteen יש לו י"ג, יש לו הי"ג
divisible by seventeen יש לו י"ז
יצא הכל לשביעיות
יצא הכל ז' ז'
השלך לעולם הז' ז'
השלך אותו ח' ח'
casting out by nines הסרת התשיעיות, חסר כל ט' ט', תוציא הט' ט'
to be cast out by nines יצא הכל לט' ט', יצא החשבון לט' ט', יצא כולו תשיעיות
to be cast out by 11 יושלך כלו י"א י"א, יושלך לי"א י"א
to cast out by 13 הוצא הי"ג י"ג, הוצאת הי"ג
to be cast out by 13 יוצא לי"ז י"ז
to extract the factors תוציא המורים מ
to extract the factor המצאת מורה ה
fractions
integer שלמים, שלימים, מספר שלם
fraction שבר, שברים (מ / מה), שבורים, שברי (ה), שבריהם
fraction חלק מ, חלקים (מ / מה), חלקי (ה)
fraction of fraction שברי שברים (מ), שבר שבר
fractional הנשבר
portion שברים מ
part חלק (ה / מ), חלקים מ, חלק אחד מ, חלקי ה, חלקיו
חלקים מחלק, חלקים מחלק מ
ב... חלקים בשלם
מ... חלקים בשלם
חלקי... בשלם; חלקי... מ... בשלם
חלקים משלם מ, חלקים מ... בשלם; חלקים מ... שבשלם; חלקים מה ... בשלם
חלקים מ... באחד
חלקים מחלקי ה... בשלם; חלקים מ... חלקים בשלם; חלקים מ... חלקים מ... שלם
חלק מ... ב; חלק מ... בשלם; חלק מ... שבשלם; חלק ... מ... בשלם; חלק ... מ... שבשלם
אחד מ... בשלם; חלק א' מ; חלק אחד מ... בשלם; חלק אחד מ... שבשלם; חלק א' מ... שבשלם
חלק א' מ... מ... שב; חלק א' מ... מ... השלם; חלק אחד מ... מ... בשלם; חלק אחד מ... מ... שבשלם
השברים מהשלם
numerator מספר השברים, מספר שברים, מספר שברי (ה), מספר שבריו, מספר שבריך, מספר המורה, מספר החלקים, מנין שברים, מנין השברים, שברים מה
החלק על המורים
denominator מורה (ה), מורהו, מורים (ל), מורי (ה), מוריה, מוריו (ה), מוריך, מורינו, המורה החלק, מורה החלק
הוצאת המורים, הוצאת מורי ה
to extract the denominator להוציא המורים (ל), הוצא את מוריו, נוציא מורה ה, נוציא מורי ה, נוציא מוריו, נוציא המורים ל, תוציא המורים
to be extracted יצאו ממנו המורים
לקחתו ... למורה, בקחתך אותם למורים
נקח למורה, נקח ... למורה, נקח מוריהם, נקחם למורים, נקחנו למורה
תקח מורה, תקחם למורים
לוקחים מתחלה ה... למורה
נשים ה... למורה, נשים... למורה, נשימם למורה
common denominator אם, אם המורים, אם כל מוריהם, אם אלו המורים, אם המורים כלם, אם ... מורים, האם (ה), אמם
to extract a common denominator הוצאת האם למורים, נוציא אם כל המורים
in reduction בצמצום
reduced שלמים
כלילת יופי, ובכלילת יופי
בעשותך כלילת יופי
לעשות לשברים אלו כלילת יופי
לעשות לה כלילת יופי, לעשות להם כלילת יופי
נעשה כלילת יופי ל, נעשה להם כלילת יופי, נעשה לו כלילת יופי (על)
עשה להם כלילת יופי
תעשה להם כלילת יופי, תעשה מהם כלילת יופי
הוא כעושה כלילת יופי
עשותנו להם כלילת יופי שהן
unification אחדות, לעשות בדרך האחדות
completion ההשלמה, השלמתם, השלמתן (ל / לאחד)
to complete השלמנו (ה / ל), להשלימם לאחד שלם, המשלימות אותו לאחד שלם
to be completed הושלם כבר ב, ישלומו ל, ישלמו ל, ישלימו ה... ל, שלמו ה
כדי השלמת מספר
complement המשלים אותו כ, השלמה, השלמתו (ל / לאחד), השלמתם (לשלם / לאחד)
complement מה שיש מה... עד תשלום
complement קצתו האחר
to finish השלמת ל, נשלים ה, תשלים (ל / לשורה / השורה)
decomposing התכה, התכת השברים
to decompose התיכנו אותו, נתיך ה
יותך ...ל
composing הרכבתן
composed מורכב, מורכב מ, מורכב מהם
factorization פריטה, פריטת (ה), פריטתינו, פריטתה, פריטת השברים, מספר פריטת השברים
חלקי הפריטה
fractionalizing כפורט
to fractionalize לפרטם ל
לעשות פריטה, עשות להם פריטה, נעשה פריטה ל, עשה הפריטה ל, נעשה תחלה פריטה ל, תעשה פריטה ל
עשה פריטה לכל אלו השברים
פורטים אותה עוד ל
נפרטות (מ), נפרטים, החלקים הנפרטו' השברים הנפרטות, השברים הנפרטים
נפרוט (ה)
נפרטו, נפרט (ה)
תפרוט
conversion המרה
המרנו ה... ל, תמירם אליהם, תמירם ל, תמירם למין אחר
מורה המרה, מורי ההמרה
החזרת השברים, חזרת השלימים לחלקים
השבת השברים, להשיבם פרוטות
משיב הכללים לפרטים
to convert להחזירם מ
to convert להחליפם אליו
להשיב ה, להשיבם, להשיבם לחלק אחר
להשיב למין אחד
להשיב כלם מהמין, להשיב הכל ממין השברי', להשיבם כלם מהמין הראשון
להשיבם כלם ממין אחד
להשיב ... לכללים
להשיב שברים... לחלק אחד
להשיב מורים למורים אחרים
נשיבם, נשיבם ל, נשיבם כלם, נשיבם כלם ממין אחד, נשיבם עוד
נשיב ראשונה ה... ל
השיבם ל, נשיבהו, תשיבם, תושיבם
נשיבם כלם ראשונה
להשיב הכל לקדמותו
to be converted ישובו, ישוב הכל מ, שב, שבו כלם
to be converted יומר
comparing fractions השואה, השוואה, ההשואה שעשינו
בעשותך השואה זו, לעשות בזה ההשואה
נעשה ההשואה ל, נעשה להם השוואה, תעשה ההשואה, אשר עשינו בהשואה
להשוות ... עם, להשוותם, נשוה, תשוה ה... אחד אל אחד
לעשות תחלה פריטה והכאה, לעשות לשבריך פריטה גם הכאה, לעשות לכל א' מ... פריטה והכאה, לעשות שני המעשים ר"ל הפריטה והכאה, עשותנו הפריטה וההכאה לכל אחד מהם
נעשה פריטה והכאה ל, נעשה לה הכאה גם פריטה, נעשה ל... פריטה והכאה, נעשה לכל אחד פריטה והכאה
עשותך הפריטה וההכאה וההשואה, עשותנו הפריטה וההכאה וההשוואה
extraction of roots
root שרש (ה), שרשו, שרשים, שרשנו, שרשי ה
square מרובע (ה), מרובעו, מרובעם, מרובעים
none square ולא מרובעים
cube מעוקב ה
to extract the root ולקחת חציים
extracted root השרש אשר הוצאת, שרש ה... אשר הוצאנו
הוצאת השרשים
to extract a root להוציא השרש, להוציא שורש, הוצא השרש, נוציא שורש, נוציא שרשו
לבקש שרש
בקשנו שרש, בקשת השרש, בקשת שרשו
לדעת שרש, לדעת שרשו
לידע שרש, לידע שרשו, לידע שרשו האמיתי
לקחתו השרש
נקח שרשו
מרובע השרש
בעל השרש
השרש היוצא
השרש המתוסף
השרש המחוסר, השרש הזה המחוסר
נעשה מהכל שרש אחת
השרש הקרוב
אשר לא יודע בהם שרש אמיתי לעולם כי בקירוב
היה זה השרש אמיתי
יהיה שרש קרוב מאד אל האמת
בקרוב
אין זה שרש אמיתי
הקרוב
אשר בשרשו, אשר יצאו בשרש
שלימי השרש, השלימים היוצאים בשרש, השלמים אשר יצאו בשרש
השברים היוצאים בשרש
השרש בעצמו
אשר בקשנו שרשו
כשורש בעינו, שהוא כמו השרש
Proportions
proportion, ratio ערך, ערכים, ערכי ה
הערך ל
ערך ... אצל, הערך שיש ל... אצל, הערך שיש ל... אצל ה
הערך אשר ל... אצל, הערך אשר ל... אצל ה
הערך שיש ל... אצל
כערך ... אצל, כערך אשר ל... אצל
הערך בעצמו יש ל... אצל, הערך בעצמו שיש ל... אצל
הוא הערך בעצמו אשר ל... אצל
למי יש ערך אצל, למי יש זה הערך אצל
אצל מי יש ערך זה ל, אצל מי יש לו זה הערך
אצל מי יש ל... זה הערך
אצל ... למי יש לו זה הערך
ל... אצל מי יש לו זה הערך, ל... אצל מי יש לו זה הערך בעצמו
למי יש לו זה הערך בעצמו אצל
אצל איזה מספר יש לו אותו הערך בעצמו
rule of three הג' מספרים נערכים
related, proportional הנערך, הנערך אליהם, הנערך אצל (כל), נערכים
to relate לקשרם יחד
mean האמצעי, האמצעיים
first term ראשון, הראשון שב, ראשון ל
second term שני, שני שבהם, שני ל, השני מה
related נערך, הנערך, הנערך אצל
related נקשר ב, נקשרות, נקשרים (בו / ...ל / זה בזה / זו בזו)
unrelated הבלתי נקשרות
what we relate to it אשר אליו אנו מעריכים
אשר מעריך אצלו
relation to ערכם אל ה
in relation to בערך (ה)
according to this relation על הערך הזה
א.מ.ר.
saying אומרו, אמרנו, אומרנו (כי / ש)
אומרנו... כאומרנו
כאומרנו (ש), הוא כאומרנו ש, היא כאומרנו, שהוא כאומרנו
והנה אומרנו, והוא כי אומרנו, וזה כי אומרנו, שהוא אומרנו
הוא כאומרך
כך הוא אומרנו
to say לומר (ש), לו' ש, אומר כי, אומרים ש, אמרנו (ב / כי / ש / ב... ש), אמרו (לך ב / לך ש / לנו), אמרתי, יאמרו לך (ל), נאמר (ב), תאמר (ש)
to say כאשר אמרנו, כאשר אמרתי
לאומרם
רצוני לומר
כאלו אמרו, כאלו אמרו לנו, כאלו אמרנו
הוא כאלו אמרו ש, והרי הוא כאלו אמרו, הוא כאלו אמרו לנו, והרי הוא כאלו אמרו לנו
אומרים ב
נאמרו
מה שאמרנו ב
ב.א.ר.
explanation ביאור (הכל)
to explain לבאר (איך / ה), לבארו ב, אבאר, אבארנו (ב / בטעם), ביארנו כי / ש, נבאר זה ב
וזה מה שרצינו לבאר
כמו שבארנו, כמו שביארנו, כמו שביארנו ב, כמו שביארנו למעלה
כאשר ביארנו, כאשר ביארנו ב, כאשר ביארנו למעלה
וכן ביארנוהו למעלה
הרי ביארנו ש, הנה ביארנו כי
כבר ביארנו כי, כבר ביארנו ש
שביארנו
כאשר אבאר ב
כאשר ביאר ב
יתבאר בש, יתבאר עוד ב, נתבאר
it is clear נתבא' ש
כאשר התבאר, כאשר יתבאר (ב)
כמו שיתבאר (ב), כמו שנתבאר (ב)
כמו שנתבאר פעמים רבות כי
כמו שנתבאר למעלה
וכל זה יתבאר מעשהו ב
ועוד נתבאר איך, ועוד נתבאר אחר זה איך
וכל זה נתבאר הטב ב
מבואר באר הטב
להרחיב ביאור אבארנו בעודו בעינו
והנה יתבאר מ... כי
מבואר כי
מבוארים
וזה מבואר
והכל מבואר למבין
וכל זה מבואר, והכל מבואר ב
וזה מבואר בטעם
וכל זה מבואר בטעם ובצורה, הוא מבואר בטעם ובצורה
והכל נתבאר במעשה ובטעם
ב.ו.א.
to result יבא ה
ב.ח.נ.
check, examination בחינה (ב / ש), בחינת (ה), בחינות
to check, to examine לבחון (אותו), אבחן, בחנהו
to be examined להבחן ב
להבחין אם עשית כדין וכשורה
לבחון אם עשית כדין אם לאו
להבחין מעשיך, לבחון מעשיך
to distinguish, to separate תבחין בין ה... ל
ב.י.נ.
to understand להבנה, להבין, להבינו
understanding הבנות, הבנתי
understandable מובן
ודי למבין
ב.ל.ב.ל.
to confuse לבלבלך בזה
יבלבל עליך
יתבלבל (ב), נתבלבל, תתבלבל
ב.ק.ש.
to seek לבקש (לו), לבקשו, לבקש אחד מהם
בקשת, בקשנו (ל), מבקשים ל, מבקש, תבקש (ל)
נבקש מספר (ל / ש / אשר), תבקש מספר
לבקש מורים ל, נבקש מורים ל, נבקש עוד מורים ל
לבקש לו מורה, נבקש לו מורה, נבקש לו מורים
נבקש מורה, תבקש מורי ה
אשר בקשת לו כל המורים
sought-after המבוקש, הוא המבוקש
sought-after מבוקשך, מבוקשנו, מבוקשינו
to ask for לבקש
ב.ר.ר.
על דרך ברור
to clarify ולברר
to be made clear נתברר
clear, certain, evident ברור (כי), וזה ברור (ב / כי / ש), הוא ברור כי
ברור ומבורר
וזה דבר ברור, וכל זה ברור, והכל ברור
וזה ברור בטעם
והוא ברור במעשה ובטעם
כי הכל ברור המעשה והטעם
וכל זה תראה ברור ומפורש בטעם
וכל זה מבורר בטעם הראשון למבין
וכל זה ברור בטעם, וכל זה ברור בטעם למבין, והכל ברור בטעם ודי למבין
ובזה תראה ברור מה שאמרתי ש
clarification ברור
ה.פ.כ.
inverse operation הפך ה, הפכים, להפכו
to be inverted יתהפך
ז.כ.ר.
to note, to mention הזכירו, הזכרנו (ב / למעלה כי), הזכרתי (ב), זכרנו, נזכיר (ב)
above mentioned הנזכר למעלה
זכר לדבר
mentioned הנזכר, הנזכרת, הנזכרים, הנזכרות, הנזכרים
as mentioned כנזכר, כנזכרים ב, כנזכר למעלה
כמו שנזכר, כמו שהזכרנו (ב / ש), כמו שנזכר למעלה, ונזכר כבר ב
יזכר ש
to remember זכור לעולם (כי / ש)
נזכור ל
ח.ד.ש.
to generate לחדש, חדשנו
to be generated נתחדש, נתחדש מ, נתחדשו (ב / מ), יתחדש
created, attained המתחדש, מתחדש, המתחדשים
created מחודש
ח.פ.צ.
נחפוץ (מהם)
כחפצנו, ככל חפצנו, בחפצם
ח.ש.ב.
to think לחשוב כי, אחשוב זאת
ט.ע.ה.
to mistake, to err טעינו, טעית (ב), נטעה, תטעה (ב / ל / מל)
mistake, error טעות, טעיות
to mislead יטעך ש
י.ג.ע.
effort יגיעה
to exert oneself, to endeavor ניגע
י.ד.ע.
נדע תחלה כמה ... הוא, נדע תחלה כמה ... הם
נדע כמה ....יעלה
to know לידע (אם / כלם / ל / מה / באיזה / כמה), לדעת (אם / ה / כי / ש / כמה / מה / מאיזו)
דע (כי / ש / לך ש), דע לך ש, ידע כי, ידעו, ידענו (ה / כי / ש), ידעת (כי / ש), ידעתי, נדע (אם / כמה / ש), תדע (ה / כי ה / ש / כמה)
נדע בקלות ה... מה
ביודעינו ש
וזה יודע, יודע ב, יודע ה
נודע (ה / ש / מזה שה), נודעים, נודעו ה, הנודעים
הידוע
אשר בהם נודע
בהודע ה
ואין דעתך
אין דעתינו ל
מיודעים
knowledge ידיעות
דעת, דעתי, מדעתי, מדעתנו
ידע יודע ה
אשר לא יודע
it is known בידוע ש, וידוע הוא כי, וידוע כי, ידוע הוא ... כי
י.ע.ד.
to designate ייעדתי ל, ייעדנו
י.ע.ל.
benefit תועלתם
to be useful יועיל
beneficial, useful מועיל ל, מועילים ל
to apportion להועיל ממנו ל
י.צ.א.
to result יצא (ה / כ / ל / לך / תחת ה), יצאו (ה / לנו), יוצאות, יוצאים, תצא ה
יצא באחרונה, יצא לך באחרונה
result היוצא (ב / מ / מה / באחרונה / לנו), היוצאים
to receive, to obtain יצא לך מ, יצא לנו (כי / ה / מזה / מזה ש / מכך כי), שיוצא ל, יצאו לך, יצאו לנו, ויצא לנו עוד מזה ש, היוצא ל
יצא לכל אחד מהם
to be gone יצא
it follows that ויצא מזה כי
to become possible יצא לנו ל
to derive ממנה יצאו
to find out יצא לנו ש
להוציאם מן הכלל, יצאו מן הכלל, ויצאו הם מן הכלל
יצא כלו בהם בשוה
לצאת
כמה פעמים יצא (מה / ה... מה)
to actualize להוציא
י.צ.ע.
to explain, to introduce להציע, אציע ש, הצענו
premise הצעה, הצעות
י.ר.ד.
to lower להורידם, הורדנום (ב' מעלות), מורידים (אותם), מורידין ה, נוריד, נורידנו, נורידם (מעלה אחת), תורידם (מעלה אחת)
lowering הורדה, הורדת מעלה, הורדתם
to be lowered יורדו, ירד
to decrease יוריד, מוריד
אינו מעלה ומוריד
י.ת.ר.
to remain נותר (דבר)
remainder הנותר, הנותרים (מה)
כ.ל.ה.
end, complete כלה... ה, כלה ה, יכלה ה, יכלו (ה), יכלו ב, יכלו מה, כלו ה, כלו אלו ה
תכלה המנין
כלות ה, ככלות ה
עד כלות ה, עד כלותם, עד כלותו
כלינו מעשינו
כלית כל מלאכתך, כלית כל מלאכתך על השלמות
כלינו כל מלאכתנו, כלינו מלאכתנו מכל וכל
to be gone כלה כל ה
to eliminate לכלות
כ.ת.ב.
to write אכתבנו ב, כתבתי (עליה), כתבתיו
to be written נכתב ב
כמו שכתו' למעלה
ל.ו.ה.
to loan לוינו האחד, נלוה אחד מ, נלוה אחד מה, נלוה א' מ, תלוה אחד מה
אשר ממנו לוית האחד, אשר ממנה לוית האחד
זה האחד אשר לוית
היות לווה ממנה
ל.מ.ד.
learning בלומדי, לומדם
to learn ללמוד ב, להתלמד, תתלמד
to teach ללמדך על
ל.ק.ח.
to take בקחת ה... מה, בקחתך (אותם ל / ה... ל)
ליקח (... מה), לקחת (אותם מ / מן ה / מה... במקומם / מה / מהם / ממנה / משם / ה... מ / ה... מה / ה... מהם / ... מה / ל / בעבורה), לקחתו (מ)
יקח (ה / מ / כל אחד מה), יקחו (מ / מה)
לוקח (מה / משם), לוקחים משם
לקח (ה / מה / ה... מה), לקחו (ה / כל ה / כלם / ממנה ה / ה... מה)
לקחנו (... ל / ... מהם / ה... ל / ה... מ / ה... מהם / משם ל) , לקחנוהו ל
נקח (ה / כל ה / ל / לו מה / מ / מה / מהם / מהם ה / עוד / ...ה / ה... מה / ... מה / ... מהם / משם ה / משם... ל), ניקח מ
נקח (בעבור / בעבורו / בעבורם / בעד זה), נקחם מה, נקחנו בעצמו ל
קח (ה / ... מה / בעבורו), קחתנו (אלו ה / ממנו), תקח (בעבורו / ה... ל / ... ל), תקחנו ל
to be taken ויקחו מ
אשר יש לנו לקחת משם
מקום לקיחתם
to consider as לוקחים ... לאחדים
לקחת עמו ה
מ.נ.ה.
to count מונה, נמנה מה, תמנה (מ / מה / משם)
מ.צ.א.
to find למצוא ב
מוצא, מצאנו (שם / תחתיו), מצאנוהו, מצאת (ב / ה / לו / מ / שם), מצאתו, מצאתם, מצינו
נמצא (לו / ש / שם / תחת / תחתיו), נמצאנו שם
תמצא (ב / לפניו / עליהם / על ראשו / תחתיו / לו / שם / ... תחת ה), תמצאם, תמצאנו
הנמצא (ב / תחת ה / תחתיו), הנמצאת שם, הנמצאים (ב)
לא נמצא ל
אשר נמצא תחתיו דבר
היה נמצא דבר זה
אשר מצאנו ל
אשר לא מצאת ל
אשר תמצא אשר לפניה
to be found ימצא (על ראשו / תחת ה), נמצא (ב / תחת ה / תחתיו)
to be found הנמצא ב
תמצא לכל אחד מהמספרים שום מורה
מה שתמצא מ
אשר לא תמצא לו
לא תמצא שם
to invent, to create להמציא, אמציא, המצאת, המצאת ה
invention המצאות
נ.ג.ע.
to result הגיע ל... מה, יגיע ל, יגיעו ל... מה, אשר הגיעו ל
to receive, to obtain הגיע לכל א', הגיע לכל אחד מהם, יגיע לכל א', יגיע לכל אחד, יגיע לכל א' מה, יגיע לכל אחד מהם, יגיעו לכל אחד מהם, יגיע ממנו לכל א' מה
to reach בהגיענו שם, בהיגיענו שם, הגיענו אל ה, הגיעו ל, הגענו (אל / ל), הגעת ל, יגיע (אליהם / ל), יגיעו ל, תגיע ל
נ.ו.ח.
to place, to put תניח ה... עם ה
to be placed הונח
positioning בהנחתם
placing הנחת ה
נ.ש.ג.
to achieve השגנו
to attain תשיגנה
ס.ד.ר.
order, arrangement סדור (ה)
by the order, successively על הסדר ש
to arrange לסדר (ה... זה אחר זה / עם), לסדרם, מסדרים, נסדר (... לפניהם), נסדרהו, נסדרם (זה על זה), תסדר ה
הסדר, בסדר, כסדרם
על סדר שביארנו
emanation סידורה
ס.פ.ק.
to result נספק
sufficiency ספקנו, די ספקנו
to be satisfied למסתפק ב
ע.ב.ר.
נעביר עליו
to cross out with a pen נעביר עליו הקולמוס, נעביר עליו קולמוס, נעביר קולמוס על ה, תעבור הקולמוס על ה
שעבר עליו הקולמוס
ע.ד.פ.
to exceed יעדף ה... על ה... כ, יעדפו עליהם
exceeding עודף על ה, העודף (ב... על ה), העודפים, העודפים (ב... על ה)
excess עודף
ע.י.נ.
to examine לעיין, נעיין (אם), עיין (אם / ה), תעיין
consideration עיון אל
study עיון
ע.ל.ה.
to result יעלה (כ / ל / הכל / מ / ש), יעלו, עולים (ל), עולה (ה / הכל / ל / מה), עלה (הכל / ל), עלו (ה / ל)
result העולה (מ / מה), אשר יעלה
העולה לכל אחד מהן
עלה לנו (כל ה / מ)
עלה לכל אחד מהם, יעלה לכל אחד, יעלה לכל אחד מהם
יעלה בידך, עלה בידינו ש, יעלה בידינו ש
כמה יעלה לכל אחד
to increase יעלה, מעלה
to rise יעלה מעלה אחר מעלה
to reach יעלה... ל
to exceed by יעלה ... על, יעלה
to raise תעלה
כמה ... יעלו, כמה יעלו
ע.ש.ה.
procedure, technique מעשה (ה), מעשהו, מעשיך (ב), מעשינו, מעשים (ב)
operation במעשיו
to do, to proceed עשותך, עשותך כל זה
בעשותינו זה, בעשותך זה
לעשות (זה), לעשותו
אעשה, יעשו, נעשה (ל / לכל אחד / ממנו), נעשנו, עושים (ב), עשה, עשינו (לכל אחד מהם), עשית (ב / זה ל), תעשה (ה / ל / להם)
to be done יעשה (... ב)
וכן תעשה, וכן תעשה לעולם ש, ועשה כן לעולם
וכן תעשה עד תומם
וכן נעשה לעולם בטעם
נעשה במעשה
לעשות כל אשר עשינו ה
לעשות מעשינו זה, עושים מעשינו, עשינו זה המעש'
מעשינו ה
במעשינו
כמעשינו ב
נעשה לזה כאשר ל, נעשה לזה כאשר עשינו ל
נעשה בתוספת, נעשה בתוספת א' על
נעשה להפך ש
לעשות ממנו שורה אחת, יעשה ממנה שורה אחת, תעשה ממנו שורה שנית, תעשה שורתו
תעשה אחד מ2 דברים
עשה כדרכים
כמו שעשית ל... עם ה
כמו שעשינו בתחלה ב
תעשה זה ( ... ל)
to make נעשה ממנו, עושה מה, תעשה ממנו
לעשותם חלק אחד
נעשה א' שלם... חלקים, עשינו האחד השלם ... חלקים
נעשה הא' השלם
עשינו ... חלקים שוים, עשינו מהם... חלקים שוים
עשינו אותו ...חלקים, עשינו אותם ... חלקים שוים
לעשות כל שברים מהם ממין האחדים
לעשות מהפרטים כללים
לעשות בעד כל סיפרא מהן סיפרא אחת
אעשה משל אחר (מ)
צ.ו.ה.
to instruct נצוה ל, צוינו ל, ציויתי ל, ציויתיו, צוויתיך, ציויתיך ל, צויתיך ל
צ.ר.כ.
need to צריך (ל), צריכים (ל), הצריכים, צריכין, צריך אתה לעולם ל, הצריך להם
to be needed הוצרך אליה, הוצרך מ
צורך
לצורך (ה)
should צריך ש
no need לו לצורך, אין צורך, ואין צורך אלא ש, שאין לו צורך ל
אין צריך כי אם ל
הוצרכנו, הוצרכנו לזה
יצטרך ל, נצטרך ל, נצטרך הכל, תצטרך ל
אשר מהם יצטרך, אשר יצטרך מהם, אשר מהן יצטרך ל
אשר יצטרך, אשר תצטרך
מה שיצטרכו מהם
כל מה שתצטרך
ק.ר.א.
to name, to call יקראו, נקרא (ל / לו), נקראנוהו, קראנו לזה, קראנוהו, קראתי (לו), קראתיו, קרינו ... ל
to be called יקרא, נקרא (ה / ... מה), נקראה (ה), הנקראים, הנקרא
to denominate ותקרא לו שם מ
to denominate לקרוא להם שם, נקרא להם שם
ק.ר.ב.
to come close to, to approach להתקרב (אל האמת / מאד), יתקרב אל (האמת), יתקרב ל... ב, נתקרבת אל (האמת), תתקרב אליו
to come closer to להתקרב יותר אל (האמת), להתקרב עוד אל (האמת / השרש), יתקרב מאד מאד, מתקרב יותר, נתקרב יותר אל (האמת), תתקרב יותר אל ה
to be close to קרוב אל (האמת)
יתקרב אל האמת לחסרון
יתקרב אל האמת לתוספת
ר.א.ה.
to see לראות (אם / ... ב), אראה, נראה (אם / כמה), ראה (אם / ה), ראית ... ש, תראה (ב / ש)
היה נראה ש
to consider ראה ל, ראיתי ל
ר.ח.ק.
יתרחק מן האמת, יתרחק מן האמת ב
רחוקו מן האמת מ, ריחוקו מן האמת
difference מרחק (... מ / ה... מה), מרחקו מ, מרחקם מ, רחוקו מ, רחוקם, ריחוק, ריחוקים, ריחוקם מה
difference הרחקתם מ
to become distanced from אשר נתרחקו מ, שנתרחקו מה, יתרחק, תתרחק, מרוחקת ... מה
distance מרוחק ה
ר.מ.ז.
to be determined נרמז ב, נרמז ש
determined רמוז ב, הרמוזות
designation ברמז
ר.צ.ה.
to want ירצה (ל), נרצה (ל) , רוצה ל, רוצים (ל / ש), רצה ב, רצו ל, רצינו (ל), רצית ל, תרצה (ל)
מי שירצה
רצונך ל, רצוננו
הרוצה ל
as one wish כרצונך, כרצונו, כרצוננו
ר.ש.מ.
written הרשום, הרשומה
noted הרשומים
לרשום, ארשום
ורשום קו דיו תחתיהן, ותרשום קו דיו תחתיהן
נרשום קו דיו עליהם
תרשום קו דיו תחת
נרשום תחת כל השורות קו דיו
ונרשום קו על כל הנשאר
תרשום קו על הכל
ונרשום על... קו דיו
to be marked by ירשמו ב
ש.א.ל.
to ask ישאלו לך (על... ש), שאל, שאלו לך (ש), שאלו לנו (כמה / ל), שאלו (כמה), שואל, שאל השואל
question שאלה, שאלתנו
in question, to be asked נשאל, הנשאל, הנשאל לנו, הנשאלים, הנשאלות, שנשאל
ש.א.ר.
to remain ישאר (ב / ה / דבר / לנו מ / ממנו), ישארו, נשאר (ב / מ / מה / דבר / על ה / עוד ב), נשארו (ב / עוד... ב)
remainder הנשאר (ב / מ / מה), הנשארים (מה), הנשארות, הנשארת
remainder שארית (ה / מה), השארית הנשארה, שאריתנו
נשאר לנו (ב) / בידינו
תשאר מל
שנשארו בחלוקה
to be left ישארו לנו ל
ש.ג.ח.
ישגיח ב
להשגיח בסדורו
בהשגחה
observation השגחה
ש.ו.ה.
equalizing השיווי
to equalize נשוום יחד
to be equalized הושווה (ל)
to be equal שוה (ל / ממש ל), יהיה שוה ל, שוים (ה / בכל), שוים הם ב
השוה ל
equal שוים, שווים, שוות, שוה לכלם
ש.ו.מ.
to place, to put לשום (ב / ה / תחתיו), לשומו לפני ה, לשומם (במקומה / ... ב), לשים (ביניהם ה / עמהם ה / תחתנו / ... תחת), לשים במקום, לשים ... במקום על
to define לשום כ ... ה, לשים אותה עצמה ל, שם ה, שמת (ה)
to be placed הושמו ה... במקומם, יושם ... ב
defined, positioned המושם, המושמים (ב)
ובהשימך (ה), להשימם תחת ה, לשום ב... ל
נשים (... אחר ה / ... ב / אותם / ה / עליו / ה... על ה / לפני / לפניהם / ... לפניו / ה... לפניו / ... לפניהם / ה... לפני ה / עמהם ה / תחת / תחתיה אלו ה / תחתיו / תחתיו ה / תחתיהם / ... תחת ה / ... תחתיהם / ... תחתיו / ה... תחת ה)
נשים המספרים זה על זה
נשימה (תחת)
נשימהו (ב / ל / עליו / חוץ ל / לפני ה / תחת ה / תחתיו)
נשימם (ב / עליה / עליהם / עליו / על ה / עם / זו על זו / זה אחר זה / תחת ה / תחתיו / ה... תחת ה / מחוץ / במקומו / במקוצו עם ה / לו על זה / ... על)
נשימנו (לפני / לפני ה / לפניהם / מחוץ / עליהם / עליו / על ה / תחת ה / תחתיו)
נשימם ראשונה ב
שים (ה / ה... ל / על / אותו תחת ה / תחת ה / תחתיו)
שימהו (על ה / תחתיו)
שימם ב
שמים (ל / לפניהם / תחתיו / אותו תחתיו / ... תחתיו)
שמנו (ב / ה / ה... לפני ה / ה... תחת ה / תחתיו / במקומו / מיד ה / זה ה)
שמנוהו תחתיו
שמנום תחת ה
שמנוהו מעלה אחת לפניהם
שמת (אותו / בהם / תחת ה / תחתיו / ... ב / שם ה)
תשים (... אחר / ... אחר ה / אחריהם / ב / ב... תחת / בראש / ה... ל / ה ... על / ה... תחת ה / לפניהם / ... לפניהם / ... לפני ה / ... כנגד / על ה / עליו ה / תחת ה / ... תחת / ... תחת ה / תחתיו /תחתיו ה)
תשי' לעולם ה
תשים ריוח בין זו לזו
תשימה
תשימהו (תחת ה / תחתיו)
תשימם (ב / עמהם / תחת ה / תחתיו / במקומה אחר ה)
תשימנה אחר ה
תשימנו (ב / על ה / מבחוץ)
נשים ... בעד ה... במקומה
נשים ה... למקומה, נשים במקומו, נשים ... במקומם
נשים ...ל... במקומה
נשים נקודה (על / על ה)
נשים נקדה תחתיה, ונשים תחתיה נקדה
נשים נקודה מחוץ במקום ה
שים נקדה אחת על ה
ותשים עליה נקודה אחת בעדו
ושמת שם נקודה
ותשים ... אחת תחת הקו בעד ה
ותשים נקדה אחת (עליה / תחת ה)
תשים תחתיה נקדה, תשים תחתיה נקודה
תשימם לשארית תחת הקו
תשים בעד כל סיפרא שב
לשים ה... בסדר
אשים להם סדר
ישים ... זו על זו על הסדר
נשימם על הסדר, נשימם ... על הסדר זה אחר זה
נשימם זה על זה על הסדר, נשימם ב... זה על זה על הסדר
שמנו ה... כזה הסדר
תשים ה... זה על זה על הסדר
תשימם על הסדר
to denote שמתי להם
ש.כ.ח.
to forget תשכח (מ), תשכחהו, תשכחם
to be forgotten (שלא) ישכח
examine it carefully דוק, דוק ותשכח
ש.מ.ר.
keep נשמור, שומר ש, שמור (ה / ... על ה), תשמור (ה / ה... ל)
השמור, השמור בידינו מה, השמורים
תשמר (ה... ל)
נשמר ה... לאחדים בידינו
תשמרם לאחדים ל
לשמור משמרתי
to beware, to be careful שמר, השמר לך, שמור נפשך
ת.ח.ל.
to begin, to start להתחיל מה, אחל ל, נתחיל (ב / ל), תתחיל (ל / מה)
מתחילות מה
וקודם התחילי ב
יתחיל ה
beginning התחלת, תחלת ה, בתחלת ה, מתחלת ב
ותשרט קו דיו על
כפי המזדמן
כאשר הזדמן, כאשר יזדמן
שעלו בידך משום מעלה
תחוש (ל / להם), אל תחוש ל, לא נחוש ל
אינך צריך לחוש מה
to be היות (ב / ה), היותם
to be להיות (ה / ל), להיותה, להיותו ב, להיותם, היותך, בהיותך, היותם, היה, היו, היינו, הינו, שהיו, יהיו (ה), יהיה (ב / ה / כ), תהיה, היתה, יהא
were it ההיתה
אינך
to become יהיה (ל / ב... ל / ל... על ה / לנו ל), יהיו (ל / לנו ל), הוא ל
to become היה בידך ל, יהיה ל... בידך, היו ל... בידך, יהיו ל... בידך
אשר הם ל... בידך
to have ולהיות לנו ב, היה ל, היה להם, היה לו, היה לנו, היו ל, היו לך, היו לנו, יהיה לו, יהיה לך, יהיו להם, יהיו לו, יהיו לך, יש ל, יש לה, יש לו (ה), יש לך, יש לנו
owner of, having בעל (ה / אלו ה)
to have אשר להם, אשר לו, אשר לך, אשר לנו
בידינו, בידך
אשר היו בידו, אשר בידו
יש בידיך, יש בידך ה, יש בידינו, יש בידינו מ
שיש בידינו
שבידך, שבידיך, שבידינו
אשר בידך, אשר בידינו, אשר היו בידינו
כל אשר בידינו
להיות בידינו ה
היות בידך, היות בידינו
היה בידך ה, היו בידיך, היו בידך, יהיו בידך
היה בידינו, היה בידינו ה, היו בידינו
בידיך ל, בידינו ל
כאלו היו בידינו
כאלו יש לנו בידינו
והנה עלה בידינו ש
not having אין ל, איננו לו
אין לו
אין בידך מאומה
אין שם דבר
to discuss אדבר בזה ב
name שם (ה), שמות, ששמה
to explain להטעים
reason טעם (ב / ה / בזה / כי / ש / כל ה), טעמי', טעמו ב, טעמיהם
by reason בטעם
reason לסבה (ה / ש), בסבת
proof מופת, מופתי (ה / כל), מופתיהם, מופתיו
example דמיון, דמיוננו, דמיונות
example משל (ב / ש / בזה / לזה ב / על / על ה), משלים, משלי (ה), משלינו (ה), במשלנו, כבמשל, כבמשלנו, כמשלינו זה ש
for example ועל דרך משל, על ד"מ
to give example, to demonstrate אביא משל (... ל), אביא ... משלים, אמשול, אמשול משל ל
form, diagram צורה (ה), צורות, צורת ה, צורות מספרים
figure צורות
בא בזאת הצורה, בא בצורה הזאת
זאת הצורה ה
כפי צורה זו, כפי הצורה, כמו שהוא בצורה הזאת
בצורה (ה / הזאת / הנזכרת)
diagram בתמונה
to answer יענו כי
to answer ולהשיב... ל, תשיב ... ש
answer תשובה
משפט אחד להנה
method, way בדרך (ה / ש), ובדרך זה, דרכים, דרכי ה, דרכם, כדרכו ב, כדרכנו, על דרך ה, ע"ד
על הצד ש
to proceed, to walk דרכתי, נדרוך ב
to go, to proceed בלכתך ל, ללכת, לך אל ה, נלך ל, תלך ל
skill, procedure מלאכה, מלאכתך, מלאכת ה, מלאכתינו
action, operation פועל
to repeat the procedure להכפל (ה / זה ה), להכפיל (המעשה / המעשים)
המכפיל פעמי המעשה
repetitive procedure בהכפל (ה)
end, complete תמו כל ה
explanation פי' ה
explained מפורש ב
to become עולה לעשר מאשר לפניה, עולה עשר ידות מאשר לפניה
בערך אל אשר לפניה
בערך אשר לפניה, בערך אשר לפניו
to be able to יוכל ל, יוכלו ל, יכולים ל, יכולנו ל, נוכל ל, תוכל ל
as much / great as possible היותר שנוכל, היותר שתוכל (ל), היותר ... שיוכל
to be able to היה הרשות בידך ל
should אשר לך ל, אשר לנו ל, היה לו ל, היה לך ל, היה לנו ל, יהיה לו ל, יש לו ל, יש לך ל, יש לנו ל, עליך ל, עלינו ל
should not אין לנו ל, אין לנו עוד ל, אין לנו ל... כלל, אין לנו ל... כי אם
should ראוי ל, ראוי לו ל, ראוי לנו ל, ולזה ראוי לנו ל
should be ראויין להיות
לא תחדל מ
ומהכל
ויהיה לעש' במעלה זו
ואם במקום הנקודה
ואם לא יהיה במעלה שאחר שום מספר
דבר שכלתה כבר ה
מהמעלה אשר הנקדה תחתיה אם יש שם מספר
שכבר נשלם
במעלה שאחר זו
תשוב כבתחלה
באמצע
? והנה בא על מתכונתו ש
to become וישוב
beginning ראש ה, בראש זה ה
end סוף ה, בסוף ה
end תכליתם
הדומה ל, הדומה לה, הדומה לו, הדומה להם, הדומה לזה
כדומה לו, כדומה לזה
ודומיהן
כאלו דומים ל
by how much בכמה הוא
כמה פעמים יש
כמה כפלי כפלים
כי כבר נשלם
נשלם
נשלמה
כמה שיהיו מהם
כמה... הם / כמה ... הן / כמה הם
כמה ... יש ב, כמה ... יש בהם
כמה הוא ה
בכמה יהיו
בכמה
כמה הם יותר
כמה פעמים ה... ב
כמה פעמים יש בהם
to be unknown נעלם לנו ה, נעלם ה
known הידוע, הידועים, ידועים, מספר ידוע
unknown הנעלם, נעלם (ה / ממנו), הוא הנעלם, הנעלמים
to dictate נותן ל
excess יותר על
to exceed יותר על ה
to exceed by יהיה יותר על ה ... ב
with excess לתוספת
plus עם תוספת
to increase יתרבה, יתרבה המספר ב, מתרבה (בכפל)
to be missing יחסר... מה, חסר ב... מה
to be lessened יחסר
to fall short of היו למגרעת, יחסר
deficit חסרון
with deficit למגרעת
to continue, to keep תוסיף ל
amount מנין
people אנשים, אנשי, איש
spacious מרווחות, מרווחים
when ever בכל עת ש
enough די
to be enough די ב, די ל
not enough ואין די, ואין בו די, אין די ל, אין דיו ל, אין שם כדאי ל, ואין ב... כדאי ל, אין ... כדי, ולא יהיה בו די ל
and that is it ודי
to harm יזיק, מזיק
? בשום פנים
to indicate להראות, להורות, הורה, המורה על ה, מורה לנו ש, מורי' על ה
ויקח ... פעמים
להתחלק עליו לשלמים
to discuss נדבר
to bring הבאתי ב, יגיעם כלם ל
הנה לנו ש
to elaborate להאריך בזה עוד, אאריך
to elaborate להרחיב ה
to give לתת לך, אתן לך, יתנו
general, inclusive כולל
ancients הראשונים
to consider as הבט... כאלו
all are the same כלם שוים
to be contained in בו, יהיה בו ה, אשר ב, אשר בו
contradiction בחילוף
so is וכן הוא ה, כן הוא
they themselves הם הם
total היה הכל, יהיה הכל, יהיו הכל, יהיו כולם
in order that יען
as they are כמות שהם
the same as כך הוא... כמו
as כדרך שה
at present אשר בנתים
at once ברגע
with little במעט
בכל עת
large הרבה
with respect to על ה
לכופלו
to be attained שבא ב, אשר באו לך
to indicate המורה על ה
diagonal האלכסונים
difference שינוי ב
to stand עומד
to be difficult יקשה עלינו
difficult קשה
effort עמל
to ease, to make it easy להקל ה... מעלינו, להקל מעליך (ה), להקל מעלינו (ה), להקל עלינו ה
to assign הקצתי לו, הקציתי לו
extreme הקצוות
money ממון
golden זהב, אלו של זהב, של זהב, מזהב
silver כסף, של כסף, אלו של כסף
dinar דינר, דינרי, דינרים
peraḥim פרחים
zehuvim, golden coin זהובים
peruṭot פרוטות
zuzim זוזים
disappeared נעדרת
בכל מאויו
באחד המעשים ב
to require יחייב
given מונח ל
side, factor צלעות
generation הולדה
meaning, instruction הוראה, הוראת
indicator מורי
ומ"מ
as necessary בכל הצורך
too much יותר מדאי
portion of קצת ה
smaller portion מעוטו
greater portion רובו
portion חלקי ה, חלקים
to hurry חששתי ל
to investigate לדקדק, דקדקתי
pedantic מדקדקים
matter דברים
thing דבר, דברים
any thing שום דבר
issue, matter ענין, ענייני ה, עניינים
concerning, in the matter of בענין ש
type מין (ה / מה מ), מינים, מינה, מינו, מינם, מיניהם, מיני
שהוא ממינו, אשר ממינו
שאינו מינו
מין בשאינו מינו
מין על מינו
to be eliminated יתבטל
to wonder תתמה ש
to remove הסרנו אותו מהם
change שינוי ביניהם
no difference between אין חלוף בין ... ל
forward בקדימה
backward ואיחור
intention כונה, כוונות, כונתינו, כוונתי, בכוונה מכוונה
lowest הגרועים מהם
detail פרט
gleanings? עוללות
beauty היופי
true האמיתי, אמיתיות
ואותו
ועל דרך היופי
to be difficult תכבד ה
work עבודה
האמרה
plus עם ה, ועוד (ה)
like כעין
descendant ילדתם
to change לשנותו
נחבר ב
to consist of הורכב מה
to be composed הורכב, הורכבה מהם
to insert להכניס
to be absent יעדר
high גבוהים
to be verified נתאמת
truth אמת
הנה אמת, הנה אמת הנה נכון, הנה נכון הנה אמת
והנה כל מעשינו אמת, הנה כל מעשינו אמת ויציב, הלא מעשיך אמת ויציב, הנה מעשיך אמת ונכון
כל מעשינו בצדק ובמשפט
false שקר
absurd שקר
rule דין, הוא הדין, כלל (ה / ... ל / כי / ש)
the rule requires היה הדין נותן
to change משתנה, ישתנה
time פעם, פעמים, פעמי ה
כפעם בפעם, פעם בפעם
every time בכל פעם, בכל פעם ופעם
time after time פעם אחר פעם
greatest number of times מספר הרב הפעמים, היותר פעמים מב, יותר רב פעמים
to split שנפצל מ, מ... נפצל
to bother תטרח
deduce from this והקש על זה, והקש על זה ב
to happen, to occur יקרה (ב / כאשר)
נביאנו
אינו כלל
?זה פירושם
שבא הכל כאלו
for panic לבהלה
for naught לבטלה
to fill, to fulfill למלאת, מלאתיו, תמלא
to satisfy למלאת את
to train להרגילך ב, להרגילך עוד ב
style, form בסגנון
removed המוסר
מספרו
one and the same והנה כל ה... אחד, אחד בעצמו
והכל עולה לדרך אחד
והכל עולה לסך אחד
והכל עולה לענין אחד
to shorten ולקצר
to contrive לתחבל
half חצי ה, חצי מ, חצאין, חצאי, חציו, מחצית ה
to reverse בהפוך ה... ל, הפוך ה
to return חזרו ל, תחזור ל
to return להחזירו ל
to return נשוב (ו / ל / עוד), תשוב (ל)
meaning כלומר ש
meaning פי' (כי / ש)
wise חכם, חכמים
Sages of the Gentiles חכמי הגוים
science חכמה, חוכמות, חכמתם
mathematics חכמת הלימודיות
natural science חכמת הטבע
arithmetic חכמת המספר, במספר
philosophers מתפלספים
rational soul נפשם משכלת
rationalism התבוניות, תבונה
rational concept המושכלות
intellect שכלו, שכלי, שכלנו
subject נושאיהם
essence עצמים
accident מקרים
straightness יושר
a while כמה
to reveal לגלות
treasures מצפוניה
to influence תאצילני
to translate להשיבו ב
to elaborate בהרחבת
to long חשקתיך
desire תאותך
to grant ולתת את
request שאלתך
trouble טרדות ה
to allow מסכימות ל, מסכימים
to engage in להתעסק ב
to live יחיו
in the eyes בעיני, בעיניהם
master אלופים
possible איפשר
heart לבם
attached נקשר
succeed יכשר
to rule over להשתרר
to overcome ולנצח
time זמן
years שנות
youth זמן הנערות
maturity זמן הבחרות
less and more בפחות וביתר
senseless תפל
defect דופי
mockery התול
slander לעז
to ridicule לעגו
to joke יתלוצצו
to be told יסופר
engagement עסקם ב
simple things פשוטות
perceptible מושגות ב
outstanding, prominent מסויימים
to encamp חונים
division by division דגלים דגלים
path by path שבילים שבילים
wanderer נעים ונדים
to sway מתנודדים
to rob יגזלו מ
to steal יגנוב ה
to deceive להונות, יונה
to exploit ולעשוק
poverty עוני
glory הודם
might מאודם
business מסחרים
to eat יאכל
word דברו
to strengthen להחזיק
to encourage החזיקו יד
to grasp, to take hold החזיקתני
strong חזק, חזקות, חזקים
to be held מוחזקות בידיהם, ומוחזק
to raise up להקים
guilt אשם
to be careful נזהר מ
pegs יתדות
to emanate אצל
friend רעהו
to choose בחר מ
bad luck רוע מזלו
to be well with טוב לו
to continue ולהתמיד
righteousness צדקו
to carve לחקוק אותו
forever לנצח
affection וחבתן
to overpower גברה
to tearing down, to break פרצתי
definition גדר ה
humility ענוה
to stand קמתי בפניהם
to give honor to אחלוק הכבוד
to be enriched להעשר
to compose חברתי
goodness טוב
to weaken מחלישים
to come באתי ל
wonderful and fearful things נפלאות ונוראות
lights אורות
to inform יודיעו
argument טענות
apology התנצלותי
virtue מעלה
to leave עזב את ה
queens גבירות
to expand מרבות
boughs and branch סנסנים ופארות
fruit פירות
extended his hand פשט ידו ב
humiliating כמבזה
to grasp אחז את
hidden צפון
concealed נעלם
to admit יעיד על עצמו
to admit להודות כי
today היום
to estimate אומדים
foundation יסוד, יסודה
building בניינה, בניינם
consists of הבנויות על ה
room חדרים
to open לפתוח
entrance פתח
lenient and stringent קל וחומר
right נכונים
known, recognized מפורסם, מפורסמים
to rely נשענים
pronoun
אני, אנו, הננו, אתה, הוא (ה), היא, הם (מ), המה, הן, הנה
והוא גם הוא
אותו ה, אותה ה, מאותה ה
ההיא (בעצמה), ההוא, ההם, ההן
which are / is שהוא, שהיא, שהם, שהן, שהוא ה, והוא ש, שהנו
שיהיו שם
שזהו
זה (ה / הוא / ש), זו (ה), זאת (ה / היא), וזהו, וזוהי
זה... וזה
אלו (ה / הם / הם ה / אשר / ש), אלה, האלה, האלו
of these מאלו, מאלו ומאלו
of them שבהם, מהם, מהן, מאלו, ממנו
הוא ב
כזה
מזה ה
לזה, לזאת
אשר
אשר הם
itself / themselves עצמה, עצמו, עצמם, בעצמה (ה), בעצמו, בעצמם
by itself בפני עצמו, לעצמו
by our selves בעצמינו
your self בעצמך
any, certain שום, שום ה, משום
certain איזה
certain מה
every one כל אחד (ש)
every כל
every… of them כל... מהם
every thing כל דבר, הכל
some thing דבר מה
all הכל, כל (ה), כל אשר, כלם, כל זה, כולה, כלה, היה כלה, בכל, יהיו כלם, כולם
all of כולם מה
each כל, כל ... מהם, כל ... ו... מהם, בכל ... ו...
כ"א, כל אחד, כל אחת, כל א' (מ), כל אחד מ, כל אחד מאלו ה, כל אחד מה, כל אחד מהם, כל אחת מהם
one of אחד (ה / מ / מה / מהם), א' מה
for each על כל, לכולם
by each other זו בזו
to each other זה לזה
one after the other זה אחר זה
for each לכל
וכל ש
the rest שאר (ה), כל שאר ה, כבשאר ה
both שניהם, שתיהן
או
גם, וכן, וכן כולם, וכן כלם, וכן לכלם, וכן בכללן, וכן ב
גם ה... גם ה, הן ... הן, הן ל... הן ל, הן מן .... הן מן ...
בין ש... או ש
בין... בין אם
בין ... או
או ... או
הן ... או
בה, בו, בהם, בכלן
זה אשר
אשר ב, יהיה ב, אשר בו (ה), אשר היו ב
אשר מה
בזה... ובזה
which איזה ... הם, איזהו ה
by which ממנו
from which אשר ממנה, אשר ממנו
that מה ש
that הוא ש, הוא אשר
what מה ש
who מי ש
whichever איזה מהם שיהיה
זה בזה
which איזה, אי זה
which is שזהו
which is והוא כי
which is of שהוא מ
the same as הוא כ
כמי ש
כי כך הוא
והנה, הנה, הנה ה
הנה ש
by this בזה
one by one אחד אחד
negative clause
without בלי, מבלי, מבלי... כלל, בלי... כלל
without מבלתי (ה), בלתי
בלא
not בלתי
בלתי ... כלל
אין ... דבר
אין לך ל... דבר
אין בה... כלל כי אם
אין ... כלל, אין... כלל כי אם ה... לבד
אינו כי אם
אין... כי אם, אינו... כי אם, אינך... כי אם
אין ב... כי אם; אין שם ... כי אם
אין אנו ... אלא
אין אנו... כלל, אינך ... כלל
אין לו, אין לו... כלל
אין לו כי אם
אין לך... כי אם
אין בידיך כי אם
אין בידיך ל
אין בידינו ... כלל
ואין לו ל... כי אם; אין לך ל... כי אם, אין לנו ל... כי אם
אין לך ... כי עם
לא... כלל כי אם
לא... כי אם
לא... כלל
לא ... לעולם
לא... כל
לא ... דבר
לא ... מאומה
לא ... שום
ואלו לא היה ב... כי אם
אין בכאן
לא... שום דבר
לא... אלא
אין מ... ל
even not אף לא
not even אין גם
לא ... אפי', לא... אפילו
אין ה... ולא ה
אין ... לא ... ולא
לא ... ולא, לא... ולא גם
do not ואל, אין, אינו, אינך
is / are not אינה, איננו, אינו, אינם
not לאו
at all בשום פנים
at all כלל
no, there is no אין, אין ב, אין ה, אין זה, אין כאן ה
is / are not אינם (מ), אינו, איננו
אין בה, אין בו, אינו ב, אינו בה, איננו בו, אינם בו, אין ... ב
אם לא, ואם לאו
ואם לאו לאו
neither… nor לא... ולא
לא היה לו
אין ל, ואין לנו ל
אין לו אחד מהם, אין לו שום אחד מה
עוד, ועוד
הרי, הרי ש, הרי לך, הרי לנו (כי / ש), והרי, שהרי
הרי הוא כאלו, הרי זה כאלו
כי אם
ככה
כמה
indeed אכן
ככה
בעבור ה
שאינו ראשון, שאינו ראשון לו
בעת ההיא, בפעם ההיא
הם מ
את, אותם
Prepositions
after אחר (ה), אחר ש, אחר אשר, אחרי, אחרי אשר, אחרי ש, שאחרי ה, אחר זה, אחריה (ה), אחריו (ה), אחריהם, אחריהן
before לפני ה, לפניהם, לפניו (ה), שלפני ה, שלפניהם, קודם (ה / זה / ש)
before טרם
by והוא ב, בש, וזה ב, וזה בש, וזה יהיה ב, בזה
between בין ה, בין כל ה, מה שבין ה, בין ה...ובינו, בין... ל, בין ה... וה, בין ה... להנה, ביניהם
among בהם
with, plus עם, עם ה, עמו, עמהם
שעמו, אשר עמהם
bellow למטה (מהם)
לשמאל, לצד שמאל (מה), לצד שמאלי
הימין
לימין, לצד ימין (מה)
לצד ימין מהמקום
above למעלה
above, on מעל ה, על (ה / הכל), עליהם, עליהן, עליו, על ראש, על ראשו, על ראשם
beneath תחת ה, תחתיהם, תחתיהן, תחתיו
זו תחת זו
out of ומתוך
until עד, עד ש, עד אשר
כנגד ה, כנגד אותה ה, כנגדה
in אשר היה ב, בזה
in בתוך ה
for בעד ה, בעדה, בעדו, בעדן
for שהי' לה ל, יהיה לו ל, לו, הוא ל, הוא לו ל
for בשביל (ה)
from ממנה, ממנו
except מלבד
except בלתי ה, זולתי (ה), מזולת ה, זולתם
except מבלעדיו
or או
לבדו, כל אחד לבדו
יהיה עם הכל
it is all the same הכל אחד, הכל א'
כולל, כולל אותם
so much, so an so כ"כ
ואליהם
על ידי
להם
בכלל ובפרט
אלא ש
בפעם הזאת
מאשר
באשר
corresponding כנגד (ה), נגדו
for בעד ה
לפעמים
ג"כ
א"כ
i.e. ר"ל, ר"ל ש, ר"ל כי, ר"ל אשר
ר"ל ע'ד'מ' ש
עד"מ, ע'ד'מ'
etc. וכו'
all the more so כ"ש
also ג"כ
adjectives
many רבות, רבים
many הרבה
numerous רבים
more than רבים מ
few כמה
few קצת
few מצומצמות
האחד, האחת
אחרון, אחרונה, אחרונים, אחרון ל
other חבירו, חבירתה, חבר, חברותיה, חבריהם, חברתה
other אחר, אחרת, אחרות, אחרים
other זולתו, זולתם
better that וטוב ש
more יותר
greater, more than יותר (מ / מה / ממנו)
much greater הרבה מאד יותר מה
great רב, הרבה
greater רב, רב מאד מה, רב (מה / ממנו), מספר רב, המספר הרב
great/greater הגדול (ב), הגדולה, גדולה (מה), גדולים (מהם), הגדולים
גדול (מ / מה / מהם / ממנו), גדול ה... מה
greatest גדול שאיפשר, הגדול שאפשר, הגדול שאיפשר, היותר גדול שאיפשר
היותר שאפשר, היותר שאיפשר, היותר שאפש' מ
יותר גדולים, יותר גדול מה
small מעט, מועט
little הקטן
smaller קטן, קטון, קטנה, קטן (מ / מה / מהם / ממנו), קטנים, קטן במנין
smaller מעט, המספר המעט
smaller, less than פחות (מ / מה / ממנו), הפחות מה
inferior שפל
upper עליון, עליונה, עליונים
bottom תחתון, תחתונה, תחתונים, תחתונות
last אחרון (שב), אחרונה, אחרונים, אחרונו'
first קודם
first ראש
first, former ראשון (מאלו / מה / מן / מן ה / שב), ראשונה (מה), המספר הראשון, החשבון הראשון, ראשונים, הראשונים
second שני (ב / ל / לו / מאלו / מה / מן / שב), ב' מאלו, שנית (מה)
third שלישי, שלישית (ל), שלישיים ל
fourth רביעי, רביעית
fifth חמישית
sixth שישית
prior מוקדם
latter מאוחר
preceding העובר, העוברים, אשר לפניו, הקודמת, הקודמים
preceding אשר לפני (ה), אשר לפניו, אשר לפניה, אשר לפניהם, שלפני זאת, שלפניו, שלפניהם
אשר לפני פניו
לאשר לפניו ולפני פניו
preceding, previous הקודם (לו / לזה), קודם, הקודמת, קודמת (ל), קודמים
previous שעבר
next to סמוך, הסמוך ל, הסמוך להם, הסמוך לו
following, succeeding הנמשך, הנמשך אליו, הנמשכת ל, נמשך אחר הנמשך
following הבא אחריו, הבא אחריהם, הבא אחריהן, הבא אחר זה, הבאה, הבאה אחריה, הבאה אחריהן, הבאה אחר ה, הבאים, הבאים אחריה
שאחר ה
העולה
itself בעינו, בעינה
very, itself ממש
other, another אחר, אחרת, אחרים
others אחרים, האחרות
short קצר, קצרה
correct נכון, נכונה
correct אמת
various שונים
indifferent בלתי שונים
different משונים, שונים
corresponding אשר כנגדו
corresponding בת גילה
worthy of ראוי ל
appropriate הראוי ל, הראויה ל, הראוי לו, הראויה לו, הראויות להם
appropriate נאות, נאותים, נאותות
new, renewed חדש, חדשים
absolute גמור, גמורה
well versed in בקי ב
entitled רשאי
easy קלה
necessary מחוייב
given מונחים
important נכבד
beautiful, proper יפים
nice יפים
nice הנאה
thin רזה
poor דלה
despicable בזויה
despicable נקלה
included נכלל
whole כולו
whole השלם, שלם, שלימה, שלמה, שלמות, שלמים
the whole כל ה... בכללו, בכללו
possible איפשר
impossible בלתי איפשר, נמנע
adverb
there is/are יש, יש ב, יש... ב , יש ב... ה, יש בכל ה, יש שם
from there משם
vice versa בהפך, להפך ש
again שוב
little במעט, המעט ה, מעט, במיעוט
there שם (ה)
here כאן, בכאן
now עתה (ש)
so far, until now עד הנה
at the beginning מתחלה
in the middle באמצע
at first ראשונה
approximately בקרוב
already כבר
also גם
downward ולמטה
upwards ולמעלה, למעלה ממנו
et cetera וכיוצא בזה
successively זה אחר זה
precisely עין בעין
perfectly על השלימות
properly יפה יפה
vaguely בסתם
truly, really באמת
truly, really ממש
clearly ברור, בברור
closely, carefully הטב
inversely יהיה להפך
immediately מיד
correctly כתקנה, כתקנם, על היושר
equally בשוה, שוה בשוה
briefly בקוצר
surely הלא, הלא הם, הן
so on endlessly כן לעולם, וכן לעולם, וכן יהיה לעולם
only רק
only לבד
only כי אם
alone לבד, לבדה, לבדם
together יחד, ביחד, כלם ביחד, כל ה... יחד
very מאד
even אפי'
even if ואם, אף אם
instead תחת, תחתיו
instead במקום (ה), במקומה, במקומו, במקומם
such as כגון ש
as כמו (ה / ש / שה / שהוא ה / שהן); כמוה, כמוהו, כמוהם, כמונו, כמותם
כמות (שהם / שהן); כמותה, כמותו
אשר כמותו, שכמותו
as כפי (ה / ש / שהם)
as כאשר
as much as כל מה ש (... יותר)
so כן, וכן
so כך הוא (ה)
always לעולם
ever בעולם, לעולם
henceforth מכאן ואילך
then ואז, אז
then, afterwards ואחר כך, וא'ח'כ', אח"כ
afterwards אחר כן, אחרי כן, ואחר
further עוד
furthermore ועוד (ש)
therefore ולכך, לכן, על כן
therefore לזה, על זה
provided that, so long as ובלבד ש
until the end עד תומם
once פעם אחת
twice פעמי', פעמים, ב' פעמים
outside מחוץ ל
altogether מכל וכל
lastly באחרונה
first, at first, firstly ראשונה ב, תחלה, בתחלה
כבראשונה, כבתחלה
how איך
how many, how much כמה (הם / ... הם / ... הן)
where מאיזה מקום, מהיכן
when בעת (ה)
when כאשר, כש
why למה
which מאי זה, מאי זו, מאיזו
conjunction
in order to כדי ש, כדי ל
but אבל, אין זה... אבל
but אך
but ואולם
since וכיון ש
since אכן ש
since אחר היות (ב / ה / ... ב / שם), אחרי היות, אחרי היותם
since להיות (ה)
since, because אחרי, אחר ש, ואחרי ש, אחר אשר, מאחר ש, ומאחר שכן, כי אחר ש
because זה היה ל
because יען
because כי, זה כי, וזה ש, והוא כי
since עם היות ש
since לפי ש
since אחרי, אחר ש
as if כאלו, הוא כאלו
if אם, ואם, שאם
whether… or בין אם... בין אם, בין אם... או
אם... אז
או ... או
אם... או
אם ... אם, אם... ואם
even though ואם
lest פן
Scripture and Other Sources
living soul [Genesis 2, 7] נפש חיה
going up and down [Genesis 28, 12] זה עולה וזה יוריד
soul has longed for [Genesis 34, 8] נפשך חשקה ב, חשקה נפשם
of beautiful form, and fair to look upon [Genesis 39, 6] יפה תאר ונחמד מראה
when angry [Genesis 49, 6] באפם
with their will they hamstrung a bull [Genesis 49, 6] וברצונם יעקרו שור
gave them a rule [Exodus 15, 25] ישימו חוק
his hands were in faith [Exodus 17, 12] והיו ידיו אמונה
he has sinned and is guilty [Leviticus 5, 23] יחטא ואשם
lie down, and none shall make you afraid [Leviticus 26, 6] זה ישכיב וזה יחריד
He shall not alter it, nor change it [Leviticus 27, 10] לבל יחליף וימיר
Are there few or many [Numbers 13, 18] אם מעטים ואם רבים
remained alive of those men [Numbers 14, 38] מן האנשים חיו
not of my own devising [Numbers 16, 28] כי לא מלבי
our soul loathe [Numbers 21 5] קצה נפשם ב
no way to turn either to the right or to the left [Numbers 22, 26] ימין ושמאל אין לנטות
between your eyes [Deuteronomy 6, 8] בין עיניך
sufficient for his needs, which he is lacking [Deuteronomy 15, 8] מחסורך אשר יחסר לך
sufficient for his need [Deuteronomy 15, 8] די מחסורו, די מחסורנו, די מחסורינו
birthright entitlement [Deuteronomy 21, 17] כמשפט הבכורה
shall be helpless [Deuteronomy 28, 32] אין לאל ידו
whose heart turns away [Deuteronomy 29, 17] אשר לבו פונה
to keep His commandments and His statutes and His ordinances [Deuteronomy 30, 16] מחזיק במצותיו ואל משפטיו וחקותיו
crooked and twisted [Deuteronomy 32, 5] עקש ופתלתול
controlled or strengthened [Deuteronomy 32, 36] עצורה ועזובה
the rock in which they trusted [Deuteronomy 32, 37] צור בו חסיו
The dwelling-place of God [Deuteronomy 33, 27] לאלוהי מעונה
there stood not a man against them [Joshua 21, 42] ולא יעמוד איש בפניהן
The wisest of her princesses answer her [Judges 5, 29] חוכמות שרותיה תענינה
whosoever is fearful and trembling [Judges 7, 3] ירא וחרד
the love of his soul [Samuel I 20, 17] אהבת נפש
they quench my coal [Samuel II 14, 7] ומכבים אש גחלתי
beans and lentils [Samuel II 17, 28] פולי' ועדשים
I have kept the ways of the Lord [Samuel II 22, 22] שומר דרכי אל
go here or there [Kings I, 2, 42] אנה ואנה
as a reed is shaken in the water [Kings I 14, 15] כאשר בתוך המים ינוד הקנה
hopping between two ideas [Kings I 18, 21] על שתי הסעיפים פוצח [פוסח]
as a lodge in a garden of cucumbers [Isaiah 1, 8] וכמקשה המלונה
to increase to government [Isaiah 9, 6] ארבה המשרה
as one who gathers ears of grain [Isaiah 17,5] כמקלט שבלים
berries at the top of the uppermost bough [Isaiah 17, 6] גרגרים מראש אמיר
two or three berries [Isaiah 17, 6] ב' ג' גרגרים
thrust in a sure place [Isaiah 22, 25] תקוע במקום נאמן
as with the buyer, so with the seller [Isaiah 24, 2] כמוכרים כקונים
fierce people [Isaiah 33, 19] עם נועז
tent that shall not fall, whose pegs shall never be moved [Isaiah 33, 20] אהל בל יצען בל יסע יתדותיו
by them, they shall live, and altogether therein is the life of my spirit [Isaiah 38, 16] עליהם יחיו ולכל בהם חיי רוח
Since thou art precious in My eyes and honorable and I loved thee [Isaiah 43, 4] מאשר יקרת בעיני נכבדת ואני אהבתיך
Let them present their witnesses, and they shall be deemed just [Isaiah 43, 9] יתנו עידיהם ואותי יצדיקו
let them hear, and say "it is true" [Isaiah 43, 9] ישמיעו ויאמרו אמת
I am bereaved and solitary, exiled and rejected [Isaiah 49, 21] סורה וגזלה גלמודה ושכולה
ear to hear according to the teachings [Isaiah 50, 4] אזן לשמוע כלימודים
justify the righteous [Isaiah 53, 11] צדק תצדיק
with transgressors he was counted [Isaiah 53, 12] ואת פושעים לא מנה
choose what I desire [Isaiah 56, 4] בחרו באשר חפצו
remove the obstacles [Isaiah 57, 14] להרים מכשול
foolish, they know Me not [Jeremiah 4, 22] הסכלים אשר לא ידעו
How do you say, "We are wise" [Jeremiah 8, 8] ואם כה יאמרו חכמים
with a pen of iron, and with the point of a diamond [Jeremiah 17, 1] בלוח ברזל בצפורן שמיר
the near and the far [Jeremiah 25, 26] אם קרוב ואם רחוק
there is none that care for her [Jeremiah 30, 17] דורש אין לה
the right of redemption [Jeremiah 32, 7] משפט הגאולה
become a derision [Jeremiah 48, 39] יהיה להם לשחוק
each one would go [Ezekiel 1, 9/12] ילכו איש אל
and shall be as though they had not been [Obadiah 1, 16] והיו כלא היו
his soul is not upright [Habakkuk 2, 4] לא ישרה נפשך
as the apple of the eye [Psalms 17, 8] בבבת עין ואישון
they open their lips, they shake their head [Psalms 22, 8] יניע בראש ובשפה יפטיר
despised by the people [Psalms 22, 7] בזוי עם
The Lord helped them [Psalms 37, 40] יעזרם אלהים
their health is sound [Psalms 73, 4] ובריא אולם
He humbles this one and elevates that one [Psalms 75, 8] זה ישפיל וזה ירים
after the stubbornness of their heart, they might walk in their own counsels [Psalms 81, 13] ועריהן יגזור לבם בשרירות
the work of our hands establish it [Psalms 90, 17] ומעשה ידיהו כוננה
their help and their shield [Psalms 115, 9] עזרם ומגינם
laud Him, all peoples [Psalms 117, 1] ישבחוהו לאומים
thousands and ten thousands [Psalms 144, 13] מאליפות מרובבות
his hope is in the Lord [Psalms 146 5] ואשר על יי שברו
His wisdom is beyond reckoning [Psalms 147, 5] ובתבונתם אין מספר
When it is still in its greenness, it will not be plucked [Job 8, 12] לא נקטף עודנו באבו
the tents prosper [Job 12, 6] אהלים ישליו
hint [Job 15, 12] רזום ירמזון
breach upon breach [Job 16, 14] פרץ על פני פרץ
For the years that are few will come [Job 16, 22] שנות מספר יאתיו
When his desire has been filled sufficiently [Job 20, 22] למלאת ספקו
is hidden from the eyes of all living [Job 28, 21] נעלמה מעיני כל חי
who is a teacher like Him [Job, 36, 22] ומי כמוהו מונה
bars and doors [Job 38, 10] בריח ודלתים
He imparted to her understanding [Job 39, 17] וחלק לו בבינה
Its ways are ways of pleasantness [Proverbs 3, 17] דרכיה דרכי נועם
those who hold it fast are happy [Proverbs 3, 18] ותומכם מאושר
He winks with his eyes, scraps with his feet and points with his fingers [Proverbs 6, 13] קורץ בעיניו מולל ברגליו מורה באצבעותיו
of great understanding, but he who is quick-tempered [Proverbs 14, 29] מקוצר רוח ותבונה
a high wall [Proverbs 18, 11] חומה נשגבה
trustworthy man [Proverbs 28, 20] איש אמונה
removes falsehood and the lying word [Proverbs 30, 8] מרחקת שוא ודבר כזב
Many women have done valiantly [Proverbs 31, 29] רבות בנות עשו חיל
built as a model [Song of Songs 4, 4] בנוי לתלפיות
honey and milk are under thy tongue [Song of Songs 4, 11] תחת לשונה דבש וחלב
That which is crooked cannot be straightened and that which is missing [Ecclesiastes 1, 15] מעוות לא תוכל לתקן וחסרון
increase vanity [Ecclesiastes 6, 11] הבל מרבים
For it is not out of wisdom that you have asked concerning this [Ecclesiastes 7, 10] כי לא מחכמה שאל על זאת
for God made man straight, but they sought many intrigues [Ecclesiastes 7, 29] והאלהים עשה אותם ישר והמה בקשו חשבונות רבים
advantage to one who has a tongue [Ecclesiastes 10, 11] יתרון לבעל הלשון
which will succeed [Ecclesiastes 11, 6] אי זה יכשר
childhood and youth [Ecclesiastes 11, 10] ילדות ושחרות
listened and sought out [Ecclesiastes 12, 9] אזון וחקור
knowledge and understanding [Daniel 1, 17] במדע ובהשכל
when the transgressors have been destroyed [Daniel 8, 23] להיתם פשע
to purify, and whiten [Daniel 11, 35] יתברר ויתלבן, מבררים ומלבנים
weakened the hands [Ezra 4, 4] מרפים ידי
Kohen who raises his hands [Mishnah, Berakhot 5:4] כהן הנושא כפיו
regard himself [Mishnah, Pesachim 10] ובראות עצמו
understand foreign languages, in that foreign language [Mishnah, Megillah 2] ללעוזות בלעז
has not seen the luminaries in his life [Mishnah, Megillah 4] ומימיו לא ראה מאורות
build him a house [Mishnah, Bava Metzia 8:9] להעמיד הבית
the time has come [Mishnah, Tamid 1] הגיע עת
a single handful does not satisfy a lion [Talmud Bavli, Berakhot, 3, 2] אין הקומץ משביע את הארי
True and Trustworthy [Talmud, Berakhot 12a, 23] אמת ואמונה
these and those agree [Talmud, Berakhot 36a] אלו ואלו מודים
do not accept authority [Talmud, Berakhot 48a] בלתי מקבלים מרות
that which is earlier is earlier, and that which is later is later [Talmud, Pesachim 6b] להקדים את המוקדם ולאחר את המאוחר
the work of Heaven [Talmud, taanit 23a:3] למלאכת השמים
for the sake of Heaven [Talmud, Taanit 24a] לשום שמים
chops down the saplings [Talmud, Chagigah 15a] מקצץ בנטיעות
standing that includes no reverence [Talmud, Kiddushin 32b] קימה שאין בה הדור
to include Torah scholars [Talmud, Kiddushin 57a] את לרבות תלמידי חכמים
imparted flavor derived from imparted flavor [Talmud, Chulin 111b] בר נותן טעם
thanking and praising [Talmud, Niddah 31a] מודה ומשבח
to prohibit or to permit [Jerusalem Talmud, Ketubot 11a] פעם לאסור ופעם להתיר
even though there is no explicit proof for this matter [Tosefta, Berakhot 1] ואם אין ראיה לדבר זכר לדבר
her daughter and her sister [Tosefta, Yevamot 4, 5] בתה ואחותה
house be wide open [Pirkei Avot 1] בית פתוח לרוחה
Some ascended and some descended [Pirke de Rabbi Eliezer 35] אלו יורדים ואלו עולים
Love upsets the natural order [Bereishit Rabbah 55] אהבה מקלקלת את השורה
finger joints [Bamidbar Rabbah 11] וקשרי אצבעות
as a pupil before his master [Bamidbar Rabbah 20] כתלמיד לפני רבו
vessels of belief [Devarim Rabbah 8] כלי אומנותה
tithing by guesswork [Pirkei Avot 1:16] לעשר אומדות
to clarify the uncertain [Sefer ha-Mitzvot l'Rasag, Positive Commandments 97, 15] לברר את המסופק
Whosoever wants it may come [Mishneh Torah, Torah Study 3] ויבא מי שירצה
says: no, when it is no, and yea, when it is yea [Mishnah Torah, Human Dispositions 5] אומרת על הן הן ועל לאו לאו
the pillars having been erected [Mishnah Torah, Tefillin Mezuzah and Torah Scroll 6] ולהעמיד עמודים
change their appointed charge [Mishneh Torah, Blessing 10] וישנו את תפקידם
to build foundations [Mishneh Torah, Sabbath 1, 18] לבנות יסודות
the law requires that [Mishneh Torah, Divorce 2] היה הדין נותן ש
all kinds of seeds [Mishneh Torah, Diverse Species 1, 8] וכל מיני זרעונים
known and heralded [Mishneh Torah, Repentance 4] ידועים ומפורסמים
drachmas or zuzim [Maimonides on Mishnah Peah 8:5] זוזים ודרכמונים
defective comprehension [Maimonides, Guide for the Perplexed, 1, 36, 5] קוצר השגתי
necessary or impossible [Maimonides, Guide for the Perplexed, 2, 14, 5] ולמחוייב ולנמנע
pin upon which everything hangs [Maimonides, Guide for the Perplexed, 3, intro. 4] יתד שהכל תלוי בו
that relation between you and Him [Maimonides, Guide for the Perplexed, 3, 51, 6] היחס אשר בינו לבינה
set us apart from those who go astray [Siddur Sefarad, Ashrei] הבדילו מן התועים
delightful sapling [Siddur, Purim, Shabbat Zachor 56] נטע נעמן
How many degrees of good [Pesach Haggadah, Magid, Dayenu] כמה מעלות טובות
to render halachic decisions [Sefer ha-Midot, Codifiers of the Law] ולהורות הוראות
to show strength [Ibn Ezra on Genesis 10:8] להראות גבורות
lying in an out of the way corner [Rabbeinu Bahya, Devarim 33:4] מונח בקרן זוית
ruling, self-glorification [Duties of the Heart, Sixth Treatise on Submission 10] השררה והגדולה
left no manner of doubt [Sefer Kuzari 2] והניח את הספק
with the help of the One who dwells in the [heavenly] abodes [Ralbag on Chronicles II 36:22] בעזרת שוכן מעונים
It is whole and complete תם ונשלם
Glory to God, the Creator of the world ת"ל בורא עולם
Knower of the truth יודע האמת
Knower of the hidden יודע הנסתרות
prayer leader ש'צ'
ב"ה י"ת
יעקב בן החכם ר' יצחק קנפנטון, ר' יעקב קפנתון ז"ל
ר' יואל ן' דאוד
אוקלידס

Appendix II: Bibliography

Jacob Canpanṭon
Castile, Spain, ca. 1430
Bar Noten Ta‛am
Manuscripts:

  • London, British Library Or. 1053 (IMHM: f 5932), ff. 1r-65r (cat. Margo. 1012, 1) (15th century)
Bar noten ṭa῾am (בר נותן טעם)

Bibliography:

  • Steinschneider, Moritz. 1893-1901. Mathematik bei den Juden. Berlin-Leipzig-Frankfurt: Kaufmann, p. 186 (g99); repr. Hildesheim: G. Olms, 1964 and 2001.