Difference between revisions of "ספר ג'יבלי אלמוקבאלא"
(→Chapter 23) |
(→Chapter 24) |
||
Line 8,236: | Line 8,236: | ||
|style="text-align:right;"|<big>פרק כ"ד</big> | |style="text-align:right;"|<big>פרק כ"ד</big> | ||
|- | |- | ||
− | |<math>\scriptstyle c=\sqrt{ax^4}</math> | + | |When the numbers are equal to a root of the squares of squares: |
+ | :<math>\scriptstyle c=\sqrt{ax^4}</math> | ||
|style="text-align:right;"|כאשר המספרים הם שוים אל שרשי הסינסי מצינסי | |style="text-align:right;"|כאשר המספרים הם שוים אל שרשי הסינסי מצינסי | ||
|- | |- | ||
− | |<math>\scriptstyle x=\sqrt[4]{\frac{c^2}{a}}</math> | + | |The numbers should be multiplied by themselves. |
− | |style="text-align:right;"| | + | |style="text-align:right;"|צריך להכות המספרי' בעצמם |
− | + | |- | |
− | ולקחת מהעולה שרש שרשו וככה יבא לשוות הדבר | + | |Then, this product should be divided by the number of the squares of squares that are the radicand. |
+ | |style="text-align:right;"|ולחלק אותה ההכאה בכמות הצינסי מצינסי הנקובי' היות להם שרש | ||
+ | |- | ||
+ | |The root of the root of the result should be extracted and this is equal to the thing. | ||
+ | :<math>\scriptstyle{\color{OliveGreen}{x=\sqrt[4]{\frac{c^2}{a}}}}</math> | ||
+ | |style="text-align:right;"|ולקחת מהעולה שרש שרשו וככה יבא לשוות הדבר | ||
|- | |- | ||
| | | | ||
Line 8,253: | Line 8,259: | ||
אשאל כמה יבא להיות כל אחד מהמספרי‫'{{#annotend:mV9d}} | אשאל כמה יבא להיות כל אחד מהמספרי‫'{{#annotend:mV9d}} | ||
|- | |- | ||
− | | | + | | |
+ | :This is its rule: | ||
|style="text-align:right;"|זהו כללו | |style="text-align:right;"|זהו כללו | ||
|- | |- | ||
| | | | ||
− | : | + | :Suppose the first number is two things [<math>\scriptstyle{\color{blue}{a=2x}}</math>] and the other must be three things [<math>\scriptstyle{\color{blue}{b=3x}}</math>] |
− | + | |style="text-align:right;"|תניח שהמספר ראשון ב' דברים והאחר מחוייב שיהיה ג' דברים | |
− | |style="text-align:right;"|תניח שהמספר ראשון ב' דברים | + | |- |
+ | | | ||
+ | :Now, multiply the first by the second, which is 2 things by 3 things; the result is 6 squares. | ||
+ | |style="text-align:right;"|עתה תכה הראשון בשני שהוא ב' דברי' על ג' דברים ועולה ו' צינסי | ||
|- | |- | ||
| | | | ||
− | : | + | :Multiply 6 squares by a root of 8: |
− | |style="text-align:right;"| | + | |style="text-align:right;"|תכה ו' צינסי על שרש ח‫' |
|- | |- | ||
| | | | ||
− | : | + | :Know that you have to convert the 6 squares into roots; when they are converted into roots, they are a root of 36 squares of squares. |
− | |style="text-align:right;"| | + | |style="text-align:right;"|דע כי הנך צריך להשיב ו' צינסי אל שרשים והם בשהושבו אל שרשים יהיו שרש מל"ו צינסי מצינסי |
− | |||
− | דע כי הנך צריך להשיב ו' צינסי אל שרשים והם בשהושבו אל שרשים יהיו שרש מל"ו צינסי מצינסי | ||
− | |||
|- | |- | ||
| | | | ||
− | ::<math>\scriptstyle\sqrt{288x^4}=100</math> | + | :Multiply the root of 36 squares of squares by a root of 8; the result is a root of 288 squares of squares that is equal to 100 numbers. |
− | |style="text-align:right;"|עולה שרש מרפ"ח צינסי מצינסי שהם שוים אל ק' מספרי‫' | + | :<math>\scriptstyle{\color{blue}{\left(2x\sdot3x\right)\sdot\sqrt{8}=6x^2\sdot\sqrt{8}=\sqrt{36x^4\sdot8}=\sqrt{288x^4}=100}}</math> |
+ | |style="text-align:right;"|עתה תכה שרש מל"ו צינסי מצינסי בשרש ח' עולה שרש מרפ"ח צינסי מצינסי שהם שוים אל ק' מספרי‫' | ||
|- | |- | ||
| | | | ||
− | : | + | :Pursue the above mentioned rule: |
|style="text-align:right;"|עתה תרדוף כפי הכלל האמור למעלה | |style="text-align:right;"|עתה תרדוף כפי הכלל האמור למעלה | ||
|- | |- |
Revision as of 09:14, 4 July 2022
Contents
- 1 Table of Contents
- 2 Prologue
- 3 Roots
- 3.1 Multiplication of Roots
- 3.1.1 Multiplication of a Root by a Root
- 3.1.2 Multiplication of a Root of a Number by a Number
- 3.1.3 Multiplication of a Root of a Number by a Number and a Root of a Number
- 3.1.4 Multiplication of a Number minus a Root by a Root
- 3.1.5 Multiplication of a Number and a Root by a Number and a Root
- 3.1.6 Multiplication of a Number minus a Root by a Number minus a Root
- 3.1.7 Multiplication of a Number minus a Root by a Number minus a Root
- 3.1.8 Multiplication of a Number minus a Root by a Number minus a Root - when the numbers are identical and the roots are identical
- 3.1.9 Multiplication of a Number and a Root by a Number minus a Root
- 3.1.10 Multiplication of a Root by a Root minus a Number
- 3.1.11 Multiplication of a Root minus a Number by a Root minus a Number
- 3.1.12 Multiplication of a Root minus a Number by a Root minus a Number - when the numbers are identical [and the roots are identical]
- 3.1.13 Multiplication of a Root minus a Number by a Root and a Number
- 3.1.14 Multiplication of a Root and a Number by a Root minus a Number - when the numbers are identical and the roots are identical
- 3.1.15 Multiplication of a Root by a Root and a Root
- 3.1.16 Multiplication of a Root by a Root minus a Root
- 3.1.17 Multiplication of Two Roots by Two other Roots
- 3.1.18 Multiplication of a Root and a Root by a Root minus a Root
- 3.1.19 Multiplication of a Root minus a Root by a Root minus a Root
- 3.1.20 Multiplication of a Square Root by a Cubic Root
- 3.2 Addition of Roots
- 3.3 Division of Roots
- 3.3.1 Division of a Number by a Root
- 3.3.2 Division of a Number and a Root by a Number
- 3.3.3 Division of a Number and a Root by a Number and a Root
- 3.3.4 Division of a Number by a Number minus a Root
- 3.3.5 Division of a Number and a Root by a Number and a Root
- 3.3.6 Division of a Number by Three Roots
- 3.3.7 Division of a Number by Four Roots
- 3.1 Multiplication of Roots
- 4 Algebra
- 4.1 The Six Canonical Equations
- 4.2 Complex Equations
- 4.2.1 Chapter Seven
- 4.2.2 Chapter 8
- 4.2.3 Chapter Nine
- 4.2.4 Chapter Ten
- 4.2.5 Chapter 11
- 4.2.6 Chapter 12
- 4.2.7 Chapter 13
- 4.2.8 Chapter 14
- 4.2.9 Chapter 15
- 4.2.10 Chapter 16
- 4.2.11 Chapter 17
- 4.2.12 Chapter 18
- 4.2.13 Chapter 19
- 4.2.14 Chapter 20
- 4.2.15 Chapter 21
- 4.2.16 Chapter 22
- 4.2.17 Chapter 23
- 4.2.18 Chapter 24
- 4.2.19 Chapter 25
- 4.2.20 Chapter 26
- 4.2.21 Chapter 27
- 4.2.22 Chapter 28
- 4.2.23 Chapter 29
- 4.2.24 Chapter 30
- 4.2.25 Chapter 31
- 4.2.26 Chapter 32
- 4.2.27 Chapter 33
- 4.2.28 Chapter 34
- 4.2.29 Chapter 35
- 4.2.30 Chapter 36
- 4.2.31 Chapter 37
- 4.2.32 Chapter 38
- 4.2.33 Chapter 39
- 4.2.34 Chapter 40
- 4.2.35 Chapter 41
- 4.2.36 Chapter 42
- 4.2.37 Chapter 43
- 4.2.38 Chapter 44
- 4.2.39 Chapter 45
- 4.2.40 Chapter 46
- 4.2.41 Chapter 47
- 4.2.42 Chapter 48
- 4.2.43 Chapter 49
- 4.2.44 Chapter 50
- 4.2.45 Chapter 51
- 5 Notes
- 6 Appendix: Bibliography
These are the signs of the six abbreviated chapters of the book Jīblī al-Mūqabāla, | אלו הם הסימנים מהששה פרקים מקוצרים מספר גבלי אלמוקבאלא |
and of those written and explained by Master Dardi from Pisa, | ומאשר האומן דארדי מפיסא כתב ופירש עליהם |
which are 194 in number. | אשר הם במספר קצ"ד |
The names of the quantities that will be spoken of are five, which are: | שמות הכמויות אשר ידובר בהם הם חמשה והם |
|
מספר או דראמא |
|
דבר או שורש |
|
צינסו |
|
ומעוקב |
|
וצינסו מצינסו |
[Their abbreviations]: | |
|
ובמקום המספר או הדראמא אנו נשים מ' או דר' |
|
ובמקום הדבר או שרש אנחנו נשים ד' או ש' |
|
ובמקום הצינסו צ' |
|
ובמקום המעוקב מעו' |
|
ובעד הצינסו דצינסו צ' מצ' |
As is seen in the categories from here on. | כפי אשר תראה בחלוקות מכאן ולהבא |
First the thing is defined. | וראשונה נשים הדבר |
Table of Contents |
|
|
פרק א' דבר שוה למספר |
|
פרק ב' צינסו שוה למספר |
|
פרק ג' צינסו שוה לדבר |
|
פרק ד' צינסו ודבר למספר |
|
פרק ה' צינסו ומספר לדבר |
|
פרק ו' דבר ומספר לצינסו |
|
פרק ז' מעוקב שוה למספר |
|
פרק ח' מעוקב לדבר |
|
פרק ט' מעוקב לצינסו |
|
פרק י' מעו' לצינסו מצינסו |
|
פרק י"א צינסו דצינסו למספר |
|
פרק י"ב צינסו דצינסו לדבר |
|
פרק י"ג צינסו דצינסו לצינסו |
|
פרק י"ד מעו' וצינסו לדבר |
|
פרק ט"ו מעו' ודבר לצינסו |
|
פרק י"ו צינסו ודבר למעו' |
|
פרק י"ז מספר לשרש הדבר |
|
פרק י"ח דבר לשרש המספר |
|
פרק י"ט צינ' לשרש המספר |
|
פרק כ' מספר לשרש צינ' |
|
פרק כ"א מעו' לשרש מספר |
|
פרק כ"ב מספר לשרש מעו' |
|
פרק כ"ג צי' מצי' לשרש מספר |
|
פרק כ"ד מס' לשרש צינסו מצי' |
|
פרק כ"ה דבר לשרש דבר |
|
פרק כ"ו צינסו לשרש דבר |
|
פרק כ"ז דבר לשרש מעוק' |
|
פרק כ"ח דבר לשרש צינ' מצי' |
|
פרק כ"ט צינסו לשרש צינסו |
|
פרק ל' צינסו לשרש מעו' |
|
פרק ל"א מעוק' לשרש צינסו |
|
פרק ל"ב צי' מצי' לשרש צינסו |
|
פרק ל"ג מעוק' לשרש מעוקב |
|
פרק ל"ד מעו' לשרש צינ' מצי' |
|
פרק ל"ה צי' מצי' לשרש צי' מצי' |
|
פרק ל"ו דבר למספ' ולשרש מספ' |
|
פרק ל"ז מס' לדבר ולשרש דבר |
|
פרק ל"ח צי' למספר ולשרש מספ' |
|
פרק ל"ט מס' לצינ' ולשרש צינ' |
|
פרק מ' מעו' למספ' ולשרש מס' |
|
פרק מ"א מס' למעו' ולשרש מעו' |
|
פרק מ"ב צי' מצי' למס' ולשרש מס' |
|
פרק מ"ג מספ' לצי' מצי' ולש' צי' מצי' |
|
פרק מ"ד צי' מצי' וצינ' למספר |
|
פרק מ"ה צי' לצי' מצי' ולמספר |
|
פרק מ"ו צי' מצי' לצי' ולמספר |
|
פרק מ"ז צינסו לצינ' מצי' ולמספר |
|
פרק מ"ח מספ' לשרש מעו' מדבר |
|
פרק מ"ט צינסו לשרש מעו' ממספ' |
|
פרק נ' מספר לשרש מעו' מצי' |
|
פרק נ"א מעו' לשרש מעו' ממס' |
|
פרק נ"ב מס' לשרש מעו' ממס' |
|
פרק נ"ג צינ' מצי' לשרש מעו' ממס' |
|
פרק נ"ד מס' לשרש מעו' מצי' מצי' |
|
פרק נ"ה דבר לשרש מעו' מדבר |
|
פרק נ"ו דבר לשרש מעו' מצי' |
|
פרק נ"ז מעו' לשרש מעו' מדבר |
|
פרק נ"ח דב' לשרש מעו' מצי' מצי' |
|
פרק נ"ט צי' לשרש מעו' מצי' |
|
פרק ס' צי' לשרש מעו' ממעו' |
|
פרק ס"א צי' לשרש מעו' צי' מצי' |
|
פרק ס"ב מעו' לשרש מעו' ממעו' |
|
פרק ס"ג צי' מצי' לשרש מעו' ממעו' |
|
פרק ס"ד צי' מצי' לשרש מעו' צי' מצי' |
|
פרק ס"ה דבר למס' ולשרש מספר |
|
פרק ס"ו צי' למס' ולשרש מעו' ממס' |
|
פרק ס"ז מעו' למס' ולש' מעו' ממס' |
|
פרק ס"ח צי' מצי' למס' ולש' מעו' ממס' |
|
פרק ס"ט צי' מצי' ומעו' לצינ' |
|
פרק ע' צי' מצי' וצינ' למעוקב |
|
פרק ע"א צי' מצי' לצי' ולמעו' |
|
פרק ע"ב צי' ודבר לשרש מספ' |
|
פרק ע"ג צינ' ושרש מס' לדבר |
|
פרק ע"ד דבר ושרש מספ' לצי' |
|
פרק ע"ה צי' מצי' וצי' לשרש מספ' |
|
פרק ע"ו צי' מצי' ושרש מס' לצי' |
|
פרק ע"ז צי' מצי' לצי' וש' מספר |
|
פרק ע"ח דבר ושרש צי' למס' |
|
פרק ע"ט מס' ושרש צי' לדבר |
|
פרק פ' דבר ומס' לשרש צינ' |
|
פרק פ"א צי' ושרש צי' לדבר |
|
פרק פ"ב דבר ושרש צי' לצי' |
|
פרק פ"ג צי' ודבר לשרש צי' |
|
פרק פ"ד צי' ושרש מעו' לדבר |
|
פרק פ"ה דבר ושרש מעו' לצי' |
|
פרק פ"ו דבר וצי' לשרש מעו' |
|
פרק פ"ז מס' ושרש דבר לדבר |
|
פרק פ"ח מספ' ושרש צי' לצי' |
|
פרק פ"ט מספר ודבר לש' דבר |
|
פרק צ' מס' וצי' לשרש צינ' |
|
פרק צ"א מספ' ושרש מעו' למעו' |
|
פרק צ"ב מספ' ומעו' לשרש מעו' |
|
פרק צ"ג מס' וש' צי' מצי' לצי' |
|
פרק צ"ד מס' וצי' מצי' לשרש צי' מצי' |
|
פרק צ"ה צי' ודבר לשרש מעו' ממס' |
|
פרק צ"ו צי' וש' מעו' ממס' לדבר |
|
פרק צ"ז דבר וש' מעו' ממס' לצי' |
|
פרק צ"ח צי' מצי' וצי' לש' מעו' ממס' |
|
פרק צ"ט צי' מצי' וש' מעו' ממס' לצי' |
|
פרק ק' צי' מצי' לצי' ולש' מעו' ממס' |
|
פרק ק"א דבר ומס' לש' מספר |
|
פרק ק"ב דבר ושרש מספ' למס' |
|
פרק ק"ג צי' ומס' לשרש מספ' |
|
פרק ק"ד צי' ושרש מס' למספר |
|
פרק ק"ה מעו' ומס' לש' מספר |
|
פרק ק"ו מעו' ושרש מס' למס' |
|
פרק ק"ז צי' מצי' ומס' לש' מספר |
|
פרק ק"ח צי' מצי' ושרש מס' למס' |
|
פרק ק"ט דבר וש' דבר לש' מספר |
|
פרק קי' דבר וש' מס' לש' דבר |
|
פרק קי"א שרש מס' וש' דבר לדבר' |
|
פרק קי"ב צי' וש' צי' לשרש מספר |
|
פרק קי"ג צי' וש' מס' לשרש צינ' |
|
פרק קי"ד שרש צי' וש' מספ' לצי' |
|
פרק קט"ו מעו' וש' מעו' לש' מס' |
|
פרק קי"ו מעו' וש' מספ' לש' מעו' |
|
פרק קי"ז שרש מעו' ושרש מס' למעו' |
|
פרק קי"ח צי' מצי' וש' צי' מצי' לש' מס' |
|
פרק קי"ט צי' מצי' וש' מס' לש' צי' מצי' |
|
פרק ק"כ ש' צי' מצי' וש' מס' לצי' מצי' |
|
פרק קכ"א דבר וש' דבר לש' מעו' ממס' |
|
פרק קכ"ב דבר וש' מעו' ממס' לש' דב' |
|
פרק קכ"ג ש' צי' וש' מעו' ממס' לדבר |
|
פרק קכ"ד צי' וש' צי' לש' מעו' ממס' |
|
פרק קכ"ה צי' וש' מעו' ממס' לש' צי' |
|
פרק קכ"ו ש' צי' וש' מעו' ממס' לצי' |
|
פרק קכ"ז מעו' וש' מעו' לש' מעו' ממס' |
|
פרק קכ"ח מעו' וש' מעו' ממס' למעו' |
|
פרק קכ"ט ש' מעו' וש' מעו' ממס' למעו' |
|
פרק ק"ל צי' מצי' וש' צי' מצי' לש' מעו' מס' |
|
פרק קל"א צי' מצי' וש' מעו' מס' לש' צי' מצי' |
|
פרק קל"ב ש' צי' מצי' וש' מעו' מס' לצי' מצי' |
|
פרק קל"ג צי' ודבר לש' צי' מצינסו |
|
פרק קל"ד דבר וש' מצי' דצי' לדבר |
|
פרק קל"ה דבר וש' צי' מצי' לצי' |
|
פרק קל"ו דבר ומס' לש' מעו' מס' |
|
פרק קל"ז דבר וש' מעו' מס' למס' |
|
פרק קל"ח דבר ומס' לש' מעו' מס' |
|
פרק קל"ט צי' וש' מעו' מס' למס' |
|
פרק ק"מ מעו' ומס' לש' מעו' מס' |
|
פרק קמ"א מעו' וש' מעו' מס' למס' |
|
פרק קמ"ב צי' דצי' ומס' לש' מעו' מס' |
|
פרק קמ"ג צי' מצי' וש' מעו' מס' למס' |
|
פרק קמ"ד ש' מצי' ודבר לש' מספר |
|
פרק קמ"ה ש' צי' וש' מספ' לדבר |
|
פרק קמ"ו דבר וש' מס' לש' צי' |
|
פרק קמ"ז ש' צי' ודבר לש' מעו' מס' |
|
פרק קמ"ח ש' צי' וש' מעו' מס' לדבר |
|
פרק קמ"ט דבר וש' מעו' מס' לש' צי' |
|
פרק ק"ן צי' וש' צי' מצי' למספר |
|
פרק קנ"א מס' וש' צינ' מצי' לצינסו |
|
פרק קנ"ב צי' ומס' לש' צי' מצי' |
|
פרק קנ"ג צי' וש' צי' מצי' לש' מספ' |
|
פרק קנ"ד ש' צי' מצי' וש' מס' לצי' |
|
פרק קנ"ה צי' וש' מס' לש' צי' מצי' |
|
פרק קנ"ו צי' וש' צי' מצי' לש' מעו' מס' |
|
פרק קנ"ז ש' צי' מצי' וש' מעו' מס' לצי' |
|
פרק קנ"ח צי' וש' מעו' מס' לש' צי' מצי' |
|
פרק קנ"ט ש' מעו' דבר למספר |
|
פרק ק"ס ש' מעו' צי' למס' |
|
פרק קס"א ש' מעו' מעו' למספר |
|
פרק קס"ב ש' מעו' צי' מצי' למס' |
|
פרק קס"ג ש' מעו' דבר לש' מס' |
|
פרק קס"ד ש' מעו' צי' לש' מספ' |
|
פרק קס"ה ש' מעו' ממעו' לש' מס' |
|
פרק קס"ו ש' מעו' צי' מצי' לש' מס' |
|
פרק קס"ז שרש דבר לש' מעו' מס' |
|
פרק קס"ח שרש צי' לש' מעו' מספ' |
|
פרק קס"ט שרש מעו' לש' מעו' מס' |
|
פרק ק"ע ש' צי' מצי' לש' מעו' מספ' |
|
פרק קע"א ש' דבר לש' מעו' דבר |
|
פרק קע"ב ש' צי' לש' מעו' צינסו |
|
פרק קע"ג ש' מעו' לש' מעו' ממעו' |
|
פרק קע"ד ש' צי' מצי' לש' מעו' צי' מצי' |
|
פרק קע"ה ש' דבר לש' מעו' צי' |
|
פרק קע"ו שרש דבר לש' מעו' המעו' |
|
פרק קע"ז ש' דבר לש' מעו' צי' מצי' |
|
פרק קע"ח ש' צי' לש' מעו' מדבר |
|
פרק קע"ט ש' מעו' לש' מעו' מדבר |
|
פרק ק"פ ש' צי' מצי' לש' מעו' מצי' |
|
פרק קפ"א ש' מעו' לש' מעו' צי' מצי' |
|
פרק קפ"ב ש' צי' מצי' לש' מעו' המעו' |
|
פרק קפ"ג צי' מצי' למס' ולש' מס' |
|
פרק קפ"ד צי' ומס' וש' מס' לדבר |
|
פרק קפ"ה דבר ומס' וש' מס' לצי' |
|
פרק קפ"ו צי' ודבר למס' ולש' מעו' מס' |
|
פרק קפ"ז צי' ומס' וש' מעו' מס' לדבר |
|
פרק קפ"ח דבר ומס' וש' מעו' מס' לצי' |
|
פרק קפ"ט צי' מצי' וצי' למס' וש' מס' |
|
פרק ק"ץ צי' מצי' ומס' וש' מס' לצי' |
|
פרק קצ"א צי' ומס' וש' מס' לצי' מצי' |
|
פרק קצ"ב צי' מצי' וצי' למס' וש' מעו' ממס' |
|
פרק קצ"ג צי' מצי' ומס' וש' מעו' מס' לצי' |
|
פרק קצ"ד צי' ומס' וש' מעו' מס' לצי' מצי' |
The chapters mentioned above are laid out in general rules, as seen further in the booklet, on page 121. | הפרקים הנזכרים למעלה הם סודרו מסדרים כוללים כנראה בהמשך הקנטריס בעלה קכ"א |
Still further, a few chapters are laid out in non inclusive rules, while these rules are truthful for the rules that are given for the amendments of the aforementioned chapters, and these are: | עוד אחר זה אמשיך כמה פרקים אשר הם מסודרים מסדרים בלתי כוללים עם שהסדרים ההם הם אמתיים למשפטים המגיעים לתיקוניהם של הפרקים הנזכרים והם אלו אשר אכתוב |
|
פרק א' דבר וצי' ומעו' למספ' |
|
פרק ב' דבר וצי' ומעו' וצי' מצי' למס' |
|
פרק ג' דב' וצי' מצי' למס' ומעו' |
|
פרק ד' דבר וצי מצי' למס' ולצי' ולמעו' |
Then, after these chapters, the rules for extracting square root and cube root of any number are given: | עוד ימשכו אחר אלו הפרקים סדר הוצאת ש' מרובע ושרש מעוקב מכל מספר שיהיה |
|
פרק א' סדר למצא שרש המרובע |
|
פרק ב' הסדר למצא שרש המעוקב |
Know that after the above mentioned rules, many other calculations are calculated, which are beautiful and subtle. | ודע כי אחרי הסדרים הנזכרים יחשבו חשבונות אחרים רבים שהם יפים ודקים |
Some of them can be defined with the aforesaid rules, | אבל קצתם יתכן לשומם עם הסדרים הנזכרים |
and some of them cannot, yet they are nice and delightful. | וקצתם לא יתכן אבל הם יפים ומענגים |
Prologue |
|
In the name of the Lord, Amen | בשם השם אמן |
This book was translated from another book, first written on November 9, 1344 (Christian Calendar). | זה הספר נעתק מספר אחר אשר נכתב ראשונה בט' נובימ' אלף שמ"ד לחשבון הנוצרים |
Then, Jacomo di Ierushali da Litovilana, who lives in Mantua on the road of Unicorno, close to the Church of San Barnaba, began writing it on Saturday, May 3, 1429. |
ואחר זה התחילו לכתוב אותו יקומו דירושילי דליטובילאנה הדר בעיר מנטואה במסילת האוניקורנו קרוב לקדש ס' בירנבי ביום שבת ג' מאיו אלף תכ"ט |
In which many rules beneficial in calculations are kept, as we can see further in this book. | אשר בו יוחזקו סדרים רבים בעלי תועלת מחשבונות כאשר נוכל לראות בהמשך זה הספר |
I, Mordecai Finzi, started translating it here, in Mantua, from the Christian language to Hebrew, for the benefit of our people, on Wednesday, November 24, year 5234 from the creation [= 1473 C.E.]. | ואני מרדכי פינצי התחלתי להעתיקו הנה מנטואה מן הנצרי אל העברי לתועלת בני עמנו ביום רביעי כ"ד בנובימ' שנת ה' אלפים ורל"ד ליצירה |
I have trusted the Lord, I shall not stumble. | ובה' בטחתי לא אמעד[1] |
Roots |
|
Hereinafter, begin the necessary rules of multiplication and division of roots, | בכאן אתחיל הסדרים הראויים בהכאה ובחלוקה לשרשים |
as well as summing roots together, subtracting a root from another root, | וג"כ לחבר שרשים יחד ולהוציא שרש משרש אחר |
extracting expressible roots of square and cubic numbers, | וג"כ למצוא שרשי מספרי מרובע ומעוקב המדוברים |
and many other useful rules by which the calculations of the craftsmen are known. | וסדרים אחרים רבי' דקים ומועילי' אשר עמהם יוכרו חשבונות בעלי אומנות |
First: understanding what are square and cube roots of a number, why they are called roots, i.e. what is the essence of the root of a number, whether a square or a cube root, and in what way the roots yield a number. | וראשונה נתחיל להבין מהו השרש המרובע וג"כ שרש מעוקב ממספר ולמה נקראים שרשים רצוני מהו עצם שרש המספר בין שיהיה שרש מרובע או שרש מעוקב ובאי זה אופן השרשים יעשו מספר |
|
וראשונה ראוי לדעת טבע השרש בהיות כי כל מספר מוכה בעצמו הנה הוא שרש מרובע העולה מהכאתו |
|
וראוי לדעת כי לכל מספר שרש מרובע ומעוקב גלוי או נעלם |
|
אבל אין לכל מספר שרש מרובע גלוי גם לא מעוקב |
|
אבל אותם המספרים שלא נמצא להם שרש גלוי לא מרובע ולא מעוקב נקרא חרש או אלם מרובע יהיה או מעוקב |
|
מפני כי לא ידובר בו ולא יאוזן במספר גלוי |
|
וג"כ יקראו תמידים או לא גלויים |
|
מפני כי בהם יקויימו המספרים ונעלם הבטוי בו |
|
ודע כי כל מספר שיוכה בעצמו והעולה יוכה במספר בעצמו שהם שרשיו הוא מעוקב |
The nature of the square and cube root are stated and for each of them by itself the way the number for which they are called roots is found. | ובהיות שאמרנו לך למעלה טבע שרש המרובע ואחר ג"כ משרש המעוקב ובאי זה אופן כל אחד לבדו יגיע המספר אשר בעד המספר ההוא יקראו שרשים |
Examples for square roots: | רציתי לשים לך דמיון השרש מרובע |
|
האחד הוא שרש לעצמו מפני כי כשיוכה בעצמו לא יגיע רק עצמו רצוני אחד |
|
ושנים הוא שרש מרובע מארבעה |
|
ושלשה מתשעה |
|
מפני כי כשיוכה ב' בעצמו יעלה ארבעה |
|
וג' בעצמו יעלה תשעה |
In this manner: any root or number is a root of its product by itself | ובזה האופן כל שרש או מספר הוא שרש מאשר יעלה הכאתו בעצמו |
Examples for cube roots: | ודמיון שרש מעוקב |
|
האחד הוא שרש מעוקב ג"כ מעצמו ר"ל מאחד מפני כי כשיוכה אחד על עצמו ואחר זה העולה שהוא אחד יוכה ג"כ במספר ההוא לא יעלה רק עצמו רצוני אחד |
|
ושנים הוא שרש מעוקב לשמנה |
|
ושלשה לכ"ז |
|
מפני כי כשיוכה ב' בעצמו יעלה ד' וזה העולה רצוני ד' יוכה במספר האמור רצוני שנים יעלה שמנה |
|
וכשיוכה שלשה על עצמו יעלה תשעה וזה התשעה יוכה במספר האמור הוא שלשה יעלה כ"ז |
|
ולזה האחד הוא שרש מרובע לאחד ושרש מעוקב לאחד |
|
ושנים הוא שרש מרובע לארבעה ושרש מעוקב לשמנה |
|
ושלשה הוא שרש מרובע לתשעה ושרש מעוקב לכ"ז |
In this manner the square numbers and the cube numbers are found, and their roots are understood. | ובזה האופן ימצאו המספרים המרובעים והמספרים המעוקבים והבנת שרשיהם |
In this order endlessly. | ועל זה הסדר עד לאין תכלית |
Multiplication of Roots |
|
After understanding the nature of the roots and the essence of square and cube numbers, and the extraction of their roots, | אחר אשר ראית טבע השרשים ועצמות המספרים המרובעי' והמספרי' המעוקבים איך יצאו משרשיהם |
From here on, it will be shown how to multiply one root by another root, or a number by a root, or a number and a root by a number and a root, or a number minus a root by a number minus a root, and any other manner that can be carried out, as presented in the following teaching of the aforementioned multiplication. | מכאן ולהבא רצו' להראותך כיצד תכפול שרש אחד בשרש אחר או מספר בשרש או מספר ושרש במספר ושרש או מספר פחות שרש במספר פחות שרש וגם כן בכל אופן אחר אשר יוכל להגיע כפי אשר תראה בלמוד הבא בכפל הנזכר |
Multiplication of a Root by a Root |
|
First I want to show you how we multiply one root simply by another | וראשונה רצוני להראותך כיצד נכפול שרש אחד באחר פשוט |
|
נניח שרצית לכפול שרש ארבעה בשרש תשעה |
|
הנה צריך שתכפול המספרים זה על זה שהם ד' על ט' ועלה ל"ו |
|
ושרש זה הל"ו הוא שרש העולה מכפל שרש ד' בשרש ט' ושרש הל"ו האלו הוא ששה |
Proof: | והנה הראיה לדמיון |
|
בהיות כי שרש ד' הוא ב' ושרש ט' הוא ג' כאשר הראית למעלה |
|
הנה כאשר יוכה שרש הד' שהוא ב' בשרש ט' שהוא ג' דהינו ב' פעמים ג' יעשה ו' שהוא באמת שרש ל"ו |
|
בהיות כי כבר למדתיך בעבר שכל מספר אשר יוכה בעצמו הנה הוא שרש מן העולה מההכאה |
|
ולכן ששה הוא היטב שרש מהכאתו בעצמו שהוא ל"ו |
|
ועל זה הדמיון אשר למדתיך להכות שרש אחד באחר באלו שני מספרים אשר להם שרש ידוע ונגלה כי בהכות המספרים הנקובי' או נאמ' שרשים האחד באחר צריך לקחת שרש העולה מההכאה ההיא |
Multiplication of a Root of a Number by a Number |
|
If you want to multiply a root of a number by a number | ואם רצית לכפול שרש מספר במספר |
|
נניח שרצית לכפול שרש ששה בשלשה |
|
אז תשיב המספר אל שרש |
|
דהיינו ג' שהוא שרש תשעה |
|
ונאמ' אם כן שאנחנו צריכי' להכות שרש ששה בשרש תשעה |
|
אשר למודו הוא להכות ו' על ט' שעושה נ"ד |
|
ושרש נ"ד הוא כפל שרש ששה בשלשה והוא הוא שרש ששה מוכה בשרש תשעה |
|
והנה שרש נ"ד הוא נעלם וכן נבטא בו בנעלם ובמספר בלתי גלוי |
|
רצו' לומ' אמרנו שרש נ"ד עולה הכאת שרש ששה במספרים שלשה |
Multiplication of a Root of a Number by a Number and a Root of a Number |
ואם רצית לכפול שרש מספר במספר ובשרש מספר |
|
נניח שרצית לכפול שרש ה' בשרש ז' וד' |
|
עתה אתה צריך להשיב המספר לשרש |
|
דהיינו ד' שהוא שרש לי"ו |
|
ונאמ' א"כ שצריך שנכה שרש ה' בשרש י"ו ובשרש ז' |
|
כי עתה צריך לנו לעשות ה' מוכה בי"ו עושה פ' |
|
כי שרש פ' עולה הכאת שרש ה' בשרש י"ו אשר שרש פ' זה תשמור לחלק אחד מהכפל |
|
ואח"כ תכפול שרש ה' בחלק האחר שהוא שרש ז' |
|
דהיינו שאתה צריך לכפול ה' בז' ועושה ל"ה |
|
ושרש זה הל"ה עושה שרש ה' מוכה בז' |
|
אשר שרש ל"ה תשים אצל השרש אשר שמרת הוא שרש פ' ויגיע לידך כי בהכות שרש ה' בד' ושרש ז' עושה שרש פ' ושרש ל"ה |
Multiplication of a Number minus a Root by a Root |
ואם רצית לכפול מספר פחות שרש בשרש |
|
נניח שרצית לכפול שרש ג' בששה פחות שרש ח' |
|
אתה צריך עתה להשיב המספר לשרש |
|
דהיינו ו' ויהיה לך שרש מל"ו |
|
ונאמר אם כן שאנחנו צריכים לכפול שרש ג' בשרש ל"ו פחות שרש ח' |
|
שעתה צריכי' אנו להכות ג' בל"ו ויעשה ק"ח |
|
ושרש ק"ח יהיה הכאת שרש ג' בל"ו אשר זה השרש מק"ח תשמור לחלק אחד מן ההכאה |
|
ואחר תכה שרש ג' בפחות שרש ח' שעולה שרש כ"ד שצריך להוציא משרש ק"ח |
|
וישאר שרש ק"ח פחות שרש כ"ד א"כ בהכות שרש ג' בששה פחות שרש ח' יעלה שרש ק"ח פחות שרש כ"ד |
Multiplication of a Number and a Root by a Number and a Root |
עוד אם רצית לכפול מספר ושרש במספר ושרש |
|
נניח שרצית לכפול ג' ושרש ה' בג' ושרש ה' |
|
צריך אתה להכות ראשונה המספרים זה על זה והם ג' על ג' ועולה ט' |
|
אח"כ תכה השרשים זה על זה שהם שרש ה' בשרש ה' ועולה שרש כ"ה אשר זה השרש הוא ה' |
|
ותקבץ אלו הה' עם הט' ויהיו י"ד מספרים |
|
אח"כ תשיב המספרי' לשרשי' |
|
דהיינו כל אחד מהם שהוא ג' ויהיה לך בעד כל אחד מהם שרש ט' |
|
ואלו השרשים תכה בשתי וערב על שרש ה' |
רצו' שצריך אתה להכות שרש ה' בשרש ט' ואח"כ ג"כ שרש ה' בשרש ט' | |
| |
For every two roots that are summed together, if they are equal, they yield a root of four times themselves: | ודע כי כל שני שרשים מקובצים יחד בהיותם שוים יעשו שרש לארבעה דמיונם |
From this the proof of the teaching of the addition of unequal roots is understood | ומזה תראה המופת בלמוד חבור השרשי' הבלתי שוים |
|
ועתה תקבץ זה השרש מק"פ עם שני החלקים האחרים אשר קבצנו יחד והיו י"ד ויהיה לך י"ד ושרש ק"פ וכן עולה ג' ושרש ה' מוכה בג' ושרש ה' |
Every root of a number that is multiplied by another similar to it, is the same as saying its product by itself, and it yields that same number itself, by which the root is denominated: | ודע כי כל שרש מספר מוכה באחר שוה לו הוא שוה לאמרך הכאה זו בעצמה ועושה המספר ההוא עצמו אשר ממנו נקרא שרש |
ולזה תכה ג' ושרש ה' בג' ושרש ה' או שרשים אחרים שיותכו שוים | |
|
אין לך רק לקבץ על הכאת המספרים המספר אשר שרשו נקוב |
|
ואם המספרים שוים תקבצם יחד ואחר תשיב הכלל ההוא אל שרש |
|
ושרש זאת ההכאה תקבץ עם המספרים שקובצו יחד רצוני על הכאת המספרים שקובצו לשרש |
|
והנה המשל נניח שרצונך עוד להכות ג' ושרש ה' בג' ושרש ה' |
|
אתה צריך להכות המספרים יחד דהיינו ג' בג' ועושה ט' |
|
אח"כ תקבץ עמהם המספר הנקוב אשר לו השרש והוא ה' ויהיה לך י"ד ותשמרם |
|
אח"כ תקבץ המספרים יחד רצו' ג' וג' ויהיו ו' ואלו הו' תשיב אל השרש ויהיה לך שרש ל"ו |
|
ועתה תקבץ שרש ק"פ על י"ד אשר שמרת ויהיה כללם י"ד ושרש ק"פ וככה תעלה הכאת ג' ושרש ה' בג' ושרש ה' |
the aforesaid rule is complete. | ונשלם הכלל האמור |
the aforementioned three principles are also written on the next page. | ואודיעך כי שלש השטות הנזכרו' יהיו כתובות ג"כ בעלה הנמשך אחר זה |
In order to establish this rule and the one that follows on the next page it was brought here | ולתקן זה הכלל ואשר ימשך אחריו בדף הנמשך הנחנוהו הנה |
|
והנה לכפול ג' ושרש ה' בג' ושרש ה' יעלה י"ד מספרים ושרש ק"פ |
Another rule common to all multiplications of numbers and roots either equal or unequal: | עוד רצוני להראותך כלל אחר משותף לכל כפל ממספרים ושרשי' שוים יהיו או בלתי שוים |
|
ונניח כי בקשת לכפול ג' ושרש ד' בה' ושרש ט' |
This rule is found in this book below also, but, since the numbers of the roots are visible, discrete in a foreign language, it is given here. | גם כי תמצא זה הכלל בזה הספר בהמשך אבל מפני כי מספרי השרשים הם גלויים דיסקריטי בלעז נניחהו הנה |
|
וראשונה נכפול המספרים זה נגד זה רצוני ג' בה' ועולה ט"ו ושמרהו |
|
אח"כ תכפול המספרים בשרשי' בשתי וערב בהשיב תמיד המספרים לשרשים |
|
וא"כ נכה ג' בשרש ט' ויעלה שרש פ"א מפני כי בהשיב ג' אל שרש שיהיה שרש ט' |
|
וכן הוא קונבירסו המספר האחר היינו ה' נכהו נגד שרש ד' ועושה שרש ק' |
|
ואלו שתי ההכאות תקבץ עם המספרים אשר שמרת והיו ט"ו ויהיו לך ט"ו ושרש פ"א ושרש ק' |
|
ועתה צריך אתה לכפול המספרים השרשים האחד על האחר רצו' שרש ד' בשרש ט' ויהיה לך שרש ל"ו |
|
ותקבצהו אל הסך הראשון ויצא בסך לך כל ההכפלה דהיינו ט"ו ושרש פ"א ושרש ק' ושרש ל"ו שהם במספר גלוי מ' |
From this rule all the others can be understood whether for visible number or for hidden number. | ומזה הכלל תוכל להבין כל האחרים בין שיהיה להם מספר גלוי או מספר נעלם |
The chapter written below was written first at the end of the next page in the context of - "multiplying a number minus a root by a number minus a root" | ואודיעך כי זה הפרק הכתו' תחת זה הותחל ליכתב בסוף העלה הנמשך האומ' ואם רצית להכות מספר פחות שרש במספר פחות שרש |
Since it was not fully written below as it should have been, and that was a mistake, it is given and properly explained here. | ובעבור שלא נשלם ליכתב בהמשך כאשר היה ראוי להמשיך וזה היה משגה לכן נניחהו הנה מבואר כראוי |
Multiplication of a Number minus a Root by a Number minus a Root |
ואומ' אם רצית להכות מספר פחות שרש במספר פחות שרש |
|
נעשה הדמיון שרצית לכפול ג' פחות שרש ה' בד' פחות שרש ז' |
|
אתה צריך ראשונה לכפול המספרים זה על זה והם ג' בו' ועולה י"ב ושמרם |
|
אח"כ תכפול המספרים בשתי וערב בשביל השרשים שהם פחותים ומה שיעלה יהיה שרש פחות |
|
לכן תכה ג' בפחות שרש ז' ועולה שורש ס"ג פוחת |
|
ואחר תכפול ד' בפחות שרש ה' ועולה שורש פ' פוחת |
|
אח"כ תקבץ שני אלו השרשי' יחד שהם פוחתים ויהיה לך שורש ס"ג פוחת ושרש פ' פוחת |
|
ואלו שני השרשים הפוחתים צריך להוציאם מסכום ההכפלה שעושה יותר |
|
ועתה דע כי צריך אתה לכפול שני השרשים הפוחתים זה על זה ויעשה שרש יותר |
|
וזאת ההכפלה תוסיף על המספר היוצא מהכאת המספרי' זה על זה |
|
א"כ תכה ה' בשרש ז' פוחת ועושה שרש ל"ה יותר |
|
וזה השרש תוסיף על הכפלת המספרים דהיינו על י"ב ויהיה לך י"ב ושרש ל"ה |
|
עתה תוציא שני השרשים שאמרנו קודם שהם פוחתים והם שרש ל"ה ס"ג ושרש פ' מסכום ההכאה שהיה יותר ויהיה לך י"ב ושרש ל"ה פוחת שרש ס"ג ופוחת שרש פ' |
The result is the same whether starting with multiplying the roots, then the numbers, or starting with the numbers, then with the roots. | ודע כי שוה יצא הדבר להתחיל בהכאת השרשי' ולהשלים במספרים כמו בהתחיל במספרי' ולהשלים בשרשי' |
Before starting to subtract a number or a root, one should remember to sum the additive products together, in order to have a true understanding of the stated multiplication, or others that will be carried out. | וזכור לעולם להוסיף ההכאות עליו שעושות יותר יחד קודם שתתחיל להוציא המספר או אי זו שרש מאי זו הכאה כדי שתהיה לך הבנה אמתית יותר בהכפלה האמורה ובאחרות שיקרו |
|
ושיוכלו להגיע ג' פחות שרש ה' בד' פחות שרש ז' עושה י"ב ושרש ל"ה פחות שרש ס"ג ופחות שרש פ' |
Another rule common to all [types of] multiplications of numbers and roots either equal or unequal: | עוד רצוני להראותך כלל אחר משותף לכל כפל בין יהיה שוה ממספרים ומשרשים או לא יהיה שוה |
|
נניח שרצונך לכפול ג' ושרש ה' בד' ושרש ז' |
|
אתה צריך ראשונה לכפול המספרי' יחד דהיינו ג' בד' ועולה י"ב |
|
אח"כ תכפול המספרים בשרשים בשתי וערב בהשיב תמיד המספרים לשרשים |
|
לכן תכפול ג' בשרש ז' שעולה שרש ס"ג |
|
ואח"כ תכפול ד' בשרש ה' עולה שרש פ' |
|
ושני אלו השרשים תקבץ אל המספרים אשר שמרת והיו י"ב ויהיה לך י"ב ושרש ס"ג ושרש פ' |
|
ועתה תכפול השרשים זה על זה רצוני שרש ה' בשרש ז' ועולה שרש ל"ה |
|
וזה תחבר אל הסכום הראשון ויהיה לך סך הכל הכפל י"ב ושרש ס"ג ושרש פ' ושרש ל"ה |
Starting from multiplying the roots is the same as starting from multiplying the numbers. | ודע כי ככה ישוה בתחלת ההכפלה להכפיל לכפול מהשרשים כמו להתחיל מהמספרים |
Multiplying one of the numbers by the number and the root of the other term, then multiplying the root given in the term of that number by the number and the root of the other term, and summing all the products together - this is the same as the multiplication in the ways mentioned above. | עוד דע כי ככה שוה לכפול אחד מהמספרי' במספר אשר בצד האחר ובשרש ואחר תכפול השרש המונח מהמספר במספר ובשרש מהצד האחר ואח"כ תקבץ כל דבר יחד כמו בכל אחד מהאופנים הנזכרי' בזה האופן בכפול הכפל הכתוב למעלה |
|
תכפול עתה ג' בד' ושרש ז' ועולה י"ב ושרש ס"ג |
|
ואחר תכפול השרש המונח מהמספר והוא שרש ה' בד' ושרש ז' עולה שרש פ' ושרש ל"ה |
|
ותהיה נשלמת ההכפלה הנזכרת ג' ושרש ה' בד' ושרש ז' עולה י"ב ושרש ס"ג ושרש פ' ושרש ל"ה |
Multiplication of a Number minus a Root by a Number minus a Root |
והנה עוד אם בקשת לכפול מספר פחות שרש במספר פחות שרש |
|
נניח שרצית לכפול ג' פחות שרש ה' בד' פחות שרש ז' |
|
אתה צריך לכפול המספרים זה בזה |
|
דהיינו ג' בד' ועולה י"ב ושמרהו |
This rule is given in the previous page, since it does not continue here. | דע כי זה הכלל הושם בעלה הנמשך שקדם בעבור כי לא נמשך אצל זה |
subtractive×subtractive=additive: | עוד רצוני להראותך במספר כי פחות בפחות יעשה יותר בהכפלה |
In every occasion of multiplying a subtractive by a subtractive it will be clear that it yields an additive. | בעבור כי בכל פעם שיזדמן לך לכפול פחות בפחות תראה מבואר שיעשה יותר |
|
והנה המשל ח' מוכה בח' עושה ס"ד |
|
וח' הוא ב' פחות מי' |
|
ולהכותו בח' אחר שהוא ג"כ פחות מי' ראוי שיעלה כדומה לו ס"ד ולזה נאמ' שי' פחות ב' מוכה בי' פחות ב' ראוי שיעשה ס"ד |
|
וראית זה כי בהכותנו י' על י' עושה ק' |
|
וי' מוכה בב' פחות עושה כ' פחות דהיינו י' בב' שהוא מהצד האחר |
|
עתה תכה בשתי וערב י' שהוא בצד האחר בב' האחר שהוא ג"כ פוחת עושה גם כן כ' פוחת |
|
ועתה תקבץ אלו שני ההכאות יחד הפוחתות ויעלו מ' פוחתים |
|
והוצא אלו המ' הפוחתים מכפל י' בי' שהוא ק' וישאר ס' |
|
עתה חסר להשלים ההכפלה להכות ב' פוחתים בב' פוחתים אשר אומ' שעושה ד' יותר |
|
אשר בהוסיפו על ס' עושה היטב ס"ד וככה עולה לכפול י' פחות בב' בי' פחות ב' דהיינו ח' בח' |
|
ולכן אם פחות מוכה בפחות לא היה עושה כלום היה ראוי להוציא ד' או לקבצם מס' א"כ ימשך כי י' פחות ב' מוכה בי' פחות ב' דהיינו ח' בח' יעשה ס' וזה יהיה כזב |
|
ואם פחות מוכה בפחות רצוני אלו הב' פוחתים מוכים בב' פוחתים יעשה ד' פוחתי' זה הד' יצטרך לגרעו מס' וישאר נ"ו |
|
א"כ פחות מוכה בפחות מחוייב הוא שיעשה יותר |
Multiplication of a Number minus a Root by a Number minus a Root - when the numbers are identical and the roots are identical |
ואם רצית לכפול מספר פחות שרש במספר פחות שרש בהיות המספרים שוים והשרשים זה לזה |
|
ונניח שרצית לכפול ג' פחות שרש ה' בג' פחות שרש ה' |
|
הנך צריך להכות המספרי' זה על זה |
|
דהיינו ג' בג' ועולה ט' |
|
ועל מספר זה מט' תוסיף המספר מאחד השרשים שהוא ה' ויהיו י"ד ותשמרם |
|
אח"כ תקבץ המספרים יחד דהיינו ג' בג' ויהיו ו' וזה הו' תביא אל שרש ויהיה לך שרש ל"ו |
|
ושרש ק"פ זה תוציא ממספר י"ד אשר שמרת וישאר י"ד פחות שרש ק"פ וככה עולה כפל ג' פחות שרש ה' בג' פחות שרש ה' |
Another method for this type of multiplication - as shown for multiplication of a number and a root by a number and a root: | עוד אם רצית לכפול כפל זה או דומה לו באופן אחר אשר הראיתיך לפנים לכפול מספר ושרש במספר ושרש |
|
ככה ראוי לך לעשות כפול ראשונה המספרים זה על זה |
|
דהיינו ג' על ג' ועולה ט' |
|
אח"כ תכה עוד העושה יותר דהיינו שרש ה' הפוחת בשרש ה' הפוחת שהוא עושה שרש כ"ה יותר וזה השרש הוא ה' |
|
וקבץ זה הה' עם כפל המספרים שהיה ט' ויעלה י"ד ותשמרם |
|
ועתה תכה ג' בפחות שרש ה' בשתי וערב ויהיה לך שרש מ"ה לכל אחת מההכאות שהוא פוחת |
|
ולכן יהיה לך ב' פעמים שרש מ"ה פוחת ולזה תכה ב' בשרש מ"ה ועולה שרש ק"פ פוחת |
|
ושרש ק"פ זה תוציא מי"ד אשר שמרת וישאר י"ד פחות שרש ק"פ וככה עולה הכאת ג' פחות שרש ה' בג' פחות שרש ה' |
This type of multiplication can be carried out also by the aforementioned ways. | אשר הכאה זו תוכל ג"כ לעשות' באופנים האמורי' למעלה |
Multiplication of a Number and a Root by a Number minus a Root |
ואם רצית לכפול מספר ושרש במספר פחות שרש |
|
נניח שרצית לכפול ה' ושרש ג' בה' פחות שרש ג' |
|
אתה צריך להכות המספרים זה על זה |
|
דהיינו ה' על ה' ועולה כ"ה ותשמרם |
|
עתה תכה השרש שהוא יותר במספר שהוא בצד האחר |
|
דהיינו שרש ג' בה' ועולה שרש ע"ה |
|
אח"כ תכה השרש הפוחת במספר אשר בצד האחר |
|
דהיינו שרש ג' בה' ועולה שרש מע"ה וזה השרש בא להיות פוחת |
subtractive×additive=subtractive: | בעבור כי פחות במוסיף עושה פחות |
|
וזה הנפחת צריך להוציא מהשרש המוסיף ומפני היותם שוים ישאר לא כלום |
|
ולכן לא ישאר עד עתה מהכפל רק אשר היה מכפל המספרים זה על זה דהיינו כ"ה |
When multiplying a number and a root that are the same as the number minus the root on the other term, there is no need to multiply the numbers by the roots, because the subtractive deducts the additive as they are equal. |
ולכן אזכירך שבכל פעם שיבואך הכאת מספר ושרש שוים למספר פוחת שרש בצד האחר אינך צריך להכות המספרי' בשרשים בעבור כי הפוחת ממעיט המוסיף מפני השואתם |
|
ולכן אין צריך לך לעשות מהכפל עתה רק להכות השרש שהוא מוסיף בשרש שהוא פחות |
|
דהיינו שרש ג' המוסיף בשרש ג' הפוחת העושה שרש ט' פחות שהוא ג' |
|
וזה הג' תוציא מכ"ה וישאר כ"ב וככה עולה הכאת ה' ושרש ג' בה' פחות שרש ג' |
Another rule common to all [types of] multiplications of numbers and roots either equal or unequal, when one term is additive and the other term is subtractive: | עוד רצוני להראותך כלל אחר משותף לכל כפל שוה יהיה ממספר ושרש או לא יהיה שוה בהיות יותר מצד אחד ופחות מהאחר |
|
נניח שרצית לכפול ג' ושרש ד' בה' פחות שרש ט' |
|
הנך צריך עתה להכות המספרים זה על זה |
|
דהיינו ג' בה' ועולה ט"ו ושמרם בצד אחד |
|
אח"כ תכה במספר מהצד האחר רצוני שרש ד' בה' ועולה שרש ק' |
|
הוסיפהו על כפל המספרים זה על זה שהוא ט"ו ויהיה לך ט"ו ושרש ק' |
|
עתה תכה השרש הפוחת במספר הצד האחר |
|
דהיינו שרש ט' הפוחת בג' ועולה שרש פ"א הפוחת |
|
ותשמור להוציא זה השרש הפוחת מהסכום שעשינו למעלה |
|
אח"כ תכה השרש הפוחת מצד אחד בשרש המוסיף מהצד האחר |
|
שהוא שרש ט' הפוחת בשרש ד' המוסיף ויהיה לך שרש ל"ו פוחת |
|
ואלו השני השרשים הפוחתי' תוציא מהסכום אשר למעלה וישאר ט"ו ושרש ק' פוחת שרש פ"א ופחות שרש ל"ו |
The reason for operating in this rule according to the way of the numbers whose roots are known is that this is in order that the rule will be common to the known roots as well as the unknown roots. | והסבה בהיות כי אנחנו פעלנו בזה הכלל על דרך השרשי' והמספרים הנקובים להם שרשי' ידועים הנה עשינו זה כדי שהכלל יהיה משותף קומונו בלעז לשרשים ידועים ולבלתי ידועים |
|
בהיות כי בהכות ג' ושרש ד' שהוא ב' בה' פחות שרש ט' שהוא ג' ישאר ב' |
|
וג"כ ככה עולה ההכאה שלמעלה שהיא ט"ו מחובר עם שרש ק' שהוא עשרה ועושה כ"ה |
|
ובהוציאנו מזה שני השרשים הגורעים שהם שרש פ"א שהוא ט' ושרש ל"ו שהוא ו' שהם עולים ט"ו מאלו הכ"ה וישארו עשרה הכפל ההוא |
| |
Multiplication of a Root by a Root minus a Number |
ודע עוד אם רצית שרש לכפול בשרש פחות מספר |
|
נניח שרצית לכפול שרש ח' בשרש ח' פחות ב' |
|
הנך צריך להכות השרשים זה על זה |
|
רצו' שתכה שרש ח' בשרש ח' ועושה ח' |
Since the roots are equal it is the same as multiplying one of them by itself, i.e. it yields the number by which the root is denominated. | מפני שהשרשים שוים ושוה הדבר כאלו כפלת אחד מהם בעצמו רצו' שראוי שיעשה המספר הנקוב שהוא לו שרש |
|
ואם השרשים לא יהיו שוים אנחנו נאמ' שהכפל יהיה שרש הכפל אשר יעשה מהכאת המספרים הנקובים להיות להם שרשי' זה בזה |
|
ושמור זה הח' שהוא שרש מס"ד |
|
ואח"כ תכפול המספר הפוחת משרש החלק האחד |
|
דהיינו ב' בשרש החלק האחר שהוא בשרש ח' ועושה שרש מל"ב הפוחת |
|
ולכן תוציא שרש מל"ב הפוחת חוץ מח' או אמור משרש ס"ד |
If the roots are not the same, or if the product of the numbers, whose roots are multiplied by each other, has no root, the result is a root minus a root. | ואם השרשים לא יהיו שוים או כי בהכאת המספרים אשר הם להם שרשים זה על זה לא יהיה לה שרש אתה צריך להשיב שרש פחות שרש |
|
כאלו תאמ' שרש ס"ד פחות שרש ל"ב וכך עולה הכאת שרש ח' בשרש ח' פחות ב' |
Multiplication of a Root minus a Number by a Root minus a Number |
ואם רצית לכפול שרש פחות מספר בשרש פחות מספר |
|
ונניח שרצית לכפול שרש ח' פחות ב' בשרש עשרה פחות ג' |
|
אתה צריך לכפול השרשים זה על זה |
|
רצוני שרש ח' בשרש י' ועולה שרש פ' ושמרהו |
|
אח"כ תכפול המספרים הפוחתים מכל אחד מהחלקים |
|
שהם ב' פוחתים בג' פוחתי' ועושים ו' מוספים |
|
תוסיף זה הו' על שרש פ' אשר שמרת ויהיה לך שרש פ' וו' יותר |
|
אח"כ תכפול המספרים שהם גורעים בשרשים שהם מנגדי' שתי וערב |
|
דהיינו ב' הפוחתי' מהצד האחד בשרש אשר בצד האחר ועולה שרש מ' הפוחת |
|
אח"כ תכה המספר האחר הפוחת שהוא ג' פחות שרש ח' אשר הוא מהצד האחר ויהיה לך שרש ע"ב הפוחת |
|
עתה תוציא אלו הב' שרשים הפוחתים מהסכום של מעלה שהוא שרש מ' ושרש ע"ב וישאר ו' ושרש פ' פחות שרש מ' ופחות שרש ע"ב |
Starting from multiplying the subtractive numbers is the same as starting from multiplying the roots | ודע כי הדבר שוה בהתחיל לכפול ראשונה מהמספרים הגורעי' כמו בהתחיל לכפול ראשונה מהשרשים |
One should always multiply first the multiplicands whose products are additive in order to sum up all that should be added of the multiplication, then to subtract all that should be subtracted, as done in the multiplication above. | ותזכור לעולם לכפול ראשונה חלקי הכפל אשר מוכפלים יעשו יותר בסבת חבר יחד כל אשר מהכפל ראוי להוסיף להוציא אח"כ בסדר מה שראוי לגרוע כפי אשר עשית בכפל האמור |
Multiplication of a Root minus a Number by a Root minus a Number - when the numbers are identical [and the roots are identical] |
עוד אם בקשת לכפול שרש פחות מספר בשרש פחות מספר בהיות המספרים שוים זה לזה |
|
ונניח שרצית לכפול שרש י"ב פחות ב' בשרש י"ב פחות ב' |
|
אתה צריך להכות ראשונה השרשים זה בזה |
|
דהיינו שרש י"ב בשרש י"ב ועולה י"ב |
|
ואח"כ תכפול המספרים הפוחתי' זה על זה |
|
דהיינו ב' פוחתים בב' פוחתי' ועושים ד' יותר |
|
ותקבץ עם י"ב ויהיה לך י"ו ושמרם |
|
ואח"כ קבץ המספרים דהיינו ב' פוחתים עם ב' פוחתים ויהיו לך ד' פוחתי' |
|
וזה הד' תכפול באחד מהשרשים רצוני בשרש י"ב ויהיה לך שרש מקצ"ב פוחת |
|
וזה השרש תוציא מי"ו וישאר י"ו פחות שרש מקצ"ב וככה עולה כפל שרש י"ב פחות ב' בשרש י"ב פחות ב' |
Another way to know this [type of] multiplication: | עוד נוכל לדעת זה הכפל באופן אחר |
|
אחר שכפלת שרש י"ב בשרש י"ב שעושה י"ב |
|
ואח"כ ב' פוחתים בב' פוחתים שעושה ד' יותר |
|
ומקובצי' יחד עושה י"ו |
|
ואחר תכפול כל שרש עם המספר המקביל לו הפוחת בשתי וערב |
|
רצו' שרש י"ב בב' הפוחת ועושה שרש מ"ח פוחת |
|
ואח"כ השרש האחר מי"ב בב' האחר הפוחת אשר מצד האחר ועולה שרש ממ"ח פוחת |
|
אשר יהיה בין שני כפלי שרשי מ"ח פוחתים שרש מקצ"ב פוחתים |
This [type] of multiplication is done in two ways. | ויהיה לך הכפל הנה עשוי בשני האופנים |
|
והוא י"ו פחות שרש קצ"ב |
Multiplication of a Root minus a Number by a Root and a Number |
עוד אם רצית לכפול שרש פחות מספר בשרש ומספר |
|
נניח שרצית לכפול שרש ט"ו פחות ב' בשרש י"ב וב' |
|
עתה צריך אתה לכפול השרשים זה בזה |
|
דהיינו שרש ט"ו בשרש י"ב ועולה שרש ק"פ ושמרהו |
|
עתה תכפול המספר היותר מהצד האחד בשרש אשר בצד האחר |
|
דהיינו ב' בשרש ט"ו ועולה שרש מס' |
|
וקבצהו עם שרש ק"פ אשר שמרת ויהיה לך שרש ק"פ ושרש ס' ושמרם |
|
אח"כ תכפול המספר הפוחת מצד אחד בשרש אשר מצד אחר |
|
דהיינו ג' פוחתי' בשרש י"ב ועולה שרש מק"ח הפוחת |
|
ועוד תכפול המספרי' הפוחתים והיותר מהשרשי' האחד באחר |
|
דהיינו ג' הפוחתים בב' המוסיפים ועולים ו' פוחתי' |
|
עתה הוצא אלו שתי ההכפלות הפוחתים שהם שרש מק"ח הפוחת וו' הפוחתי' מהסכום הנזכר שהוא שרש מק"פ ושרש מס' וישאר שרש מק"פ ושרש מס' פחות שרש מק"ח פחות ו' |
One should always multiply first the multiplicands whose products are additive, then multiply those [whose products are] subtractive, in order to subtract them from the additive. | וזכור תמיד לכפול ראשונה כל החלקים מההכפלות אשר בהכפלם יעשו יותר ואח"כ תכפול העושים פחות להוציאם מהרב |
|
והנה בכפול שרש ט"ו פחות ג' בשרש י"ב וב' עולה שרש ק"פ ושרש ס' פחות שרש ק"ח ופחות ו' מספרים |
Multiplication of a Root and a Number by a Root minus a Number - when the numbers are identical and the roots are identical |
עוד אם רצית לכפול שרש ומספר בשרש פחות מספר בהיות המספרי' שוים זה לזה והשרשים זה לזה |
|
ונניח שרצית לכפול שרש ח' וב' בשרש ח' פחות ב' |
|
הנך צריך ראשונה לכפול השרשים זה בזה |
|
דהיינו שרש ח' בשרש ח' ועולה ח' ושמרם |
|
אח"כ נמשיך לכפול השרשים אשר בצד אחד במספר אשר פוחת בצד האחר |
|
ואח"כ המספר אשר בצד אחד שהוא יותר בשרש אשר בצד האחר |
Since these two products are equal to one another, but one is additive and the other is subtractive, when they are summed together it yields nothing. | ובעבור שתי אלה ההכפלות שהם שוות זו לזו עושה יותר והאחרת עושה פחות בחברם יחד עושה לא כלום |
Therefore nothing should be done in [this type of] multiplication except for multiplying the subtractive number by the additive number.
|
ולכן לא יצטרך בכפל הזה ובכדומה לו לעשות דבר אחר רק לכפול המספרים הפוחתי' במספרים המוסיפי' |
|
דהיינו בזה ב' פחות ב' בב' יותר שהוא עושה ד' פוחתים |
|
והוצא מכפל השרשים זה בזה שהוא ח' וישאר ד' וככה עולה כפל שרש ח' וב' בשרש ח' פחות ב' רצוני שעולה ד' |
Multiplication of a Root by a Root and a Root |
ואם רצית לכפול שרש בשרש ושרש |
|
ונניח שרצית לכפול שרש ה' בשרש ז' ושרש עשרה |
Multiplying the single root by each of the two other roots, or likewise if there were more, in the way of multiplying a root by a root. | הנך צריך לכפול השרש היחיד באחד אחד מאותם השנים באופן אשר נכפול שרש בשרש וכן אם היו יותר בזה האופן |
|
תכפול ראשונה שרש ה' בשרש ז' שעולה שרש ל"ה ושמרהו |
|
אח"כ תכפול עוד שרש ה' בשרש עשרה ועולה שרש נ' |
|
וקבצם יחד ויהיה לך שרש ל"ה ושרש נ' וככה עולה הכאת שרש ה' בשרש ז' ושרש עשרה |
Multiplication of a Root by a Root minus a Root |
ואם רצית להכות שרש בשרש פחות שרש |
|
ונניח שבקשת לכפול שרש ה' בשרש י"ב פחות שרש ח' |
|
הנך צריך לכפול ראשונה שרש ה' בשרש י"ב שעולה שרש ס' ושמרם |
|
אח"כ תכפול שרש ה' בשורש הפחות שהוא שרש ח' ועולה שרש מ' פוחת |
|
ועתה הוצא הכפל הזה הגורע מהכפל אשר שמרת וישאר שרש ס' פחות שרש מ' וככה עולה הכאת שרש ה' בשרש י"ב פחות שרש ח' |
Multiplication of Two Roots by Two other Roots |
עוד אם רצית לכפול ב' שרשים בב' שרשים אחרים |
|
ונניח שבקשת לכפול שרש ה' ושרש ז' בשרש עשרה ושרש ט"ו |
Multiplying these roots in the stated way of multiplying numbers and roots | תכפול אלו השרשים באופן האמור בהכאת מספרים ושרשי' |
|
וראשונה תתחיל לכפול מהשרשים הראשונים המתנגדים |
|
דהיינו שרש ה' בשרש עשרה ועולה שרש נ' ושמרם |
|
אח"כ תכפול בשתי וערב השרשים הראשונים המתנגדי' בשרשי' השניים |
|
דהיינו שרש ה' בשרש ט"ו ועולה שרש ע"ה |
|
אח"כ תכה שרש עשרה בשרש ז' ועולה שרש ע' |
|
וקבץ שתי אלו ההכאות עם הראשונה ויהיו לך שרש נ' ושרש ע' |
|
אח"כ תכפול שני השרשים האחרונים המתנגדים זה על זה |
|
דהיינו שרש ז' בשרש ט"ו ועולה שרש ק"ה |
|
וקבצם עם הכאות שלשת השרשים האחרים והיה לך שרש נ' ושרש ע"ה ושרש ע' ושרש ק"ה כולם יחד וככה עושה להכות שרש ה' ושורש ז' בשרש עשרה ושרש ט"ו |
ואם בקשת להתחיל לכפול מן השרשים האחרונים תהיה רודף אופן כפל המספרים בדרך הבתי' קאסילי בלעז בשתי וערב וכן תוכל לכתוב כפל השרשים באופן שבאי' לכתו' המספרי' | |
|
שרש ה' ושרש ז' בשרש י' ושרש ט"ו עולה שרש נ' ושרש ע"ה ושרש ע' ושרש ק"ה |
אם בקשת לכפול שרש ושרש בשרש ושרש בהיות שוים המספרים השניים והראשונים | |
|
ונניח שרצית לכפול שרש ה' ושרש ז' בשרש ה' ושרש ז' |
|
הנך צריך לכפול ראשונה אם באת לפעול בדרך הקאסילי לכפול שרש ז' בשרש ז' שעולה ז' ושמרהו |
|
אח"כ תכפול בשתי וערב שרש ז' בשרש ה' עולה שרש ל"ה |
|
ואח"כ תכפול שרש ז' האחר בשתי וערב בשרש ה' האחר ויהיה עוד לך שרש ל"ה |
|
ואלו השני שרשים תקבץ עם הז' ששמרת ויהיה לך שני פעמים שרש ל"ה שהוא שרש ק"מ וז' יותר היו בידך אשר תקבצם עמהם |
|
ואח"כ תכפול שרש ה' בשרש ה' ועולה ה' |
|
וזה הה' תקבץ עם הסך האמור ויהיה לך י"ב ושרש ק"מ |
ואע"פ שכפלנו בדרך הקסילי לא עלה לנו באופן ההוא מפני כי הכפל הראשון קובץ עם השני להשיב ראשונה המספרים ואח"כ השרשים | |
|
שרש ה' ושרש ז' בשרש ה' ושרש ז' עולה שרש ק"מ וי"ב מספרים |
Multiplication of a Root and a Root by a Root minus a Root |
ואם רצית לכפול שרש ושרש בשרש פחות שרש |
|
ונניח שרצית לכפול שרש ה' ושרש ז' בשרש עשרה פחות שרש ו' |
|
תכפול ראשונה שרש ה' בשרש עשרה ועולה שרש נ' |
|
אח"כ תכה שרש ז' שהוא יותר בשתי וערב בשרש עשרה ועולה שרש ע' |
|
וקבץ יחד ויהיה לך שרש נ' ושרש ע' |
|
אח"כ תכה בשתי וערב שרש ו' הפוחת ועושה שרש ל' הפוחת |
|
ואח"כ תכה שרש ו' הפוחת בשרש ז' המוסיף ועולה שרש מ"ב פוחת |
|
ואלו שתי ההכאות הפוחתי' הוצא משתי הכאות ראשונות שעשית וישאר שרש נ' ושרש ע' פחות שרש ל' ופחות שרש מ"ב וככה עולה להכות שרש ה' מקובץ עם שרש ז' בשרש עשרה פחות שרש ו' |
עוד אם רצית לכפול שרש ושרש בשרש פחות שרש בהיות שוים הראשון מהחלק הראשון לראשון מהחלק הראשון והשני מהחלק ראשון לשני מהחלק השני | |
|
ונניח שרצית לכפול שרש עשרה ושרש ז' בשרש עשרה פחות שרש ז' |
|
הנך צריך ראשונה לכפול השרשים זה בזה |
|
דהיינו שרש עשרה בשרש עשרה ועולה עשרה ושמרם |
אח"כ אין לך לכפול רק השרשים האחרונים זה בזה | |
|
דהיינו שרש ז' בפחות שרש ז' ועולה ז' הפוחת |
|
והוצא זה הז' הפוחת מעשרה אשר שמרת וישאר שלשה וככה עולה לכפול שרש עשרה ושרש ז' בשרש עשרה פחות שרש ז' |
וזכור כי בזה החשבון ובדומים אליו צריך לכפול השרשים בשתי וערב בהיותם שוים בהיות האחד פוחת והאחר מוסיף | |
מפני כי הכפל האחד מכשיל האחר כי האחד עושה פחות והאחר יותר | |
והנה בכפול שרש עשרה ושרש ז' בשרש עשרה פחות שרש ז' עולה ג' מספרי' | |
וכזה יעשה לכל הדומים אליו | |
Multiplication of a Root minus a Root by a Root minus a Root |
עוד אם רצית לכפול שרש פחות שרש בשרש פחות שרש |
|
נניח שרצית לכפול שרש י"ב פחות שרש ז' בשרש ט"ו פחות שרש עשרה |
|
תצטרך ראשונה לכפול השרשים המוסיפים זה בזה |
|
דהיינו שרש י"ב בשרש ט"ו ועולה שרש ק"פ ושמרהו |
אח"כ תכפול השרשים המוסיפים בשרשים הגורעים בשתי וערב | |
|
דהיינו שרש י"ב בפחות שרש עשרה ועולה שרש ק"כַ שהוא פחות |
|
אח"כ תכפול שרש ט"ו בפחות שרש ז' ועולה שרש ק"ה שהוא פוחת |
ושים שני אלו השרשי' הפוחתים לבד | |
|
ואח"כ תכפול השרשים הפוחתים זה בזה דהיינו שרש ז' בשרש עשרה ועלה שרש ע' שהוא יותר |
|
ואלו תוסיפם עם הכפל שעשית יותר ויהיה לך שרש ק"פ ושרש ע' |
|
עתה הוצא שני השרשים הפוחתים מזה הסך וישאר שרש ק"פ ושרש ע' פחות שרש ק"כ ופחות שרש ק"ה וככה עולה הכפל הנז' |
עוד אם רצית לכפול שרש פחות שרש בשרש פחות שרש בהיות שוים השרשים הדמיוני' הראשוני' לראשונים והשניים לשניים מהחלק האחר | |
|
ונניח שרצית לכפול שרש י"ב פחות שרש ז' בשרש י"ב פחות שרש ז' |
|
אתה צריך ראשונה לכפול השרשים הרבים זה בזה |
|
דהיינו שרש י"ב בשרש י"ב ועולה י"ב ושמרם |
|
אח"כ תכפול השרשים שהם מעטים זה בזה |
|
דהיינו הפוחת שרש ז' בפוחת שרש ז' ועולה ז' יותר |
|
וקבצם יחד עם אשר שמרת ויהיה לך י"ט ושמרם |
אח"כ תכה השרשים שהם יותר בשרשים שהם מעט בשתי וערב | |
|
דהיינו שרש י"ב בשרש ז' גורעים ושרש ז' הגורע בשרש י"ב ויהיה לך ב' פעמים שרש פ"ד |
|
הוציאם מהסך ששמרת שהוא י"ט וישאר לך י"ט פחות שרש של"ו וככה עולה לכפול שרש י"ב פחות שרש ז' בשרש י"ב פחות שרש ז' |
When a number is multiplied by a root, the number should be converted into a root of the same degree - whether a square root or a cube root, or any other degree | וזכור כי בכל פעם שיגיע בידך לכפול מספר באי זה שרש צריך שתשיב המספר למין השרש אשר אתה רוצה לכפול מרובע או מעוקב או בכל אופן שיוכל להגיע |
If a root is multiplied by another root of a different degree, each of the roots should be converted to the root of the parallel degree | ואם יגיע בידך לכפול איזה שרש בשרש אחר אינו דומה אליו בטבע אתה צריך להשיב כל אחד ממספרי השרשים ההם אל שרש המספר המתנגד לטבע |
|
והנה המשל מהמספר בשרשים בכפול מספר בשרש מרובע צריך לכפול המספר בעצמו ואח"כ תכפול העולה ממנו במספר השרש האחר והעולה מזה הנה שרשו הוא יהיה הכאתו כאשר יתבאר לפנים בזה האופן |
|
ונניח שבאת לכפול ג' בשרש מרובע מד' |
|
הנך צריך להשיב ג' לשרש מרובע שהוא שרש מט' |
|
ותכפול ד' בט' שעושה ל"ו |
|
ושרש ל"ו שהוא ו' הוא הכפל האמור |
|
ואם תכפול ג' בשרש מעוקב מח' |
|
אתה צריך להשיב ג' לשרש מעוקב שהוא יהיה שרש מעוקב מכ"ז |
|
ותכפול ח' בכ"ז ועולה רי"ו |
|
ושרש מעוקב מרי"ו שהוא ו' הוא הכפל האמור |
Multiplication of a Square Root by a Cubic Root |
ואם יקרה לך לכפול שרש מרובע בשרש מעוקב |
|
נניח שרצית לכפול שרש מרובע מד' בשרש מעוקב מח' |
|
הנך צריך להשיב ד' לשרש מעוקב ויהיה לך שרש מעוקב מס"ד |
|
אח"כ תשיב ח' אל שרשים ויהיה לך שרש ס"ד מרובע |
|
עתה תכפול שרש מרובע משרש מעוקב מס"ד בשרש מרובע משרש מעוקב מס"ד או בשרש מעוקב משרש מרובע מס"ד |
It can be expressed either as a cube root of a square root, or a square root of a cube root | כי יתכן לומ' באופן האחד כמו באחר |
|
דהיינו ס"ד בס"ד ועולה ד' אלפים וצ"ו |
|
ושרש מרובע מהשרש מעוקב או תאמר השרש המעוקב משרש המרובע מד' אלפים וצ"ו הוא הכפל האמור והוא ד' |
|
ג' בשרש מרובע מד' דהיינו שרש ט' בשרש ד' עולה שרש מל"ו שהוא ו' |
|
ג' בשרש מעוקב מח' שהוא שרש מעוקב מכ"ז בשרש מעו' מח' עולה שרש מעו' מרי"ו והוא ו' |
|
שרש מרובע מד' בשרש מעו' מח' עולה שרש מרובע משרש מעוקב מד' אלפים וצ"ו |
|
עוד אם יאמרו לך תכפול שרש מעוקב מח' בשרש שרש י"ו |
The number in the cube root should be converted to a root of a root, and the number in the root of the root should be converted to a cube root. | השב מספר השרש מעוקב לשרש השרש ומספר שרש השרש למעוקב |
Then they are multiplied by each other, and the cube root of the root of the root, or the root of the root of the cube root of the result is the result of the stated multiplication. | ואח"כ תכפול זה בזה ושרש מעוקב שרש השרש או שרש שרש המעוקב ההוה הוא יהיה הכפל האמור |
|
והנה הדמיון תכפול ח' באופן שרש השרש ואמור ח' מוכה בח' עושה ס"ד |
|
אח"כ תכה י"ו באופן מעוקב ואמור י"ו מוכה בי"ו עולה רנ"ו |
|
ואלו המספרים תכפול זה בזה והם ד' אלפים וצ"ו בד' אלפים וצ"ו ועלו 16777216 |
|
והשרש מעוקב משרש השרש מהסך האמור או נאמ' שרש שרש מהשרש המעוקב מהסך האמור |
|
עוד אם רצית לכפול חצי ושרש מנוסף זינטו בלעז רביע אחד עם שרש י"ב בחצי אחד ושרש מנוסף רביע אחד עם שרש י"ב |
|
אתה צריך ראשונה לכפול חצי בחצי ועושה רביע ושמרהו |
|
אח"כ תכפול חצי בשרש מנוסף רביע עם שרש י"ב ועולה שרש מנוסף א' מי"ו עם שרש ג' רביעים |
|
אח"כ תכפול עוד בשתי וערב חצי בשרש מנוסף רביעם עם שרש י"ב ועולה שרש מנוסף חלק מי"ו עם שרש ג' רביעי' |
|
ואלו שני הכפלי' השוים הם כאלו אמרת ב' בשרש מנוסף חלק מי"ו עם שרש ג' רביעי' שעולה שרש מנוסף רביע עם שרש י"ב ושמור |
|
אח"כ תכפול שרש מנוסף רביע עם שרש י"ב בשרש מנוסף רביע עם שרש י"ב שעולה רביע אחד ושרש מי"ב |
עתה תקבץ כל אלו הכפילות יחד ועולות חצי אחד ושרש מי"ב ויותר שרש מנוסף רביע עם שרש מי"ב וככה עולה הכפל האמור חצי ושרש מנוסף רביע עם שרש י"ב בחצי ושרש מנוסף רביע עם שרש מי"ב | |
| |
ודע כי כאשר תכפול המספר עם החלק מהמספר דהיינו חצי בשרש שני החלקים הנוספים יחד דהיינו א' רביע נוסף עם שרש מי"ב אתה צריך להשיב החצי אל שרש ויהיה לך שרש מא' רביע ותכפול זה הרביע ברביע הנוסף עם שרש י"ב ועולה חלק אחד מי"ו | |
| |
|
ואח"כ תעשה בשתי וערב הכפל האחר הדומה לזה |
|
ויהיה לך הכפל הזה כפול אשר יהיה שנים בשרש הנוסף חלק מי"ו עם שרש ג' רביעי' |
ובגלל זה אתה צריך להשיב כמו כן זה השנים אל שרש ועולה ד' וזה הד' תכפול בחלק מי"ו שעולה חלק מד' אח"כ השב הב' האמור לשרש משרש ויהיה לך י"ו וזה הי"ו תכפול בג' רביעים ועולה י"ב | |
| |
|
וככה מהכפל העשוי בשתי וערב |
|
עתה תכפול החלקים האחרים בעצמם כפי האמור למעלה להשלים הכפל |
The reason for converting the number into a root, then into a root of the root: | והסבה שאתה תשיב המספר אל שרש ואח"כ אל שרש השרש |
Since one multiplies it by the root of an additive plus a root of a number | הוא בגלל שאתה כפלו בשרש המספר הנוסף עם שרש מספר |
|
שהוא בשרש הנוסף רביע עם שרש מי"ב הוא כאלו כפלת ב' בשרש מנוסף חלק מי"ו עם שרש מג' רביעי' |
One converts the 2 to a root, in order the multiply it by the root of the additive, then converts it to a root of the root, in order to multiply it by the root of the root of the additive | אתה השיבות הב' אל שרש לכפלו עם שרש המספר הנוסף ואח"כ השיבות אותו לשרש משרש לכפלו בשרש השרש מהמספר הנוסף |
|
בדומה לאשר עשית מהחצי כי עשית מהב' כאשר ראית בדמיון |
חצי ושרש מנוסף רביע עם שרש י"ב בחצי ושרש מנוסף רביע עם שרש י"ב עולה חצי ושרש מי"ב ושרש מנוסף רביע עם שרש מי"ב | |
| |
Many other multiplications can fall in one's hands. | ודע כי כפלים אחרים רבים שונים מאלו יוכל להגיע לידך |
They have no end, therefore it is impossible to write rules for all of them. | ואין סוף להם ולכך לא יתכן לכתוב כללים לכלם |
Yet, from the aforesaid rules it is possible to understand and to present the rule, according to the aforesaid teaching, for every multiplication that comes, or that may come. | אבל מהכללי' האמורים יתכן להבין ולתת כלל כפי הלמוד האמור לכל כפל שיגיע ושיוכל לבא |
Since, when multiplying the roots, one answers by saying the sum of a root of this and a root of that. | בהיות כי בכפול השרשים תעשה תשובה בהאמר בסך שרש מכך ושרש מכך |
Many times two or three or more types are summed, when a part of another part results from the multiplication, or when they cannot be summed together in one expression. | ופעמים רבים ב' או ג' מיני' ויותר נקבצים כאשר יעלו מהכפל הנעשה חלק מחלק אחר וכאשר לא יתחברו יחד בקול אחד |
Except for the roots that are equal and summed by doubling and duplicating: | לבד השרשים אשר היו שוים ונתוספו באופן הכפל וההכפלה |
i.e. since when there are two equal roots, multiplying one of them by two yields the same as summing them together. | דהיינו כי בהיות שני שרשים שוים בהכפל אחד מהם בשנים עושה כך כמו בחברם יחד |
and if there were three equal [roots] - multiplying one of them by three | ואם היו ג' שוים בהכפל אחד מהם בג' |
וג"כ בהיות מינים יותר בהכפילם בכל כך מספר כמו שהם השרשים השוים עושה כך כמו מחוברים יחד | |
Addition of Roots |
|
From here on it will be shown how similar and not similar roots can be summed together in one expression. | ומכאן ולהבא רצוני להראותך כיצד שרשים שוים ובלתי שוים יכולים לחברם יחד בקול אחד |
Since many are those roots that cannot be summed in one expression, | בהיות כי רבים הם אותם השרשים אשר לא יתכן לחברם בקול אחד |
and the nature of these roots, that cannot be summed together, is that when the numbers, by which the roots are denominated, are multiplied by each other, and that product does not have an expressible root, these are the roots that cannot be summed in one expression. | וטבע אותם השרשים אשר לא יתכן לחברם יחד הוא זה כי בהכפל המספרים אשר נקראים שרשים להם זה בזה ואותו הכפל אין לו שרש מדובר אלו השרשים לא יתכן לחברם בקול אחד |
Hence, these roots - which the multiplication of their numbers, by which they are denominated, by each other, yields a number that has an expressible root - can be summed in one expression, as will be demonstrated from here on. | א"כ אותם השרשים אשר בהכפל מספריהם אשר נקראו שרשים להם זה בזה יעשה מספר שיהיה לו שרש מדובר יתכן לחברם בקול אחד כמו שאראך מכאן ולהבא |
The addition method of roots with roots and roots with numbers | בכאן יראה אופן חבור שרשים עם שרשי' ושרשים עם מספרים או כאשר תרצה |
---|---|
|
נניח שרצית לחבר שרש ג' עם שרש י"ב |
|
הנך צריך לכפול שרש ג' בשרש י"ב ועושה שרש מל"ו ותקח שרש זה הל"ו שהוא ו' |
|
אח"כ תחבר מספרי השרשים שהם ג' וי"ב יחד ויהיו ט"ו |
|
וזה הט"ו תוסיף על י"ב ששמרת ויהיו כ"ז ושרש מכ"ז הוא נקבץ שרש ג' עם שרש מי"ב |
It is also possible to add the roots mentioned in this way: | עוד יתכן לחבר השרשים הנזכרים באופן זה |
|
תכה מספרי השרשים זה בזה דהיינו ג' בי"ב ויעלה ל"ו וזה הל"ו תכה בד' ויהיה לך קמ"ד |
|
ותחברם עם מספרי השרשים מקובצי' יחד דהיינו על ט"ו ויהיה לך כ"ז ושורש זה הכ"ז הוא שני השרשים מקובצים יחד כמו שאמרנו למעלה |
For those that cannot be summed in one expression, the answer should be as they are, by expressing the one after the other: | ואותם אשר לא יתכן לחברם בקול אחד ראוי לתשובתם כמו מה שהם באמור האחד אחר האחר |
|
ונניח שרצית לחבר שרש ו' עם שורש ז' |
|
אתה צריך להשיב ולומ' שרש מו' ושרש מז' עם שרש ז' ושרש ו' |
If one wishes to answer in another way, the answer would be more difficult. | ואם רצונך להשיב לו באופן אחר יכבדו עליך יותר תשובותם |
It is possible to answer in the aforesaid manner concerning the rule for those that are answered in one expression: | ותוכל לענות להם בזה האופן האמור למעלה בכלל אותם אשר יענו בקול אחד |
|
והוא כי אתה צריך לכפול מספרי השרשים זה בזה ועולה מ"ב וזה המ"ב תכה בד' ויהיה לך קס"ח |
|
ושורש קס"ח תחבר עם מספרי השרשים הנקובים בשם רצו' על שניהם שהוא י"ג ויהיה לך י"ג ושורש קס"ח ושרש זה הסך הוא שני השרשים האמורי' מחוברים יחד |
Addition of a number and a root with a number and a root - adding the number to the number, then the roots to the roots, in the manner stated above. | ואם יזדמן לך לחבר מספר ושרש עם מספר ושרש אתה צריך לחבר המספרים עם המספרים ואח"כ השרשים עם השרשים באופן האמור למעלה |
As, in the addition of the roots, it was taught that summing two roots together is possible only for those, which when one of them is multiplied by the other, it yields a number that has an expressible root. | ודע כי כמו שבחבור השרשים נלמד כי לא יתכן החבור בקול אחד שני שרשים יחד רק אותם אשר כשהוכה האחד באחר עושה מספר שיש לו שרש מדובר |
Likewise, in the subtraction of the roots, it is possible to subtract the one from the other, so that the remainder will remain in one expression, only for those roots, which when one is multiplied by the other, it yields a number that has an expressible root. | כמו כן בגרעון השרשים לא יתכן לגרוע האחד מהאחר ושהנשאר ישאר בקול אחד כי אם אותם שרשים אשר כשהוכה האחד באחר עושה מספר שיש לו שרש מדובר |
As those that cannot be summed in one expression are stated as "a root of this plus a root of that", | וכמו שאותם אשר לא יתכן לחברם בקול אחד יאמר שרש מכך ושרש מכך |
also those roots that cannot be subtracted in one expression can be answered as "a root of this minus a root of that". | כן ג"כ אותם השרשים אשר לא יתכן להוציאם בקול אחד נוכל לענות שרש מכך פחות שרש מכך |
This is by stating the greater first, minus the smaller, as is shown in the example below: | וזה באמור הגדול תחלה פחות הקטן כמו שאראך לדמיון פה למטה |
|
נניח שרצית לגרוע שרש ג' משרש י"ב |
|
הנך צריך לפעול עם הכלל האמור בחבור בכמו שהוא להכות שרש ג' בשרש י"ב שעושה שרש ל"ו וקח שרשו המדובר שהוא ו' |
|
ואח"כ תחבר מספרי השרשים יחד דהיינו ג' עם י"ב ועושה ט"ו |
|
וכמו שבחבור השרשים יחובר הי"ב השמור כן בגרעון השרשים צריך לגרוע מזה הט"ו הי"ב השמור וישאר ג' ושרש זה הג' הוא הנשאר מגרעון שרש ג' משרש י"ב |
The other way that is done in the addition, is done also in the subtraction, | עוד באופן האחר שעושים בחבור כמו כן עושים במגרעת |
except that as the root of the product by 4 is added to the numbers of the roots that are summed together, | מלבד כי כמו שיחובר השרש מהכפל שהוכפל בד' על מספרי השרשים שחוברו יחד |
so the aforesaid root is subtracted from the stated numbers that are summed together, and the root of the remainder is the remainder of the subtraction of a certain root from another root. | כן יגרע השרש האמור משני המספרי' האמורי' המחוברים יחד ושרש הנשאר הוא השארית בגרעון שרש מה משרש אחר |
|
באופן זה ברצותך להוציא שרש ג' משרש י"ב תכה ג' בי"ב עושה ל"ו וזה הל"ו תכה בד' ועולה קמ"ד |
|
ועתה קבץ מספרי השרשים אשר אתה בא להוציא האחד מן האחר שהוא ג' עם י"ב ועושה ט"ו |
|
ומזה הט"ו הוצא י"ב השמור וישאר ג' ושרש זה הג' הוא השארית הנשאר בהוציאנו שרש ג' משרש י"ב |
Those roots that cannot be subtracted in one expression should be answered as they are, by stating the one, namely the greater, minus the other, namely the smaller: | ואותם השרשים אשר לא יתכן להוציאם בקול אחד ראוי לענות בהם כפי מה שהם כאמור האחד רצוני הגדול פחות האחר רצוני הקטון |
|
ונניח שרצית להוציא שרש ו' משרש ז' |
|
ראוי אתה לענות שישאר שרש ז' פחות שרש ו' |
If one wishes to answer in another way, it is possible to answer according to the rule for those that are answered in one expression, although the answer will consist of the said combination: | ואם רצית לענות לו באופן אחר היית יכול לענות לו כפי הכלל מהנענים בקול אחד גם כי התשובה תהיה מהרכבה אמורה |
|
בהיות כי אתה צריך לכפול שרש ו' בשרש ז' שעולה שרש מ"ב וזה המ"ב תכפול בב' שהוא בשרש ד' ויהיה לך שרש קס"ח |
|
ושרש זה הקס"ח תוציא משני מספרי השרשים מחוברי' יחד שהוא י"ג וישאר י"ג פחות שרש קס"ח וישאר זה השארית הוא מה שישאר מהוצאת שרש ו' משרש ז' |
After demonstrating the addition and subtraction of one root from another, it will be shown how to add or subtract a number and a root from a number and a root, or a number and a root from a number minus a root, and a root minus a number with a root minus a number, or from a root minus a number, in many ways shown from here on. | אחרי שהראיתיך לחבר ולהוציא שרש אחד מאחר רצוני להראותך כיצד נחבר או נוציא מספר ושרש ממספר ושרש או מספר ושרש ממספר פחות שרש ושרש פחות מספר עם שרש פחות מספר או משרש פחות מספר ובאופנים רבים אשר מראה מכאן ולהבא |
|
ונניח שבקשת לחבר ד' ושרש י"ב עם ה' ושרש ג' |
One should do as shown in the addition of roots, i.e. to sum the numbers with the numbers and the roots with the roots: | הנך צריך לעשות כאשר הראנו לך תחת חבור השרשים דהיינו שאתה צריך לחבר המספרים עם המספרים והשרשים עם השרשים |
|
ולכן תחבר ד' וה' ויהיו ט' ותשמרם |
|
אח"כ תחבר השרשים באופן הכלל האמור בחבור |
|
דהיינו שרש ג' בשרש י"ב אשר עולה כ"ז |
|
אשר תחברהו אל המספר השמור שהוא ט' ויעלה הסך מאלו המספרים והשרשים מחוברים יחד ט' ושרש כ"ז |
בכאן יראה מספר ושרש עם מספר ושרש ובדברים מה אחרים כאשר יראה בהמשך | |
|
ואם רצית לחבר ד' ושרש ג' עם שרש י"ב פחות ג' |
It should be done with the rule stated for addition above, | צריך שתעשה עם הכלל האמור מהחבור למעלה |
except that as for the addition of a number and a root with a root and a number the numbers should be summed together, | מלבד שכמו שבעבור חבור מספר ושרש עם שרש ומספר צריך לחבר המספרי' יחד |
so in order to add a root and a number with a root minus a number, one number should be subtracted from the other: | כמו כן לחבר שרש ומספר עם שרש פחות מספר צריך להוציא המספר האחד מהאחר |
|
הדמיון לזה לחבר ד' ושרש ג' עם שרש י"ב פחות ג' |
|
צריך שנחבר שני השרשים יחד כאמור למעלה והנה חבורם יחד שרש מכ"ז ושמור |
|
ועתה הוצא ג' מד' וישאר א' וזה אתה מוציא בעבור כי הנך אומ' ג' פחות |
|
א"כ ד' ושרש ג' עם י"ב שרש פחות ג' עולה שרש מכ"ז וא' יותר |
|
עוד אם יאמר לך אדם חבר ד' עם שרש ג' עם שרש י"ב פחות ב' |
One should subtract one root from the other, and one number from the other, since the name is denominated minus a root and minus a number, and the remainder will be the result of addition of a number minus a root with a root minus a number: | דע כי צריך אתה להוציא השרש האחד מהאחר והמספר האחד מהאחר בעבור כי נקוב בשם פחות שרש ופחות מספר |
|
ומזה תקח המשל שיהיה ד' פחות שרש ג' עם שרש י"ב פחות ב' |
|
תוציא ב' מד' וישאר ב' פחות שרש ג' החלק האחד והאחר ישאר אחר זה שרש מי"ב |
|
עתה תוציא שרש ג' מהחלק האחר וישאר החלק האחד ב' והאחר הוא השרש האחד מי"ב פחות שורש ג' |
|
ולכן תוציא בדרך ההוצאה האמור לפנים שרש ג' משרש י"ב וישאר שרש ג' |
|
וזה השרש תחבר עם ב' האמור קודם ויהיה לך ב' ושרש ג' וככה עולה לחבר ד' פחות שרש ג' עם שרש י"ב פחות ב' |
|
ואם רצית להוציא עשרה פחות שרש י"ב מי"ט |
|
הנך צריך לחבר השרש הפוחת מעשרה בחלק האחר דהיינו לשרש י"ב ויהיה לך י"ט ושרש י"ב |
|
ועתה אתה צריך להוציא עשרה מי"ט וישאר ט' |
|
א"כ להוציא עשרה פחות שרש י"ב מי"ט ישאר ט' ושרש י"ב |
|
ואם רצית להוציא ח' ושרש נ' מי"ו |
|
הנך צרי' להוציא ח' מי"ו ישאר ח' |
|
אח"כ הוציא שרש מנ' מח' וישאר ח' פחות שרש נ' |
מפני כי להוציא שרש מה ממספר מה לא יתכן לאמר יותר מדומה לזאת התשובה כאמור המספר פחות השרש | |
|
א"כ להוציא ח' ושרש נ' מי"ו ישאר ח' פחות שרש נ' וכן נגמר המעשה |
|
עוד אם בקשת להוציא כ"ד פחות שרש מר"נ מעשרה |
|
הנך צריך לחבר שרש ר"נ על עשרה ויהיה לך עשרה ושרש ר"נ |
|
ועתה תוציא כ"ד מעשרה ושרש ר"נ יותר בזה האופן תוציא עשרה מכ"ד וישאר י"ד |
|
וזה הי"ד הוא פוחת א"כ ישאר האחר שרש ר"נ פחות י"ד ויצא לך כי בהוציאנו כ"ד פחות שרש ר"נ מעשרה ישאר שרש ר"נ פחות י"ד |
|
עוד אם יאמר לך תוציא ו' פחות שרש ה' מי"ג פחות שרש כ' |
|
אתה צריך להוציא ו' מי"ג וישאר ז' |
|
אח"כ תוציא שרש ה' משרש כ' אשר כפי הכלל מהוצאת שרש אחד משרש אחר אשר הראנו לך קודם ישאר שרש ה' |
|
ויגרע ג"כ השרש האמור א"כ להוציא ו' פחות שרש ה' מי"ג פחות שרש כ' ישאר ז' פחות שרש ה' |
Many other additions, as well as other subtractions, which were not written, not seen, and not taught, can occur. | ודע כי הרבה חבורים אחרים וכמו כן הוצאות אחרים אפשר שיפלו אשר לא נכתבו גם לא נראו ולא נלמדו |
Since the aforesaid rules of addition and subtraction of roots are enough for those stated above, and for any one that may occur, by observing each time what may be added or subtracted, as slightly seen in the stated rules. | מפני כי הכללים האמורים למעלה מהחבור והמגרעת בשרשים הם מספיקים לאשר נאמרו למעלה ולכל אחד מאשר יוכלו להזדמן בהיותנו בכל פעם מתבוננים באשר אפשר להזדמן לחבר או להוציא כפי מה שהראית קצת בכללים האמורים |
Summing many types of roots together | ואם רצית לחבר מינים רבים משרשים יחד |
|
נניח שרצונך לחבר שרש ג' עם שרש ו' ועם שרש י"ב ועם שרש כ"ד |
וכמו כן שרשים אחרים אשר יזדמנו לך | |
The one should be multiplied by the other. | הנך צריך לכפול האחד באחר |
If the product has no root - the product of one of the terms by one of the other terms should be investigated. | ואם אותו כפל לא יהיה לו שרש הנך צריך לחקור מכפול אחד מאותם החלקים באחד מן החלקים האחרים |
Then, what is discovered as possible to be summed, is summed in one expression | ולחבר בקול אחד אשר תמצא שאפשר לחברם |
and what is not, is answered in the manner stated before for the roots that cannot be summed in one expression | ואשר לא תמצאם תענם באופן האמור קודם מהשרשים אשר לא יתכן לחברם בקול אחד |
|
א"כ תכפול הראשון בשני דהיינו שרש ג' בשרש ו' שעולה שרש י"ח |
|
וזה השרש אינו מדובר |
|
שני אלו השרשים לא יתכן לחברם בקול אחד |
|
ולכן תנסה שרש ג' עם השרש השלישי שהוא שרש י"ב שעושה שרש ל"ו וזה השרש הוא מדבר והנה הוא ו' |
|
א"כ אלו שני השרשי' אפשר לחברם בקול אחד באופן האמור למעלה והנה הוא יהיה שרש מכ"ז |
|
ואם אלו השרשים לא היה אפשר לחברם יחד בקול אז היית מנסה ברביעי וכמו כן השני בשלישי וברביעי |
וכן בנסות וכָפוֹל האחד באחר עד כלותך לנסות כל אחד מהם או מאחרים שיזדמנו | |
|
ודע כי השני אפשר לחבר בקול אחד עם הרביעי ויהיה שרש מנ"ד כאשר חוברו יחד |
ויהיה לך כי אלו ד' השרשים יהיו כאשר חוברו יחד בשני הסכים רצוני הראשון בשלישי שהוא יהיה שרש מכ"ז והשני ברביעי שהוא יהיה שרש מנ"ד | |
| |
ובזה האופן בעצמו ראוי שתבקש בכפול האחד על האחר ברצותך להוציא שרש אחד מב' שרשים או ב' שרשים מב' שרשים או ב' מג' וכדומה לזה בכל אופן מכמויות שרשים שיגיעו או שאפשר שיגיעו | |
|
א"כ לחבר שרש ג' ושרש ו' ושרש י"ב ושרש כ"ד יעלה שרש כ"ז ושרש מנ"ד |
Division of Roots |
|
After seeing the teaching of multiplication, addition and subtraction of roots, the teaching of the division of roots is left to be shown, meaning: | אחר אשר ראית התלמדות הכפל והחבור והמגרעת בשרשים נשאר לך לראות התלמדו' החלוק בשרשים רצו' |
|
שרש אחד בשרש אחר |
|
או מספר בשרש |
|
או שרש במספר |
|
או מספר ושרש במספר |
|
או מספר בשרש ומספר |
|
או שרש במספר ושרש |
|
או מספר ושרש במספר ושרש |
|
או שרש ומספר במספר פחות שרש |
and any manner that may occur | ובכל אופן שיוכל להגיע |
In the division of a certain root by another root, the number of the first root is divided by the number of the other, and the root of the quotient is the result of the division | ודע כי בחלוק שרש מה בשרש אחר הנך צריך לחלוק המספר מהשרש האחד במספר מהשרש האחר ושרש מהמספר המגיע מהחלוקה הוא החלוק |
Since the [root of the] quotient of one number by another number is the same as the expression of the root of the one from the expression of the root of the other | מפני כי כן הוא חלק מספר אחד ממספר אחר כקול שרש האחד מקול שרש האחר |
The example of this: | וזה הוא דמיונו |
|
נניח שרצית לחלק שרש ד' בשרש ט' |
|
הנך צריך לחלק ד' בט' שעולה ד' תשיעיות |
|
ושרש אלו הד' תשיעיות הוא החלוק הבא לחלוק שרש ד' בשרש ט' אשר זה הנגון או אמור הקול מד' תשיעיות המהות משרשו הוא ב' שלישיות |
Division of a Number by a Root |
ואם רצית לחלק מספר בשרש |
|
ונניח שרצית לחלק ד' בשרש ט' |
|
הנך צריך ראשונה להשיב ד' אל שרש שיהיה לך שרש י"ו ועתה תחלק י"ו על ט' ויגיע א' וז' תשיעיות |
Division of a Number and a Root by a Number |
ואם רצית לחלוק מספר ושרש במספר |
|
נניח שרצית לחלוק ח' בג' ושרש ד' |
|
הנך צריך לכפול ג' ושרש ד' בג' פחות שרש ד' ויעלה ה' |
|
א"כ לחלוק ה' בג' ושרש ד' יעלה לך ג' פחות שרש ד' |
Since, for every number that is multiplied by another, when the product is divided by that number, the result is the other number by which it was multiplied. | מפני כי כל מספר שיוכה במספר אחר הכפל המגיע כשנחלק באותו מספר יגיע המספר האחר אשר הוכה בו |
|
ולכן בחלוק ה' בג' ושרש ד' יגיע מזה ג' פחות שרש ד' |
|
ובחלוק ה' בג' פחות שרש ד' יגיע מזה החלק האחר שהוא שרש ג' ושרש ד' |
|
ולכן נאמ' כי זה הה' יהיה המחלק |
|
ונשים זאת החלוקה בכלל הג' ונאמר אם מה' בחלקו בג' ושרש ד' יגיע ג' פחות שרש ד' כמה יגיע מח' אשר רצינו לחלקו |
|
דהיינו אם מה' יגיע ג' פחות שרש ד' כמה ראוי להגיע מח' |
תכפול ג' פחות שרש ד' בח' שעולה כ"ד פחות שרש רנ"ו וזה הכפל תחלק בה' | |
| |
Since in the division of roots by numbers, the number should be restored to roots, as it is restored in the division of numbers by roots. | מפני כי בחלוקת שרשי' במספרים צריך להשיב המספר אל שרשים כמו שיושב בחלוקת מספרי' בשרשים |
|
ולכך בחלוק ח' בג' ושרש ד' יגיע ד' וד' חמשיים פחות שרש עשרה וו' חלקים מכ"ה |
Division of a Number and a Root by a Number and a Root |
ואם רצית לחלק מספר ושרש במספר ושרש |
|
נניח שרצית לחלק ה' ושרש י"ו בג' |
|
אתה צריך ראשונה לחלק המספר במספר דהיינו ה' בג' שיגיע א' וב' שלישים ושמרם |
|
אח"כ השב ג' המחלק אל שרשים ויהיה לך שרש ט' אח"כ חלק שרש מי"ו בשרש ט' ויגיע שרש מא' וז' תשיעיות |
|
א"כ לחלוק ה' ושרש י"ו בג' יעלה א' וב' שלישים ושרש א' וז' תשיעיות
אשר זאת החלוקה בכלל תהיה ג' |
|
והמספר הנחלק הוא ט' |
Division of a Number by a Number minus a Root |
ואם רצית לחלק מספר במספר פחות שרש |
|
נניח שבקשת לחלק כ' בד' פחות שרש ט' |
This should be done according to the aforesaid rule of the division of a number by a root and a number, | הנך צריך לעשות עם הכלל האמור לפנים מחלוקת מספר בשרש ומספר |
except that when [dividing by a number and a root one should multiply] by a number minus a root, | מלבד שאתה אם תכפול מספר ושרש במספר פחות שרש |
whereas in the division by a number minus a root, one should multiply by the inverse, i.e. by a number plus a root. | כן בחלוקת מספר פחות שרש צריך לכפול בהפך דהיינו במספר ושרש |
This is done in order that the divisor would be an integer. | אשר זה יעשה בסבת שהמחלק יהיה מספר שלם |
This teaching is found in the multiplication of roots, when a number plus a root is multiplied by the same number minus the same root [], or a root plus a number by a root minus a number, when the numbers are equal to one another, meaning the subtractive to the additive, and the roots to each other [], because the said products always yield integers | וזה ההתלמדות נמצא בכפילת השרשים כאשר הזדמן שיכפל מספר ושרש בכך מספר פחות כך שרש או שרש ומספר בשרש פחות מספר בהיות המספרים שוים זה לזה רצוני א"ת הגורע למרבה והשרשים זה לזה כי לעולם הכפלים האמורים עושים מספרים שלמים |
|
ולכן תכה ד' פחות שרש ט' בד' ושרש ט' ועושה ז' שהוא המחלק לסבה האמורה קודם בחלוקת בעד מספר ושרש |
|
א"כ נאמ' אנחנו אם מז' יגיע ד' ושרש ט' כמה ראוי להגיע מכ' שהוא אשר רצינו לחלק |
תכה ד' ושרש ט' בכ' ועולה פ' ושרש מג' אלפים ת"ר וחלק בז' שיגיע י"א וג' שביעיות ושרש ע"ג וכ"ג חלקים ממ"ט | |
| |
When any of these divisions occur, or a division by a root minus a number, one should continue according to the said rule, to multiply always by the inverse of the denominator, as seen in the example. | דע כי כאשר יזדמן לך איזה מאלו החלוקים או לחלוק בשרש פחות מספר תהיה ממשיך הענין בכלל האמור לכפול לעולם במספר המתנגד באיכות כפי מה שהראית במשל |
When dividing [by] a certain number and a root, [or] by a certain root and a number, and the product of the addend to the denominated first by itself yield more than the product of the denominated first by itself, then the addition, i.e. of the divisor, should be reversed, by always placing first the one of which the product by itself yields more. | עוד דע כי כאשר יזדמן לך לחלוק מספר מה ושרש בשרש מה ומספר שאשר יחובר לאשר יהיה נקוב ראשונה בהכפל בעצמו יעשה יותר מאשר נקוב ראשונה בהכפל בעצמו צריך להפך הדיציאוני רצוני החלוק ולשים לעולם העושה יותר בהכפל בעצמו קודם |
|
והמשל בזה נניח שרצית לחלק י"ט בב' ושרש י"ו |
|
מן הכלל האמור הנך צריך לכפול ב' ושרש י"ו בב' פחות שרש י"ו אשר הכפל הזה לא יתכן |
|
וסבת זה היא כי שרש י"ו הוא יותר מב' |
|
והיותר לא נוכל להוציאו מהפחות |
|
וזה נוכל לראותו בפרהסיא כי בהכפל שרש מי"ו בעצמו עושה י"ו |
|
וב' בהכפל בעצמו עושה ד' |
|
א"כ שרש י"ו הוא יותר מב' שהוא שרש ד' |
|
וכמו שי"ו לא יתכן להוציאו מד' מפני שהוא יותר מד' כמו כן שרש י"ו לא יתכן להוציאו משרש ד' |
|
ולכן ברצותנו לחלק י"ט בב' ושרש י"ו או מהפכים החלוק ונאמר בשרש י"ו וב' |
|
וזה נעשה אנחנו כדי לכפול שרש י"ו וב' בשרש י"ו פחות ב' וזה בטוב נוכל לעשותו ועולה י"ב |
|
א"כ נאמר עם כלל הג' אם מי"ב יגיע שרש י"ו פחות ב' כמה יגיע מי"ט |
|
תכפול שרש י"ו פחות ב' בי"ט ועולה שרש מה' אלפים ותשע"ו פחות ל"ח ותחלקם בי"ב ויגיע שרש ממ' ותשיעית פחות שלשה ושתות |
When having a number and a root [or] two equal roots, meaning that the root that is added to the number is as great as the number, or that there are two roots that are equal to one another, and one intend to divide by the sum of both, it cannot be answered or dealt with by one of the said manners. | ודע כי אם יזדמן לך מספר אחד ושרש או אחד וב' שרשים שוים רצוני כי השרש שתחבר עם המספר יהיה גדול כמו המספר או שיהיו ב' שרשים שוים האחד לאחר ואם בא לחלק שניהם מחוברים לא נוכל לענות או להתעסק בם באחד מהאופני' האמורים |
The reason for this is that when wishing to multiply a number and a root by the same number minus the same root, the root being equal to the number, the product will yield nothing. | והסבה למה היא זאת כי ברצותנו לכפול מספר ושרש במספר כמהו פחות שרש אחר כמוהו בהיות השרש שוה אל המספר לא יעלה דבר הכפל |
|
והנה המשל נניח שרצית לכפול ב' ושרש ד' בב' פחות שרש ד' |
|
ועושה מאומה נוּלַא בלעז |
|
מפני כי ככה הוא שרש ד' כמו שהוא ב' |
|
ולכן באמור שרש ד' פחות שוה לאומר מאומה |
|
ולכן אי אפש' לכפול ב' ושרש ד' בב' פחות שרש ד' |
|
וזה השרש אם ג"כ ב' שהוא כאומ' ב' וב' בב' פחות ב' והיינו ב' וב' פחות מאומה |
The same results from two equal roots. | וכדומה לזה יגיע מב' שרשים שוים |
Therefore, when wishing to divide by such divisors, one should sum the number with the root that is equal to it in one sum and to divide by that sum. | ולכן ברצותך לחלק בחלוקות כאלה צריך לחבר המספר עם השרש השוה לו בסך אחד ולחלק בסך ההוא |
Also to sum the roots that are equal together in one sum and divide by that sum. | וכן צריך לחבר השרשים |
Division of a Number and a Root by a Number and a Root |
ואם רצית לחלק מספר ושרש במספר ושרש |
|
ונניח שרצית לחלק י"ט ושרש כ"ה בה' ושרש ט' |
|
תזכור שתהיה רוצה לכפול ה' ושורש ט' בה' פחות שרש ט' ועולה י"ו |
|
ואמור אם מי"ו יגיע לנו ה' פחות שרש ט' כמה יגיע מי"ט ושרש מכ"ה |
תכפול ה' ושרש ט' בי"ט ושרש כ"ה ועולה צ"ה ושרש תרכ"ה פחות שרש ג' אלפים רמ"ט ופחות שרש רכ"ה ואלו תחלק בי"ו ויעלה ה' וט"ו חלקים מי"ו ושרש ב' וקי"ג חלקים מרנ"ו פחות שרש י"ב וקע"ז חלקים מרנ"ו | |
| |
Division of a Number by Three Roots |
ואם רצית לחלק בג' שרשים מספר מה |
|
ונניח שרצית לחלק ל"ו בשרש ד' ובשרש ט' ובשרש י"ו בדבר |
|
ואמור מאלו השרשים כאלו הם מדוברים אתה צריך לכפול שרש ד' ושרש ט' ושרש י"ו בשרש ד' ושרש ט' פחות שרש י"ו שעולה שרש קמ"ד פחות ג' מספרים |
|
א"כ לחלוק שרש קמ"ד פחות ג' בשרש ד' ושרש ט' ובשרש י"ו יגיע לך שרש ד' ושרש ט' פחות שרש י"ו כפי מה שהראית לפנים בכלל חלוק מספר ושרש ומספר |
|
ולכן נאמ' כי זה השרש פחות מספר רצו' שרש מקמ"ד פחות ג' אשר הוא כפל ממה שנאמר קודם הנה הוא יהיה מכאן ולהבא מחלק |
|
ונאמר בכלל הג' אם שרש קמ"ד פחות ג' נותן שרש ד' ושרש ט' פחות שרש י"ו מה יתן ל"ו אשר אמרנו למעלה לחלוק בג' השרשים |
תכפול שורש ד' ושרש ט' פחות שרש י"ו בל"ו שעולה שרש מה' אלפים וקפ"ד ושרש מי"א אלפים תרי"ד פחות שרש כ' אלפים ותשל"ו | |
| |
נוכל להשיבו אל מספר מדבר מפני כי קמ"ד יש לו שרש מדבר | |
|
ולכן נאמר עוד באופן חלוקת הקודם בשרש פחות מספר תכפול שרש מקמ"ד פחות ג' בשרש קמ"ד וג' יותר עולה קל"ה ונאמ' מראש שזה הכפל הוא המחלק |
|
ונשוב אל הכלל מהג' ונאמ' אם מקל"ה יגיע קמ"ד וג' יותר כמה יגיע מראש משרש ה' אלפים וקפ"ד ומשרש י"א אלפים תרס"ד פחות שרש כ' אלפים תשל"ו |
תכפול שרש קמ"ד וג' יותר בשרש ה' אלפים וקפ"ד ושרש מי"א אלפים תרס"ד פחות שרש מכ' אלפים תשל"ו ועולה שרש מתשמ"ו אלפים ותצ"ו ושרש מאלף ותרע"ט אלפי' ותרי"ו ושרש מ"ו אלפים ותרנ"ו ושרש ק"ד אלפים ותתקע"ו פחות שרש מ 4895892 ופחות שרש מ 426681 | |
| |
Division of a Number by Four Roots |
|
If you wish to divide a certain number by four roots: | ואם רצית לחלק מספר מה בד' שרשים |
|
ונניח שרצית לחלק ע' בשרש ד' ובשרש ט' ובשרש י"ו ובשרש כ"ה מחוברים כלם יחד באופן כאלו היו השרשים האלו בלתי מדוברים |
You should create one product from these four roots, always placing the greater root first, as you have seen, this way: | הנך צריך לעשות כפל אחד מאלו הד' שרשים בשומך לעולם הגדול מהשרשים קודם כפי מה שהראית באופן זה |
|
כאמור שרש כ"ה ושרש י"ו ושרש ט' ושרש ד' בשרש כ"ה ושרש י"ו פחות שרש ט' ופחות שרש ד' ועולה שרש כ"ח ושרש אלף ת"ר פחות שרש קמ"ד |
| |
|
ונאמ' כי בחלוק כ"ח ושרש אלף ת"ר פחות שרש קמ"ד בשרש כ"ה ובשרש י"ו ובשרש ט' ובשרש ד' יעלה שרש כ"ה ושרש י"ו פחות שרש ט' ופחות שרש ד' |
|
אשאל א"כ כמה יעלה מע' |
|
הנך צריך לכפול כפי הכלל מהג' ע' בשרש כ"ה ושרש י"ו פחות שרש ט' ופחות שרש ד' שעולה שרש מקכ"ב אלפים ות"ק ושרש מע"ח אלפים ות' פחות שרש מ"ד אלפים וק' ופחות שרש מי"ט אלפים ות"ר |
| |
|
וזה הכפל הנך צריך לחלק בכ"ח ושרש אלף ות"ר פחות שרש קמ"ד |
|
וזה החלוק הוא ג' קשרים קלאפי בלעז ולכן תצטרך להמשך כפי הכלל מהחלוק בג' שרשים ולעשות שרש כ"ח ושרש אלף ת"ר פחות שרש קמ"ד בכ"ח ושרש אלף ת"ר ויותר שרש מקמ"ד שעולה אלפיים ור"מ ושרש מ ה006710 |
| |
|
וזה הכפל כאשר נחלק בכ"ח ושרש אלף ת"ר פחות שרש קמ"ד יעלה כ"ח ושרש אלף ת"ר ויותר שרש קמ"ד |
|
אשאל כמה יעלה משרש קכ"ב אלפים ות"ק ושרש ע"ח אלפים ות' פחות שרש מ"ד אלפים וק' ופחות שרש י"ט אלפים ות"ר |
|
הנך צריך לכפול כפי הכלל מהג' כ"ח ושרש אלף ת"ר ועוד שרש קמ"ד בשרש קכ"ב אלפים ות"ק ושרש ע"ח אלפים ות' פחות שרש ממ"ד אלפי' וק' ופחות שרש מי"ט אלפים ת"ר שעולה שרש מ 00004069 ושרש מ 00656416 ושרש מ 000000691 ושרש מ 000044521 ושרש מ 00004671 ושרש מ 00698211 פחות שרש מ 00447543 ופחות שרש מ 00466351 ופחות שרש מ 00006507 ופחות שרש מ 00006313 ופחות שרש מ 0040536 ופחות שרש מ 0042282 |
| |
|
וזה הכפל תחלק באלפיים ר"מ ושרש מ 0067105 אשר זה המחלק הוא מב' קשרים קלאפי בלעז שהם שוים |
|
ואם היה אחד מהם גדול מהאחר היינו מתעסקים בזה באופן החלוק בב' שרשים |
|
אבל אי אפשר עתה להמשך כפי מה שנאמ' קודם מפני כי צריך לחבר החלקים יחד בקול אחד כאשר הם בלתי שוים |
|
לכן תחבר אלפיים ור"מ עם שרש מ 0067105 שהוא אלפיים ור"מ ועולה ד' אלפים ות"פ וככה הוא המחלק האמור |
|
א"כ תחלק הכפל האמור קודם בי"ב קשרים שהם ו' שרשים פחות ו' שרשים אחרים שיעלה שרש ד' ור"א חלקים מרנ"ו ושרש ג' וי"ו חלקים מרנ"ו ושרש ט' וקצ"ו חלקים מרנ"ו ושרש ו' וס"ד חלקים מרנ"ו ושרש 0 ורכ"ה חלקי' מרנ"ו ושרש 0 וקמ"ד חלקים מרנ"ו פחות שרש א' וקפ"ה חלקים מרנ"ו ופחות שרש 0 וקצ"ו חלקים מרנ"ו ופחות שרש ג' וקל"ב חלקים מרנ"ו ופחות שרש א' וקמ"ד חלקים מרנ"ו ופחות שרש 0 ופ"א חלקים מרנ"ו ופחות שרש 0 ול"ו חלקים מרנ"ו וככה יעלה לחלוק ע' בשרש ד' ובשרש ט' ובשרש י"ו ובשרש כ"ה |
|
ואלו שרשי החלוקה כאשר הושבו למספר מדובר יהיה סכומם ה' מספרים שלמים |
| |
עוד אפשר לחלקו בשרשים האמורים או בד' שרשי' אחרים שיזדמנו באופן אחר הנראה יותר חמור בהתחלה מהאופן אשר הראית אבל הוא יותר נקל בהמשך הפעל ג"כ הוא מוצרך ברצותך לחלק ביותר שרשים וזה הוא זה האופן | |
Suppose you wish to divide 70 by the sum of a root of 4, a root of 9, a root of 16, and a root of 25, as if the roots were inexpressible.
|
נניח שרצית לחלק ע' בשרש ד' ובשרש ט' ובשרש י"ו ובשרש כ"ה מחוברים באופן כאלו היו השרשים בלתי מדברים |
Sum up the two smaller together and the two greater together in a way they can be summed, if any of them cannot be combined into one expression. | תחבר שני הקטנים יחד ושני הגדולים יחד באופן שאפשר לחברם אם לא יתכן חבורם אי זה מהם יחד בקול אחד |
Assuming that when one is multiplied by the other the result is an inexpressible root: | בהניח כי כשיכפל האחד באחר יעשה שרש בלתי מדבר |
|
ולכן בחבר שרש ד' בשרש ט' באופן האמור עושה שרש מחבור שרש קמ"ד עם י"ג |
|
אח"כ תחבר שרש י"ו עם שרש כ"ה ועושה שרש מחבור שרש אלף ת"ר עם מ"א |
בחבר אליו באופן האמור קודם דהיינו באופן השני מאלו אשר אי אפשר לחברם בקול אחד | |
אח"כ תשים שני השרשים הגדולים קודם שני הקטנים כפי מה שהם מחוברים | |
ותכפלם בשני הגדולים מחוברים פחות שני הקטנים מחוברים באלו | |
באמור שרש מחבור אלף ת"ר עם מ"א ושרש מחבור שרש קמ"ד עם י"ג בשרש מחבור שרש אלף ת"ר עם מ"א פחות שרש מחבור קמ"ד עם י"ג ועולה כ"ח ושרש אלף ת"ר פחות שרש קמ"ד | |
| |
|
עתה תשוב אל הכלל מהג' ואמור אם מזה הכפל רצוני מכ"ח ושרש אלף ת"ר פחות שרש קמ"ד יגיע שרש מחבור שרש מאלף ת"ר עם מ"א פחות שרש מחבור קמ"ד עם י"ג כמה יעלה מע' |
תכפול שרש מחבור אלף ת"ר עם מ"א פחות שרש מחבור שרש קמ"ד עם י"ג בע' שעולה שרש מחבור שרש מ 00000061483 עם שרש מ 009002 פחות שרש מחבור שרש מ 0000447543 עם 00736 | |
| |
|
וזה תחלק על כ"ח ושרש אלף ת"ר פחות שרש קמ"ד אשר זה המחלק הוא מג' קשרים |
וצריך להמשך כפי כלל החלוק בג' כפי מה שהראינו קודם | |
וג"כ תוכל לחלק באלו ג' קשרים כפי האופן אשר המשכנו למעלה בזה הכלל | |
|
רצוני בחבר כ"ח שהוא שרש מתשפ"ד עם שרש אלף ת"ר שעולה שרש מחבור שרש מ 0067105 עם 4832 |
אשר זה השרש א' סכום יש לו שרש אחד פחות דהיינו שרש קמ"ד | |
ולכן תכפול שרש מחבור שרש מ 0067105 עם שרש מ 4832 פחות שרש קמ"ד בשרש מחבור שרש מ 0067105 עם 4832 ויותר שרש מקמ"ד | |
שעולה 0422 ויותר שרש מ 0067105 | |
| |
עתה צריך אתה לשוב עוד לכלל הג' | |
ואמור אם מאלפיים ור"מ ויותר שרש מ 0067105 יגיע שרש מחבור שרש מ 0067105 עם אלפיים רפ"ד ויותר שרש קמ"ד כמה יגיע משרש חבור מ 00000061483 עם 009002 פחות שרש מחבור שרש מ 0000447543 עם 00736 | |
תכפול שרש מחבור שרש מ 0067105 עם שרש אלפיים ושפ"ד ויותר שרש קמ"ד בשרש מחבור שרש מ 00000061483 עם 009002 פחות שרש מחבור מ 0000447543 עם 00736 | |
| |
|
שעולה שרש מחבור שרש מ 000000006121657291 עם שרש מ 000000652004415202 |
|
ועם שרש מחבור שרש מ 000000696546533812 עם 006549874 |
|
ויותר שרש מחבור שרש מ 00000067495697 |
|
עם שרש מחבור שרש מ 00000044356895302 |
|
ועם שרש מחבור שרש מ 00004621180205691 עם 008068151 |
|
ופחות שרש מחבור שרש מ 00004857439617 עם 0082719 |
|
וזה הכפל תחלק ב 0422 ויותר שרש מ 0067105 אשר המחלק הוא מב' קשרים |
וצריך להמשיך הענין כפי הכלל מהחלוק מב' שרשים אם הקשרי' היו בלתי שוים | |
|
אבל מפני שהם שוים רצוני ששרש מ 0067105 הוא אלפיים ור"מ |
|
אנחנו נחלק בכפלו שהוא ד' אלפים ות"פ |
|
שיגיע ממנו שרש מחבור שרש מתע"ח ואלפיים קי"ב חלקים מד' אלפים צ"ו עם שרש מחבור תק"ב וג' אלפים וש"ג מד' אלפים צ"ו |
| |
|
ובסכום יהיה שרש מצ"א וקי"ג חלקים מרנ"ו |
|
אשר זה השרש הוא ט' וט' חלקים מי"ו |
|
ויותר שרש מחבור שרש א' וד' אלפים וד' חלקים מד' אלפים וצ"ו עם א' וקי"ג חלקים מרנ"ו |
|
שעולים לסך שרש ב' ורי"ז חלקים מרנ"ו |
|
אשר זה השרש הוא א' וי"א חלקים מי"ו |
|
ובחברם עם השרש הראשון שהוא ט' וט' חלקים מי"ו ועולה י"א ורביע |
|
פחות שרש מחבור שרש מ"ג ורע"ב חלקים מתצ"ו עם שרש מחבור שרש נ' ואלפיים רכ"ה חלקים מד' אלפים וצ"ו |
|
ועם שרש מחבור שרש מ"ח וג' אלפים ר"א חלקים מד' אלפי' וצ"ו עם ז' וקמ"ה חלקי' מרנ"ו |
| |
|
אשר סך כלם הוא שרש כ"ח ונ"ז חלקים מרנ"ו |
|
וזה השרש הוא ה' וה' חלקים מי"ו |
|
פחות שרש מחבור שרש 0 ותשכ"ט חלקי' מד' אלפים וצ"ו עם 0 וקי"ז חלקים מרנ"ו |
|
שיהיה סכומו שרש מרכ"ה חלקים מרנ"ו |
|
אשר זה השרש הוא ט"ו חלקים מי"ו |
|
וחבורו עם השרש הראשון מזה הפחת שהוא ה' וה' חלקי' מי"ו עולה לסך ו' ורביע |
|
אם כן ישאר ה' |
וככה יעלה לחלוק ע' בשרש ד' ובשרש ט' ובשרש י"ו ובשרש כ"ה לחלק ע' בשרש ד' ובשרש ט' ובשרש י"ו ובשרש כ"ה מחוברים יחד | |
|
יעלה שרש מחבור שרש מתע"ח ואלפיים קי"ב חלקים מד' אלפים וצ"ו עם שרש מחבור שרש מתק"ב וג' אלפים ול"ג חלקי' מד' אלפים וצ"ו |
|
ועם שרש מחבור עם שרש תקמ"ב וס"ח חלקים מד' אלפים צ"ו עם כ"ג ושכ"א חלקים מרנ"ו |
|
ויותר שרש מחבור שרש א' וד' אלפים וד' חלקי' מד' אלפי' וצ"ו עם א' וקי"ג חלקי' מרנ"ו |
|
פחות שרש מחבור מ"ג ורע"ב חלקים מד' אלפים וצ"ו עם שרש מחבור שרש נ' וב' אלפים רכ"ו חלקי' מד' אלפים וצ"ו |
|
ועם שרש מחבור שרש מ"ח וג' אלפים ור"א חלקי' מד' אלפים וצ"ו עם ז' וקמ"ה חלקים מרנ"ו |
|
ופחות שרש מחבור שרש 0 ותשכ"ט חלקי' מד' אלפים וצ"ו עם 0 וקי"ז חלקי' מרנ"ו |
ומושב הכל למספר מדובר יעלה אל סך מה שיעלה מהחלוקה שהוא חמשה | |
ודע כי מינים רבים אחרים מהחלוק אפש' שיזדמנו לך והם בלי תכלית | |
אבל מן הלמודים אשר הגדנו למעלה תוכל לדעת לתת כלל לכלם לכפל ולחלוק ולמגרעת ולחבור שיוכלו להזדמן לך |
Algebra |
||
The Six Canonical Equations |
||
There are six chapters in the book al-Jīblī al-Mūqabāla | בספר אלג'יבְלֵי אלמוגאבאלא יש בו ששה פרקים | |
|
ומהם שלשה פשוטים | |
|
והאחרים הם מורכבים | |
The third of the three simple can be restored to the first. | והשלישי מהג' הפשוטים אפשר להשיבו אל הראשון | |
One can observe these chapters and create many other species that can be restored to this nature or to the similarity of the mentioned chapters, as you can see in the example of the amendments that are set from here on. | ועל אלו הפרקים אפשר להתבונן ולעשות מינים רבי' אחרי' אשר בעבור זה ישובו אל הטבע או אל דמיון הפרקים האמורים כפי אשר תראה במשל בתקונים אשר נניח מכאן ולהבא | |
By these chapters, with the amendments, it is possible to reach through demonstration to profound concealed subtle calculations, either of arithmetic or of geometry. | אשר עם אלו הפרקים עם התקונים אפשר להגיע בבאור אל חשבונות עמוקים ונסתרים ודקים בין מן האריסמיטיקא ובין מהגימטריא | |
אלו הפרקים הכתובי' תחת זה הם הפרקים וטבעם | ||
הפרק הא' יבא דבר שוה למספר | ||
הפרק הב' יבא צינסו שוה למספר | ||
הפרק הג' יבא דבר שוה לצינסו | ||
הפרק הד' יבא צינסו ודבר שוה למספר | ||
הפרק הה' יבא צינסו ומספר שוה לדבר | ||
הפרק הו' יבא צינסו ומספר שוה לצינסו | ||
|
הטבע מן הפרק הראשון הוא זה כאשר הדברים יהיו שוי' אל המספר | |
|
צריך לחלק המספר בכמות הדברים והעולה מהן שוה הדבר | |
|
נניח המשל ונאמר כי שלשה דברי' יהיו שוים לי"ב | |
|
חלק המספר שהוא י"ב בכמויות הדברים שהם ג' ויעלה מהם ד' וככה שוה הדבר | |
|
א"כ אם הדבר הוא ד' ג' דברים היטב הם שוים אל י"ב | |
|
הטבע מן הפרק השני הוא זה כאשר הצינסי יהיו שוים אל המספר | |
|
צריך לחלק המספר בכמויות הצינסי והעולה מזה ככה שוה הצינסו | |
|
והדבר הוא השרש מאשר יגיע מפני כי הדבר הוא שרש מהצינסו | |
|
נניח כי ב' צינסי יהיו שוים אל ל"ב | |
|
תחלק המספר שהוא ל"ב בכמויות הצינסי שהם ב' ויהיה המגיע י"ו וככה שוה הצינסו | |
|
והדבר הוא שרשו דהיינו שרש מי"ו שהוא ד' | |
|
ולכן אם הצינסו הוא י"ו ב' צינסי היטב יהיו שוים לל"ב | |
|
הטבע מהפרק השלישי הוא זה כאשר הדברי' הם שוים לצינסי | |
|
צריך לחלק כמויות הדברי' בכמויות הצינסי והעולה מזה הוא מספר וככה שוה הדבר | |
|
נניח כי ב' צינסי יהיו שוים אל ו' דברים | |
|
תחלק כמויות הדברים שהם ו' בכמויות הצינסי שהם ב' ויהיה העולה ג' וככה שוה הדבר | |
|
וזה הדבר בהיותו ג' | |
|
הצינסו יהיה ט' | |
|
ואם הצינסו הוא ט' א"כ ב' צינסי יהיו י"ח | |
|
ובהיות הדבר ג' ו' דברים יפה הם שוים י"ח | |
|
ולכן ב' צינסי יהיו היטב שוים לו' דברי' | |
The third chapter can be restored to the first [chapter]. | ודע כי זה הפרק השלישי אפשר להשיבו אל הראשון | |
כפי האמור למעלה אֵיסְקִיסאנְדּוֹ האַדֵּיקְוואצִיאוֹנֵי הוא התקון בדבר כמו שתראה בהמשך הספר האמור | ||
|
הטבע מהפרק הד' שהוא הראשון מהמורכבים בעבור כי אחד או כמות אחד יזדמן שיושם שוה לשני כמויות אחרים מתחלפים הוא זה כאשר הצינסי והדברים יהיו שוים למספרים | |
|
צריך לחלק כל האדיקוואציאני בכמויות הצינסי | |
|
ואח"כ לחלק כמויות הדברים לשני חלקים שוים ואחד מאותם החלקים שהוא חצים תכה בעצמו | |
|
והנה המשל נניח כי ב' צינסי וכ' דברים יהיו שוים אל ע"ח דראמי דהיינו מספרים | |
|
הנך צריך עתה לחלק כל הדיקוואציאוני בכמויות הצינסי | |
|
ויהיה לך צינסי אחד וי' דברי' שוים לל"ט | |
|
אח"כ תחלק כמויות הדברים לחצי רצוני על ב' ויהיה כל אחד מהחלקים ה' וזה הה' תכפול בעצמו ויהיה לנו כ"ה | |
|
והצינסו הוא הכאתו בעצמו שהוא ט' | |
|
א"כ בהיות הצינסו האחד ט' וי' דברים כשישוה הדבר ג' יהיו ל' וכשיחוברו יחד יהיו היטב שוים אל ל"ט | |
|
הטבע מהפרק החמישי רצוני השני מהמורכבים הוא זה כאשר הצינסי והמספר יהיו שוים למספר | |
|
צריך לחלק כל האדיקוואציאוני בכמויות הצינסי | |
|
ואח"כ לחלק הדברים לשנים ואחד מאותם החצאים רצוני הכמות מאחד מאותם החלקים החצאים תכפול בעצמו | |
ודע כי חשבונות מה תצטרך להשיב שיהיה הדבר באופן הראשון רצוני שיהיה החצי מכמות הדברים ויותר שרש מהנשאר | ||
וחשבונו' אחדים מה באופן השני שהוא החצי מכמות הדברים פחות שרש הנשאר | ||
ויש אשר אפשר לענות בם בשני האופנים | ||
|
והנה המשל נניח כי ג' צינסי וס"ג מספרי' יהיו שוים לל' דברים | |
|
הנך צריך לחלק ראשונה כל האדיקווציאוני בכמות הצינסי שהוא ג' | |
|
ויהיה לך א' צינסו וכ"א מספרים שוים לי' דברים | |
|
אח"כ תחלק כמות הדברים לחצי ויהיה לך כל חלק ה' וזה הה' תכפול בעצמו ועולה כ"ה | |
ופעמים מה כפי השני ולא כראשון תוכל להשיב שהדבר הוא כפי האופן הראשון ולא כשני ופעמים מה כפי השני ולא כראשון כמו שתראה מכאן ולהבא בחשבונות מה יושמו לזה הקפיטולו | ||
|
ואם תשיב היות הדבר כפי האופן הראשון שהוא ה' ושרש ד' שהוא ב' יהיה לך היות הדבר ז' | |
|
ואם הדבר הוא ז' י' דברים יהיו ע' | |
|
והצינסו יהיה מ"ט בהיות הדבר ז' | |
|
אם כן א' צינסו עם כ"א יותר יגיע היטב להיות שוה לי' דברים | |
|
ואם תענה היות הדבר כפי האופן השני שהוא ה' פחות שרש ד' אשר זה השרש הוא ב' ישאר להיות הדבר ג' | |
|
וי' הדברי' יהיו ל' | |
|
והצינסו יהיה ט' בהיות הדבר ג' | |
א"כ א' צינסו עם כ"א יותר יהיו היטב שוים בשני האופנים | ||
אבל הכרח מענה האופן הראשון עם של השני אי אפשר לראותו במשל הפרק לבד למה יתן באופן האחר והשני אבל תראה ההכרח מהתשובות מכאן ולהבא בהמשך הספ' האמור | ||
|
הטבע מהפרק הששי שהוא השלישי המורכב הוא זה כאשר הדברים והמספרי' יהיו שוי' אל הצינסי | |
|
צריך לחלק כל האדיקווציאוני בפחות הצינסי | |
|
ואח"כ לחלק הדברי' לשני' ואחד מאלו החצאי' רצו' כמותו תכפול בעצמו | |
|
והנה המשל נניח כי שלשה דברים וד' דראמי רצוני ד' מספרים יהיו שוים אל א' צינסו | |
הנך צריך לחלק כל האדיקווציאונסי בכמות הצינסי שהוא א' ויבא זאת השאלה בעצמה | ||
|
ולכן תחלק כמות הדברים לצינסי לחצי ויהיה לך א' וחצי תכפלהו בעצמו ויגיע ב' ורביע | |
|
א"כ אם הדבר הוא ד' והצינסו יהיה הכאתו בעצמו והוא י"ו | |
|
ובהיות הדבר ד' ג' דברים יהיו י"ב | |
|
א"כ ג' דברי' וד' יותר היטב יהיו שוים לא' צינסו שהוא י"ו | |
בכאן יראה התחכמות האדיקווציאוני הם השאלות לפי דעתי | ||
דע כי לעולם אם יזדמן לך אי זו שאלה מורכבת שתחלק לעולם כל השאלה בכמו שהוא כמות הצינסו ולהשיבה לעולם לא' צינסו כאשר הראית בשאלות מהג' פרקים המורכבים האמורי' למעלה | ||
וכן בדומה לזה תמשיך הענין בכל אחת מהשאלות המורכבות לחלק לעולם כל השאלה בכמות אשר באחדותו יש לו מהות גדול אשר מאחדות מה מכמויות שיהיו בשאלה ההיא | ||
ואח"כ תחלק תמשיך טבע הפרק כפי מה שהראית ושעתיד להראות מכאן ולהבא | ||
Geometric Illustrations of the Three Compound Equations |
בכאן יראה צורת הג' פרקים המורכבים | |
עוד רצוני להראותך טבע אלו הג' פרקים המורכבים בצורת כל אחד לבדו | ||
|
איך א' צינסו וי' דברים יבא מופת שהם שוים אל ל"ט | |
בהיות כי הדבר אשר נקבנו בשם הוא שרש הצינסו ולכן יהיה הצינסו שטח אחד מרובע נצב הזויות שוה הצלעות | ||
|
||
|
ולכן נצייר צורת זה מרובע אחד שוה הצלעות והזויות נצבות ונאמר כי זה המרובע הוא הצינסו והוא השטח שעליו א"ב | |
|
ומפני כי הדבר הוא שרש הצינסו יהיה צלעות למרובע האמור | |
|
ובהיות כי נוסף על הצינסו י' דברים אנו נחלק אלו הי' דברים בד' חלקים ויגיע לכל חלק ב' דברים וחצי | |
|
ובהיות כי הדבר הוא צלעות הצינסו אנחנו נדביק כל אחד מאלו הד' חלקים אל הצינסו וכל החלק לבדו לצלעו מהצינסו ויהיו לנו ד' שטחים כל אחד מהם יהיה רחבו ב' וחצי וארכו כאורך צלעות הצינסו ושטח כל אחד מהם עליו ג"ד | |
|
ולכל אחד מזויות הצינסו יהיה עליו מרובע אחד שוה הצלעות והזויות נצבות ויהיה רחבו בצלעותיו כרחב הדברים שהוא ב' וחצי | |
|
וכל אלו הד' שטחים שוה הצלעות והזויות נצבות כאמור והם בארך וברחב שוים לרחב הדברים ושטחיהם יחד עולים לסכום כ"ה | |
|
וצלעותיהם ו"ז והוא ב' וחצי | |
|
וא"כ יהיה לנו עתה מרובע אחד המחזיק הצינסו ועשרת הדברים | |
|
וג"כ אלו הד' שטחים שהם חוץ מהזויות מהצינסו המוחזקים במרחב הדברים אשר שטחיהם הוא כ"ה כפי האמור וכמו שהראה | |
|
ושטח הצינסו יהיה עם שטח הדברים ל"ט | |
|
ומחובר עם כ"ה שהוא שטח הד' מרובעים השוי הצלעות עושה ס"ד | |
|
א"כ יהיה לנו מרובע אחד אשר יחזיק כל אלו השטחים ושטחו יהיה ס"ד עליו ח"ט | |
|
ויהיה שוה הצלעות והד' זויות | |
|
ולכן צלעו יהיה שרש ס"ד | |
|
וצלע הסינסו יהיה ה' פחות | |
|
מפני כי הדברים אשר ממעל עם אשר מתחת או ג"כ המרובעים מהזויות יש להם ממרחב ב' וחצי | |
|
והנה כי ב' וחצי ממעל וב' וחצי מתחת מחוברים יחד עושה ה' | |
|
אם כן יהיה צלע הצינסו ה' פחות מצלע המרובע המחזיק כל אלו השטחים | |
|
וכמו שראית זה מפני רוחב הדברים ממעל ומתחת וכדומה לזה תוכל לראות ברוחב הדברים מהצלעות | |
|
מפני כי כל צלע שוה רצוני צלעות הצינסו הם שוים זה לזה | |
|
וצלעות המרובע הגדול שוים זה לזה | |
|
א"כ יהיה הדבר שהוא צלע הצינסו שהוא שרש הצינסו שרש ס"ד פחות ה' | |
|
וזה השרש במספר מדובר הוא ג' | |
|
ואם הדבר שהוא שרש צינסו הוא ג' הצינסו יהיה הכאתו בעצמו שהוא ט' וזה הט' הוא שטח הצינסו | |
עוד רצוני להראותך זה באופן אחר | ||
|
באמרנו בדומה לזה שצינסו אחד ועשרה דברים או אמור עשרה שרשיו הם שוים לל"ט | |
|
||
|
אנחנו נצייר עתה מרובע אחד שוה הצלעות מד' זויות בעבור הצינסו ועל השטח רשמנו ב"ג | |
|
ועשרת הדברים אנו מחלקים לב' חלקים ויהיה לנו כי כל חלק יהיה ה' שרשים מהצינסו או אמור ה' דברים | |
|
אשר אנחנו נדביק כל חלק אל צלע הצינסו כפי אשר תראה מצוייר פה בזאת הצורה ויהיה לנו שני אלו החלקים מדובקים לשני צדדי הצינסו אשר אלו הצדדים מחזיקים זוית אחד ושטח כל אחד מאלו הה' דברים יהיה ד"ה | |
|
עתה יהיה לך שאלו השני שטחים יחזיקו ב' צלעות ממרובע אחד שוה הצלעות נצב הזויות ובהיות צלעותיו ה' יהיה שטחו אשר עליו ו"ז כ"ה | |
|
ויש לנו שטח הצינסו ושטח הדברים היותם שוים אל ל"ט מפני כי אמרנו צינסו אחד וי' דברים הם שוים אל ל"ט | |
|
ויהיה לנו השטח שהוא כ"ה אשר עליו ו"ז מחובר עם ל"ט יעלו לסך ס"ד | |
|
ואלו הד' שטחים יהיו מחזיקים בשטח אחד שוה הצלעות ונצב הזויות אשר שטחו הוא ס"ד ועליו ח"ט | |
|
וצלעו יהיה שרש ס"ד | |
|
וצלע הצינסו שהוא הדבר יהיה ה' פחות | |
|
אם כן יהיה לנו שהדבר הוא שרש ס"ד שהוא ח' והוצא מהם ה' שהוא פחות מח' וישאר ג' | |
|
א"כ בהיות הדבר ג' הצינסו יהיה ט' רצוני שטחו אשר עליו ב"ג | |
|
ושטח כל אחד מן החלקים מהדברים שעליהם ד"ה יהיו ט"ו | |
א"כ היטב יהיה צינסו אחד ועשרה דברים מראה להיות שוים אל ל"ט מכל אחד משני האופנים האמורים מראים בצורה | ||
|
בפרק השני המורכב הונח צינסו אחד וכ"א יותר שוה לי' שרשים או אמור לי' דברים | |
וזה הפרק אנחנו מראים מהותו מזאת הצורה | ||
|
||
|
אשר אנחנו מתחילי' ראשונה שיהיה הצינסו המרובע שוה הצלעות ונצב הזויות אשר על שטחו רשמנו א"ב | |
|
וכל אחד מצלעיו יהיה שוה לג"ד | |
|
ונוסיף לצלע ב"ו שטח אחד מכ"א אשר עליו ב"ז | |
|
א"כ אורך השטח מהמספר והצינסו יהיו עשרה שרשים מהצינסו | |
|
מפני כי כל אחד מאלו השטחים יהיה מרחבם כשרש הצינסו שהוא ג"ד ב"ו | |
|
ואורך שני אלו השטחים הוא כאורך עשרה שרשים והוא קו ג"ז | |
|
וזה האורך תחלק לחצי ותמשיך קו אחד עליו ט"כ ויהיה שוה לקו ט"ז ויהיה זה הקו אם כן ארכו ה' | |
|
מפני כי ג"ז ארכו עשרה | |
|
וג"ט הוא שוה לט"ז א"כ כל אחד מאלו הקוים יהיה ה' | |
|
וכדומה לזה יהיה ד"ח ח"ק אשר הוא שוה לכ"ל | |
|
אם כן ט"כ וכ"ל ול"ז וז"ט הם ד' צלעות שוים וכל אחד יהיה ה' | |
|
א"כ שטח זה המרובע שעליו כ"ז יהיה כ"ה | |
|
וקו ח"כ שוה לקו ו"ט | |
|
מפני כי ט"ח הוא שוה לו"ב | |
|
וט"כ הוא שוה לג"ט | |
|
תגיע קו אחד מח"נ שוה לג"ו | |
|
ומנ' אל מ' שוה לו"ט | |
|
ויהיה לך מנ"ק שוה לט"ו או שוה לב"ח | |
|
א"כ יהיה לך מרובע אחד שוה הצלעות נצב הזויות אשר צלעותיו יהיו נ"ק ק"ל ל"מ מ"נ | |
|
ושטח נ"כ יהיה שוה לשטח ח"ו | |
|
ושטח ב"ז או אמור ו"ק הוא יהיה כ"א שהוא השטח שנוסף על הצינסו | |
|
א"כ שטח ט"ק ושטח כ"נ יהיו כ"א | |
|
מפני כי אנחנו עוזבים שטח ו"ח ולוקחים כ"נ שהוא שוה לו"ח | |
|
א"כ ישאר השטח המרובע שהוא ל"נ שוה הצלעות היותו ד' | |
|
וצלעו יהיה שרש ד' | |
|
מפני כי שטח כ"ז הוא כ"ה | |
|
ושני שטחי ח"ז וכ"נ יהיו כ"א כאשר הראה | |
|
א"כ ז"ל שהוא ה' בגרוע ממנו ק"ל שהוא שרש ד' ישאר ק"ז ה' פחות שרש ד' | |
|
וק"ז הוא שוה לצלע או אמור אל שרש הצינסו | |
|
א"כ יהיה לנו שיהיה צלע הצינסו או אמור שרשו אשר ינקב בשם דבר היותו ה' פחות שרש ד' וכשהושב אל מספר מדובר יהיה ג' | |
|
והצינסו יהיה הכאתו בעצמו שהוא ט' | |
|
א"כ שטח הי' דברים שהוא ד"ז יהיו שלשים | |
עוד רצוני להראותך התקון הנזכר באופן אחר | ||
בהיות כי הדבר שהוא צלע הצינסו יהיה פעמים רבות יותר ממחצית הדברים שרש הנשאר בהוצאת הדברים המספרים או שטחו משטח מחצית כמות הדברים תכפול בעצמו בזה האופן אשר נצייר | ||
|
||
|
צלע הצינסו יהיה א"ב | |
|
וב"ד וג"ד וג"א כל אחד מהם נצב הזויות ושוים זה לזה | |
|
שטח זה הצינסו הוא ג"ב | |
|
ונוסיף על זה הצינסו כ"א והוא שטח ב"ל | |
|
וזה השטח מרחבו קו ב"ו ומאורך כמו הדבר או אמור בצלע הצינסו אשר הוא שוה לו"ל | |
|
ויהיו לנו שני אלו השטחים שהם ג"ב וד"ו שוים לעשרה דברים | |
|
אשר אלו הי' דברים יש להם מאורך מא' עד ו' | |
|
וזה האורך אנו נחצה לשני חלקים שוים בנקודת ה' | |
|
א"כ יש לנו א"ה וכן ה"ו יהיו חמשה | |
|
ואורך ה"ו נוציא קו אחד ישר מה' אל ע' ויהיה ה"ע חמשה | |
|
ונוציא קו אחר ישר מע' אל ח' נכחי לקו ו"ה | |
|
ויהיה לנו שטח אחד שוה הצלעות ונצב הזויות עליו ה"ו ו"ח ח"ע ע"ה | |
|
ויהיה כל אחד מאלו הצלעות חמשה | |
|
ושטח זה המרובע יהיה כ"ה | |
|
א"כ שטח ע"ו יהיה ד' יותר מד"ו | |
|
וכדומה לזה יהיה לנו שטח ע"ב היותו יותר ד' מד"ח | |
|
א"כ יהיה לנו קו אחד ישר מס"פ שוה לע"כ | |
|
ועתה יהיה לנו קו ס"נ ופ"ד שוה לע"ח | |
|
מפני כי כל כך יעדיף ל"ו על ח"ו כמו שיעדיף ד"ב אל ד"פ | |
|
וככה יעדיף א"ב על א"ה כמו ד"ב על ד"פ או ל"ו אל ו"ח | |
|
א"כ שטח ב"ס יהיה שוה לשטח | |
|
ע"פ הוא שוה לשטח ד"ח | |
|
ושטח ד"ו הוא כ"א | |
|
א"כ אלו שני השטחים שהם ע"פ כ"ו יהיו כ"א | |
|
ושטח ס"ב הוא ד' | |
|
וצלעו יהיה שרש ד' | |
|
וא"ה הוא חמשה | |
|
מפני כי ה"ו הוא חמשה שהוא אורך מחצית כמות הדברים | |
|
אם כן א"ב הוא חמשה ושרש ד' וככה יהיה שוה הדבר | |
|
והצינסו הוא הכאתו בעצמו | |
|
וכאשר הושב סכומו במספר מדובר יהיה הדבר ז' | |
|
מפני כי שרש ד' הוא ב' | |
|
והצינסו מז' הוא מ"ט שטחו אשר עליו ג"ב | |
הפרק השלישי המורכב אנחנו נראהו בצורה בזה האופן | ||
|
נניח שאנחנו יש לנו צינסו אחד שוה לג' דברים או ג' שרשיו וד' דרמי יותר | |
|
||
|
אנו נניח שהצינסו יהיה שטח על צלעיו א"ב ב"ד ד"ז ז"א ושטחו יהיה א"ד | |
|
ונעשה שמז' עד ה' יהיו ג' שרשיו אשר עם ד' דרמי יהיה שוה לכל הסינסו | |
|
ונוציא קו אחד נכחי לא"ה | |
|
א"כ שטח ה"ד יהיה הג' דברים | |
|
ושטח ה"ב יהיה ד' דרמי | |
|
מפני כי כשנוסיף ד' על ג' דברים הוא שוה לכל הצינסו | |
|
אח"כ תחלק קו ה"ז לשני חלקים שוים אשר זה הקו ארכו שלשה דברים ויש לנו מז' עד ח' או מה' עד ח' אחד וחצי | |
|
אח"כ תוציא קו אחד מה' אל כ' ואחד מח' אל ט' נכחיים אשר יהיה אורך כל אחד שוה לה"ח שהוא אחד וחצי | |
|
א"כ כשנוציא קו ח"ט יש לנו מרובע שוה הצלעות | |
|
מפני כי קו כ"ה שוה לה"ח וה"ח שוה לח"ט או לה"כ | |
|
א"כ שטחו יהיה ב' ורביע והוא שטח ט"ה | |
|
עוד רציתי להוסיף על קו ח"ט קו אחד עד נקודת ל' שיהיה שוה לא"ה ויהיה ח"ל שוה לח"א | |
|
ועתה תוציא קו אחד מל' בנקודת מ' נכחי לקו ח"א | |
|
ויהיה שוה לקו ח"א והוא שוה לח"ל וכן לא"מ | |
|
ויהיה לנו מרובע שוה הצלעות והוא שטח ח"מ | |
|
ומפני שא"מ הוא שוה לא"ח | |
|
יהיה מ"ב שוה לח"ז | |
|
וח"ז הוא שוה לה"ח | |
|
וה"ח שוה לח"ט | |
|
אם כן מ"ב הוא שוה לכ"ט | |
|
והיה לנו כי מ"נ הוא שוה לא"ה | |
|
וא"ה הוא שוה לט"ל | |
|
א"כ מ"נ הוא שוה לט"ל | |
|
ושטח כ"ל יהיה שוה לשטח נ"ב | |
|
א"כ שטח א"נ ושטח כ"ל יהיו ארבעה | |
|
כי שני אלו השטחים א"נ וכ"ל יהיו שוים לשטח ה"ב שהוא ארבעה | |
|
אם כן שטח ח"מ יהיה ששה ורביע | |
|
וצלעו יהיה שרשו מפני כי הוא שטח אחד שוה הצלעות | |
|
אם כן צלעו א"ח יהיה שרש ששה ורביע שהוא ב' ורביע | |
|
ומח"ז הוא אחד וחצי | |
|
שיהיה אם כן כל הקו מא"ז שהוא צלע הצינסו או הדבר יהיה ארבעה במספר או שרש ו' ורביע
ויותר א' וחצי כמו שהראית בצורה הרשומה למעלה | |
בכאן נראה האופן והדרך להשיב השאלות אל ההשואות כאשר תוכל לראות | ||
Operations with Algebraic Expressions |
||
Before giving any question, the way and the method are stated, which should be held in order to find the explanation how the questions are restored to the said chapters as well as other chapters that will be given from here on. | קודם שאניח שום שאלה רצוני להגיד הדרך והאופן הצריך להחזיק בו כדי למצוא באור השאלות כיצד יושבו להשואת הפרקים האמורים וג"כ לפרקי' אחרי' אשר יונחו מכאן ולהבא | |
Knowing that what is unknown of the given question should always be defined as a thing or a çenso. | ביודעך לעולם כי אשר אינך יודע מן השאלה המונחת הנך צריך להניח שיהיה דבר או צינסו | |
In any case, it should first be defined as a thing. | ומכל מקום תניח ראשונה שיהיה דבר | |
Yet, many times it would be easier in the question that the unknown term will be çenso. | ופעמים רבות בשאלה יגיעך נקל יותר שהחלק הנעלם יהיה צינסו | |
Since, defining the thing instead of a çenso changes the chapter or the equation. | בהיות כי מהנחת הדבר במקום צינסו יגיע חילוף הפרק או ההשואה | |
As seen above: thing = the side of the çenso, or √çenso | וכמו שהראינו לפנים הדבר הוא צלע הצינסו או שרש הצינסו | |
Therefore:
|
ולכן בהכותנו או בכפלנו הדבר בעצמו עושה הצינסו | |
|
והדבר כשיוכה בצינסו עושה מעוקב | |
According to these three names, the number is understood in three ways: | ובאלו הג' שמות יובן המספר בג' אופנים | |
|
או כפי האורך הקו | |
|
או כפי רחב השטח | |
|
או כפי העובי שהוא כמות גשמי | |
בהיות כי הראינו לך הדבר והצינסו בצורה שעבר | ||
|
רצוני שהדבר הוא אורך צלע הצינסו | |
|
והצינסו הוא שטח שוה הצלעות נצב הזויות | |
|
רצוני לאמר לך מן המעוקב טבעו כי הוא רחב ואורך וגובה שוים יחד | |
|
כמו צורת הקוביא שהוא שוה בגובה וברחב ובארך | |
|
וצדדיו יהיו משטחים שוים | |
|
וצלעותיו מאורך שוה | |
|
וכמו כן זויותיו יהיה שוים זה אל זה | |
|
א"כ כל צלע מהמעוקב הוא הדבר | |
|
וכל אחד מצדדיו יהיה הצינסו שלו | |
|
וראשיותיו הוא המעוקב | |
|
א"כ בהכפל דבר בדבר עושה צינסו | |
|
ובהכות דבר בצינסו עושה מעוקב | |
|
ודבר במעוקב עושה צינסו מצינסו | |
The çenso of çenso can be understood from two aspects: | וזה הצינסו מצינסו אפשר להבינו בשני פנים | |
|
בעבור כי צינסו מוכה בצינסו עושה צינסו מצינסו | |
|
ודבר מוכה בצינסו עושה צינסו מצינסו | |
|
וכשיוכו מספרים בכמות מה מדברים עושה כל כך דברים כמו שעולה כמות הדברי' מוכה במספר | |
|
ובהכות כמות מה מצינסי במספר עושה כל כך צינסו כמו שעולה ההכאה ההיא במספר המוכה | |
|
ובהכותנו כמות מה ממעוקבים במספר עושה כל כך מעוקבים כמו שעולה הכמות האמור במספר | |
|
ובהכפל כמות מה מצינסי דצינסי במספר עושה כל כך צינסי מצינסי כמו שעולה כמות הצינסי מצינסי כפולים במספר | |
ועם אלו הד' שמות אשר בארנו שהם דבר וצינסו ומעוקב וצינסו מצינסו יתפשטו הפרקי' אשר יכתבו כפי מה שתראה מכאן ולהבא | ||
ודע כי אם יזדמן לך לכפול מספר ודבר במספר ודבר או מספר וצינסו במספר וצינסו או מספר ודבר במספר פחות דבר או מספר וצינסו במספר פחות צינסו או בכל אופן אחר שיזדמן כפי שנויי ההכפלות שאפשר שיבאו תהיה ממשיך ההכפלה באופן אשר הראית למעלה בכפילת השרשים בהביטך לעולם להמשיך הטבע או העצמויות העושות הכמויות הנקובי' בשם בכפול האחד באחר כמו שכבר הראית קודם וכמו שנראך עתה בכמה המשלים | ||
נניח שרצית לכפול דבר במספר
או דראמא בהיות כי האחדות אשר במספר יקראוהו דראמ' | ||
|
לכן בכפול ג' דברים בד' דראמי יעלה י"ב דברי' | |
|
וד' צינסו בג' דראמ' יעלה י"ב צינסו | |
|
וב' מעוקבי' בה' דראמ' יעלה י' מעוקבי' | |
|
וה' צינסי מצינסי בג' דראמ' יעלה ט"ו צינסו מצינסו | |
Multiplication of a Number and a Thing by a Number and a Thing | ואם רצית לכפול מספר ודבר במספר ודבר | |
|
נניח שרצית לכפול ג' וב' דברי' בג' וב' דברים | |
הנך צריך לרדוף הכלל מהכפל בשרשים כפי מה שהראית למעלה | ||
הנך צריך לכפול המספרים זה על זה | ||
|
שהוא ג' בג' ועולה ט' ושמור | |
אח"כ תכה המספרי' בשתי וערב עם הדברים | ||
|
שהוא ג' בב' דברים ועולה ו' דברים | |
|
ואח"כ הג' האחר בב' דברים האחרים ועולה ו' דברים | |
|
וחברם יחד ויהיה לך י"ב דברים ושמור | |
אח"כ תכפול הדברים זה בזה | ||
|
דהיינו ב' דברי' בב' דברים ועולה ד' צינסו | |
|
וחבר הכל יחד ויהיה לך סכומם ט' דראמ' וי"ב דברים וד' צינסי | |
ובזה האופן תרדוף בשאר ההכפלות | ||
בכאן יראה האופן מהחלוק והסקיזארי מאלו המספרי' שהם דבר וצינסו ומעוקב וצינסו מצינסו כאשר תראה תחת זה | ||
עתה רצוני להראות לך באי זה אופן יהיה החלוק והבצוע מאלו השמות שהם דבר וצינסו ומעוקב וצינסו מצינסו | ||
|
בהיות כי לחלוק או לבצע הדבר במספר או בדראמ' יגיע דבר | |
|
מפני כי בכפול מספר על דבר עושה דבר | |
|
ובחלק צינסו על מספר יגיע צינסו | |
|
מפני כי הצינסו מוכה במספר עושה צינסו | |
|
ובחלק מעוקב על מספר או על דראמ' יהיה המגיע מעוקב | |
|
מפני כי המעוקב כשהוכה במספר עושה מעוקב | |
|
ובחלוק או לבצע צינסו מצינסו על מספר או דראמ' יגיע צינסו מצינסו | |
|
מפני כי בכפול צינסו דצינסו על מספר עושה צינסו מצינסו | |
|
ובחלוק דבר על דבר יגיע מספר או דראמ' | |
|
ובחלוק צינסו דצינסו יגיע דראמ' | |
|
ומעוקב על מעוקב יגיע מספר או דראמ' | |
|
ובחלוק צינסו וצינסו דצינסו על צינסו דצינסו יגיע מספר או יהיה דראמ' | |
מפני כי בכפול כל אחד מאלו הכמויות על דראמ' או מספר עושה כמו כן אותו הכמות | ||
|
וכן לחלוק או לבצע צינסו בדבר יגיע דבר | |
|
מפני כי הכאת דבר בדבר עושה צינסו | |
|
ולחלוק מעוקב על דבר יגיע צינסו | |
|
ולחלוק מעוקב על צינסו יגיע ממנו דבר | |
|
מפני כי דבר כשהוכה בצינסו או צינסו מוכה בדבר עושה מעוקב | |
|
ולחלוק צינסו מצינסו על דבר יהיה המגיע מעוקב | |
|
ולחלוק צינסו מצינסו על צינסו יגיע ממנו צינסו | |
|
ולחלוק צינסו דצינסו על מעוקב יגיע ממנו דבר | |
|
מפני כי בכפול דבר במעוקב או צינסו בצינסו או מעוקב בדבר עושה צינסו מצינסו | |
אם כן כל כמות כשהוכפל באחר הנה העולה ממנו כאשר נחלק על אחד מכמויות ההם עושה הכמות האחר | ||
והנה לך למשל במספר | ||
|
כשהוכפל ד' אחדים על ג' אחדים עושה י"ב אחדים | |
|
ולחלוק י"ב על הראשון שהוא ד' יגיע ממנו הכמות השני שהוא ג' | |
|
ובחלוק י"ב בכמות השני שהוא ג' יגיע ממנו הכמות הראשון שהוא ד' | |
דע כי בכאן בקרוב יגלה ההרגל מהו' פרקי' מאלגֵ'בְלֵי אמוגאבאלא כמו שתוכל לראות במשל | ||
Chapter One |
פרק ראשון | |
כאשר הדברים יהיו שוים אל המספרי' | ||
צריך לחלק המספר על הדברי' והעולה יהיה מספר וככה שוה הדבר | ||
|
שאלה למשל עשה לי מעשרה שני חלקים באופן כי כשהוכה כל חלק בעצמו ויגרע קטון ההכאות מהגדולה ישאר חמשים א"כ כמה יהיה כל חלק מאלו החלקים | |
The rule according to al-Jīblī al-Mūqabāla | זהו כללו כפי אלג'בלי אמוג'בלה | |
|
נניח כי אחד מחלקיו יהיה דבר אחד | |
|
והחלק האחר א"כ ישאר עשרה פחות דבר אחד | |
|
עתה תכה דבר אחד בדבר אחד ועולה צינסו אחד | |
|
אח"כ תכה החלק האחר שהוא עשרה פחות דבר אחד על עצמו שעולה ק' מספרים או דראמי וצינסו אחד פחות כ' דברים | |
|
עתה תוציא החלק האחד המוכה שהוא א' צינסו חוצה מזה הסך מהכאת החלק הגדול בעצמו שהוא ק' מספרים וא' צינסו פחות כ' דברים | |
|
וישאר ק' מספרים פחות כ' דברים וזה הנשאר הוא שוה לנ' מספרים כפי השאלה הנזכרת | |
|
עתה התבונן כי בהיות החלקי' שוים מאחד מהחלקי' יהיו כ' דברים פחות אם כן בהנתן כ' דברים לכל אחד מהחלקי' | |
|
כאשר רוצה הכלל מהו' פרקי' האמורים האומ' כאשר יחסר מחלק מה אי זה דבר צריך להוסיף עליו לעולם מה שיחסר וכן צריך להוסיף מחלק האחד כמו לאחר | |
|
א"כ בהוסיפנו כ' דברים לכל אחד מהחלקים ההם יהיו שוים | |
|
ולכן תוסיף כ' דברים על ק' מספרים פחות כ' דברים שיהיה אחד מהחלקים ויהיה ק' מספרים בדיוק ועל החלק האחר שהוא נ' תוסיף כ' דברים | |
|
ועתה יהיה לנו כי ק' מספרים יהיו שוי' לנ' מספרי' וכ' דברי' | |
|
ועתה צריך להוציא המספר הקטן מהגדול שהוא נ' מק' | |
|
וישאר מהחלק האחד נ' מספרי' ומן החלק האחר כ' דברי' לבד | |
|
מפני כי בהיות החלקי' שוים הוצאת נ' מן החלק האחד כמו מהאחר | |
|
וישאר א"כ נ' מספרי' שוים לכ' הדברי' | |
|
והם אנו צריכי' לחלק כפי הכלל האמור למעלה המספרי' על הדברים דהיינו נ' על כ' ויבא ב' וחצי וככה שוה הדבר שהוא אחד מחלקי עשרה | |
|
והאחר ישאר עשרה פחות זה הדבר שהוא ב' וחצי וישאר ז' וחצי וכן הוא החלק האחר | |
|
א"כ יהיה לך כי אחד מחלקי עשרה הוא ב' וחצי | |
|
והחלק האחר יהיה ז' וחצי | |
Another example: | עוד רצו' להניח חשבון אחר אל הפרק הזה הראשון | |
|
ואומ' כך כי רציתי לקנות ו' אמות בגד מב' מינים אחד מהחלקי' או מיני' מנ"ו דינרים האמה והאחר מס"ז דינרי' האמה | |
|
תניח מהכלל האמור ואמור כן אני רוצה דבר אחד מאמות מנ"ו דינרי' | |
|
שיהיה נ"ו דברים מדינרי' | |
|
ואשאר לקחת ו' אמות פחות דבר אחד מס"ז דינרי' האמה | |
|
וכל זה הבגד עלה לי ש"ע דינרי' | |
|
אבל מפני כי אני מניח שדבר אחד מאמות מנ"ו דינרי' שיהיה נ"ו דברי' מדינרי' | |
|
ולקחת ו' אמות פחות דבר אחד מס"ז דינרי' שעולה ת"ב דינרי' פחות ס"ז דינרי' | |
|
אשר הם שוים אל ש"ע | |
ועתה תשוב אל הכלל האמור למעלה שהוא להוציא המספר הקטון מהגדול ולהוסיף על הגורע | ||
|
ולכן אנו נוציא המספר הקטן מהגדול שהוא ש"ע מת"ב וישאר ל"ב | |
|
ועתה תגרע הדברי' הכמות הקטון מהגדול שהוא נ"ו מס"ז וישארו י"א דברים שהם יהיה המחלק | |
|
רצוני לחלק מספר ל"ב על י"א דברים שעולה ב' וי' חלקים מי"א וכן הוא אחד מהכמויו' מהבגד | |
|
והחלק האחר אם כן הוא השארית עד ו' שהוא ג' וא' מחלק י"א | |
ואשר הוא ב' אמות וי' חלקים מי"א הוא מנ"ו וי' האמה | ||
ואשר הוא ג' אמות וחלק אחד מי"א הוא מס"ז וי' האמה | ||
שעולה סכומם ש"ע דינרים שעושה היטב החשבון שהושם למעלה בעבור הפרק האמור | ||
ואזכירך כי זה החשבון ממש תוכל לעשותו מן שתי ההנחות כמו שתמצא בזה הספר אם תחפש היטב | ||
והנה החשבון האמור נשלם בעבור הפרק הראשון מאלגיבלי | ||
|
עוד בעבור הפרק הראשון שאלה תמצא לי מספר אחד אשר אם תחלק שלישיתו בשמינית אחד ממספר יעלה ה' | |
|
תניח שהמספר יהיה דבר אחד | |
|
תקח שלישיתו שהוא שלישית דבר וחלקהו בשמינית מספר | |
ידוע הוא כי כאשר נחלק כמות מה בחלוק מה ומספר החלוק העולה יכפל אחר זה במחלק יגיע מזה אותו הכמות שנחלק ראשונה | ||
וכן אם תחלק שליש אחד מדבר בשמינית אחד ממספר ראוי שיגיע ה' תכה א"כ ה' בשמינית אחד וראוי שיגיע שלישית דבר ואם תכפול ה' בשמינית אחד יעשה ה' שמיניות שיהיו שוים לשלישית אחד מדבר ובזה יהיה לך דבר שוה למספר שהוא שלישית דבר שוה לה' שמיניות ממספר שהוא זאת ההשואה מהפרק הראשון א"כ תחלק המספר על הדבר וזהו ה' שמיניות בשלישית אחד מדבר ובזה יהיה לך דבר שוה למספר ויגיע לך ט"ו שמיניות שהם א' וז' שמניות | ||
ועתה נסה נא תקח השלישית מא' וז' שמיניות ויהיו ה' שמיניות ותחלק בשמינית אחד ויעלה לך היטב ה' ונעשה בעבור הפרק הראשון | ||
|
עוד בעבור הפרק הראשון שאלה ג' פוזי וא' זוג סנדלים שוים ל"ב דינרים וו' פוזי וג' זוגות סנדלים שוים פ' דינרים | |
|
תניח שהפוזו שוה דבר אחד | |
א"כ ג' פוזי שוים ג' דברי' וזוג סנדלי' שוים ל"ב דינרי' פחות ג' דברי' ואח"כ ו' פוסו שוים ו' דברים וג' זוגו' סנדלים שוים צ"ו דינרי' פחות ט' דברים כאשר הנחת למעלה וזה יהיה שוה לפ' דינרי' תשוה החלקי' תוציא פ' מצ"ו וישאר י"ו עתה הנך יודע כי בחבר יחד ו' דברי' וצ"ו דינרי' פחות ט' דברי' עושים צ"ו פחות ג' דברים שהם שוי' אל פ' א"כ תחלקם כאמור למעלה ותוציא פ' מצ"ו ישאר י"ו אח"כ תתן לכל חלק ג' דברים מפני כי צריך תמיד לשלם במקום שיחסר כאשר הראית למעלה וכמו שאתה רואה בזה החשבון ובזה יהיה לך ג' דברים שוים לי"ו מספרי' תחלק א"כ המספרים על הדברים ויהיה לך ה' ושליש וככה שוה הדבר ואתה הנחת שהפוזו היה שוה דבר אחד א"כ יהיה שוויו ה' דברי' דינרי' ושליש והסנדלי' צריך שישוו בהכרח י"ו דינרי' | ||
והנה נעשה מן הפרק הנזכ' עוד בעבור הפרק האמור | ||
|
עשה לי מעשרה שני חלקי' אשר כשנחלק האחד באחר יעשה חמשה | |
|
תניח שאחד מהחלקים יהיה דבר אחד | |
|
והאחר צריך שיהיה עשרה פחות דבר אחד | |
|
עתה תחלק עשרה פחות דבר אחד על דבר אחד ויגיע ה' | |
|
א"כ אם תכפול ה' בדבר אחד יעשה ה' דברי' וזהו שוה אל עשרה פחות דבר אחד | |
|
להשחית החוב רצו' לשלם במקום החסר נתן לכל חלק החסרון שהוא דבר אחד | |
|
ויהיה לנו עשרה מספרי' ויהיה לנו עשרה בלי חשבון והאחר שהוא ו' דברים יהיה ו' דברי' והנה כי יש לנו שעשרה שוה לו' דברים | |
א"כ נרדוף הכלל ונחלק עשרה על ו' ויהיה העולה א' וב' שלישיו' וככה שוה הדבר ואנחנו הנחנו שהראשון היה דבר אחד א"כ היה א' וב' שלישיו' | ||
והחלק האחר היה הנשאר עד עשרה שהוא ח' ושליש | ||
ואם רצית לנסותו תחלק ח' ושליש על א' וב' שלישי' והיטב יצא ה' ונעשה בעבור הפרק הראשון | ||
Chapter Two |
פרק שני | |
Its nature is as written right below | וטבעו כמו שכתו' תחת זה מיד | |
כאשר הצינסי יהיו שוים אל המספרים | ||
צריך לחלק המספרים על הצינסי והעולה יהיה מספר וככה שוה הצינסי | ||
ושרש העולה מזה כן ישוה הדבר | ||
|
שאלה עשה לי זה החשבון הנה ב' אנשי' אשר להם עשרה דראמ' מעות ואיני אומ' לך כמה דראמ' יש לכל אחד לבדו אבל כשהוכפלו הדרמ' אשר לאחד ולאחר בעצמם יעשו כ' ורביע | |
Following the rule: | תעשה כמו שאומ' הכלל | |
|
תניח כפי אלגיברא שאחד מהחלקים יהיה דבר אחד וה' מספרים | |
|
והחלק האחר ישאר ה' פחות דבר אחד | |
|
עתה אקח ההבדל שיש בין החלק האחד לאחר רצו' מדבר אחד וה' מספרים אל דבר אחד פחות ה' מספרים פחות דבר אחד וזה ההבדל יהיה ב' דברי' | |
|
וסבת זה | |
|
כי אחד מהחלקי' הוא דבר אחד וה' מספרים | |
|
והחלק האחר הוא ה' פחות דבר אחד | |
|
א"כ אחד מהחלקי' הוא ב' חלקי' יותר מהאחר | |
|
ואם תרצה אראך זה באופן אחר בהוציאך ה' פחות דבר אחד מה' ודבר אחד ואם וישאר ב' דברי' וככה הוא הדרמ' האמור דהיינו כמה הוא החלק האחד גדול מהאחר | |
|
וזאת הדרמ' רצוני הב' דברי' תכפלהו בעצמו יעלה ד' צינסי | |
|
ואלו הד' צינסי הם שוים אל כ' ורביע | |
|
עתה תחלק המספרי' על הצינסי שהם כ' ורביע על ד' ויעלה ה' וחלק אחד מי"ו וככה שוה הצינסי | |
|
ושרש ה' וחלק מי"ו הוא הדבר וזה השרש הוא ב' ורביע | |
|
ואתה הנחת שאחד מהחלקי' היה דבר אחד וה' מספרי' א"כ יגיע להיות ב' ורביע וה' שעולה ז' ורביע וככה הוא אחד מהחלקי' | |
|
והחלק האחר הונח ה' פחות דבר אחד שהוא ה' פחות ב' ורביע וישאר ב' וג' רביעי' וככה הוא החלק האחד מעשרה | |
|
א"כ יהיה לך אחד מהחלקים ז' ורביע והאחר ב' וג' רביעי' | |
|
ונעשה עם הפר' הב' | |
Although this calculation was defined by the first method of the algebra, it was not defined by the general conventional method, as the conventional method defines the unknown as one thing, while here it was defined as a thing plus five numbers. | הנני מודיעך כי אע"פ שזה החשבון הונח באופן הראשון מהאלזיבר' לא הונח באופן הכללי הנהוג בהיות כי הכללי הנהוג מניח אותו שאינו ידוע דבר אחד ואנחנו הנחנו דבר אחד וה' מספרי' בעשות מעשרה אותם שני חלקים שנשאלו למעלה | |
The reason for that is: | וסבת זה למה היא זו | |
|
כי בהניח אחד מהחלקים מעשרה שהיה דבר אחד | |
|
והחלק האחר היה עשרה פחות דבר אחד | |
|
והדרמ' היתה אז פחות ב' דברים מפני כי להוציא דבר אחד מעשרה פחות דבר אחד ישאר עשרה פחות ב' דברים וככה הוא הדרמ' רצוני אשר הוא החלק האחד הגדול מחבירו | |
|
וברצות לרדוף בחשבון כפי התנאים האמורי' להשיבו אל התכלית יבא אל הפרק הה' בהכרח | |
|
ואנחנו רצינו להשיבו בפרק השני ולכן שמנו אל דבר אחד וה' מספרים כאשר הראה למעלה | |
|
עוד תדע כי אם רצית להוציא החלק האחר שהוא עשרה פחות דבר אחד חוצה מהחלק האחר האמור דבר אחד יהיה הנשאר ב' דברים פחות עשרה והיית יכול לאמר שזה יהיה ההבדל באמת | |
|
ולרדוף עוד בזה האופן הרושם החשבון יצא גם כן מהפרק החמישי | |
The things [] would have been derived differently, but the parts [; ] would have been well defined, as will be shown below in chapter five. | אבל הדברים היו באים שונים זה מזה והחלקי' היו באים בזה עשויים היטב כפי מה שנראך בדרכינו לפנים בפרק הה' | |
בהיות כי מהפרק האמור יענה פעמים רבות חשבונות מה מספרים ושרשים וחשבונו' מה מספרי' פחות שרשים ואחרי' יוכלו לענות יותר שרשי' ואחדים פחות שרשים ונעשה מהפרק השני | ||
Another one of chapter two: | עוד מהפרק השני | |
|
תמצא לי מספר אחד כי כשהוכה בעצמו ואח"כ מחצית אותו מספר יוכה בעצמו ואלו שתי ההכפלו' תחבר יחד יעשה עשרה | |
|
תניח כי המספר יהיה דבר אחד | |
|
תכפלהו בעצמו ועושה צינסו אחד | |
|
אח"כ תכפול מחצית הדבר ויעשה רביע אחד מצינסו | |
|
תחברם יחד ויעשה צינסו אחד ורביע אחד מצינסו והוא שוה לעשרה | |
|
עתה תחלק המספר על הצינסו דהיינו עשרה על א' צינסו ורביע ויעלה שרש ח' | |
|
ושורש ח' ישוה הדבר ואתה הנחת שהמספר היה דבר אחד א"כ היה שרש ח' | |
Solved according to chapter two. | ונעשה מהפרק השני | |
Another one of chapter two: | עוד מהפרק השני | |
|
תמצא לי מספר אחד שכאשר הוכה על ג' רביעיו יעשה מ' | |
Following the rule: | תעשה כמו שאומ' הכלל | |
|
תניח שהמספר יהיה דבר אחד | |
|
תקח ג' רביעיו שהם ג' רביעים מדבר תכפלם בדבר אחד ועושה ג' רביעים מצינסו שהם שוים אל מ' מספרי' | |
|
תחלק המספרי' על הצינסי דהיינו מ' על ג' רביעי' ויגיע לך נ"ג ושליש | |
|
וכן שורש נ"ג ושליש שוה הדבר ואתה הנחת שהמספר היה דבר אחד א"כ היה שרש נ"ג ושליש | |
This number is inexpressible | וזה המספר הוא בלתי מדבר ואי אפש' לבטאות בו | |
Solved according to chapter two. | ונעשה מהפרק השני | |
Another one of chapter two: | עוד מהפרק השני | |
|
תמצא לי מספר אחד אשר כשהוצא ממנו שלישיתו ורביעיתו והנשאר יוכה בעצמו יעשה י"ב | |
|
תניח שהמספר היה דבר אחד | |
|
והשליש והרביע מדבר הוא ז' חלקים מי"ב | |
|
הוציאם מדבר אחד ישאר ה' חלקים מי"ב מדבר | |
|
עתה תכפול ה' חלקים מי"ב בדבר על ה' חלקי' מי"ב בדבר ועושה כ"ה חלקים מקמ"ד בצינסו שהם שוים אל י"ב | |
|
א"כ תחלק י"ב על כ"ה חלקים מקמ"ד בצינסו ויגיע לך ס"ט וג' חלקים מכ"ה | |
|
ושרשו ישוה הדבר ואתה הנחת שהמספר היה דבר אחד א"כ היה שרש מס"ט וג' חלקים מכ"ה | |
Solved according to chapter two. | ונעשה מהפרק השני | |
Chapter Three |
הפרק השלישי | |
וטבעו כאשר הצינס' יהיו שוים לדברים | ||
צריך לחלק הדברים בצינסי והמגיע הוא מספר וכך שוה הדבר | ||
|
תמצא לי מספר אחד אשר כשהוכה בשני שלישיו יעשה ג' פעמי' כמו המספר הנמצא | |
Following its rule: | תעשה כמו שאומ' הכלל שלו | |
|
תניח שהמספר יהיה דבר אחד | |
|
ועתה תקח שני שלישיו שהוא ב' שלישי דבר | |
|
ותכה ב' שלישי דבר בדבר ועולה ב' שלישי צינסו | |
|
ואלו ב' שלישי צינסו הם שוים לשלשה פעמים המספר הנמצא דהיינו ג' דברים שוים לב' שלישי צינסו | |
|
אשר אנו צריכי' לחלק כפי הכלל האמור למעלה שהוא לחלק הדברים על הצינסי | |
|
שהוא ג' בב' שלישיו שיגיע ממנו ד' וחצי וככה שוה הדבר רצוני המספר הנשאל | |
Another one of the said chapter: | עוד מהפרק האמור | |
|
תמצא לי ב' מספרים שיהיה האחד חלק מהאחר כמו שהוא ב' מג' ויעשה כשהוכו האחד באחר כמו כאשר חוברו יחד | |
|
תניח שהראשון היה ב' דברים | |
|
והשני ג' דברים | |
|
עתה תחבר ב' דברי' עם ג' דברים ועושים ה' דברים | |
|
עתה תכה ב' דברי' בג' דברי' ועושים ו' צינסי | |
|
עתה יש לנו שה' דברים הם שוים לו' צינסו | |
|
תשוב אל הכלל האמור למעלה שהוא לחלק הדברי' על הצינסי | |
|
דהיינו ה' על ו' שעולה ה' ששיות וככה שוה הדבר | |
|
ואתה הנחת שהמספר הראשון היה ב' דברי' א"כ היה א' וב' שלישי' | |
|
ועוד הנחת שהשני היה ג' דברי' א"כ היה ג' פעמי' ה' ששיות שעולים ב' וחצי וככה היה המספר השני | |
Solved according to chapter three. | ונעשה מהפרק השלישי | |
Another one of chapter three: | עוד מהפרק השלישי | |
|
תמצא לי מספר אחד שמחציתו מוכה בעצמו יעשה כמו אם הוכה המספר בעשרים | |
|
תניח שהיה המספר דבר אחד | |
|
תקח מחציתו שהוא חצי דבר | |
|
תכהו בעצמו ועושה רביע צינסו | |
|
אח"כ תכפול דבר אחד בעשרים ועושה כ' דברים שהם שוים לרביע אחד מצינסו | |
|
ועתה תחלק הדברים על הצינסי | |
|
ויעלה פ' וככה שוה הדבר ואתה הנחת שהמספר היה דבר אחד א"כ היה הוא פ' | |
Solved according to chapter three. | ונעשה מהפרק השלישי | |
Another one of chapter three: | עוד מהפרק השלישי | |
|
תמצא לי מספר אחד שיעשה הכאתו בעצמו כל כך שעושה אם נחלק על ק' | |
|
תניח שהמספר היה דבר אחד | |
|
תכהו בעצמו ועושה צינסו אחד | |
|
אח"כ תחלק דבר אחד בק' ויעלה חלק אחד מק' בדבר שהוא שוה לא' צינסו | |
|
תחלק חלק אחד מק' על אחד ויעלה עוד חלק אחד מק' וכך שוה הדבר ואתה הנחת שהיה המספר דבר אחד א"כ היה חלק אחד מק' | |
Solved according to chapter three. | ונעשה מפרק ג' | |
Chapter Four |
הפרק הרביעי | |
והוא המורכב ראשון טבעו | ||
כאשר הצינסי והדברי' יהיו שוים אל המספר | ||
צריך לחלק כל ההשואה על הצינסי אח"כ תחלק מחצית הדברים לחצי | ||
|
עשה לי מעשרה שני חלקי' שכשהוכה החלק הקטן בעצמו יעשה כל כך כמו שיעשה הכאת רביע הגדול בעצמו | |
Following the rule: | תעשה כמו שאומ' הכלל | |
|
תניח שאחד מהחלקי' יהיה דבר אחד | |
|
והאחר צריך שישאר עשרה פחות דבר אחד | |
אח"כ תוכל להניח אי זה מהם שתרצה בעד הגדול | ||
ואנחנו נניח כי החלק הקטן יהיה דבר אחד | ||
וסבת למה היא זאת אם הנחת שהחלק הגדול היה דבר אחד היה יוצא החשבון אל הפרק החמישי מפני ההשואה | ||
ואנחנו מבקשים להשיבו אל הרביעי אשר אנחנו בו | ||
|
ולכן אנחנו נכה דבר אחד בעצמו בעד החלק הקטן ועושה א' צינסו | |
|
עתה נקח הרביע מהגדול שהוא עשרה פחות דבר אחד ויהיה ב' וחצי פחות רביע אחד מדבר | |
|
וזה כאשר הוכה בעצמו עולה ששה מספרים ורביע וחלק א' מי"ו בצינסו פחות דבר אחד ורביע | |
|
וזה הכפל הוא שוה לצינס' אחד שהוא כפל החלק הראשון בעצמו | |
|
ועתה צריך אתה לרדוף בזה האופן בהיות כי כל אחד מהחלקי' יש לו צינסו הנך צריך להוציא הצינסו שבחלק הקטון מהצינסו שהם בגדול דהיינו להוציא מכל אחד מהחלקי' כל כך צינסו כמו שהוא החלק הקטון וישארו החלקים שוים זה לזה והראשון ישאר ט"ו חלקים מי"ו בצינסו | |
עתה הנך צריך לחבר אל כל אחד מהחלקים כל כך דברים כמו שיש לאחד מהחלקים פחות | ||
|
א"כ תחבר לחלק אשר לו דבר אחד ורביע מפחת אותו עצמו שיש לו מפחת ויהיה לך אין כלום מפחת ואל החלק האחר תחבר אותו בעצמו שהוא דבר אחד ורביע ויהיה לך אחד מהחלקים בהיות מוצאים הצינסו ומחוברי' הדברים כפי האמור למעלה שוה לאחר רצוני לראשון שהוא ט"ו חלקי' מי"ו בצינסו ודבר אחד ורביע שוה לחלק האחר שהוא ו' ורביע והוא השני | |
|
עתה תחלק כל ההשואה על הצינסו שהוא ט"ו חלקי' מי"ו | |
|
ויעלה אחד מהחלקים א' צינס' ודבר אחד ושליש שוה לו' מספרי' וב' שלישי' שהם החלק השני | |
|
ועתה אנחנו צריכי' לחלק כפי הכלל האמור קודם הפרק האמור רצו' הדברי' לחצי שיהיו אחד מהחצאים יהיו ב' שלישי' ואלו הב' שלישים צריכי' אנו לכפול בעצמם אשר יעלו ד' תשיעיות | |
|
והחלק האחר הוא הנשאר עד עשרה שהוא עשרה וב' שלישי' פחות שרש ז' וא' תשיעי' | |
|
ומפני שז' ותשיעית יש לו שרש אשר הוא ח' שלישי' והם ב' וב' שלישי' | |
|
והאמור ראוי להיות ב' שלישי' פחות מהשרש האמור א"כ תוציא ב' שלישי' מב' וב' שלישי' וישאר ב' וככה הוא החלק הראשון | |
|
ואלו הב' תוציא מעשרה וישארו ח' וככה הוא החלק השני | |
עתה רצוני להזכירך שאם השאלה תאמ' שכך עושה החלק הראשון מוכה בעצמו כמו רביע החלק הגדול ה מוכה בעצמו בחלוף מה שאומ' כמו שיעשה הכאת רביע הגדול בעצמו הנה תהיה שאלה אחרת מפני ההבדל אשר יש בין מאמ' למאמ' כי באמרנו רביע הגדול מוכה בעצמו צריך לכפול כל החלק בעצמו וממנו ילקח הרביע ובאמרנו כמו שהוא הכאת רביע הגדול בעצמו צריך לקחת ראשונה החלק הגדול ואותו הרביע תכהו בעצמו וזהו המובן מחשבוננו | ||
|
עוד בעבור הפרק הרביעי תמצא לי מספר אחד שכאשר הוכה בעצמו ואחר יוכה בח' ומקובץ שתי אלו ההכאות יחד יהיה ל"ג | |
|
תניח שהמספר היה דבר אחד | |
|
תכהו בעצמו עושה א' צינסו | |
|
אח"כ תכהו בח' ועושה ח' דברים | |
|
תחברם יחד ויהיה לך א' צינסו וח' דברים שוים אל ל"ג | |
הנך צריך לחלק על הצינסי דהיינו להשיב אל צינסו אחד על א' צינסו ועולה עוד א' צינסו וכיוצא בזה תחלק ח' על אחד ויגיע עוד ח' ותחלק ל"ג על אחד יגיע עוד ל"ג | ||
|
עתה תחצה הדברי' שהם ח' ויהיה לך ד' תכהו בעצמו ועושה י"ו | |
וזה נעשה מהפרק הרביעי שהוא המורכב ראשון | ||
|
עוד בעבור הפרק הרביעי תמצא לי מספר אחד שכשהוכה שלישיתו בעצמו ותחובר ההכאה ההיא על המספר יעשה י"ב | |
|
תניח שהמספר יהיה דבר אחד | |
|
תקח שלישיתו שהוא א' שליש מדבר | |
|
תכהו בעצמו ועושה א' תשיעית מצינסו | |
|
תחברהו עם דבר אחד ויהיה לנו א' תשיעית מצינסו ודבר אחד שוה אל י"ב | |
|
עתה תחלק הצינסי דהיינו כל החלקים על א' תשיעית | |
|
ויהיה לך א' צינסו וט' דברי' וק"ח דראמי דהיינו מספרי' וזאת ההשואה היא א' צינסו וט' דברים שהם שוים אל ק"ח דראמ' | |
|
עתה תחצה הדברי' ויהיה לך ד' וחצי תכפלם בעצמם ויעלה כ' ורביע | |
ונעשה מהפרק הרביעי שהוא גם כן המורכב ראשון | ||
עוד בעבור הפרק הרביעי אחד הלוה לאחר כ' ליטר' בעד ב' שנים לעשות ראש משנה לשנה ובסוף שתי שנים השיב לו בין קרן וריוח ל' ליטר' אשאל לאי זה חשבון הולוה הליט' לחדש | ||
תניח שהולוה לא' דבר ממעו' לחדש | ||
וישוו לשנה אחת י"ב דברי' | ||
תקח א' מעשרים מליט' אחת שהיא היטב כ' דינרים שהוא דינר אחד א"כ נאמ' אנחנו עוד חלק מעשרים כאמור למעלה ויהיה לך כ' ליט' ודבר אחד עתה תקח החלק אחד מעשרים ודבר אחד שהוא דבר אחד וחלק אחד מעשרים בצינסו ויהיה לך סכומם שיהיה כ' ליטר' וב' דברים וחלק אחד מכ' בצינסו שהם שוים אל ל' הוצא כ' מל' וישאר עשרה עתה תחלק על הצינסי כל החלקים ויגיע לך א' צינסו ומ' דברים שיהיו שוים למאתים מספרי' | ||
|
א"כ תחצה הדברים שהם מ' ויהיה לך כ' תכפלם בעצמם ויהיה לך ד' מאות | |
ואתה הנחת שהליטר' הולותה לא' דבר לחדש א"כ הולותה לשרש ו' מאות פחות כ' ממעות לחדש | ||
והוא נעשה מן הראשון המורכב | ||
Chapter Five |
הפרק החמישי מן האלזיברא | |
נראה לך בו טבעו והוא המורכב השני | ||
כאשר הצינסי והמספרים יהיו שוים אל הדברי' | ||
צריך לחלק כל ההשואה על כמות הצינסי ואח"כ לחלק הדברים לחצי | ||
|
והנה המשל עשה לי מעשרה שני חלקים שכאשר הוכה ההבדל שבין זה לזה בעצמו יעשה עשרים ורביע | |
Following the rule: | תעשה כמו שאומר הכלל | |
|
אנחנו צריכין להניח שאחד מהחלקים יהיה דבר אחד | |
|
והאחר ישאר עשרה פחות דבר אחד | |
|
עתה תקח ההבדל שבין זה לזה שהוא שני דברים פחות עשרה | |
|
ואם רצית לדעת כיצד יהיה ההבדל ב' דברים פחות עשרה תוסיף ב' דברים פחות עשרה על עשרה פחות דבר אחד שהוא החלק השני ויהיה לך דבר אחד | |
|
א"כ הנך רואה היטב כי להוציא מדבר אחד עשרה פחות דבר אחד ישאר ב' דברים פחות עשרה וכן הוא ההבדל מה שהחלק האחד גדול מהאחר | |
|
וזה ההבדל שהוא ב' דברי' פחות עשרה תכפול בעצמו ועולה ק' מספרים וד' צינסו פחות מ' דברי' שהם ישוו אל כ' ורביע | |
|
עתה צריכי' אנו לחלק כל ההשואה על כמות הצינסי דהיינו על ד' כפי הכלל האמור למעלה | |
|
שעולה א' צינסו וכ"ה מספרים פחות עשרה דברים שוים לה' מספרים וחלק מי"ו | |
|
עתה צריכי' אנו להוציא המספרים הקטנים מכל אחד מהחלקים שהם ה' וחלק מי"ו | |
|
וישאר לאחד מהחלקים לא כלום ולאחר ישאר י"ט וט"ו חלקים מי"ו | |
|
ועתה תוסיף על כך אחד מהחלקים כל כך דברים כמו שאחד מהחלקים יש לו פחות | |
|
ואחד מהם יהיה לו לא דבר ולחלק האחר יהיה לו עשרה דברים | |
|
א"כ יהיה הנשאר לאחד מהחלקי' א' צינסו וי"ט מספרים וט"ו חלקים מי"ו שוה לעשרה דברים דהיינו לחלק האחר | |
ועתה הנני מודיעך כי ההמשך שעשינו כאשר היה לנו ק' מספרי' וא' צינסו פחות מ' דברי' שוים אל כ' מספרים ורביע היה לו זה הפחיתות שההשואה לא הסכימה עם הכלל הנתון למעלה | ||
ואמות זה הוא כי לא הוצאו עדיין המספרי' הקטנים מכל אחד מהחלקי' גם לא נוספו הדברים אע"פ שהחשבון יצא לפעל אמתי אנחנו חלקנו על כמות הצינסי קודם הזמן כמו שנראה בכלל הפרק האמור | ||
|
וראוי לנו להחזיק בזה האופן שאנחנו צריכי' להוציא המספר הקטן שהוא כ' ורביע מכל אחד מהחלקים | |
|
וישאר לאחד מהחלקים לא שום מספר ואל האחר ע"ט וג' רביעי' וד' צינסי פחות מ' דברים | |
|
ואח"כ היה ראוי להוסיף מה שגורע מאחד מהחלקים לכל אחד מהחלקים | |
|
היה נשאר ולאחד מהחלקים נשאר ד' צינסו וע"ט וג' רביעי' ולחלק האחר כ' דברים | |
|
שהוא היטב מסכים לכלל הקודם האומ' הצינסי והמספרים שוים אל הדברים | |
|
כי בחלוק על הצינסי עולה היטב כך כמו שעולה באופן האחר שהוא א' צינסו וי"ט מספרים וט"ו חלקים מי"ו שוים לי' דברים | |
|
עתה נחצה הדברים בהמשכה אחר הכלל ויהיה לנו ה' ואלו הה' נכפלם בעצמם ועולה כ"ה | |
|
והחלק האחר הוא הנשאר עד עשרה שהוא ב' וג' רביעים | |
וזה החשבון נענה מן האופן הראשון שהוא מחצית הדברי' ויותר שרש הנשאר האמור | ||
ובאופן אחר אי אפשר לענות בו בהיות שהונח אל ההשואה האמורה למעלה בקחת ההבדל באופן האמור | ||
|
וסבת זה היא כי אם אמרת היות ההבדל באופן אחר שיוכל להיות רצוני עשרה פחות ב' דברים אפשר שיעלה החשבון כאמור דהיינו בפחות מה שהיה יכול להיות הדבר אם היה יכול להיות החלק הקטן | |
וזה הדבר אי אפשר לעשותו בהיות ההבדל ב' דברים פחות עשרה | ||
|
בעבור שב' דברים צריכי' להיות יותר מעשרה | |
|
אם עשרה צריך להוציא מאותו שעולה ב' דברים | |
|
והנה המשל אם הדבר יבא להיות ה' ושרש ה' וחלק מי"ו כי כאשר הושב אל מספר יבא להיות ז' ורביע כל החלק | |
|
א"כ ב' דברים יבא להיות י"ד וחצי | |
|
וההבדל נעשה ב' דברים פחות עשרה א"כ תוציא עשרה מי"ד וחצי וישאר ד' וחצי והנה ההבדל יבא להיות ד' וחצי | |
|
וזאת ההכאה יעשה היטב כ' ורביע | |
|
ואם תאמ' שהדבר יהיה ה' פחות שרש ה' וחלק מי"ו אשר כשהושב אל שלם יבא להיות ב' וג' רביעים | |
|
יהיה בלתי אפש' כי ב' דברים כאלה עשרה יוכל להוציא | |
ולכן אי אפש' לענות בעשות ההבדל ב' דברים פחות עשרה כי אם מהיותר כפי מה שענינו | ||
עוד בעבור הפרק החמישי | ||
|
עשה לי מעשרה שני חלקים שכשהוכה החלק הקטן בעצמו ותוציא העולה מזה מהכאת ההבדל שיש בין החלקים בעצמו ישאר ל"ב אשאל כמה יבא להיות מהחלקים | |
Following the rule: | תעשה כמו שאומ' הכלל | |
|
תניח שהחלק הקטון יהיה דבר אחד | |
|
והאחר יבא להיות השארית עד עשרה שהוא עשרה פחות דבר אחד | |
|
עתה תכה החלק הקטן שהוא דבר אחד בעצמו ויעלה א' צינסו | |
|
עתה תקח ההבדל אשר בין הקטן והגדול שהוא ב' פחות עשרה דברים | |
|
ותכהו בעצמו ועלה ד' צינסו וק' מספרים פחות מ' דברים | |
|
עתה תוציא הכאת החלק הקטן שהוא א' צינסו מהכאת ההבדל בעצמו שעשינו שהיא ד' צינסי וק' מספרי' פחות מ' דברים וישאר עשרה צינסו וק' מספרים פחות מ' דברי' שוים אל ל"ב מספרים כפי השאלה הנתונה למעלה | |
|
עתה צריכים אנו להוציא המספר הקטון מכל אחד מן החלקים שהוא ל"ב | |
|
וישאר אל אחד מהחלקים אין מספר ולחלק האחר ג' צינסו וס"ח מספרים פחות מ' דברים | |
|
אח"כ תוסיף מ' דברים שהוא פוחת לאחד מהחלקים | |
|
ולכל חלק ישאר השואתו דהיינו לחלק האחד ג' צינסי וס"ח מספרים ולאחר מ' דברי' והנה יש לנו כי ג' צינסי וס"ח מספרי' הם שוים למ' דברי' | |
|
עתה צריכי' אנו לחלק כל ההשואה בכל כמות הצינסי שהם ג' כפי הכלל האמור למעלה | |
|
ויגיע לנו א' צינסו וכ"ב מספרים וב' שלישי' שוים לי"ג דברים ושליש | |
|
עתה שהושבה אל א' צינסו תחלק הדברים לחצי שעולה ו' וב' שלישי' ותכם בעצמם ועולה מ"ד וד' תשיעיות | |
והושבה מן האופן השני שאמר הפרק החמישי | ||
|
והחלק האחר יבא להיות הנשאר עד עשרה שהוא ג' ושליש ושרש כ"א וז' תשיעיות | |
|
ועתה הנני מודיעך שאתה אם לקחת ההבדל באופן האחד שאפש' לקחתו כפי מה שהראית קודם באופן הראשון שיבא להיות עשרה פחות ב' דברי' היה בא המענה כדומה לזה האמור למעלה | |
|
ובאופן אחר אי אפש' לענותה בהניח שהחלק הקטן הוא דבר אחד בבא החשבון אל זה הראש | |
א"כ החשבון אי אפשר להגיע תשובתו כי אם מספר פחות שרש | ||
|
מפני שהחלק הקטן מוכה בעצמו צריך שיעשה פחות מההבדל מוכה בעצמו | |
|
אחר שבהוצאת הכאת הקטן מן הכאת ההבדל צריך שישאר ל"ב | |
ומפני זה החשבון האמור לא יתכן לשומו בזה הפרק כי אם בשני האופנים האמורים למעלה | ||
|
ומפני כי באמרנו היות הדבר מספר ושרש היה נראה שהחלק הקטן שהוא ששה וב' שלישי' ושרש מכ"א וז' תשיעיות יהיה יותר משני החלקים שהם ראויים להיות עשרה | |
|
וזה דבר נמנע שהחלק יהיה גדול מהכל | |
|
ואם רצית לראות ראית זה מבוארת | |
|
תקח השרש מכ"א וז' תשיעיות שהוא ד' וב' שלישי' ותוציאם מו' וב' שלישי' ישאר ב' | |
|
והחלק הגדול יבא להיות הנשאר עד עשרה שהוא ח' | |
|
וההבדל יהיה ו' כשתפיל ב' מח' | |
|
תכה ו' בעצמו ועושה ל"ו | |
|
עתה תכה החלק הקטן שהוא ב' בעצמו ועושה ד' | |
|
תוציאם מל"ו וישאר ל"ב כפי השאלה האמורה למעלה | |
עוד בעבור הפרק האמור למעלה | ||
|
תעשה לי מעשרה שני חלקים שכשהוכה האחד באחר יעשה כ"א | |
|
זהו כלל נהוג תניח שאחד מהחלקים יהיה דבר אחד | |
|
והאחר ישאר עשרה פחות דבר אחד | |
|
תכה דבר אחד בעשרה פחות דבר אחד ועולה עשרה דברים פחות א' צינסו | |
|
ואלו העשרה דברים פחות א' צינסו הם שוים אל כ"א | |
|
עתה צריך אתה לתת א' צינסו לכל אחד מהחלקים | |
|
ויהיה לך עשרה דברים שוים לא' צינסו וכ"א מספרים | |
|
עתה תחצה הדברים ויגיע ה' תכה ה' בעצמו ועושה כ"ה | |
והנשאר עד עשרה הוא החלק האחר | ||
א"כ הנך יכול לענות ביותר ובפחות מה ששוה הדבר | ||
עתה ראית כל התשובות אשר אפש' לעשותם בעבור הפרק החמישי האמור | ||
עוד בעבור הפרק החמישי האמור | ||
|
עשה לי מעשרה ב' חלקים אשר כשהוכה האחד בג' יעשה כך כמו שעולה הכאת האחר בשרש ח' | |
|
תניח שאחד מהחלקים יהיה דבר אחד | |
|
והאחר מחוייב שיהיה עשרה פחות דבר אחד | |
|
עתה תכה ג' בדבר אחד ועושה ג' דברים | |
|
ותכה שרש ח' בעשרה פחות דבר אחד שעושה ק' פחות כ' דברים ויותר א' צינסו | |
|
עתה תשוה החלקים ותן לכל חלק ק"ס דברים | |
|
ויהיה לך קס"ג דברים להיות שוה לת"ת מספרי' וח' צינסי | |
|
תחלק א"כ כל דבר על הצינסי להשיב כל דבר אל א' צינסי | |
|
שיגיע מזה א' צינסו וכ' דברים וג' שמיניות שהוא ק' מספרים | |
|
עתה תחצה הדברים שהם עשרה וג' חלקים מי"ו תכפלם בעצמם שעושה ק"ג ור"א חלקים מרנ"ו | |
|
והחלק האחר היה הנשאר עד עשרה שהוא שרש ג' ור"א חלקים מרנ"ו פחות מן עשרה וג' חלקים מן י"ו | |
אני האמנתי שזה היה נעשה היטב ועתה בעשות הנסיון מצאתיהו משובש ועתה אעשנו כראוי להיות ואפש' להוליכו מן הפרק החמישי | ||
|
והחלק הראשון אניח שהיה דבר אחד | |
|
והשני צריך שיהיה עשרה פחות דבר אחד | |
ואזכירך שצריך להשיב כל דבר אל שרש | ||
|
עתה תשיב ג' אל שרש ועושה ט' | |
|
וכן תשיב דבר אחד אל שרש ועושה א' צינסו | |
|
אח"כ תכפול ט' בא' צינסו ועושה ט' צינסי וזה לך בעד אחד מהחלקים | |
|
אח"כ כמו שהשבותה למעלה השב עשרה פחות דבר אחד אל שרש ועושה שרש ק' פחות כ' דברים ויותר א' צינסו | |
|
וזה תכפול בשרש ח' ועושה שורש ת"ת פחות ק"ס דברים ויותר ח' צינסי אשר הם שוים אל ט' צינסי | |
|
ועתה תשוה החלקי' ותן לכל אחד ק"ס דברי' | |
|
ויהיה לך ט' צינסי וק"ס דברים שוים לת"ת מספרי' וח' צינסי | |
|
תשוה עוד והוצא ח' צינסי מט' צינסי | |
|
ויהיה לך א' צינסו וק"ס דברי' שוים אל ת"ת מספרי' | |
חלק עתה על הצינסי ויגיע לך ק"ס דברי' ות"ת מספרי' | ||
|
תחצה הדברים ויהיה לך פ' תכפלם בעצמם ועושה ו' אלפים ות' | |
והחלק האחר היה הנשאר עד עשרה אשר הוכפל בשרש ח' וזה החלק יגיע להיות צ' פחות שרש ז' אלפים ור' | ||
ונעשה בעבור הפרק החמישי | ||
עוד בעבור הפרק החמישי החשבון האמור רצוני להניחו אל הפרק החמישי | ||
|
ותניח כי היה אחד מהחלקים דבר אחד | |
|
והאחר היה עשרה פחות דבר אחד | |
|
תשיב כל החלקים אל שרש | |
|
ויהיה לך א' צינסו לחלק אחד | |
|
וק' מספרים פחות כ' דברים וא' צינסו לחלק האחר | |
|
ועתה תכפול החלק הראשון שהוא א' צינסו בח' ועושה ח' צינסי וזהו לך לחלק אחד | |
|
תכפול השני בט' ויהיה לך תת"ק מספרי' פחות ק"פ דברים ויותר ט' צינסו שהם שוים לח' צינסי | |
|
תשוה החלקים ותן ק"פ דברים לכל אחד מן החלקים | |
|
ויהיה לך ח' צינסי וק"פ דברים שוים אל תת"ק מספרים וט' צינסי | |
|
השוה עוד החלקי' והוציא ח' צינסי מט' צינסי | |
|
ויהיה לך ק"פ דברים שוים לתת"ק מספרי' וא' צינסו | |
תחלק על הצינסו | ||
|
ויהיה לך ק"פ דברים שוים אל תת"ק מספרים וא' צינסו | |
|
תחצה הדברים ויהיה לך צ' תכם בעצמם ויהיה לך ח' אלפים וק' | |
|
והחלק האחר היה הנשאר עד עשרה שהוא שרש ז' אלפים ור' פחות פ' | |
ונעשה עם הפרק החמישי | ||
עוד בעבור הפרק האמור עשה לי מי"ו שני חלקים שכאשר הוכה האחד באחר יעשה מ"ח | ||
|
תניח שאחד החלקים היה א' דבר | |
|
והיה האחר בהכרח י"ו פחות דבר אחד | |
|
עתה תכה דבר אחד בי"ו פחות דבר אחד ועושה י"ו דברים פחות א' צינסו שהם שוים אל מ"ח | |
|
תשוה א"כ החלקי' ויהיה לך י"ו דברים שוים למ"ח מספרי' וא' צינסו | |
|
תחצה הדברי' ויהיה לך ח' דברים תכם בעצמם ויעשה ס"ד | |
ואתה הנחת דבר אחד | ||
|
א"כ היה ח' פחות שרש י"ו שהוא ד' וישאר ד' | |
|
או אם תרצה אמור היה שרש י"ו שהוא ד' ויותר ח' שיבא להיות י"ב | |
וכן יגיע באופן האחד כמו באחר כי אם תשים החלק הראשון י"ב האחר יהיה ד' | ||
וכן הוא טבע זה הפרק החמשי | ||
Chapter Six |
הפרק הששי | |
וטבעו כאשר הדברים והמספרים יהיו שוים אל הצינסי | ||
צריך לחלק כל ההשואה על כמות הצינסי ואח"כ לחלק הדברים לחצאים | ||
|
המשל תמצא לי מספר אחד שכאשר הוכה בעשרה ואותה ההכאה תחובר אל י"ב יעשה כמו המספר ההוא מוכה בעצמו | |
Following its rule: | תעשה כמו שרוצה זה הכלל שלו | |
|
תניח שהמספר הוא דבר אחד | |
|
וכאשר הוכה בעשרה יעלה עשרה דברים | |
|
עתה תחבר אל זאת ההכאה י"ב ויהיה לך עשרה דברי' וי"ב מספרים אשר צריך שיהיו שוים אל א' צינסו דהיינו דבר אחד שהיה המספר מוכה בעצמו | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
שיבא א' צינסו שוה לעשרה דברים וי"ב מספרי' | |
|
עתה תחצה המספרי' הדברים ויגיע ה' תכם בעצמם ויהיה כ"ה | |
Solved according to chapter six. | ונעשה בעבור הפרק הששי | |
Another calculation given for the said chapter: | עוד זה החשבון יושם בעבור הפרק האמור | |
|
תמצא לי מספר אחד שכאשר נפיל ממנו שלישיתו ורביעיתו ומה שישאר יכפל בעצמו יעשה המספר ואחד יותר | |
|
עתה תחלק על הצינסי ויהיה לך א' צינסו וזהו כאלו תאמר תחלק כ"ה חלקים מקמ"ד בצינסו על כ"ה חלקים מקמ"ד ויגיע לך א' שהוא א' צינסו | |
|
עתה תחלק דבר אחד על כ"ה חלקים מקמ"ד ויגיע לך ה' וי"ט חלקי' מכ"ה בדראמ' | |
|
וכן יהיה לך ה' דברים וי"ט חלקי' מכ"ה בדבר וה' דראמ' וי"ט חלקים מכ"ה בדרמ' תשוה לא' צינסו | |
|
תחצה הדברים שהם ב' וכ"ב חלקי' מכ"ה ותכם בעצמם ועושים ח' וקפ"ד חלקים מתרכ"ה | |
Solved according to [chapter] six. | וכך היה ונעשה בעד הששי | |
Complex Equations |
||
Here begin other chapters that are derived from the six chapters written above, in which squares, cubes, and squares of squares are specified, as will be seen further in this book explained well. | דע כי בכאן מתחיל פרקים אחרים אשר הם מוצאים מן הו' פרקים הכתובים למעלה ובהם יהיו נקובים צינסי ומעוקבים וצינסי מצינסי כמו שתראה בהמשך זה הספר מבואר היטב | |
Chapter Seven |
הפרק השביעי | |
כאשר המעוקבים יהיו שוים אל המספרי' | ||
צריך לחלק המספרים על המעוקבי' והעולה מזה הנה שרשו המעוקב יבא לשוות הדבר | ||
|
תמצא לי שני מספרים שיהיה האחד חלק מהאחר כמו שהוא ג' מד' וכשיוכה הקטן בעצמו והיוצא תכה בגדול יעשה רפ"ח | |
Its rule: | זהו הכלל שלו | |
|
תניח אחד מהמספרים יהיה ג' דברים | |
|
והאחר יהיה ד' דברים | |
|
תכה הקטון שהוא ג' בעצמו ועולה ט' צינסי | |
|
ואח"כ תכה ט' צינסי במספר הגדול שהוא ד' דברים | |
|
ועולה ל"ו מעוקבים שהם שוים אל רפ"ח | |
|
עתה תרדוף כפי הכלל האמור | |
|
והוא שתחלק רפ"ח על ל"ו שעולה מזה ח' וככה יבא להיות המעוקב | |
|
והדבר יבא להיות שרשו המעוקב שהוא שרש מעוקב מח' שהוא ב' | |
|
ואתה הנחת שהמספר ראשון או אמור הקטון היה ג' דברים והדבר יבא להיות ב' א"כ ג' דברים יהיו ו' וככה היה המספר ראשון | |
|
והמספר השני היה ד' דברי' והדבר הוא ב' א"כ ד' דברים יהיו ח' וככה הוא המספר השני | |
If has no cube root, and you wish to know how much are the first number and the second number : | ואם המספר אשר יבא להיות המעוקב לא יהיה לו שרש מעוקב ורצית לדעת כמו יבא להיות או לשוות המספר ראשון והשני שהם ג' דברים וד' דברי' | |
|
הנך צריך להכות ג' בשרש מעוקב מח' בזה האופן השב ג' לשרש מעוקב ויהיה לך שרש מעוקב מכ"ז | |
|
ואח"כ המספר האחר שהיה ד' דברים השיבנו אל שרש מעוקב ויהיה לך שרש מעוקב מס"ד | |
Chapter 8 |
הפרק הח' | |
כאשר המעוקבים יהיו שוים אל הדברי' | ||
צריך לחלק הדברי' על המעוקבי' והעולה מזה הנה שרשו המרובע שוה הדבר | ||
|
תמצא לי שני מספרים שהאחד יהיה כפל השני וכשהוכה הקטון בעצמו ואותה ההכאה תוכה במספר השני יעשה כמו השני רצו' הגדול מוכה על ט' | |
Its rule: | זהו הכלל שלו | |
|
תניח שהמספר הראשון יהיה דבר אחד | |
|
א"כ והשני צריך להיות ב' דברים א"כ יהיה כפלו | |
|
עתה תכה המספר הקטון בעצמו שהוא דבר אחד ועלה א' צינסו | |
|
וזאת ההכאה שהוא א' צינסו אכנה במספר השני שהוא ב' דברים שעולה ב' מעוקבי' ושמור זה לחלק אחד מן ההשואה | |
|
ועתה תכה המספר השני שהוא ב' דברים בט' ועולה י"ח דברים וככה יהיה החלק האחד מההשואה | |
|
ויהיה לך ב' מעוקבים שוים אל י"ח דברים | |
|
עתה תרדוף כפי הכלל האמור | |
|
תחלק הדברים על המעוקבים שהוא י"ח על ב' ויעלה מזה ט' ושרש זה הט' יבא להיות שוה הדבר וזה השרש יהיה ג' וככה הוא המספר הראשון | |
|
והשני צריך להיות פי שנים מהראשון אם כן יבא להיות ששה | |
If has no root: | ואם המספר לא היה לו שרש רצוני העולה בחלוק הדברי' עם המעוקבים | |
|
תכה מה שעולה בד' ושרש אותו הסך יבא להיות המספר השני מפני שצריך להיות כפלו | |
|
ואם יהיה ג' דמיוניו היה צריך לכפלו או להכותו על ט' | |
and so on, the numbers should be converted to roots as seen above. | וכן לדמיוני אלו המספרי' בהשיב המספרים אל שרשים כאשר הראית למעלה | |
This chapter is of the nature of the second: | ודע כי זה הפרק הוא מטבע השני כי ככה שוה | |
As | כאשר המעוקבים יהיו שוים אל הדברים כמו שהוא כאשר הצינסי יהיו שוים אל המספרים | |
The reason is that when dividing all the equation by things: | והסבה בזה היא כי לחלוק או לבקע ההשואה על הדברים | |
|
המעוקבי' יצאו צינסי | |
|
והדברים יצאו מספרים | |
Since:
|
מפני כי להכות דבר בצינסו יצא מעוקב | |
|
ובהכות מספר בדבר יגיע דבר | |
Therefore:
|
א"כ לחלק המעוקבים על דברי' יעלה ממנו צינסי | |
|
ולחלוק דברי' על דברי' יגיעו מספרים | |
Thus, it is restored to chapter two. | ויהיה כבר שב אל הפרק השני | |
Chapter Nine |
הפרק התשיעי | |
כאשר המעוקבי' יהיו שוים אל הצינסי | ||
צריך לחלק הצינסי על המעוקבים והעולה ממנו שוה הדבר | ||
|
תמצא לי שני מספרים שיהיה חלק האחד מהאחר כמו שהוא ג' מד' וכאשר הוכה הראשון בשני ואותה ההכאה תוכה על מקובץ שני המספרי' יחד יעשה כמו הכאת הגדול בעצמו | |
Its rule: | זהו הכלל שלו | |
|
תניח שא' מהמספרי' יהיה ג' דברים | |
|
והשני ד' דברי' | |
|
עתה תכה ג' דברי' בד' דברים שעולה י"ב צינסי וזאת ההכאה תכה בשני המספרים מקובצים יחד שהם ז' דברים שעולים פ"ד מעוקבי' ושמרם | |
|
עתה תכה הגדול בעצמו שהוא ד' דברים | |
|
שעולה י"ו צינסי וזאת ההכאה היא שוה לפ"ד מעוקבי' | |
|
עתה תרדוף כפי הכלל האמור קודם | |
|
תחלק הצינסי על המעוקבים שהם י"ו צינסי על פ"ד מעוקבים ויעלה ד' חלקי' מכ"א וככה שוה הדבר | |
|
ואם רצינו לדעת כמה יבא להיות החלק הראשון אתה הנחת שהחלק הראשון היה ג' דברים והדבר הוא ד' חלקים מכ"א א"כ ג' דברים יהיו י"ב חלקים מכ"א | |
|
והשני אתה הנחת שהיה ד' דברים והדבר שוה ד' חלקי' מכ"א א"כ ד' דברים יהיו י"ו חלקים מכ"א וככה הוא המספר השני | |
This equation can be restored to chapter one, by dividing all the equation by çenso: | ודע כי זאת ההשואה אפש' להשיבה אל הפרק הראשון וסבת זה היא זאת נחלק או בבקע כל ההשואה על הצינסי | |
|
המעוקבי' ישובו אל דברים | |
|
והצינסי ישובו אל מספרי' | |
Chapter Ten |
הפרק העשירי | |
כאשר המעוקבים יהיו שוים אל הצינסי מצינסי | ||
צריך לחלק המעוקבים על הצינסי מצינסי ומה שיעלה מזה ככה שוה הדבר | ||
|
תמצא לי שני מספרים מתיחסים שיהיה חלק הראשון מהשני כמו שהוא ד' מה' וכשיוכה הראשון בשני ואותה ההכאה תוכה בעצמה ויעשה כמו שעושה הראשון מוכה בעצמו ואותה ההכאה תוכה במספר השני | |
Following its rule: | תעשה כמו שרוצה כללו זה | |
|
תניח שהראשון יהיה ד' דברים | |
|
והשני יהיה ה' דברי' | |
|
עתה תכה ד' דברים בה' דברי' שעולה כ' צינסי | |
|
וזאת ההכאה מכ' צינסי תכה בעצמה שעולה ת' צינסי מצינסי ושמור | |
|
עתה תכה החלק הראשון בעצמו שהוא ד' דברים ועולה י"ו צינסי | |
|
ואלו הי"ו צינסי תכה במספר השני שהוא ה' דברי' | |
|
ויעלה פ' מעוקבי' וזאת ההכא' שוה אל ת' צינסי מצינסי | |
|
ועתה תרדוף כפי הכלל האמור למעלה | |
|
תחלק המעוקבי' על הצינסי מצינסי שהוא פ' על ת' ויעלה ה' וככה שוה הדבר | |
|
ואתה הנחת שהמספר הראשון היה ד' דברי' והדבר הוא א' חומש א"כ ד' דברים יהיו ד' חלקי' מה' וככה הוא המספר הראשון | |
|
והמספר השני היה ה' דברי' וה' דברים שוים ה' חמישיות שהם אחד וככה הוא המספר השני | |
This equation can be restored to chapter one: | ודע כי זאת ההשואה אפש' להשיבה אל הפרק הראשון | |
|
מפני כי בבקעו המעוקבי' על המעוקבים יבאו להיות מספרים | |
|
והצינסי מצינסי יבאו להיות דברים | |
Chapter 11 |
הפרק הי"א | |
כאשר צינסי מצינסי יהיו שוים אל מספרים | ||
צריך לחלק המספרים על הצינסי מצינסי ומהעולה מזה תקח שרש שרשו והוא יהיה הדבר | ||
|
תמצא לי מספר אחד שכשיוכה בשני שלישיו ועולה שני שלישי צינסו והעולה יוכה בעצמו
יעשה ל"ו | |
Its rule: | זהו הכלל שלו | |
|
תניח שהמספר יהיה דבר אחד | |
|
עתה תכה דבר אחד בשני שלישיו ועולה שני שלישי צינסו | |
|
ועתה תכה ב' שלישי צינסו על עצמם | |
|
ועולה ד' תשיעיות מצינסו דצינסו שהם שוים ל"ו מספרי' | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
תחלק המספרים על הצינסי מצינסי דהיינו ל"ו על ד' תשיעיות ויבא מזה פ"א וככה יבא להיות הצינסי מצינסי | |
|
ושרש השרש מפ"א יבא להיות הדבר דהיינו המספר הנשאל אשר הנחת היותו דבר אחד וזה שרש השרש יגיע להיות ג' וככה הוא המספר | |
This is almost similar to the nature of the second chapter, except that here the root of the root is extracted while in the second chapter only one root is extracted. | ודע כי זה כמעט דומה לטבע הפרק השני רק שלוקח שרש השרש והשני לוקח שרש אחד לבד | |
Chapter 12 |
הפרק הי"ב | |
עוד רודף באופן אחר דהיינו כאשר הצינסי מצינסי יהיו שוים אל הדברי' | ||
צריך לחלק הדברים על הצינסי מצינסי והעולה מזה הנה שרשו המעוקב יהיה שוה הדבר | ||
|
תמצא לי מספר אחד שכאשר הוכה בעצמו ומה שיעלה יוכה בשני שלישיו יעשה כמו ו' דמיוני המספר האמור אשאל כמה יהיה המספר האמור | |
Following its rule: | תעשה כמו שאומ' זה הכלל שלו | |
|
תניח שהמספר יהיה דבר אחד | |
|
ותכהו בעצמו ויהיה א' צינסו | |
|
וזה א' צינסו תכהו בשלשת חלקיו רצוני בג' רביעי צינסו ועולה ג' רביעי צינסו מצינסו ושמרם | |
|
ועתה תכה המספר שהוא ו' בדבר אחד ועושה ו' דברים | |
|
ואלו ו' דברים הם שוים אל ג' רביעי' צינסו מצינסו | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
והוא שאתה צריך לחלק הדברים על הצינסו דהיינו ו' בג' רביעי' ויגיע לך ח' ושרש המעוקב מח' יבא להיות הדבר שהוא המספר אשר הנחת היותו הדבר | |
The [equation in this] chapter can be restored to chapter seven: | ודע כי זה הפרק אפש' להשיבו אל הפרק השביעי | |
|
מפני כי לבקע צינסו מצינס' על דבר יצא ממנו מעוקב | |
|
ודבר על דבר יצא ממנו מספר | |
Chapter 13 |
הפרק הי"ג | |
עוד תדע כאשר הצינסי מצינסי יהיו שוים אל הצינסי | ||
צריך לחלק כל ההשואה דהיינו הצינסי על הצינסי מצינסי והעולה מזה שרשו המרובע ישוה הדבר | ||
|
תמצא לי שני מספרים שיהיה חלק הראשון מהשני כמו שהוא ג' מה' וכאשר הוכה הקטון בגדול ומה שיעלה יוכה בעצמו יעשה כמו הכאת הגדול בעצמו | |
Its rule: | זהו כללו | |
|
תניח שהמספר הראשון יהיה ג' דברים | |
|
והאחר ה' דברים | |
|
עתה תכה הראשון בשני שזהו ג' דברים בה' דברים עושים ט"ו צינסי | |
|
וזאת ההכאה רצוני ט"ו צינסי תכה בעצמה ועולה רכ"ה צינסי מצינסי ושמרם | |
|
עתה תכה החלק הגדול בעצמו שהוא ה' דברים | |
|
ועולה כ"ה צינסי שהם שוים אל רכ"ה צינסי | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
תחלק הצינס' על הצינסי מצינסי דהיינו כ"ה על רכ"ה שעולה מזה א' תשיעית וכן שוה הצינסו | |
|
ושרש א' תשיעית יבא להיות הדבר והשרש הזה יבא להיות א' שלישי' וכן הוא הדבר | |
|
ואתה הנחת המספר הראשון היותו ג' דברי' והדבר הוא א' שלישי א"כ ג' דברי' יהיו אחד שלם וכן הוא המספר הראשון | |
|
והמספר השני הונח היותו ה' דברים והדבר הוא א' שלישי א"כ יהיו ה' שלישים שהם א' וב' שלישי' וכן הוא המספר השני | |
If has no root: | ואם המספרי' המגיעי' לך בחלוק הצינסי על הצינסי מצינסי {לא היה להם שרש | |
|
ובקשת לדעת כמה הוא ג' דברים תכה ג' בעצמו עושה ט' ולכן תכה מה שעלה שהוא א' תשיעי' בט' ועושה א' שלם | |
|
והמספר השני אשר הונח ה' דברי' תכה ה' בשרש א' תשיעית שעולה שרש כ"ה תשיעיות שהוא ה' שלישיו' | |
This equation can be restored to chapter two, by dividing all the equation by a square: | ודע כי זאת ההשואה אפש' להשיבה אל הפרק השני מפני כי בחלק ההשואה על הצינסי | |
|
מצינסי יצא צינסי | |
|
והצינסי מצינסי יצאו מספרים | |
which is restored to chapter two. | א"כ רכ"ה צינסי יבאו שוים אל כ"ה צינסי סקיסאנדי שהוא כ"ה מספרים ויבא מושב אל הפרק השני רכ"ה צינסי שוים אל כ"ה מספרים | |
Chapter 14 |
פרק י"ד | |
כאשר המעוקבים והצינסי יהיו שוים אל הדברי' | ||
צריך לחלק כל ההשואה על כמות המעוקבים ואח"כ לחלק הצינסי לחצי רצו' לשני חלקים שוים | ||
|
והנה המשל תמצא לי שלשה מספרים שיהיה חלק הראשון מהשני כמו שהוא ב' מג' והשני יהיה מהשלישי כמו שהוא ג' בד' | |
Its rule: | זהו הכלל שלו | |
|
תניח שהמספר הראשון היה ב' דברים | |
|
והשני ג' דברי' | |
|
והשלישי ד' דברי' | |
|
עתה תכה המספר הראשון בעצמו רצוני ב' דברים ועולה ד' צינסי | |
|
עתה תכה זאת ההכאה שהיא ד' צינסי במספר הראשון שהיא ב' דברים ועולה ח' מעוקבים ושמרם | |
|
אח"כ תכה המספר השני בעצמו שעולה ט' צינסי | |
|
וחברם על הח' מעוקבים אשר שמרת ויהיה לך ח' מעוקבי' וט' צינסי ושמור זה הסך בעד אחד מהחלקים | |
|
אח"כ תכה המספר השלישי דהיינו ד' דברי' בי"ב וחצי ועולה נ' דברי' שהם החלק האחר מההשואה | |
|
א"כ ח' מעוקבי' וט' צינסי הם שוים אל נ' דברים | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
והוא שאתה צריך לחלק כל דבר בכמו מה שהם המעוקבים רצוני כל ההשואה על ח' | |
|
ויעלה לך א' מעוקב וא' צינסו וא' שמינית שוים אל ו' דברים ורביע | |
|
עתה צריך אתה לחלק הצינסי לחצי ויעלה ט' חלקים מי"ו ואלו הט' חלקים מי"ו תכם בעצמם ויעלה פ"א חלקים מרנ"ו | |
|
ואתה הנחת היות המספר הראשון ב' דברי' א"כ יבא להיות המספר הראשון ד' | |
|
והמספר השני שמת היותו ג' דברי' שיבא להיות ו' | |
|
והשלישי הנחת היותו ד' דברים א"כ היה ח' | |
These are the numbers required above. | וכן יבאו להיות המספרי' המבוקשים למעלה | |
The [equation in] this chapter can be restored to chapter 4, by dividing all the equation by a thing | ודע כי זה הפרק אפש' להביאו אל הפרק הרביעי מפני כי להבקיע כל ההשואה על דבר יגיע ח' צינסי וט' דברים שוים אל נ' דברים | |
which can be divided then by the number of the squares | או נאמר א' צינסו וא' שמינית וא' דבר שוים לו' דברים ורביע בהיות נחלק כפי מה שהם הצינסי | |
Chapter 15 |
פרק ט"ו | |
כאשר המעוקבים והדברים יהיו שוים אל הצינסי | ||
צריך לחלק כל ההשואה על כמו שהם המעוקבים ואח"כ לחלק הצינסי לחצאים | ||
|
ופעמים מה תצטרך לומ' שהדבר שוה מחצית הצינסי פחות השרש מאשר הנשאר | |
|
ופעמים מה יהיה אפשר לענות שהדבר ישוה מחצית הצינסי ויותר שרש הנשאר | |
According to the way of the fifth chapter. | או פחות שרש הנשאר כפי האופן מהפרק החמישי | |
|
והנני עושה לך מזה המשל עשה לי מחלקים מעשרה שני חלקים באופן שכאשר יוכה ההבדל שבין האחד אל האחר בעצמו וזאת ההכאה תוכה בחלק הגדול יעשה כמו הכאת החלק הגדול בעשרים
ורביע | |
Its rule: | זהו כללו | |
|
תניח שאחד מהחלקי' יהיה דבר אחד | |
|
והאחר יבא להיות עשרה פחות דבר אחד | |
|
עתה תקח ההבדל שהוא בין זה לזה שיבא להיות ב' דברים פחות עשרה | |
When we want to restore it to the first aforementioned answer of this chapter. | ברצותנו להשיבה אל זה הפרק בעד התשובה הראשונה האמורה למעלה | |
|
עתה תכה זה ההבדל בעצמו דהיינו ב' דברים פחות עשרה ועולה ד' צינסי ועשרה דברים פחות מ' דברים | |
|
וזאת ההכאה תכה עוד בחלק הגדול אשר אני עושה שהוא דבר אחד כדי להשיב החשבון אל זה הפרק ויעלה ד' מעוקבי' וק' דברים פחות מ' צינסו ושמור זה בעבור אחד מהחלקי' | |
|
עתה תכה החלק הגדול אשר עשינוהו היותו דבר אחד בכ' ורביע ויעלה כ' דברי' ורביע וזה יהיה החלק השני מההשואה | |
|
ויהיה לך ד' מעוקבי' וק' דברי' פחות מ' צינסי שוים לכ' דברים ורביע | |
|
עתה תחבר מ' צינסי שהם גורעים לאחד מהחלקים ובדומה לזה תחבר עוד אל החלק האחר | |
As said above that instead subtracting one needs to add, so one needs to add to one side the same as the other. | כאשר נאמ' לך לפנים שבמקום הגורע צריך להוסיף וכן צריך להוסיף על החלק האחד כמו אל האחר | |
Since you added to the one as to the other, you need to subtract the smaller quantity of the things from each side. | ואחר שהוספת על האחד כמו לאחר צריך אתה להוציא הכמות הקטון מהדברי' מכל אחד מהחלקי' | |
|
וישאר לך ד' מעוקבי' וע"ט דברי' וג' רביעים שוים אל מ' צינסי | |
|
עתה תחלק כל ההשואה הזאת השניה כאמור למעלה דהיינו לחלוק בכמות המעוקבים שיבא לחלוק על ד' | |
|
ויבא א' מעוקב וי"ט דברים וט"ו חלקים מי"ו שוים אל עשרה צינסי | |
|
עתה תחלק הצינסי לחצי ויעלה ה' ואלו הה' תכם בעצמם ועולה כ"ה | |
|
או אם תרצה אמור ה' ויותר שרש מן ה' וחלק א' מי"ו כפי מה שנתן הפרק האמור וכן יבא להיות החלק הגדול | |
|
והאחר יבא להיות הנשאר עד עשרה שהוא ב' וג' רביעים | |
|
או אם תרצה אמור ה' פחות שרש ה' וחלק מי"ו והוא החלק הקטן | |
This equation is restored to chapter 5, by dividing all the equation by a thing, which yields the answer by the first way so that the thing is a number plus a root
|
ודע כי זאת ההשואה שהיא מעוקבים ודברי' שוים לצינסי ישוב אל הפרק החמישי בחלוק על דבר כל ההשואה ותעשה לך התשובה באופן הראשון היות הדבר מספר ויותר שרש | |
Another calculation whose answer is by the second way of this chapter, which is a number minus a root. | עוד רצוני לתת לך חשבון אחר שתשובתו תהיה מזה הפרק באופן השני שהוא מספר פחות שרש | |
I will give you another question for chapter 15: | עוד אניח לך שאלה אחרת בעד פרק ט"ו האמור | |
|
עשה לי מעשרה שני חלקים באופן שכאשר יוכה ההבדל שבין שני החלקים בעצמו ואותה ההכאה תכה בחלק הקטון יעשה כמו הכאת החלק הקטון בכ' ורביע אשאל כמה יבא להיות כל אחד מהחלקים | |
Following its rule: | תעשה כמו שאומ' כללו | |
|
תניח שאחד מהחלקי' יהיה דבר אחד | |
|
והאחר יבא להיות עשרה פחות דבר אחד | |
|
עתה תקח ההבדל שבין האחד אל האחר שהוא עשרה פחות ב' דברים | |
If we want to restore it now to the second answer of this chapter. | ואם רצינו להשיבה אל זה הפרק בתשובה השנית עתה | |
|
תכה זה ההבדל בעצמו שהוא עשרה פחות ב' דברים ועולה ק' מספרים וד' צינסי פחות מ' דברים | |
|
וזאת ההכאה מוכת על החלק הקטון אשר אנחנו עשינו היותו דבר אחד כדי להשיבו אל התשובה השנית ועולה השנית ועולה ק' דברים וד' מעוקבים פחות מ' צינסי ושמרם בעבור שאחד מהחלקים מההשואה | |
|
עתה תכה החלק הקטון אשר עשינו היותו דבר אחד בכ' ורביע ויעלה כ' דברים ורביע וכן יהיה החלק השני מההשואה | |
|
ויהיה לך מאה דברי' וד' מעוקבי' פחות מ' צינסי שוים אל כ' דברים ורביע | |
|
עתה תוסיף מ' צינסי אשר פוחתים מאחד החלקים ואם תעשה כפי מה שהראית לפנים תוסיפם לחלק האחר גם כן ותוציא הכמות הקטון מהדברים מכל אחד מהחלקים שהוא כ' דברים ורביע | |
|
וישאר ע"ט דברים וג' רביעים וד' מעוקבים שוים אל מ' צינסי | |
|
עתה תחלק כל זאת ההשואה כפי מה שנאמ' לך לפנים דהיינו בכמו שהם המעוקבים שיבאו להחלק על ד' | |
|
ויבא א' מעוקב וי"ט דברים וט"ו חלקים מי"ו שוי' אל עשרה צינסו | |
|
עתה תחלק הצינסי לחצאים ויבא מזה ה' ותכה ה' על עצמו ועושה מזה כ"ה | |
|
או אם תרצה תאמר ה' פחות שרש ה' וחלק מי"ו כפי מה שהפרק השיב לו וככה יבא להיות החלק הקטון | |
|
והאחר יבא להיות הנשאר עד עשרה שהוא ז' ורביע | |
|
או תאמ' ה' ושרש ה' וחלק מי"ו והוא החלק הגדול | |
The answer is done so that the root is subtracted in the thing as the stated method of the chapter. | ונעשתה התשובה להיות הדבר פחות שרש כפי אופן הפרק אשר אמרתי לך | |
I also want to show you how the chapter can assign the thing a number and a root and a number minus a root by that same calculation of chapter 15: | עוד רצוני להראות לך איך הפרק האמור אפש' ליתן הדבר מספר ושרש ומספר פחות שרש בחשבון אחד ממש עוד בעבור הפרק הט"ו האמור | |
|
עשה לי מעשרה שני חלקים באופן שכאשר יוכה החלק הראשון בשני וההכאה ההיא תוכה בראשון יעשה כמו הכאת הראשון בכ"א אשאל כמה יבא להיות כל אחד מהחלקים האמורים | |
|
זהו כללו תניח שהחלק הראשון יהיה דבר אחד | |
|
והשני יבא להיות עשרה פחות דבר אחד | |
|
ועולה עשרה דברים פחות א' צינסו | |
|
וזאת ההכאה תכה עוד בחלק הראשון שהוא דבר אחד ועולה עשרה צינסי פחות א' מעוקב ושמור | |
|
אח"כ תכה החלק הראשון שהוא דבר אחד בכ"א | |
|
ועולה כ"א דברים והם שוים אל עשרה צינסי פחות א' מעוקב | |
|
עתה תתן המעוקב שהוא פחות לכל אחד מהחלקים | |
|
ויהיה לך א' מעוקב וכ"א דברים שוים אל עשרה צינסי | |
|
עתה צריך אתה לחלק כל ההשואה בכמו שהם המעוקבים שהוא אחד | |
|
ועולה מזה אותו בעצמו | |
|
עתה עליך לחלוק הצינסי לחצאים כמו שרוצה הכלל האמור ויעלה ה' ותכה ה' בעצמו ועולה כ"ה | |
Since this calculation can be answered by addition and by subtraction, one can answer that the thing is 5 plus a root of 4, or say [that it is] 5 minus a root of 4, according to the third way of the chapter. | מפני כי זה החשבון תוכל לענות ביותר ובפחות א"כ תוכל לענות שהדבר הוא ה' ושרש ד' או תאמר ה' פחות שרש ד' כפי האופן השלישי מהפרק האמור | |
Chapter 16 |
פרק י"ו | |
כאשר הצינסי והדברים יהיו שוים למעוקבים | ||
צריך לחלק כל ההשואה על כל כמות המעוקבים ואח"כ לחלק כמות הצינסי לחצאים | ||
|
עשה לי החשבון תמצא לי מספר אחד שכאשר הוכה בעצמו ואותה ההכאה תוכה במספר ההוא יעשה כמו הכאת המספר האמור בי"ב ואח"כ להכות המספר האמור בעצמו ואותה ההכאה תוכה בעשרה ולחבר עם ההכאה שנעשתה בי"ב אשאל כמה יבא להיות המספר האמור | |
|
זהו הכלל שלו תניח שהמספר יהיה דבר אחד | |
|
ותכהו בעצמו ויהיה א' צינסו וזאת ההכאה תכה על המספר שהוא דבר אחד ועולה א' מעוקב ושמרהו בעבור חלק אחד מההשואות | |
|
אח"כ תכה המספר האמור בי"ב דהיינו דבר אחד בי"ב ועולה י"ב דברים | |
|
ואח"כ תשוב אל המספר האמור שהוא דבר אחד תכהו בעצמו ועלה א' צינסו וזה הצינסו תכהו בעשרה ועולה י' צינסו | |
|
ואותם תחבר עם ההכאה העשויה בי"ב שהם י"ב דברים | |
|
ויהיה לך עשרה צינסי וי"ב דברים שוים לא' מעוקב | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
תחלק כל ההשואות כל כמות המעוקבים שהוא אחד | |
|
ויעלה אותו בעצמו | |
|
עתה תחלק כמות הצינסי לחצאי' ויעלה ה' וזה הה' תכהו בעצמו ועולה כ"ה | |
This equation can be restored to chapter 6, by dividing all the equation by a thing | ודע כי זאת ההשואה אפש' להשיבה אל הפרק הששי בחלוק על דבר כל ההשואה ויעלה ח' צינסו שוה לו' דברים וי"ב מספרי' | |
Chapter 17 |
פרק י"ז | |
כאשר הדברים יהיו שוים אל שרשי המספרים | ||
צריך להכות הכמות בעצמו ולחלק המספרים על ההכאה ההיא ושרש העולה מזה שוה הדבר | ||
|
תמצא לי שני מספרים שיהיה חלק האחד מהאחר כמו שהוא ב' מג' וכשיוכה כל אחד בארבעה ויקובצו אלו ההכאות יחד יעשו שרש ק' | |
|
זהו הכלל שלו תניח שאחד מהמספרים יהיה ב' דברים | |
|
והאחר יבא להיות שלשה דברים | |
|
עתה תכה ב' דברים בד' ועולה ח' דברים ושמרם | |
|
אח"כ תכה המספר האחד שהוא ג' דברים בד' ועולה י"ב דברים | |
|
עתה תחבר ח' דברים עם י"ב דברים | |
|
ועולים כ' דברים שהם שוים אל שרש ק' | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
תכה כמות הדברים בעצמם שהם כ' דברים ויעלה ת' עתה תחלק כמות המספרים אשר נקבו שרש והם ק' ותחלק אלו הק' בהכאת כמות הדברים שהוא ת' שיבא א' רביע | |
|
והמספר הראשון שמתו ב' דברים אשר יבא להיות שרש א' רביע דהיינו א' שלם וכן הוא המספר הראשון | |
|
והשני הנחת היותו ג' דברים אשר יבא להיות ג' פעמים שרש א' ורביע שהוא א' וחצי וככה הוא המספר השני | |
|
א"כ הראשון יבא להיות שרש האחד והשני יבא להיות שרש ב' ורביע | |
If one wishes to restore this equation to one of the six chapters, it can be restored to chapter two. | ואם רצית להשיב זאת ההשואה אל אחד מהו' פרקים דע שאפש' להשיבה אל הפרק השני | |
Since | מפני כי שרש מספר מוכה בשרש מספר מוכה בעצמו אי פרודושא יעשה מספר | |
and | והדבר שהוא שרש מצינסו מוכה בעצמו עושה צינסו | |
Therefore, | וא"כ ת' צינסו הם שוים אל ק' מספרים | |
Chapter 18 |
פרק י"ח | |
עוד כאשר המספרים יהיו שוים אל שרשי הדברים | ||
צריך להכות המספר בעצמו ואותה ההכאה תחולק בכמות הדברים אשר נקבו בשמות | ||
|
תמצא לי מספר אחד שכאשר יוכה בט' יהיה שרש העולה י"ב אשאל כמה יבא להיות המספר | |
Following its rule: | תעשה כמו שאומ' כללו זה | |
|
תניח שהמספר יהיה דבר אחד | |
|
ותכה דבר אחד בט' ועושה ט' דברים | |
|
ושרש ט' דברי' הוא שוה אל י"ב | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
תכה המספרים בעצמם שהוא י"ב על י"ב ועושה קמ"ד ותחלק על כמות הדברים אשר נקבו היות להם שרשים דהיינו על ט' ויעלה מזה י"ו | |
The equation can be restored to chapter one in this way: | ודע כי ההשואה הזאת דהיינו מספרים שוים אל שרשים דברים ישוב אל הפרק הראשון בזה האופן | |
|
דהיינו תכה שרש ט' דברים בעצמו יעלה ט' דברי' | |
|
וי"ב מספרי' שהם שרש מהכאה המוכה בעצמה עושה קמ"ד מספרי' | |
Since | מפני כי ככה שוה כאשר שרש הדבר שוה לשרש מספר כמו כשהדבר שוה למספר | |
Because, when the roots of the things equal numbers, these [numbers] are also equal to the root of other numbers []. | מפני כי בהיות שרשי הדברי' שוים אל מספרי' מה אותם הם ג"כ שרשים למספרי' אחרי' | |
Therefore, one should only convert those numbers to roots, and by this the things will be equal to numbers. | א"כ אין צורך רק להשיב אותם המספרי' אל שרשים ובאותו ההיות יהיה א"כ הדברי' עם המספרי' | |
Thus, it is restored to chapter one. | ויהיה מושב אל הפרק הראשון | |
Chapter 19 |
פרק י"ט | |
כאשר הצינסי יהיו שוים אל שרשי דראמי או מספרי' | ||
צריך להכות כמות הצינסי בעצמם ואח"כ לחלק הדראמי או המספרי' על המרובע או בהכאת הצינסי | ||
|
תמצא לי שני מספרים שיהיה חלק האחד מהאחר כמו שהוא ב' מג' ואם יוכה האחד באחר יעשה שרש מי"ב | |
Following its rule: | תעשה כמו שאומ' זה הכלל שלו | |
|
תניח שהאחד יהיה ב' דברים | |
|
והאחר יהיה ג' | |
|
עתה תכה האחד באחר שהוא ב' דברים בג' דברים ויעלה ו' צינסי | |
|
ואלו הו' צינסי הם שוים אל שרש י"ב | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
תכה כמות הצינסי בעצמם והם ו' ועולה ל"ו ועתה תחלק המספרי' אשר נקבו להיות להם שרש והם י"ב על מרובע זה מהצינסי רצו' על ל"ו | |
|
ואתה הנחת שהמספר הראשון היה ב' דברים א"כ תכה ב' על שרש משרש א' שליש | |
|
ואתה הנחת שהשני היה ג' דברי' והדבר הוא שרש השרש מא' ושליש | |
The equation can be restored to chapter 11 in this way: | ודע כי זאת ההשואה רצוני שצינסי יהיו שוים אל שרשי המספרי' אפש' להשיבה אל הפרק הי"א בזה האופן | |
|
תשיב ו' צינסי אל שרשים | |
ויהיה לך שרשים מצינסי מצינסי שוים לשרשי' ממספרים ושוה כמו שהיו צינסי מצינסי שוים אל מספרי' | ||
This way it is restored to chapter 11. | ותהיה מושבת בזה האופן אל הפרק הי"א | |
Chapter 20 |
פרק כ' | |
When the numbers are equal to a root of squares:
|
עוד כאשר המספרי' יהיו שוים אל שרשי צינסי | |
The numbers should be multiplied by themselves. | צריך להכות המספרי' בעצמם | |
Then, this product should be divided by the number of the squares that are the radicand. | ולחלק ההכאה ההיא בכמות הצינסי הנקובים שהם להם שרש | |
The root of the result is equal to the thing.
|
ושרש העולה שוה הדבר | |
|
והנה המשל תמצא לי שני מספרים שיהיה חלק אחד מהם לאחר כמו שהוא ב' אל ג' וכשיוכה הראשון בשלשה והשני בארבעה ואלו שתי ההכאות מחוברים יחד ויוכה בשרש ה' יעשה מ' | |
|
זהו כללו | |
|
תניח שהמספר הראשון יהיה ב' דברים והאחר יבא להיות ג' דברי' | |
|
עתה תכה הראשון שהוא ב' דברים על ג' ועולה ו' דברי' ושמרם | |
|
אח"כ תכה המספר השני שהוא ג' דברי' בד' ועולה י"ב דברי' | |
|
ותחברם עם ו' דברי' אשר שמרת ויהיו לך י"ח דברי' | |
|
עתה תכה י"ח דברים בשרש ה' | |
|
זכור כי הנך צריך להשיב י"ח דברי' אל שרשים אשר יבא אל שרש שכ"ד צינסי | |
|
אשר תכם בשרש ה' ויהיה לך שרש מאלף תר"כ צינסי שהם שוים אל מ' מספרים | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
תכה המספרי' שהם מ' בעצמם ועולי' אלף ות"ר | |
|
וחלק אלף ת"ר בכמות הצינסי אשר נקבו היות להם שרש שהם אלף תר"כ ויבא מזה פ' חלקים מפ"א | |
|
ושרש פ' חלקים מפ"א יבא לשוות הדבר | |
|
ואתה הנחת שהמספר הראשון היה ב' דברים א"כ תכפול ב' בשרש פ' חלקי' מפ"א ועולה שרש ג' וע"ז חלקים מפ"א וככה יבא להיות המספר הראשון | |
|
והמספר השני הנחת היותו ג' דברי' א"כ תכה ג' בפ' חלקי' מפ"א ועולה שרש ח' וע"ב חלקים מפ"א וככה יבא להיות המספר השני | |
Know that this equation can be returned to the second chapter: | ודע כי זאת ההשואה אפש' להשיבה אל הפרק השני | |
Since a root of a square equals a root of a number is the same as a square equals a number.
|
מפני כי כך שוה שרש מצינסו שוה אל שרש מספר כמו צינסו שוה אל מספר | |
|
וזה ראית באותו שחלקת שרש אלף ת"ר מספרי' בשרש אלף תר"כ צינסי | |
Know also that this equation can be returned to the first chapter: | ודע עוד כי זאת ההשואה אפש' להשיבה אל הפרק הראשון | |
Since a root of a square is a thing, so we get a thing equals a number. | מפני כי שרש הצינסו יבא להיות הדבר א"כ היו לנו דבר שוה אל מספר | |
|
דהיינו כל כך דברים כמו שהוא שרש אלף תר"כ מספרי' שוים אל מ' מספרי' | |
|
שיבא לחלק מ' בשרש אלף תר"כ שיבא מזה באופן החלוק בשרשים שרש פ' חלקים מפ"א וככה יבא לשוות הדבר | |
Solved according to the said chapter. | ונעשה בעד הפרק האמור | |
Chapter 21 |
פרק כ"א | |
When the cubes are equal to a root of a number.
|
כאשר המעוקבים יהיו שוים אל שרש מספר | |
The number of the cubes should be multiply by itself. | צריך להכות כמות המעוקבים בעצמם | |
Then, the numbers that are the radicand should be divided by that product. | ולחלק המספרים הנקובים שרש באותה ההכאה | |
Extract the square root of the cube root of the result, or vice versa the cube root of the square root, and this is the thing.
|
ומהעולה תקח השרש מרובע משרשו המעוקב או בהפך שרשו המעוקב משרשו המרובע וככה יבא לשוות הדבר | |
|
עשה לי זה החשבון תמצא לי שני מספרים שיהיה חלק האחד מהאחר כמו מה שהוא ג' מד' וכשיוכה הראשון בעצמו ואותה ההכאה תכה בשני יעשה שרש כ' ורביע | |
|
תעשה כמו שאומ' הכלל שלו | |
|
תניח שהמספר הראשון היה ג' דברי' והשני ד' דברי' | |
|
עתה תכה הראשון בעצמו שהוא ג' דברים ועולה ט' צינסי | |
|
עתה תכה זאת ההכאה שהיא ט' צינסי במספר השני שהוא ד' דברים ועולה ל"ו מעוקבי' והם יבאו להיות שוים אל שרש כ' ורביע | |
|
עתה תרדוף כפי הכלל הנתון | |
|
דהיינו תכה כמות המעוקבים בעצמם ועולה אלף ורצ"ו | |
|
אח"כ תחלק כ' ורביע שהוא כמות המספרים אשר נקבו להיות להם שרש על אלף ורצ"ו ועולה חלק אחד מס"ד | |
|
ושרש מעוקב משרש מרובע מא' חלק מס"ד יהיה שוה הדבר | |
|
ואתה הנחת שהמספר הראשון היה ג' דברי' א"כ תכה ג' בשרש מעוקב משרש מרובע מחלק א' מס"ד ועולה שרש מעוקב משרש מרובע או שרש מרובע משרש מעוקב מתשכ"ט מס"ד וזה יבא להיות א' וחצי וככה הוא המספר הראשון | |
|
והמספר השני הונח היותו ד' דברים ולכן תכה ד' בשרש מעוקב משרש מרובע מא' חלק מס"ד ועולה שרש מעוקב משרש מרובע או אמור שרש מרובע משרש מעוקב מתצ"ו מס"ד אשר יבא להיות ב' וככה יבא להיות המספר השני | |
Know that this equation has the nature that fits chapter seven, although it exceeds by a square root. | ודע כי זאת ההשואה יש לו הטבע הנאות אל הפרק השביעי אע"פ שהולך יותר שרש אחד מרובע | |
Chapter 22 |
פרק כ"ב | |
עוד כאשר המספרי' יהיו שוים אל שרשי המעוקבים | ||
צריך להכות המספרים בעצמם ולחלק ההכאה ההיא בכמות המעוקבי' הנקובים היות להם שרשים | ||
|
תמצא לי שני מספרי' שיהיה חלק האחד מהאחר כמו שהוא ג' מה' וכשיוכה כל אחד על שרשו ויחוברו שתי אלו ההכאות יחד וזה הסך יוכה בשרש ח' יעשה מאה | |
Its rule: | זהו כללו | |
|
תניח שהמספר הראשון יהיה ג' דברים | |
|
והאחר ה' דברים | |
Since the root of the thing is not known, the first number should have been defined as three çenso , and the second number as five çenso , as the çenso has a proper root, which is a thing . | דע כי מן הדין היה שבעבור כי שרש הדבר אינו נכר שהיה ראוי שיונח המספר הראשון ג' צינסי והאחר ה' צינסי מפני שהצינסו יש לו היטב שרש שהוא דבר אחד | |
But, this is the same, since is similar to , when is such and such things of | וכמו זה ישוה מפני כי ככה ישוה ג' דברים מוכים בשרש ג' דברים כמו הכאת ג' צינסו בשרשו אשר יהיה כל כך דברים כמו שהוא שרש ג' | |
|
עתה תכה המספר ראשון שהוא ג' דברים בשרשם שהוא שרש ג' דברים ועולה שרש כ"ז מעוקבים | |
|
עתה תכה המספר השני שהוא ה' דברים בשרשם ועולה שרש קכ"ה מעוקבי' | |
|
שרש כ"ז מעוקבי' ושרש קכ"ה מעוקבי' וזה הסך תכה בשרש ח' ויעלה שרש רי"ו מעוקבים ושרש אלף מעוקבים | |
|
ואלו שני השרשים הם שוים אל ק' | |
|
תרדוף כמו הכלל האמור למעלה | |
|
תכה המספרי' שהם ק' ועולה עשרת אלפים | |
|
ואלו תחלק על כמות המעוקבים הנקובים להיות להם שרש דהיינו בשרש רי"ו ובשרש אלף | |
|
אשר זה תחלק באופן זה כפי התלמדות החלוק בשרשים תכה שרש אלף ושרש תשפ"ד בשרש אלף פחות שרש רי"ו אשר עולה תשפ"ד אשר אניח להיות מחלק | |
|
ועתה אמור כן אם מתשפ"ד יבא שרש אלף פחות שרש רי"ו כמה יבא מאלף שהוא המספר שהוכה בעצמו | |
תכה שרש אלף פחות שרש רי"ו באלף שעולה שרש מ 100000000 פחות שרש מ216000000 וזאת ההכאה תחלק בתשפ"ד אשר יעלה מזה שרש אלף תרכ"ו וכך חלקים 569344 מ614656 פחות שרש משנ"א וכך חלקים 255744 מ614656 | ||
| ||
|
ואתה הנחת שהמספר הראשון יהיה ג' דברי' | |
|
א"כ תכה ג' בשרש מעוקב מזה שצריך להשיב ג' אל שרש מרובע ואותו הרבוע צריך להשיב אל שרש מעוקב ויהיה לך שרש משרש מעוקב מתשכ"ט עתה תכה שרש משרש מעוקב מתשכ"ט בשרש משרש מעוקב מאלף תרכ"ו וחלקי' ה' מאות וס"ט אלפים ושמ"ד מתרי"ד אלפים ותרנ"ו פחות שרש משרש מעוקב משנ"א וחלקים רנ"ה אלפים ותשמ"ד מתרי"ד אלפים ותרנ"ו | |
| ||
|
ואתה הנחת שהמספר השני היותו ה' דברי' א"כ תכה ה' במה ששוה הדבר | |
|
תשיב ה' אל שרש משרש מעוקב ויהיה לך שרש משרש מעו' מט"ו אלפים ותרכ"ה עתה תכה שרש משרש מעו' מט"ו אלפים ותרכ"ה בשרש משרש מעו' מאלף ותרכ"ו וחלקי' מתקס"ט אלפים ושמ"ד מתרי"ד אלפים ותרנ"ו פחות שרש משרש מעו' משנ"א וחלקים רנ"ה אלפים ותשמ"ד מתרי"ד אלפים ותרנ"ו | |
| ||
This equation is of the nature of chapter 7, even though it yields an extra root, since these two roots, i.e. the products received above, cannot be summed together to one root alone in their expression or addition | ודע כי זאת ההשואה היא מטבע הפרק השביעי אע"פ שתענה שרש אחד יותר מפני כי אותם שני שרשי' דהיינו ההכאות שנעשו למעלה אי אפשר לחברם יחד בענותם או בחברם בשרש אחד לבד | |
Chapter 23 |
פרק כ"ג | |
When the squares of squares are equal to a root of a number:
|
כאשר הצינסי מצינסי יהיו שוים אל שרשי מספרי' | |
The number of the squares of squares should be multiplied by itself. | צריך להכות כמות הצינסי מצינסי בעצמם | |
Then, the number that is the radicand sould be divided by this product. | ולחלוק המספרי' הנקובי' על זאת ההכאה | |
Extract the root of the root of the root of the result and this is equal to the thing.
|
ותקח מהעולה שרש השרש מהשרש וככה יבא לשוות הדבר | |
|
עשה לי זה החשבון תמצא לי מספר אחד שכאשר הוכה בשני שלישיו ואותה ההכאה תוכה בעצמה תעשה שרש חמשים אשאל כמה יבא להיות המספר האמור | |
|
זהו כללו | |
|
תניח שהמספר יהיה דבר אחד | |
|
ויוכה דבר אחד בשני שלישיו ועולה ב' שלישי' מצינסו | |
|
עתה תכה ב' שלישי' מצינסו בעצמו ועולה ד' תשיעיות מצינסו מצינסו שהם שוים אל שרש נ' | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
תכה כמות הצינסי מצינסי בעצמם שהם ד' תשיעיות ויעלה י"ו חלקים מפ"א | |
|
ותחלק המספרי' הנקובי' היות להם שרש ויעלה מזה רנ"ג ושמינית | |
|
ושרש השרש משרשו יבא לשוות הדבר וככה יבא להיות המספר האמור | |
Know that this is almost the same as the nature of chapter 11, except that here a root of one degree higher is extracted. | ודע כי זה הוא כמעט דומה לטבע הפרק הי"א מלבד שלוקח שרש אחד יותר | |
Chapter 24 |
פרק כ"ד | |
When the numbers are equal to a root of the squares of squares:
|
כאשר המספרים הם שוים אל שרשי הסינסי מצינסי | |
The numbers should be multiplied by themselves. | צריך להכות המספרי' בעצמם | |
Then, this product should be divided by the number of the squares of squares that are the radicand. | ולחלק אותה ההכאה בכמות הצינסי מצינסי הנקובי' היות להם שרש | |
The root of the root of the result should be extracted and this is equal to the thing.
|
ולקחת מהעולה שרש שרשו וככה יבא לשוות הדבר | |
|
תמצא לי שני מספרי' שיהיה חלק האחד מהאחר כמו שב' הוא מג' וכשיוכה האחד באחר ואותה ההכאה תוכה בשרש ח' ועושה ק' | |
|
זהו כללו | |
|
תניח שהמספר ראשון ב' דברים והאחר מחוייב שיהיה ג' דברים | |
|
עתה תכה הראשון בשני שהוא ב' דברי' על ג' דברים ועולה ו' צינסי | |
|
תכה ו' צינסי על שרש ח' | |
|
דע כי הנך צריך להשיב ו' צינסי אל שרשים והם בשהושבו אל שרשים יהיו שרש מל"ו צינסי מצינסי | |
|
עתה תכה שרש מל"ו צינסי מצינסי בשרש ח' עולה שרש מרפ"ח צינסי מצינסי שהם שוים אל ק' מספרי' | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
תכה המספרי' בעצמם שהם ק' ועולה עשרת אלפים ואלו תחלק על כמות הצינסי מצינסי הנקובים היות להם שרשים והם רפ"ח | |
|
ואתה הנחת שהמספר ראשון היה ב' דברי' א"כ תכה ב' על מה ששוה הדבר | |
|
והשני הנחת היותו ג' דברים א"כ תכה שרש משרש ל"ד וי"ג חלקים מי"ח | |
The equation can be restored to chapter 11. | ודע כי זאת ההשואה אפש' להשיבה אל הפרק הי"א | |
If the amount of the has a root, it can be restored to the second chapter | ואם לכמות הצינסי מהצינס' הנקובים להיות להם שרש היה להם שרש היתה מושבת אל הפרק השני | |
|
מפני כי שרשו היה צינסו | |
|
ויבא להיות שוה אל המספרי' | |
Chapter 25 |
פרק כ"ה | |
כאשר הדברים הם שוים אל שרשי הדברים | ||
צריך להכות שרשי הדברים בעצמם ואותה ההכאה תחזיק למחלק והדברי' אשר נקבו תחלק בהכאה האמורה דהיינו ברבוע כמות הדברי' | ||
|
תמצא לי שני מספרי' שיהיה החלק האחד מהשני כמו שהוא ג' מד' וכן יעשה הראשון מוכה בח' כמו השני דהיינו שרשו מוכה בו' | |
Its rule: | זהו כללו | |
|
תניח שהראשון יהיה ג' דברי' | |
|
והאחר ד' דברים | |
|
עתה תכה הראשון שהוא ג' דברי' בח' ועולה כ"ד דברי' | |
|
אח"כ תכה שרש השני שהוא שרש ד' דברים בו' ועולה שרש קמ"ד צינסי והוא שוה אל כ"ד דברי' | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
תכה כמות הדברי' בעצמם שהוא כ"ד ועולה תקע"ו ותחלק הדברי' הנקובי' היות להם שרשי' והם קמ"ד על תקע"ו ועולה מזה א' רביע וזה יבא לשוות הדבר | |
|
ואתה הנחת המספר ראשון היותו ג' דברים א"כ תכה ג' בא' רביע האמור ועולה ג' רביעי' ממספר | |
|
ואתה הנחת היות המספר השני ד' דברים א"כ תכה הרביע האמור בד' ועולה ד' רביעים ממספר | |
The equation can be restored to chapter 3: | ודע כי זאת ההשואה אפש' להשיבה אל הפרק השלישי | |
|
מפני כי שרש דבר מוכה בשרש דבר עושה דבר | |
|
ודבר מוכה בדבר עושה צינסו | |
Hence, by multiplying each part [of the equation] by itself: | א"כ בהכות כל אחד מהחלקים בעצמו | |
|
שרשי הדברים יבאו דברים | |
|
והדברים יבאו צינסו | |
Then, by dividing the whole equation by the aforesaid calculation is restored to the first chapter. | ובחלק אחר זה כל ההשואה על הדברי' ישוב החשבון האמור למעלה אל הפרק הראשון | |
Chapter 26 |
פרק כ"ו | |
עוד כאשר הצינסו הם שוים אל שרשי דברים | ||
צריך להכות כמות הצינסי בעצמם ולחלק כמות הדברי' הנקובי' להיות להם שרשים על אותה ההכאה או רבוע הצינסי | ||
|
תמצא לי שני מספרי' שיהיה האחד חלק מהאחר כמו שב' הוא מה' וכשהוכה האחד בשני יעשה כמו הכאת שרש השני בח' | |
Its rule: | זהו כללו | |
|
תניח שהמספר הראשון יהיה ב' דברי' | |
|
והאחר יהיה ה' דברי' | |
|
עתה תכה הראשון בשני שהוא ב' דברי' על ה' דברי' ועולה עשרה צינסי ושמרם בעד חלק אחד מההשואה | |
|
עתה תכה שרש השני שהוא שרש ה' בח' ועולה שרש מש"כ דברי' שהם שוים אל עשרה צינסי | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
תכה כמות הצינסי בעצמם שהם עשרה ויעלה ק' עתה תחלק כמות הדברי' אשר נקבו היות להם שרשים והם ש"כ על ק' | |
|
ואתה הנחת שהמספר הראשון היה ב' דברים א"כ תכה ב' על שרש מעוקב מג' וא' חומש | |
|
והשני הנחת היותו ה' דברים א"כ תכה ה' בשרש מעו' מג' וא' חומש | |
The equation can be restored to chapter 12, by multiplying each part [of the equation] by itself | ודע כי זאת ההשואה אפש' להשיבה אל הפרק הי"ב כאשר יוכה כל אחד מהחלקי' בעצמו | |
|
והיה בא דברי' שוים אל צינסי מצינסי | |
After it is restored the chapter 12, it can be restored to chapter 7, by dividing each part [of the equation] by | ועוד אפש' להשיבה אל הפרק השביעי אחר שהושבה אל הי"ב בחלק כל אחד מהחלקי' על דבר | |
Chapter 27 |
פרק כ"ז | |
כאשר הדברים יהיו שוים אל שרשי מעוקבים | ||
צריך להכות כמות הדברים בעצמם ולחלק ההכאה ההיא על כמות המעוקבים הנקובי' היות להם שרש | ||
|
תמצא לי שני מספרים שיהיה הראשון חלק מהשני כמו שב' הוא מג' וכשיוכה הראשון בשרש עצמו יעשה כמו הכאת השני בשנים | |
Its rule: | זהו כללו | |
|
תניח השני שהמספר הראשון יהיה ב' דברי' | |
|
והשני ג' דברי' | |
|
עתה תכה הראשון שהוא ב' דברים בשרש עצמו בזה האופן תשיב ב' דברי' אל שרש מרובע ויהיה לך שרש מד' צינסי | |
|
עתה תכה המספר האחר שהוא ג' דברים בב' ועולה ו' דברים שהם החלק האחר | |
|
ויהיה לך שרש ח' מעוק' שוה לו' דברים | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
תכה כמות הדברי' בעצמם והם ו' ועולה ל"ו ואלו הל"ו תחלק על כמות המעוקבי' הנקובי' להיות להם שרשים דהיינו על ח' ויבא ד' וחצי וככה שוה הדבר | |
|
ואתה הנחת היות המספר הראשון ב' דברי' א"כ תכה ב' דברי' בד' וחצי ועולה ט' וככה שוה המספר הראשון | |
|
והשני הנחת היותו ג' דברי' א"כ תכה ג' בד' וחצי ועולה י"ג וחצי וככה הוא המספר השני | |
The equation can be restored to chapter 9, by multiplying each part of the equation by itself. | ודע שזאת ההשואה אפש' להשיבו אל הפרק התשיעי בהכות כל אחד מהחלקי' מההשואות בעצמו | |
After it is restored to chapter 9, it can then be restored to each part [of the equation] by | ובהיותו מושב אל הפרק התשיעי אפשר להשיבה אל הפרק הראשון בחלק כל חלק על צינסי | |
By dividing the equation by , it is restored to the third chapter in the aforesaid way. | ובחלק ההשואה האמורה על דברים תשוב אל הפרק השלישי באופן האמור | |
Chapter 28 |
פרק כ"ח | |
עוד באופן אחר כאשר הדברים יהיו שוים אל שרשי צינסו מצינסי | ||
צריך להכות כמות הדברים בעצמם ולחלק אותה ההכאה על כמות הצינסי מצינסי הנקובי' היות להם שרש | ||
|
עשה לי זה החשבון תמצא לי ב' מספרי' שיהיה האחד חלק מהאחר כמו שהוא ג' מה' וכשיוכה האחד באחר ואותה ההכאה תוכה בשרש ח' יעשה כמו המספר השני | |
Its rule | זהו כללו | |
|
תניח שהמספר ראשון יהיה ג' דברים | |
|
והשני יהיה ה' דברים | |
|
עתה תכה האחד באחר דהיינו ג' דברים בה' דברי' עולה ט"ו צינסי | |
|
עתה תכה זאת ההכאה שהיא ט"ו צינסי בשרש ח' וזכור כי הנך צריך להשיב הט"ו צינסי אל שרש ויהיה לך שרש מרכ"ה צינסי מצינסי | |
|
א"כ יהיה לך ה' דברי' שוים אל שרש אלף ת"ת צינסי מצינסי | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
תכה כמות הדברים בעצמם והם ה' ועולה כ"ה וזאת ההכאה רצוני כ"ה תחלק בכמות הצינסי מצינסי הנקובים להיות להם שרש שהם אלף ת"ת | |
|
ואתה הנחת היות המספר הראשון ג' דברים א"כ תכה ג' בשרש חלק א' מע"ב ועולה שרש מט' חלקים מע"ב | |
|
והשני הנחת היותו ה' דברי' א"כ תכה ה' בשרש א' חלק מע"ב | |
The equation can be restored to chapter 2, and also to chapter 13: | ודע כי זאת ההשואה אפש' להשיבה אל הפרק השני וג"כ אפש' להשיבה אל הפרק הי"ג | |
|
וראשונה אל הי"ג בהכות כל אחד מהחלקי' בעצמו | |
|
הדברים יבאו צינסי | |
|
ושרש צינסו מצינסו יבא צינסו מצינסו | |
|
ובחלוק ג"כ כל חלק על צינסו | |
|
הצינסי יבאו אל מספרים | |
|
והצינסי מצינסי יבאו צינסי | |
|
והיה מושב אל הפרק השני | |
It can also be restored to chapter 3: | וברצותך להשיבה אל הפרק השלישי | |
|
יהיו לך ה' דברים שוים אל כך צינסי כמו שהוא שרש אלף ת"ת ויבא לך לחלק ה' על שרש אלף ת"ת ומה שיעלה שוה הדבר | |
Chapter 29 |
פרק כ"ט | |
כאשר הצינסי יהיו שוים אל שרשי צינסי | ||
צריך להכות כמות הצינסי בעצמם ולחלוק הצינסי הנקובים בעצמם להיות להם שרש על אותה ההכאה | ||
|
תמצא לי ב' מספרים שיהיה הראשון חלק מהשני כמו שד' הוא מה' ומוכה האחד באחר יעשה כמו הכאת השני בשרש ח' | |
Its rule: | זהו כללו | |
|
תניח שהמספר ראשון ד' דברי' | |
|
והשני יהיה ה' דברי' | |
|
עתה תכה הראשון בשני דהיינו ד' דברי' בה' דברי' ועולה כ' צינסי ושמרם בעד חלק אחד מן חלקי ההשואה | |
|
תכה המספר השני שהוא ה' דברי' בשרש ח' וזכור כי הנך צריך להשיב הדברי' אל שרשים ויהיה לך שרש כ"ה צינסי | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
תכה כמות הצינסי בעצמם והם כ' ועולה ת' עתה תחלק כמות הצינסי אשר נקבו להיות להם שרשם שהם ר' על אלו הת' ויבא חצי | |
|
ואתה הנחת היות המספר ראשון ד' דברים א"כ תכה בד' בשרש חצי יעלה שרש ח' וככה יבא להיות המספר ראשון | |
|
והשני הנחת ה' דברי' א"כ תכה ה' בשרש חצי ועולה שרש מי"ב וחצי וככה יבא להיות המספר השני | |
The equation can be restored to chapter 13, by multiplying each part [of the equation] by itself, then dividing it by roots, so that it will be restored to | ודע כי זאת ההשואה אפש' להשיבה אל הפרק הי"ג בהכות כל חלק בעצמו ולחלקו בשרשים ויבאו צינסי מצינסי שוים אל צינסי | |
Or dividing it by things, so that it will be restored to chapter 8. | ואם רצית לחלק אח"כ על דברים תשוב אל הפרק השמיני | |
Or dividing it by squares, so that it will be restored to chapter 2: . | וברצותך לחלקה על צינסי תשוב אל הפרק השני דהיינו מספרי' שוים אל צינסי | |
Chapter 30 |
פרק ל' | |
כאשר הצינסי יהיו שוים אל שרשי המעוקבים | ||
צריך להכות כמות הצינסי בעצמם ולחלק כמות המעוקבי' הנקובים להיות להם שרש על אותה ההכאה | ||
|
תמצא לי ב' מספרים שיהיה האחד חלק מהאחר כמו ב' מג' ובהכות הראשון בשרשו יעשה כמו הכאת השני בעצמו | |
Its rule: | וזהו כללו | |
|
תניח שהמספר ראשון היה ב' דברים | |
|
והאחר ג' דברים | |
|
תכה הראשון שהוא ב' דברים בשרשם זכור לך כי אתה צריך להשיב ב' דברי' אל שרשים ויהיה לך שרש מד' צינסי | |
|
עתה תכה המספר האחר שהוא ג' דברי' בעצמו | |
|
ועולה ט' צינסי שהם שוים אל שרש מעוקב ח' | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
תכה כמות הצינסי בעצמם שהם ט' ועולה פ"א עתה תחלק כמות המעוקבי' הנקובי' להיות להם שרש שהם ח' על אלו הפ"א | |
|
ואתה הנחת היות המספר ראשון ב' דברים א"כ תכה ב' בח' חלקים מפ"א ועולה י"ו חלקים מפ"א וככה הוא המספר ראשון | |
|
והשני הנחת היותו ג' דברי' א"כ תכה ג' בח' חלקים מפ"א ועולה כ"ד חלקים מפ"א וככה הוא המספר השני | |
The equation can be restored to chapter 10, by dividing by roots: | ודע כי זאת ההשואה אפש' להשיבו אל הפרק העשירי בחלוק על שרשים | |
|
מפני כי ט' צינסי הם שרש מפ"א צינסי אשר הם שוים אל ח' שרשי' מעו' | |
|
א"כ בהכאת ט' צינסי בעצמם אשר הם שרש מפ"א צינסי מצינסי עושים פ"א צינסי מצינסי | |
|
ולהכות שרש ח' מעוקבים בעצמו עושה ח' מעוקבים | |
|
א"כ יהיה לך פ"א צינסי מצינסי שוים אל ח' מעוקבים וזהו האופן לחלק בשרשים | |
Dividing the equation by : restoring to chapter 9. | וברצותינו לחלק זאת ההשואה על דברים תביאך אל הפרק התשיעי | |
Dividing the equation by : restoring to chapter 3. | ובחלוק אותה על צינסי תביאך אל הפרק השלישי | |
Dividing the equation by : restoring to chapter 1. | ואם תחלקנה על מעוקב תביאך אל פרק א' | |
Chapter 31 |
פרק ל"א | |
עוד רצוני להראותך באופן אחר כאשר המעוקבי' יהיו שוים אל שרשי צינסי | ||
צריך להכות המעוקבים בעצמם ולחלק כמות הצינסי הנקובי' להיות להם שרש על אותה ההכאה | ||
|
תמצא לי מספר אחד שכשיוכה בשני שלישיו' ואותה ההכאה תוכה במספר האמור יעשה כמו הכאת המספר ההוא בשרש ח' אשאל כמה הוא כל אחד מהמספרי' | |
Its rule: | זהו כללו | |
|
תניח שהמספר ההוא הוא דבר אחד | |
|
תכה עתה דבר אחד בשני שלישיו ועולה ב' שלישי צינסו וזאת ההכאה תכה במספר האמור דהיינו בדבר אחד ועולה ב' שלישי מעוקב ושמור זה בעד חלק אחד מההשואה | |
|
אח"כ תכה המספר האמור רצוני דבר אחד בשרש ח' ותזכור להשיב הדברי' אל שרש ויהיה לך שרש מא' צינסו אשר תכהו בשרש ח' | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
תכה כמות המעוקבי' בעצמו והוא ב' שלישי' ועולה ד' תשיעיות ותחלק כמות הצינסי הנקובי' להיות להם שרש והם ח' על אלו הד' תשיעיות | |
The equation can be restored to chapter 11, by dividing by roots: | ודע כי זאת ההשואה אפש' להשיבה אל הפרק הי"א בזה האופן בחלק בשרשי' | |
|
כי כמו שנקבת שרשים בחלק בצד האחד כן גם כן תשיב החלק הצד האחר אל שרשים תכה א"כ המעוקבים בעצמם ויהיה לך שרשי צינסי שוים אל שרשי צינסי מצינסי | |
|
מפני כי מעוק' במעוק' עושה מעו' המעו' אשר הם באי' להיות צינסי דצינסי דצינסי | |
|
א"כ בחלוק בשרשי' יבא צינסו שוה אל צינסו דצינסו מצינסו | |
|
אשר זה בחלוק בצינסי יבא ממנו מספר שוה לצינסו מצינסו | |
This way it can be restored properly. | ובאופן הזה אשר ראית אפש' להשיבה מאד היטב | |
Chapter 32 |
פרק ל"ב | |
עשה לי זה החשבון אשר אומ' אליך פה בקרוב | ||
אבל קודם זה רצו' להבינך טבע זה הפרק | ||
וזה הוא כאשר צינסי מצינסי יהיו שוים אל שרשים מצינסי | ||
צריך להכות כמות הצינסי מצינסי בעצמם ולחלק כמות הצינסי הנקובי' להיות להם שרש על אותה הכאה | ||
|
תמצא לי ב' במספרים שיהיה הראשון חלק מהשני כמו שהוא ב' מג' ויוכה הקטון בגדול ואותה ההכאה תוכה בעצמה יעשה כמו הכאת השני בשרש ח' | |
Its rule: | זהו כללו | |
|
תשים שהמספר ראשון יהיה ב' דברים | |
|
והשני ג' דברי' | |
|
תכה הקטון בגדול וזהו ב' דברי' בג' דברים ועולה ו' צינסי אח"כ תכה זאת ההכאה שהיא ו' צינסי ועולה ל"ו צינסי מצינסי ושמור זה בעד אחד מההשואה | |
|
אח"כ תכה השני שהוא הגדול שהוא ג' דברים בשרש ח' וזכור כי אתה צריך להשיב ג' דברים אל שרש ויהיה לך שרש מט' צינסי | |
|
ועולה שרש מע"ב צינסי שהם שוים אל ג' צינסי מצינסי | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
תכה כמות הצינסי בצינסי בעצמם שזהו ל"ו בעצמם ועולה אלף ורצ"ו וחלק כמות הצינסי הנקובים להיות להם שרש שהם ע"ב על אלו אלף ורצ"ו | |
|
ואתה הנחת היות המספר הראשון ב' דברים א"כ תכה ב' בשרש מרובע משרש מעו' מחלק א' מי"ח | |
|
והשני הנחת היותו ג' דברים א"כ תכה ג' בשרש מעו' משרש מרו' מחלק א' מי"ח | |
The equation can be restored to chapter 21. | ודע כי זאת ההשואה אפש' להשיבה אל הפרק הכ"א | |
Chapter 33 |
פרק ל"ג | |
כאשר המעוקבי' יהיו שוים אל שרשי מעוקבי' | ||
צריך להכות כמות המעוקבי' בעצמם ולחלק כמות המעוקבי' הנקובי' להיות להם שרש באותה ההכאה | ||
|
תמצא לי שני מספרים שיהיה האחד חלק מהשני כמו שב' הוא מג' ומוכה הראשון בעצמו ואותה ההכאה תוכה במספר השני יעשה כמו הכאת השני בשרשו | |
Its rule: | זהו כללו | |
|
תניח שהמספר ראשון יהיה ב' דברי' | |
|
והאחר יבא להיות ג' דברים | |
|
עתה תכה הראשון שהוא ב' דברי' בעצמם ועולה ד' צינסי עתה תכה זאת ההכאה שהיא ד' צינסי במספר השני שהוא ג' דברי' ועולה י"ב מעוקבי' ושמרם בעד חלק אחד מההשואה | |
|
אח"כ תכה המספר השני שהוא ג' דברי' בשרש ג' דברי' ותזכור כי הנך צריך להשיב ג' דברי' אל שרש ויהיה לך שרש מט' צינסי | |
|
ועולה שרש מרע"ה מעוקבי' שהם שוים אל י"ב מעוקבי' | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
תכה כמות המעוקבי' בעצמם שהם י"ב עולה קמ"ד ותחלק כמות המעוקבי' הנקובי' להיות להם שרש וזהו י"ב עולה קמ"ד | |
|
ואתה הנחת היות המספר ראשון ב' דברי' א"כ תכה ב' בשרש מעו' מג' חלקים מי"ו | |
|
והשני הנחת היותו ג' דברי' א"כ תכה ג' בשרש מעוקב מג' חלקי' מי"ו | |
The equation can be restored to chapter 7, by multiplying each part [of the equation] by itself. | ודע כי זאת ההשואה אפש' להשיבה אל הפרק השביעי בהכות כל אחד מהחלקי' בעצמו | |
When the product is divided by cubes, the result will be numbers equal cubes | ויבא בחלוק ההכאה על מעוקבי' מספרי' שוים אל מעוקבי' | |
|
ועל שרשי מעוק' בשרשי מעו' עושה מעוקבי' | |
|
ומעוקבי' בעצמם עושה מעו' ממעו' | |
|
א"כ בחלוק מעוק' על מעו' יעלה מהם מספרי' | |
|
ומעוק' ממעוק' על מעוקבי' יבא מהם מעוקבי' | |
When [the product] is divided by squares, the result will be things equal squares of squares, so it is restored to chapter 12. | ובחלוק על צינסי יבא מזה דבר שוה אל צינסו מצינסו ויבא להיותה מושבת אל הפרק הי"ב | |
Proceeding according to the aforesaid chapter | ונעשה עם הפרק האמור למעלה | |
Chapter 34 |
פרק ל"ד | |
כאשר המעו' הם שוים לשרשי סינסי מסינסי | ||
צריך להכות כמות המעוקבי' בעצמם ולחלק כמות הצינסי מצינסי הנקובי' להיות להם שרש על אותה ההכאה | ||
|
עשה לי זה החשבון תמצא לי שני מספרים שיהיה האחד חלק מהאחר כמו שג' הם מה' ומוכה הראשון בעצמו ואותה ההכאה תוכה במספר השני יעשה כמו הכאת השני בעצמו ואותה ההכאה תוכה בשרש ח' | |
Its rule: | זהו כללו | |
|
תניח שהמספר ראשון יהיה ג' דברי' | |
|
והשני יהיה ה' דברים | |
|
עתה תכה הראשון בעצמו שהוא ג' דברים ויעלה ט' צינסי ואלו הט' צינסי תכה במספר השני שהוא ה' דברי' ועולה מ"ה מעוקבי' ושמור זה בעד חלק אחד מההשואות | |
|
אח"כ תכה המספר השני שהוא ה' דברים בעצמו ועולה כ"ה צינסי אח"כ תכה זאת ההכאה רצו' כ"ה צינסי בשרש ח' | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
תכה כמות המעו' בעצמם וזהו מ"ה מעוקבי' ועולה אלפיי' וכ"ה ותחלק כמות הצינסי מצינסי הנקובים להיות להם שרש והם ה' אלפים על אלו אלפיי' וכ"ה | |
|
ואתה הנחת היות המספר הראשון ג' דברי' א"כ תכה ג' בשרש ב' ול"ח מפ"א ועולה שרש כ"ב וב' תשיעיו' וככה יבא להיות המספר הראשון | |
|
והשני הנחת היותו ה' דברי' א"כ תכה ה' בשרש ב' ול"ח מפ"א ועולה שרש מס"א ונ"ט מפ"א וככה יבא להיות המספר השני | |
[The equation] can be restored to one of the other chapters, by multiplying each part [of the equation] by itself | ודע שאם רצית להשיבה אל פרק מה מהאחרים תכה עתה כל אחד מהחלקי' בעצמו | |
|
והיה עולה צינסי מצינסי אל מעוקב המעוק' או שוה אל צינסו מצינסו מצינסו | |
dividing it by a square: | וזאת ההשואה בחלוק אותה על צינסי | |
|
יעלה יבא צינסו שוה אל צינסו מצינסו | |
|
והיתה מושבת אל הפרק הי"ג | |
dividing it by a cube: | ובחלקה על מעוקב | |
|
יבא דבר שוה אל מעו' | |
|
והיתה מושבת אל פרק ח' | |
dividing it by a square of a square: | ובחלקה על צינסו מצינסו | |
|
היתה באה לך מושבת אל הפרק השני שהוא מספר שוה אל צינסו | |
Chapter 35 |
פרק ל"ה | |
עוד באופן אחר דהיינו כאשר הצינסי מצינסי הם שוים אל צינסי מצינסי | ||
צריך להכות כמות הצינסי מצינסי בעצמם ולחלק כמות הצינסי מצינסי הנקובים להיות להם שרש על ההכאה ההיא | ||
|
תמצא לי שני מספרי' שיהיה האחד חלק מהאחר כאשר ה' הוא מז' ומוכה הראשון בשני ואותה ההכאה תוכה בעצמה יעשה כמו הכאת המספר הקטן בעצמו וההכאה ההיא תוכה בשרש ח' | |
Its rule: | זהו כללו | |
|
תניח שהמספר הראשון יהיה ה' דברי' | |
|
והאחר ז' דברי' | |
|
עתה תכה הראשון בשני וזהו ה' דברים בז' דברי' ועולה ל"ה צינסי אח"כ תכה זאת ההכאה רצו' ל"ה צינסי בעצמם ועולה אלף ורכ"ה צינסי מצינסי ושמור בעד אחד מחלקי ההשואה | |
|
אח"כ תכה המספר הקטו' שהוא ה' דברי' בעצמו ועולה כ"ה צינסי ותכה אלו הכ"ה צינסי בשרש ח' | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
תכה כמות הצינסי בצינסי בעצמם והם אלף ורכ"ה ועולה אלף אלפים ות"ק אלפים ותרכ"ה ותחלק כמות הצינסי מצינסי הנקובים להיות להם שרש בהשואה שהם ה' אלפים על אלף אלפים ות"ק אלפים ותרכ"ה | |
|
ואתה הנחת היות המספר ראשון ה' דברים א"כ תכה ה' בשרש שרש מח' חלקי' מאלפיים ות"א | |
|
והשני הנחת היותו ז' דברים א"כ תכה ז' בשרש שרש מח' חלקים מאלפיים ות"א | |
The calculation can be restored to chapter 11, by multiplying each part of the equation by itself: | ודע כי זה החשבון אפש' להשיבו אל הפרק הי"א בזה האופן בהכות כל אחד מחלקי ההשואה בעצמו | |
|
ושרש צינסו מצינסו יבא צינסו מצינסו | |
|
והצינסי מצינסי יבא צינסו מצינסו מצינסו מצינסו | |
Then dividing by : | ואח"כ בחלוק זה על צינסו מצינסו | |
|
יבאו לך הצינסי מצינסי מספרי' | |
|
והצינסי מצינסי מצינסי מצינסי יבאו צינסי מצינסי | |
So, it will be restored to chapter 11, as said. | והיה מושב אל הפרק הי"א האמור כמו שאמרנו להשיבו | |
Chapter 36 |
פרק ל"ו | |
כאשר הדברים יהיו שוים אל מספרים ואל שרשי מספרי' | ||
צריך לחלק כמות המספרי' הנקו' היות לו שרש על כמות הדברי' ולשמור העולה ואח"כ כמו' להכות כמות הדברי' בעצמם | ||
|
תמצא לי שני מספרי' שיהיה האחד מהאחר כמו שב' הוא מג' ומוכה הראשון בה' והשני בז' ושתי אלו ההכאות יחוברו יחד יעשו י"ו ושרש ח' | |
The calculation procedure: | זאת היא פעלת זה החשבון | |
|
תניח שהמספר ראשון יהיה ב' דברי' | |
|
והשני ג' דברים | |
|
עתה תכה הראשון שהוא ב' דברי' בה' ויעלה עשרה דברים | |
|
אח"כ תכה המספר השני שהוא ג' דברים בז' ועולה כ"א דברים | |
|
וחברם עם ההכאה הראשונה שהיא י' דברי' ויהיה לך ל"א דברי' ושמרם בעד המנגד מהחלק האחד | |
|
ויהיה לך ל"א דברי' שוים אל י"ו ושרש ח' | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
תחלק המספרי' בכמות הדברים וזה י"ו על ל"א אשר יעלה מזה י"ו מל"א ושמור זה אח"כ תשיב כמות הדברי' אל שרש שהם ל"א ועולה תתקס"א | |
|
ואתה הנחת היות המספר ראשון ב' דברים א"כ תכה ב' בי"ו מל"א ושרש ח' מתתקס"א | |
|
והשני הנחת היותו ג' דברים א"כ תכה ג' בי"ו מל"א ושרש ח' מתתקס"א | |
This calculation is done according the the rule of the [present] chapter, as well as the first [chapter] and [chapter] 18. | ויבא להיות נעשה זה החשבון מהכלל מהפרק והראשון והי"ח | |
Chapter 37 |
הפרק הל"ז | |
כאשר המספרי' הם שוים אל דברי' ושרשי דברי' | ||
צריך לחלק המספרי' בכמו' הדברי' שאינם נקובים להיות להם שרש ואח"כ להכות כמות הדברי' הנקובים להיות להם בשרש בעצמם | ||
|
והמשל תמצא לי ב' מספרי' שיהיה האחד חלק מהאחר כמו שב' הוא מג' ובהכות הראשון ג' ושרש השני בד' ויחוברו שתי אלו ההכאות יחד יעשה שלשים | |
The procedure: | זהו מעשהו | |
|
תניח שהמספר ראשון יהיה ב' דברים | |
|
והאחר יהיה ג' דברי' | |
|
עתה תכה הראשון שהוא ב' דברי' בג' ועלה ו' דברי' ושמרם | |
|
אח"כ תכה שרש השני שזהו שרש ג' דברים בד' תזכור כי הנך צריך להשיב ד' אל שרש ויהיה לך שרש מי"ו | |
|
ותחבר שתי אלו ההכאות יחד | |
|
וזהו ו' דברי' עם שרש מ"ח דברי' | |
|
ויהיה לך ו' דברי' ושרש ממ"ח דברי' והם באים להיות שוים אל ל' | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
תחלק המספרי' בכמות הדברים הנקובים להיות להם שרש והם ל' על ו' ועולה מזה ה' ושמרהו אח"כ תכה כמות הדברים אשר לא נוקבו להיות להם שרש שהם ו' בעצמם ועולה ל"ו | |
|
ואתה הנחת היות המספר ראשון ב' דברים א"כ תכה ג' בב' עולה ו' וככה יבא להיות המספר ראשון | |
|
ואתה הנחת שהשני היה ג' דברים והדבר יבא להיות ג' א"כ תכה ג' בג' וככה יבא להיות המספר השני | |
Chapter 38 |
פרק ל"ח | |
כאשר הצינסי יהיו שוים אל מספרי' ולשרשי מספרי' | ||
צריך לחלק המספר על כמות הצינסי והעולה תשמור ואח"כ להכות כמות הצינסי בעצמם | ||
|
תמצא לי שני מספרים שיהיה הראשון חלק מהשני כמו שב' הוא מג' ומוכה הראשון בשני יעשה כ' ושרש ח' | |
The procedure: | זהו מעשהו | |
|
תניח שהמספר ראשון יהיה ב' דברים | |
|
והשני יהיה ג' דברי' | |
|
עתה תכה הראשון בשני וזהו ב' דברים בג' דברי' | |
|
ויהיו ו' צינסי שהם שוים אל כ' ושרש ח' | |
|
עתה תרדוף כפי הכלל הנתון למעלה | |
|
תחלק המספרים אשר לא נקבו להיות להם שרש והם כ' על כמות הצינסי שהם ו' שעולה מזה ג' וא' צינסו ושמרם אח"כ תכה כמות הצינסי בעצמם והם ו' ועולה ל"ו | |
|
ואתה הנחת שהמספר ראשון היה ב' דברים
א"כ תכה ב' בשרש חבור ג' ושליש עם שרש ב' תשיעיו' | |
|
והשני הנחת היותו ג' דברים א"כ תכה ג' בשרש חבור ג' ושליש עם שרש ב' תשיעיו' | |
Chapter 39 |
פרק ל"ט | |
עוד באופן אחר כאשר המספרי' יהיו שוים אל הצינסי ואל שרשי צינסי | ||
צריך לחלק המספרי' על כמות הצינסי אשר לא נקבו להיות להם שרש ומה שיעלה מזה תשמור ואח"כ תכה כמות הצינסי אשר לא נקבו להיות להם שרש בעצמם | ||
|
תמצא לי שני מספרי' שהאחד יהיה חלק מהאחר כמו שג' הוא מד' ומוכה הראשון בשרש ח' והשני בעצמו ואותן שתי הכאות יחוברו יחד יעשו מ"ח | |
The procedure: | זה מעשהו | |
|
תניח שהמספר ראשון יהיה ג' דברים | |
|
והשני ד' דברי' | |
|
עתה תכה הראשון שהוא ג' דברי' בשרש ח' ועולה שרש מע"ב צינסי | |
|
אח"כ תכה המספר השני שהוא ד' דברי' בעצמו ועולה י"ו צינסי | |
|
וחבר שתי אלו ההכאות יחד | |
|
שהם י"ו צינסי עם שרש ע"ב צינסי | |
|
ויהיה לך י"ו צינסי ושרש ע"ב צינסי שוים אל מ"ח | |
|
עתה תרדוף כפי הכלל הנתון למעלה | |
|
תחלק המספרים בכמות הצינסי אשר אינם נקובים להיות להם שרש שהם מ"ח בי"ו ויבא מזה ג' ושמרם אח"כ תכה כמות הצינסי הבלתי נקובים להיות להם שרש בעצמם וזהו י"ו ועולה רנ"ו | |
|
ואתה הנחת היות המספר ראשון ג' דברי' א"כ תכה ג' בשרש ג' וט' מקכ"ח פחות משרש ט' מקכ"ח | |
|
והמספר והשני הנחת היותו ד' דברים א"כ תכה ד' דברים בשרש ג' וט' מקכ"ח פחות שרש מט' מקכ"ח | |
The equation can be restored to chapter 4: | ודע שזאת ההשואה אפש' להשיבה אל הפרק הרביעי | |
|
ויהיה לך י"ו צינסי וכך דברי' כמו שהוא שרש מע"ב שוים אל מ"ח | |
since | מפני כי שרש הצינסו יבא להיות הדבר | |
Chapter 40 |
פרק מ' | |
עוד באופן אחר כאשר המעוקבים יהיו שוים אל מספרים ואל שרשי מספרים | ||
צריך לחלק המספר בכמות המעוק' ואשר יבא מזה שמרהו אח"כ יוכו כמות המעוקבי' בעצמם | ||
|
עשה לי החשבון תמצא לי שני מספרים שיהיה המספר ראשון חלק מהאחר כמו שב' הוא מג' ובהכות הראשון בשני ואותה ההכאה תוכה בשני יעשה מאה ושרש ח' | |
The procedure: | זהו מעשהו | |
|
תניח שהמספר הראשון יהיה ב' דברים | |
|
והאחר יבא להיות ג' דברי' | |
|
עתה תכה הראשון בשני וזהו ב' דברי' בג' דברים ועולה ו' צינסי אח"כ תכה זאת ההכאה שהיא ו' צינסי במספר השני שהוא ג' דברי' | |
|
ועולה י"ח מעוקבי' והם שוים אל ק' ושרש ח' | |
|
עתה תרדוף כפי הכלל הנתון למעלה | |
|
תחלק המספר בכמות המעוקבי' וזהו ק' בי"ח ועולה מזה ה' וה' תשיעיות ושמרם אח"כ תכה כמות המעוקבי' בעצמם והם י"ח שכ"ד | |
|
ואתה הנחת היות המספר ראשון ב' דברי' א"כ תכה ב' בשרש מעוקב מה' וה' תשיעיות מחובר עמם שרש ב' שמיניות | |
|
והשני הנחת היותו ג' דברים א"כ תכה ג' בשרש מעוק' מה' וה' תשיעיו' מחובר עמם שרש ב' מפ"א | |
Chapter 41 |
פרק מ"א | |
כאשר המספרי' יהיו שוים אל המעוקבי' ושרשי מעוקבי' | ||
צריך לחלק המספרי' בכמות המעוקבי' אשר לא נקבו להיות להם שרש ומה שיבא מזה תשמור אח"כ תכה המעו' אשר לא נקבו להיות להם שרש בעצמם | ||
|
עשה לי זה החשבון תמצא לי שני מספרי' שיהיה הראשון חלק מהשני כמו שב' הוא מג' ומוכה הראשון בעצמו ואותה ההכאה תכה בשני ותחובר זאת ההכאה עם שרשה יעשה שמ"ב | |
The procedure: | זהו מעשהו | |
|
תניח שהמספר ראשון יהיה ב' דברי' | |
|
והאחר מחוייב שיהיה ג' דברי' | |
|
עתה תכה המספר הראשון שהוא ב' דברי' בעצמו ועולה ד' צינסי ואלו ד' צינסי תכם על המספר השני שזהו על ג' דברי' | |
|
ועולה י"ב מעוקבי' ושרש י"ב מעוק' יבאו להיות שוים אל שמ"ב | |
|
עתה תרדוף כפי הכלל הנתון למעלה | |
|
תחלק המספרי' בכמות המעוק' שזהו שמ"ב על י"ב ויבא מזה כ"ח וחצי ושמרם אח"כ תכה כמות המעוק' אשר לא נקבו להיות להם שרש והם י"ב בעצמם ועולה קמ"ד | |
|
ואתה הנחת היות המספר ראשון ב' דברי' א"כ תכה ב' במה ששוה הדבר וזהו ג' ועולה ו' וכן יבא להיות המספר ראשון | |
|
והשני הנחת היותו ג' דברי' א"כ תכה ג' בג' ועולה ט' וככה יבא להיות המספר השני | |
Chapter 42 |
פרק מ"ב | |
עוד כאשר הצינסי מצינסי יהיו שוים אל מספר ושרש מספר | ||
צריך לחלק המספרי' בכמות הצינסי מצינסי ומה שיעלה ישמור ואח"כ יוכה כמות צינסי מצינסי בעצמו | ||
|
עשה לי זה החשבון שיהיה האחד חלק מהאחר כמו שב' הוא חלק מג' ובהכות הראשון בשני ואותה ההכאה תוכה בעצמה יעשה כ' ושרש ל' | |
The procedure: | זהו מעשהו | |
|
תניח שהמספר ראשון יהיה ב' דברי' והשני ג' דברים | |
|
עתה תכה הראשון בשני וזהו ב' בג' ועולה ו' צינסי ואלו הו' צינסי תכם בעצמם | |
|
ויעלו ל"ו צינסי מצינסי אשר הם שוים אל כ' ושרש ל' | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
תחלק המספרי' על כמות הצינסי מצינסי שזהו כ' על ל"ו שבא מזה ה' תשיעיות ושמרם אח"כ תכה כמות הצינסי מצינסי בעצמם וזהו ל"ו ועולה אלף רצ"ו | |
|
ואתה הנחת היות המספר ראשון ב' דברים א"כ תכה ב' בשרש שרש ה' מט' מחובר עם שרש ה' מרי"ו | |
|
והשני הנחת היותו ג' דברי' א"כ תכה ג' בשרש שרש ה' מט' מחובר עם שרש ה' מרי"ו | |
Chapter 43 |
פרק מ"ג | |
כאשר המספרי' יהיו שוים אל הצינסי מצינסי ואל שרשי צינסי מצינסי | ||
צריך לחלק המספרי' על כמות הצינסי מצינסי אשר לא נקבו להיות להם שרש ומה שיבא מזה תשמור ואח"כ תכה כמות הצינסי מצינסי אשר לא נקבו להיות להם שרש בעצמם | ||
|
עשה לי זה החשבון תמצא לי שני מספרי' שיהיה הא' חלק מהאחר כמו שב' הוא מג' ומוכה הראשון בשני וזאת ההכאה תוכה בעצמה ותחובר זאת ההכאה עם הכאת הראשון מוכה בעצמו ומה שיבא בשרש ד' יעשה ד' ורביע | |
The procedure: | זהו מעשהו | |
|
תניח שהמספר הראשון יהיה ב' דברי' והשני יהיה ג' דברים | |
|
עתה תכה הראשון בשני וזהו ב' דברים בג' דברי' ועולה ו' צינסי וזאת ההכאה שהוא ו' צינסי תכה בעצמה ועולה ל"ו צינסי מצינסי ותשמרם | |
|
אח"כ תכה המספר ראשון שהוא ב' דברים בעצמו ועולה ד' צינסי ואלו הד' צינסי תכה בשרש ד' ועולה שרש מס"ד צינסי מצינסי | |
|
עתה תחבר שרש מס"ד צינסי מצינסי עם מה ששמרת שזהו עם ל"ו צינסי מצינסי | |
|
ויהיה לך ל"ו צינסי מצינסי ושרש מס"ד צינסי מצינסי היות שוים אל ד' ורביע | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
תחלק המספרים על כמות הצינסי מצינסי אשר לא נקבו היות להם שרש שזהו ד' ורביע בל"ו ויבא מזה י"ז מקמ"ד ותשמרם אח"כ תכה כמות הצינסי מצינסי אשר לא נקבו היות להם שרש בעצמם וזהו ל"ו ועולה אלף ורצ"ו | |
|
ואתה הנחת שהמספר ראשון היה ב' דברים א"כ תכה ב' בשרש השארית הנשאר מהוצאת שרש א' מפ"א חוץ משרש קס"ט מאלף רצ"ו | |
|
והשני הנחת היותו ג' דברי' א"כ תכה ג' במה ששוה הדבר | |
This calculation can be restored to another chapter | ודע כי זה החשבון היה יכול לבוא אל פרק אחר | |
|
אם היית מכה הכאת המספר הראשון שהיתה ד' צינסי בב' שהוא שרש ד' | |
|
אבל ברצותנו להשיבו אל זה הפרק הוכה בשרש ד' כאלו לא היה אל ד' שרש מדבר | |
Chapter 44 |
פרק מ"ד | |
עוד באופן אחר | ||
When the squares of the squares plus squares are equal to a number:
|
כאשר הצינסי מצינסי וצינסי יהיו שוים אל מספר | |
The whole equation should be divided by the number of the squares of the squares. | צריך לחלק כל ההשואה על כמות הצינסי מצינסי | |
Then, the number of the squares should be halved. | ואח"כ לחלק כמות הצינסי לחצי | |
Each half should be multiplied by itself. | ולהכות כל אחד מהחצאים בעצמו | |
Add the product to the number. | והעולה מזה תחבר על המספר | |
Subtract the other half of the number of the squares from the root of the sum. | ומשרש הסך תוציא המחצית האחר מכמות הצינסי | |
The root of the remainder is equal to the thing.
|
ושרש הנשאר יבא לשוות הדבר | |
|
ואשים לך המשל ואומ' כן עשה לי זה החשבון תמצא לי שני מספרי' שכאשר יוכה הראשון בעצמו יעשה השני פחות ה' ויוכו כל אחד מהם בעצמו ויחוברו אותם ההכאות יחד יעשה ק' | |
|
זהו מעשהו | |
|
תניח שהמספר הראשון יהיה דבר אחד | |
|
ותכהו בעצמו והיה א' צינסו | |
|
א"כ יבא להיות השני א' צינסו וה' מספרים | |
|
עתה תכה כל אחד מהם בעצמו | |
|
ועולה הראשון שהוא דבר אחד א' צינסו | |
|
והשני שהוא א' צינסו וה' מספרים עולה הכאתו בעצמו א' צינסו מצינסו וי' צינסי וכ"ה מספרי' | |
|
ותחבר שתי אלו ההכאות יחד ויהיה לך א' צינסו מצינסו וי"א צינסי וכ"ה מספרים אשר יבאו להיות שוים אל ק' | |
|
עתה הוצא המספרים שהם פוחתים בכמות מאחד מהחלקים מכל אחד מהחלקים | |
|
וישאר אחד מהחלקים א' צינסו מצינסו וי"א צינסי בלתי מספר שוה לחלק האחר אשר ישאר ע"ה מספרים | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
תחלק כל ההשואה על כמות הצינסי מצינסי שהוא אחד ויבא מזה ההשואה ההיא בעצמה | |
אח"כ תחלק כמות הצינסי לחצי וזהו י"א ויבא מזה ה' וחצי | ||
ואכה אלו הה' וחצי בעצמם ועולה ל' ורביע | ||
וחברם על המספרים שזהו על ע"ה ויהיה לך ק"ה ורביע | ||
ומשרש אלו הק"ה ורביע הוצא מחצית הצינסי שהוא ה' וחצי וישאר שרש ק"ה ורביע פחות ה' וחצי | ||
ושרש זה הנשאר יבא להיות הדבר וזהו המספר הראשון | ||
| ||
עתה תכה שרש זה השארית בעצמו וזהו שרש מה' וחצי משרש ק"ה ורביע בשרש מה' וחצי משרש ק"ה ורביע ועולה שרש מק"ה ורביע פחות ה' וחצי | ||
ועתה אמ' קודם בשאלה שהמספר ראשון מוכה בעצמו ראוי שיעשה השני פחות ה' א"כ יבא לעשות השני ה' יותר מהכאת הראשון | ||
ולכן תוסיף על הכאת הראשון שזהו על שרש ק"ה ורביע פחות ה' וחצי האמור ויהיה לך שרש ק"ה ורביע פחות חצי וכן יבא להיות המספר השני | ||
| ||
Chapter 45 | ||
Chapter 45-I |
פרק מ"ה | |
עוד אחר באופן אחר | ||
כאשר הצינסי יהיו שוים אל הצינסי מצינסי ואל מספר | ||
צריך לחלק כל ההשואה על כמות הצינסי מצינסי ואח"כ לחלק כמות הצינסי לחצי | ||
וחשבונות מה צריכי' לענות שהדבר ישוה שרש הנשאר בהוציא המספרי' מהכאת מחצית כמות הצינסי ושרש הנשאר ההוא יוציא מהחצי האחר מהצינסי | ||
In the first answer the root of the remainder is added to half the squares, and the root of the sum is the result. | וזהו כמו שבתשובה הראשונה יחובר שרש הנשאר על החצי האחר מהצינסי ושרש הסך ההוא יבא להיות הדבר | |
Likewise, the root of the remainder is subtracted from half the squares, and the root of this remainder is the result. | כמו כן יוצא להפך שרש מאותו שנשאר ממחצית כמות הצינסי ושרש אותו השארית יבא לשוות הדבר | |
Many calculations can be solved by these procedures | וחשבונות רבים אפש' לענות בם היות הדבר כמו שכל אחד מהאופנים אומר | |
Example: | והנני אשים לך משל לפניך כמו שתוכל לראות לפנים | |
|
עשה לי זה החשבון תמצא לי שני מספרי' שיהיה הראשון חלק מהשני כמו שג' הוא מד' ומוכה הראשון בשני ואותה ההכאה תוכה בעצמה ויחובר עמה כ"ז יעשה המספר השני בכפלו בעצמו ואותה ההכאה תוכה בט' | |
The procedure: | זהו מעשהו | |
|
תניח שהמספר ראשון יהיה ג' דברים והשני יהיה ד' דברים | |
|
עתה תכה הראשון בשני ועולה י"ב צינסי ואותה ההכאה מוכה בעצמה ועולה קמ"ד צינסי מצינסי | |
|
אח"כ תכה המספר השני שהוא ד' דברים בעצמו ועולה י"ו צינסי וזאת ההכאה תכה בט' | |
|
ועולה קמ"ד צינסי אשר יבאו להיות שוים אל החלק האחר אשר שמרת וזהו אל קמ"ד צינסי מצינסי וכ"ז מספרי' | |
|
תחלק כל ההשואה על כמות הצינסי מצינסי שזהו על קמ"ד | |
|
ויהיה לך א' צינסו מצינסו וכ"ז מקמ"ד מספרים שוים אל א' צינסו | |
|
עתה תחלק כמות הצינסו שהוא א' לחצי ויהיה לך חצי אחד ותכהו בעצמו ועולה א' רביע | |
ואתה הנחת היות המספר ראשון ג' דברי' א"כ
תכה ג' בשרש מחבור שרש ט' מקמ"ד עם חצי | ||
| ||
והשני הנחת היותו ד' דברים א"כ תכה ד' בשרש מחבור שרש ט' מקמ"ד עם חצי | ||
| ||
The answer of this calculation is by the adding the root to half the squares. | ודע כי זה החשבון נעשית התשובה באופן השרש שיתחבר עם חצי הצינסי | |
It can be solved also by subtracting the root from half the squares: | ואפש' לענותו ג"כ באופן שיוצא השרש ממחצית הצינסי | |
באופן זה שכאשר הוצאת המספרי' מהכאת מחצית הצינסי ישאר לך ט' מקמ"ד ושרש זה הט' מקמ"ד בתשובה הראשונה חברת על מחצית הצינסי שהיה חצי ונשאר פחות שרש ט' מקמ"ד | ||
| ||
א"כ הדבר אשר הנחת היותו ג' דברים יבא להיות ג' מוכה בשרש ממוצא שרש מט' מקמ"ד חוצה מחצי שעולה שרש ממוצא שרש מה' וט' מקמ"ד חוצה מד' וחצי וככה יבא להיות המספר הראשון | ||
| ||
והשני הנחת היותו ד' דברים א"כ תכה ד' בשרש ממוצא שרש מט' מקמ"ד חוץ מחצי | ||
| ||
So, the problem is solved by both the above mentioned procedures | והנה נענה זה החשבון בשני האופנים האמורי' למעלה | |
There are problems that can be solved by both procedures, and both are correct, as seen in this problem. | שאפש' בחשבונו' מה לענות בשני האופני' באמת כן באחד כמו בשני כאשר הראית בזה החשבון | |
Chapter 45 - II |
פרק מ"ה | |
There are problems that can be solved only by one of the procedures of the above chapter: | עוד רצוני להראותך איך הפרק האמור אי אפש' ליתן תשובה בחשבונות מה רק באחד מהאופני' האמורים כמו שאראך מכאן ולהבא בזה החשבון הנמשך | |
|
עשה לי זה החשבון תחלק עשרה לשני חלקים באופן שמוכה ההבדל שביניהם בעצמו ואותה ההכאה תוכה בז' ותשיעית יעשה כמו מוכה הראשון בשני ואותה ההכאה תוכה בעצמה אשאל כמה יבא להיות כל אחד מהחלקים | |
The procedure: | זהו מעשהו | |
|
תניח שאחד מהחלקים יהיה דבר אחד וחמשה והאחר יבא להיות השארית עד עשרה שהוא ה' פחות דבר אחד | |
עתה תקח ההבדל אשר בין האחד החלק אל האחר אשר יבא להיות ב' דברים מפני שהחלק הגדול הוא ב' דברים יותר מהשני | ||
| ||
|
עתה תכה הראשון בשני שזהו דבר אחד וה' בה' פחות דבר אחד ועולה כ"ה מספרי' פחות א' צינסי ואלו כ"ה מספרים פחות א' צינסו תכם בעצמם | |
|
ועולה א' צינסו מצינסו ותרכ"ה מספרי' פחות נ' צינסי שהם שוים אל החלק האחר אשר שמרת שזהו אל כ"ח צינסי וד' תשיעיות | |
|
עתה תחבר נ' צינסי הפוחת מהחלק האחד אל כל אחד מהחלקים | |
|
ויהיה לך א' צינסו מצינסו ותרכ"ה מספרים שוים אל תשפ"ט צינסי וד' מט' | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
תחלק כל ההשואה על כמות הצינסי מצינסי שזהו א' ויהיה לך אותו בעצמו | |
אח"כ תחלק כמות הצינסי לחצי שזהו ע"ח וד' תשיעיות ויעלה מזה ל"ט וב' מט' ואלו הל"ט וב' מט' תכה בעצמם ועולה אלף תקל"ח ול"א מפ"א | ||
| ||
|
ואתה הנחת שאחד מהחלקים היה דבר אחד וה' א"כ יבא להיות החלק הראשון ה' ומוצא שרש מתתקי"ג ול"א מפ"א חוץ מל"ט וב' מט' | |
|
והחלק האחר יבא להיות ה' פחות הדבר האמור שהוא פחות שרש ממוצא שרש מתתקי"ג ול"א מפ"א חוץ מל"ט וב' מט' וככה יבא להיות החלק האחר מעשרה | |
This is solved only by one of the solving procedures mentioned above, which is by subtracting: | עתה אזכירך שהדבר נענה באופן אחד מהאופנים שהוא באופן מההוצאה האמור קודם בכלל האמור בפרק האמור | |
שהוא שהדבר יבא להיות שרש ממוצא מתתקי"ג ול"א מפ"א שהוא ל' וב' מט' חוץ מל"ט וב' מט' וישאר ט' | ||
| ||
|
והחלק השני הוא ה' פחות דבר אחד והדבר הוא ג' שישאר ב' וכן הוא החלק השני | |
It cannot be solved by the other procedure of the above chapter. | ובאופן אחר אי אפש' לענות הדבר בהשיב זה החשבון אל זה הפרק | |
Since one of the part is | מפני כי אחד מהחלקים יבא להיות דבר אחד וה' | |
|
ובזולת אותו השרש מהנשאר בהוצאת המספרי' מהכאת מחצית כמות הצינסי לבד השרש ממחצית כמות הצינסי יבא להיות יותר מה' | |
|
א"כ יבא להיו' אחד מהחלקי' ה' ודבר אחד והדבר יבא להיות יותר מה' באופן שהחלק האמור יבא להיות יותר מעשרה | |
and it is impossible that the part will be greater than the whole | וזה דבר נמנע שהחלק יהיה גדול מהכל | |
Chapter 45 - III |
פרק מ"ה | |
Sometimes the answer is given only by the other procedure of the above chapter, i.e. the root of the sum. | עוד רצוני להשים לפניך חשבון אחר אשר עמו יראה כי הפרק האמור יתן תשובה לפעמים היות הדבר לבד באופן האמור קודם רצו' שרש החבור | |
Example: | ואתן לך המשל פה בקרוב באופן זה כאמור | |
|
עשה לי מעשרה ב' חלקים באופן שבהכות הגדול בקטן ויחובר אל הכאת הגדול בעצמו ואותו הסך יוכה בחלק הגדול יעשה כמו הכאת הגדול בחציו ואותה ההכאה תוכה בעצמה ויחובר אליה ל"ו אשאל כמה יבא להיות כל אחד מהחלקי' | |
The procedure: | זו היא פעולתו | |
|
תניח שהחלק הגדול יהיה דבר אחד והקטן יבא להיות הנשאר עד עשרה שהוא עשרה פחות דבר | |
|
עתה תכה הגדול בקטן רצו' דבר אחד בעשרה פחות דבר אחד ועולה י' דברי' פחות א' צינסו | |
|
ועל זה תחבר הכאת הגדול המוכה בעצמו שהוא דבר אחד בדבר אחד ועולה א' צינסו ויהיה לך בסך עשרה דברים | |
|
ותכה זה הסך שהוא י' דברי' בחלק הגדול שהוא דבר אחד ועולה י' צינסי ושמרם לחלק אחד מההשואה | |
|
אח"כ תכה הגדול שהוא א' דבר בחציו שהוא חצי דבר ועולה חצי צינסו | |
|
וזאת ההכאה רצוני חצי צינסו תכה בעצמה | |
|
ועולה א' רביע מצינסו מצינסו ול"ו מספרי' להיות שוים אל עשרה צינסי אשר שמרת | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
תחלק כל ההשוא' בכמות הצינסי מצינסי שהוא א' רביע | |
|
ויהיה לך א' צינסו מצינסו וקמ"ד מספרי' שוים אל מ' צינסי | |
אח"כ תחלק כמות הצינסי שהם מ' לחצאי' ויבא מזה כ' ואלו הכ' תכם בעצמם ועולה ת' | ||
| ||
|
והחלק האחר יבא להיות הנשאר עד י' וזהו עשרה פחות שרש מחבור שרש רנ"ו על הכ' שהם מחצית כמות הצינסי | |
It is solved by the first procedure of the [above] chapter, i.e. the root of the sum, but it cannot be solved by the other procedure. | ונענה באופן ראשון שמשים הפרק שזהו שרש החבור ולא יתכן תשובתו באחד מהאופני' האחרי' | |
|
וסבת למה זה היא כי כשהוצא שרש רנ"ו ממחצית הצינסי שזהו הכ' שרש הנשאר יבא להיות פחות ממחצית עשרה | |
|
וכבר אמרנו קודם שהחלק הגדול היה דבר אחד ולעשות מעשרה שני חלקי' | |
|
ולקחת הגדול הנה הגדול יבא להיות יותר מה' וכפי זה החשבון היה בא החלק הגדול פחו' מה' וזהו דבר נמנע שיהיה החלק מי' פחות מה' | |
Therefore:
|
א"כ תחבר שרש רנ"ו שהוא י"ו על כ' עולה ל"ו ושרש זה הסך מל"ו שיבא להיות ו' הוא החלק ראשון אשר הונח היותו דבר אחד | |
|
והחלק הקטן יבא להיות הנשאר עד י' שהוא ד' | |
The reason that the larger part was given as , was to solve it by the third way of the above chapter, i.e. to show that sometimes it is impossible to solve by the other procedure, only by the root of the sum. | עתה דע כי הסבה שהנחנו החלק הגדול דבר א' היתה כדי להשיב תשובת זה הפרק אל התשוב' השלישית אשר הונחה בראשית הפרק ולהראות כי בפרקי' מה הדבר אי אפש' לענות באופן אחר כי אם שרש הסך כאשר אמרנו קודם | |
Chapter 46 |
פרק מ"ו | |
עוד רצוני לרדוף וזהו הוא בזה האופן | ||
כאשר הצינסי מצינסי יהיו שוים אל המספר והצינסי | ||
צריך לחלק כל ההשואה על כמות הצינסי מצינסי ואח"כ לחלק כמות הצינסי לחצאי' | ||
|
והנה המשל עשה לי זה החשבון תמצא לי ב' מספרי' שכאשר יוכה הראשון בעצמו יעשה ב' דמיוני השני וח' יותר ומוכה כל אחד מהם בעצמו ויקובצו ב' ההכאו' יחד יעשו פ' | |
|
תניח שהמספר הראשון יהיה דבר אחד | |
|
וזה תכהו בעצמו ועולה א' צינסו | |
|
א"כ יבא להיות המספר השני חצי צינסו פחות ד' | |
|
עתה תכה כל אחד מהם בעצמו | |
|
שהם הראשון שהוא דבר אחד ועולה א' צינסו | |
|
והשני שהוא חצי צינסו פחות ד' בעצמו ועולה א' רביע מצינסו מצינסו וי"ו מספרי' פחות ד' צינסו | |
|
וקבץ ב' אלו ההכאו' יחד | |
|
וזהו א' צינסו עם רביע צינסו מצינסו וי"ו מספרי' פחות ד' צינסי | |
|
עולה א' רביע צינסו מצינסו וי"ו מספרי' פחות ג' צינסי שהם שוים אל פ' | |
|
עתה תרדוף כפי הכלל הנתון למעלה | |
|
תחלק כל ההשואה על כמו' הצינסי מצינסי וזהו על א' ורביע | |
|
וקודם שתחלק זאת ההשוא' תתן לאשר לו פחות א' מהחלקי' שהוא ג' צינסי אל כל א' מהחלקי' והוצא הכמות הקטן מהמספרי' מכל א' מהחלקי' | |
|
וישאר לך ההשוא' נקיה א' ורביע צינסו מצינסו שוה אל ג' צנסי ואל ס"ד מספרי' | |
|
לחלק על א' רביע | |
|
ויבא מזה א' צינסו מצינסו שוה אל י"ב צינסי ורנ"ו מספרי' | |
אח"כ תחלק כמות הצינסי שהם י"ב לחצי ויבא ו' ואלו הו' תכם בעצמם ועולה ל"ו | ||
| ||
עתה תכה זה שיבא להיות הדבר בעצמו ויהיה לך ו' ושרש רצ"ב ומזה הסך תוציא ח' וישאר שרש מרצ"ב פחות ב' אשר יבא להיות כפל למספר השני | ||
| ||
Chapter 47 |
פרק מ"ז | |
When the things are equal to a cube root of the numbers:
|
כאשר הדברי' יהיו שוי' אל שרש מעוק' ממספרי' | |
The number of the things should be cubed. | צריך להשיב כמות הדברי' אל מעוק' | |
Then, the numbers that are the radicand of the cube root should be divided by the cubed number of the things. | ואח"כ לחלק המספרי' הנקובי' להיות להם שרש מעוק' על השבת כמות הדברי' | |
Extract the cube root of the result and it is equal to the thing.
|
ומהעולה תקח שרשו המעו' יבא לשוות הדבר | |
|
והנה המשל תמצא לי ב' מספרי' שיהיה האחד חלק מהאחר כמו שב' הוא מג' ומוכה הראשון בג' והשני בד' ויחוברו ב' אלו ההכאו' יחד יעשה שרש מעוק' מרי"ו | |
|
תעשה כמו שאומ' הכלל שלו | |
|
תניח שהמספר הראשון יהיה ב' דברי' והשני ג' | |
|
עתה תכה הראשון שהוא ב' דברי' בג' ועולה ו' | |
|
אח"כ תכה השני שהוא ג' דברי' בד' ועולה י"ב דברי' | |
|
ותקבץ שתי אלו ההכאו' יחד רצו' ו' דברי' עם י"ב דברי' ועולה י"ח דברי' שהם שוים אל שרש מעוק' מרי"ו | |
|
עתה תרדוף כפי הכלל הנתון למעלה | |
|
תשיב כמות הדברי' אל מעוק' וזהו י"ח בזה האופן תכה י"ח בעצמו ועולה שכ"ד ואלו השכ"ד תכם בי"ח ועולה ה' אלפי' ותתל"ב | |
|
ותחלק כמות המספרי' אשר להם שרש מעו' שהם רי"ו כ"ה אלפי' ותתל"ב ויבא מזה א' מס' | |
|
ושרש מעו' מא' מכ"ז יבא להיות הדבר | |
|
ואתה הנחת היות המספר הראשון ב' דברי' א"כ תכה ב' בשרש מעו' מא' מכ"ז ועולה שרש מעו' מח' מכ"ז אשר יבא להיות ב' שלישים וככה יבא להיות המספר הראשו' | |
|
והשני הנחת היותו ג' דברי' א"כ תכה ג' בשרש מעו' מא' מכ"ז ועלה שרש מכ"ז שהוא אחד שלם שהוא א' וכך יהיה המספר השני | |
[The equation] can be returned to chapter 7, by cubing each [part of the equation] by itself. | ואפשר להשיב אל פרק ז' בהכות כל אחד בעצמו באופן מעו' | |
Chapter 48 |
פרק מ"ח | |
עוד רצו' לשים לפניך חשבון אחר באופן אחר ואומ' כן | ||
When the numbers are equal to a cube root of a thing:
|
כאשר המספרי' יהיו שוים אל שרש מעו' מדבר | |
The numbers should be cubed. | צריך להשיב כמות המספרי' אל מעו' | |
Then the cubed [numbers] should be divided by the number of the things that are the radicand of the cube root. | ואח"כ לחלק אותה ההשבה על כמות הדברי' הנקובי' להיות להם שרש מעו' | |
|
ומה שיבא מזה שוה הדבר | |
|
והנה המשל עשה לי זה החשבון תמצא לי ב' מספרי'
שיהיה הא' חלק מהאחר כמו שג' הוא מד' | |
|
זו היא פעולתו | |
|
תניח שהמספר הראשון יהיה ג' דברי' והשני יהיה ד' | |
|
עתה תכה הראשון שהוא ג' בב' עולה ו' דברי' | |
|
והשני שהוא ד' דברי' תכה בג' ועולה י"ב | |
|
ותקבץ שתי אלו הכאות יחד שהם ו' דברי' עם י"ב דברי' ועולה י"ח דברי' | |
|
ושרש מעו' מאלו הי"ח דברי' יבא להיות שוה אל ח' | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
אתה צריך להשיב כמות הדברי' אל מעו' ויהיה לך ח' מושב והוא תקי"ב | |
|
ותחלק אלו התקי"ב בכמות הדברי' הנקובי' להיות להם שרש מעו' וזהו על י"ח ויבא מזה כ"ח וד' מט' וכך יבא לשוות הדבר | |
|
ואתה הנחת היות המספר ראשון ג' דברי' א"כ תכה ג' בכ"ח וד' מט' ועולה פ"ה ושליש וכך יבא להיות המספר ראשון | |
|
והשני הנחת היותו ד' דברי' א"כ תכה ד' בכ"ח וד' מט' ועולה קי"ג וז' מט' וכך יבא להיות המספר השני | |
Know that this equation can be returned to the first chapter by cubing this way: | ודע כי זאת ההשוא' אפש' להשיבה אל הפרק הראשו' בהכות עצמו באופן מעו' בזה האופן | |
Multiplying a cube root of a thing by a cube root of a thing generates a cube root of a square.
|
בהכות שרש מעו' מדבר בשרש מעו' מדבר ועושה שרש מעו' מצינסו | |
A cube root of a square by a cube root of a thing generates a cube root of a cube, which is the thing.
|
ושרש מעו' מצינסו בשרש מעו' מדבר יעשה שרש מעו' ממעו' שזהו הדבר | |
Restore the things this way. | וכן תשיב הדברי' | |
Chapter 49 |
פרק מ"ט | |
עוד באופן אחר | ||
When the squares are equal to a cube root of the numbers:
|
כאשר הצינסי יהיו שוים אל שרשי' מעו' ממספרי' | |
The number of the squares should be cubed. | צריך להשיב כמות הצינסי אל מעוק' | |
Then, the radicand of the cube root is divided by cubed number of the squares. | ואח"כ לחלק המספרי' הנקובי' להיות להם שרש מעו' בהבאת כמות הצינסי אל מעו' | |
The [square] root of a cube root of the result is equal to the thing.
|
ושרש משרש ממעו' והעולה מזה שוה הדבר | |
|
והנה המשל תמצא לי ב' מספרי' שיהיה האחד חלק מהאחר כמו ג' מה' ומוכה הראשון בשני יעשה שרש מעו' מתשכ"ט | |
|
תניח שהמספר ראשון יהיה ג' דברי' והשני יהיה ה' דברי' | |
|
עתה תכה הראשון בשני וזהו ג' דברי' בה' ועולה ט"ו צינסי שהם שוים אל שרש מעו' מתשכ"ט | |
|
עתה תרדוף כפי הכלל הנתון למעלה | |
|
תשיב כמות הצינסי שהם ט"ו אל מעו' ועולה ג' אלפי' ושע"ה | |
|
ותחלק המספרי' הנקובי' להיות להם שרש מעו' שזהו תשכ"ט על ג' אלפי' ושע"ה ויבא מזה כ"ז מקכ"ה | |
|
ושרש המרו' משרש המעו' או תאמ' שרש המעו' משרש המרוב' מכ"ז מקכ"ה יבא לשוות הדבר | |
|
ואתה הנחת היות המספר ראשון ג' דברי' א"כ תכה ג' בשרש מעו' משרש מרוב' מכ"ז מקכ"ה ועולה שרש מרו' משרש מעוק' מקכ"ה ונ"ח מקכ"ה | |
|
והשני הנחת היותו ה' דברי' א"כ תכה ה' בשרש מעו' משרש מרוב' מכ"ז מקכ"ה ועולה שרש מרו' משרש מעו' מג' אלפי' ושע"ה | |
Know that this equation can be returned to chapter 21: | ודע כי זאת ההשואה אפש' להשיב' אל הפרק הכ"א | |
Since the squares [the are equal] to the cube root of the numbers become cubes [that are equal] to the square root of the numbers.
|
מפני כי כך יבאו להיות הצינסי אל שרש מעו' ממספרי' כמו המעו' אל שרש מרוב' ממספרי' | |
Because, by cubing the squares, they becaome squares of squares of square, or cubes of cubes.
|
מפני כי בהשבת הצינסי בהכא' באופן המעו' יעשו צינסי מצינסי מצינסי או מעו' ממעו' | |
Likewise, by squaring the cubes, they become squares of squares of squares, or cubes of cubes.
|
וכדומה לזה יעשה מעו' בהכותו כמו מרוב' צינסי מצינסי מצינסי או מעו' ממעו' | |
Also, a cubed square root of numbers is equal to a squared root of their cube.
|
וכן שרש מרו' ממספרי' מושב באופן מעו' הכאה שוה ממה שעושה שרש אחד שוה בהיותו מעו' מוכה בעצמו באופן מרו' | |
Therefore, when the squares that are one part of the equation are cubed they become equal to the numbers that are the radicand of the cube root.
|
א"כ בהכות הצינסי אשר הם א' מהחלקי' מההשוא' באופן מעוק' עושה כמו המספרי' הנקובי' להיות להם שרש מעו' היותם עוד מספרי' | |
So [the equation] is returned to chapter 21: | א"כ בהשיבה אל הפרק הכ"א | |
That is, a root of a square of a square of a square i.e. a root of a cube of a cube becomes a cube and it is equal to a square root of a number, [whose cube root is cubed].
|
דהיינו אל שרש צינסי מצינסי מצינסי דהיינו שרש מעו' ממעו' יבא להיות מעו' ויהיה שוה אל שרש מרובע מהמספר מושב אל מעו' | |
Hence, a cube equals a root of a number.
|
א"כ מעו' יהיה שוה אל שרש מספר | |
Chapter 50 |
פרק נ' | |
When the numbers are equal to a cube root of squares.
|
כאשר המספרי' יהיו שוים אל שרשי' מעו' מצינסי | |
The numbers should be cubed. | צריך להשיב המספרי' אל מעו' | |
Then, the cubed number is divided by the number of the squares that are the radicand of the cube root. | ואותה ההשבה תחלק בכמות הצינסי הנקובי' להיות להם שרש מעו' | |
The square root of the result is equal to the thing.
|
ושרש מרוב' ממה שיבא מזה יבא לשוות הדבר | |
|
והנה המשל עשה לי זה החשבון תמצא לי ב' מספרי' שיהיה הראשון חלק מהשני כמו שא' הוא מג' ומוכה שרש מעו' מהראשו' בשרש מעו' השני יעשה ק' | |
|
זו היא פעולתו | |
|
תניח שהמספר ראשון יהיה דבר אחד והשני ג' דברי' | |
|
עתה תכה שרש המעו' מהראשון עם שרש המעו' מהשני שזהו שרש מעו' דבר אחד בשרש מעו' ג' דברי' ועולה שרש מעו' מג' צינסי והם שוים אל ק' | |
|
עתה תרדוף כפי הכלל האמור למעלה | |
|
תשיב ק' שהם המספרי' אל מעו' ויהיה לך אלף אלפים | |
|
תחלקם בכמות הצינסי הנקוב' להיות להם שרש מעו' שזהו ג' ויבא מזה של"ג אלפי' ושל"ג ושליש | |
|
ושרש המרוב' מזה יבא לשוות הדבר ואתה הנחת היות המספר ראשון דבר אחד א"כ המספר ראשון יבא להיות שרש משל"ג אלפי' ושל"ג ושליש | |
|
והשני הנחת היותו ג' דברי' א"כ תכה ג' בשל"ג אלפי' ושל"ג ושליש ועולה שרש מג' אלפי אלפי' וככה יבא להיות המספר השני | |
Know that this equation can be returned to the second chapter, by converting the number to a cube. | ודע שזאת ההשוא' אפש' להשיב' אל הפרק השני בהשיב המספר אל מעו' | |
"A cube [root] of a number is equal to a cube root of squares" is equal to your saying "the number is equal to squares".
|
יהיה מעו' מספר שוה אל שרש מעו' מצינסו ושוה לאמרך המספר שוה לצינסי | |
Chapter 51 |
פרק נ"א | |
עוד רצו' לשומך באופן אחר | ||
It is when the cubes are equal to a cube root of the numbers.
|
וזהו כאשר המעו' יהיו שוים אל שרש מעו' ממספרי' | |
The number of the cubes should be cubed. | צריך להשיב כמות המעוק' אל מעוקב' | |
Then, the radicand of the cube root is divided by the cubed number of the cubes. | ולחלק כמות המספרי' הנקובי' להיות להם שרש מעו' בהשבת כמות המעו' אל מעו' | |
The cube root of the result is equal to the thing and its cube root is a [cube] root of its cube root.
|
ושרש המעו' ממה שיבא מזה ישוה הדבר ושרשו המעו' הוא שרש משרשו המעו' | |
|
והנה המשל תמצא לי שני מספרי' שיהיה אחד מהם חלק מהאחר כמו שא' הוא מד' ומוכה הראשון בשני וההכאה ההיא תוכה בראשון יעשה שרש מעו' מרי"ו | |
|
זו היא פעולתו | |
|
תניח שהמספר הראשון יהיה דבר אחד והאחר יהיה ד' דברי' | |
|
עתה תכה הראשון בשני שזהו דבר אחד בד' דברי' עולה ד' צינסי | |
|
וזאת ההכאת שהיא ד' צינסי תכה במספר ראשון שהוא דבר אחד עולה ד' מעוק' שהם שוים אל שרש מעו' מרי"ו | |
|
עתה א"כ תרדוף כפי הכלל האמור למעלה | |
|
הנך צריך להשיב כמות המעו' אל מעו' וזהו ד' ויהיה לך ס"ד | |
|
ותחלק כמות המספרי' הנקובי' להיות להם שרש מעו' והם רי"ו על ס"ד ויבאו מזה ג' וג' מח' | |
|
ושרש מעו' משרש מעו' מג' וג' מח' יבא להיות הדבר וככה יבא להיות המספר ראשון אשר הנחת היותו דבר אחד | |
|
והשני הנחת היותו ד' דברי' א"כ תכה ד' בשרש מעו' משרש מעו' מג' וג' מח' | |
|
ותזכור כי הנך צריך להשיב אל שרש מעו' משרש מעוק' ויהיה לך שרש מעו' משרש מעו' מרס"ב אלפים וקמ"ד | |
|
וזה תכה בג' וג' מח' ועולה שרש מעו' משרש מעו' מתתפ"ד אלפי' ותשל"ו וככה יבא להיות המספר השני | |
Over and done | תם ונשלם | |
Praise to the Creator of the Universe | שבח לבורא עולם |
Notes
- ↑ תהילים כו, א
Appendix: Bibliography
Aliabraa Argibra / by Maestro Dardi (Pisa, 14th century)
– Hebrew translation –
by Mordecai (Angelo) Finzi (Mantua, d. 1475)
Jīblī al-Mūqabāla
Manuscripts:
- Jerusalem, The National Library of Israel Ms. Heb. 8°3915 (IMHM: B 546 (8°3915)), ff. 1r-43r (Mantova, 1473-1975; autograph)
- Paris, Bibliothèque Nationale de France heb. 1029/5 (IMHM: f 15721), ff. 194r-234r (15th-16th century)
- Paris, Bibliothèque Nationale de France heb. 1033/2 (IMHM: f 15026), ff. 91r-150v (16th century)
Critical Edition (of the first section):
- Wagner, Roy. 2013. Mordekhai Finzi's Translation of Maestro Dardi's Italian Algebra – a Partial Edition. In: Alexander Fidora, Harvey J. Hames, Yossef Schwarz eds. Latin-into-Hebrew Texts and Studies. Volume Two: Text in Contexts. Leiden, Boston: Brill, 2013, pp. 437-499.
Bibliography:
- Lévy, Tony. 2007. L’algèbre arabe dans les textes hébraïques (II). Dans l’Italie des XVe et XVIe siècles, sources arabes et sources vernaculaires, Arabic Sciences and Philosophy 17, pp. 81-107.
- Van Egmond, Warren. 1983. The Algebra of Maestro Dardi of Pisa, Historia Mathematica 10, pp. 399-421.
- Wagner, Roy. 2013. Mordekhai Finzi's Translation of Maestro Dardi's Italian Algebra. In: Alexander Fidora, Harvey J. Hames, Yossef Schwarz eds. Latin-into-Hebrew Texts and Studies. Volume Two: Text in Contexts. Leiden, Boston: Brill, 2013, pp. 195-221.